1
|
Bradley J, O'Shea P, Wrench C, Mattsson J, Paulin R, Overed-Sayer C, Rosenberg L, Olsson H, Gianni D. A secretome screen in primary human lung fibroblasts identifies FGF9 as a novel regulator of cellular senescence. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 32:100223. [PMID: 40024445 DOI: 10.1016/j.slasd.2025.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/07/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Senescent cells contribute to the pathogenesis of idiopathic pulmonary fibrosis (IPF), a disease with significant unmet need and therefore, there is an interest in discovering new drug targets that regulate this process. We design and perform a phenotypic screen with a secreted protein library in primary human lung fibroblasts to identify modulators of cell senescence. We identify FGF9 as a suppressor of several senescence phenotypes reducing stimulated p21 expression, enlarged morphology, DNA damage and SASP secretion, which is consistent with both DNA-damage and ROS induced senescence. We also show that FGF9 reduces fibroblast activation in both healthy and IPF fibroblasts shown by a reduction in pro-fibrotic markers such as α-smooth muscle actin and COL1A1 mRNA. Our findings identify FGF9 as a suppressor of both senescence and fibrotic features in lung fibroblasts and therefore could be targeted as a new therapeutic strategy for respiratory diseases such as IPF.
Collapse
Affiliation(s)
- Jenna Bradley
- Centre of Genomic Research, Discovery Sciences, BioPharmaceuticals R&D, Astrazeneca, Cambridge, United Kingdom.
| | - Patrick O'Shea
- Centre of Genomic Research, Discovery Sciences, BioPharmaceuticals R&D, Astrazeneca, Cambridge, United Kingdom
| | - Catherine Wrench
- Respiratory and Immunology, BioPharmaceuticals R&D, Astrazeneca, Cambridge, United Kingdom
| | - Johan Mattsson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Roxane Paulin
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Catherine Overed-Sayer
- Respiratory and Immunology, BioPharmaceuticals R&D, Astrazeneca, Cambridge, United Kingdom
| | - Laura Rosenberg
- Centre of Genomic Research, Discovery Sciences, BioPharmaceuticals R&D, Astrazeneca, Cambridge, United Kingdom
| | - Henric Olsson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Davide Gianni
- Centre of Genomic Research, Discovery Sciences, BioPharmaceuticals R&D, Astrazeneca, Cambridge, United Kingdom
| |
Collapse
|
2
|
Sui M, Teh J, Fort K, Shaw D, Sudmant P, Koide T, Good JM, Vazquez JM, Brem RB. Avid lysosomal acidification in fibroblasts of the Mediterranean mouse Mus spretus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636718. [PMID: 39974907 PMCID: PMC11839142 DOI: 10.1101/2025.02.05.636718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Failures of the lysosome-autophagy system are a hallmark of aging and many disease states. As a consequence, interventions that enhance lysosome function are of keen interest in the context of drug development. Throughout the biomedical literature, evolutionary biologists have discovered that challenges faced by humans in clinical settings have been resolved by non-model organisms adapting to wild environments. Here, we used a primary cell culture approach to survey lysosomal characteristics in selected species of the genus Mus. We found that cells from M. musculus, mice adapted to human environments, had weak lysosomal acidification and high expression and activity of the lysosomal enzyme β-galactosidase, a classic marker of cellular senescence. Cells of wild relatives, especially the Mediterranean mouse M. spretus, had more robustly performing lysosomes and dampened β-galactosidase levels. We propose that classic laboratory models of lysosome function and senescence may reflect characters that diverge from the phenotypes of wild mice. The M. spretus phenotype may ultimately provide a blueprint for interventions that ameliorate lysosome breakdown in stress and disease.
Collapse
Affiliation(s)
- Melissa Sui
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joanne Teh
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kayleigh Fort
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel Shaw
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Peter Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Tsuyoshi Koide
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Jeffrey M. Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Juan M. Vazquez
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rachel B. Brem
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Sugimoto Y, Okamoto K, Saito H, Yamaguchi T, Kinoshita J, Nakamura K, Takino T, Endo Y, Ninomiya I, Ohta T, Inaki N. Metformin suppresses esophageal cancer progression through the radiation‑induced cellular senescence of cancer‑associated fibroblasts. Oncol Rep 2024; 52:129. [PMID: 39092576 PMCID: PMC11332583 DOI: 10.3892/or.2024.8788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/28/2024] [Indexed: 08/04/2024] Open
Abstract
Senescent cells are known to secrete proteins, including inflammatory cytokines and damage‑associated molecular patterns. This phenomenon is known as the senescence‑associated secretory phenotype (SASP). SASP in cancer stromal fibroblasts is involved in cancer growth and progression. Conversely, metformin, an antidiabetic drug, has been reported to inhibit SASP induction by inhibiting the activation of NF‑κB, a regulator of SASP. To date, at least to the best of our knowledge, there have been no reports regarding cellular senescence in fibroblasts and tumor progression via the SASP‑mediated paracrine pathway. The present study thus aimed to elucidate the induction mechanisms of SASP in radiation‑induced fibroblasts and to determine its effects on cancer progression via the paracrine pathway. Furthermore, the present study aimed to determine whether controlling SASP using metformin suppresses cancer progression. A well‑differentiated esophageal cancer cell line established by the authors' department and fibroblasts isolated and cultured from the non‑cancerous esophageal mucosa of resected esophageal cancer cases were used for the experiments. Fibroblasts were irradiated with 8 Gy radiation, and the changes in the expression of the senescence markers, SA‑β‑gal, p21, p16 and NF‑κB were evaluated using immunofluorescent staining and western blot analysis in the presence or absence of metformin treatment. The culture supernatants of irradiated fibroblasts treated with metformin and those treated without metformin were collected and added to the cancer cells to evaluate their proliferative, invasive and migratory abilities. Vimentin and E‑cadherin expression levels were also evaluated using immunofluorescent staining and western blot analysis. The expression levels of p16, p21 and NF‑κB in irradiated fibroblasts were attenuated by treatment with metformin. Supernatants collected from irradiated fibroblasts exhibited the proliferative activity of esophageal cancer cells, and the promotion of migratory and invasion abilities, which may be due to epithelial‑mesenchymal transition and changes in cell morphology. These reactions were confirmed to be suppressed by the addition of the supernatant of cultured fibroblasts pre‑treated with metformin. On the whole, the present study demonstrates that fibroblasts in the cancer stroma may be involved in tumor progression through cellular senescence.
Collapse
Affiliation(s)
- Yuya Sugimoto
- Department of Gastrointestinal Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Koichi Okamoto
- Department of Gastrointestinal Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
- Department of General and Digestive Surgery, Kanazawa Medical University Hospital, Kahoku, Ishikawa 920-0293, Japan
| | - Hiroto Saito
- Department of Gastrointestinal Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Takahisa Yamaguchi
- Department of Gastroenterological Surgery, Ishikawa Prefectural Central Hospital, Kanazawa, Ishikawa 920-8530, Japan
| | - Jun Kinoshita
- Department of Gastrointestinal Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Keishi Nakamura
- Department of Gastrointestinal Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Takahisa Takino
- Division of Education for Global Standard, Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yoshio Endo
- Central Research Resource Branch, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Itasu Ninomiya
- Department of Surgery, Fukui Prefectural Hospital, Fukui 910-0846, Japan
| | - Tetsuo Ohta
- Department of Gastrointestinal Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Noriyuki Inaki
- Department of Gastrointestinal Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| |
Collapse
|
4
|
Kalampouka I, Mould RR, Botchway SW, Mackenzie AM, Nunn AV, Thomas EL, Bell JD. Selective induction of senescence in cancer cells through near-infrared light treatment via mitochondrial modulation. JOURNAL OF BIOPHOTONICS 2024; 17:e202400046. [PMID: 39155124 DOI: 10.1002/jbio.202400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 08/20/2024]
Abstract
Photobiomodulation, utilising non-ionising light in the visible and near-infrared (NIR) spectrum, has been suggested as a potential method for enhancing tissue repair, reducing inflammation and possibly mitigating cancer-therapy-associated side effects. NIR light is suggested to be absorbed intracellularly, mainly by chromophores within the mitochondria. This study examines the impact of 734 nm NIR light on cellular senescence. Cancer (MCF7 and A549) and non-cancer (MCF10A and IMR-90) cell populations were subjected to 63 mJ/cm2 NIR-light exposure for 6 days. Senescence levels were quantified by measuring active senescence-associated beta-galactosidase. Exposure to NIR light significantly increases senescence levels in cancer (10.0%-203.2%) but not in non-cancer cells (p > 0.05). Changes in senescence were associated with significant modulation of mitochondrial homeostasis, including increased levels of reactive oxygen species (p < 0.05) and mitochondrial membrane potential (p < 0.05) post-NIR-light treatment. These results suggest that NIR light modulates cellular chemistry, arresting the proliferation of cancer cells via senescence induction while sparing non-cancer cells.
Collapse
Affiliation(s)
- I Kalampouka
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - R R Mould
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - S W Botchway
- Research Complex at Harwell & Central Laser Facility, Rutherford Appleton Laboratory, Didcot, UK
| | - A M Mackenzie
- Research Complex at Harwell & Central Laser Facility, Rutherford Appleton Laboratory, Didcot, UK
| | - A V Nunn
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
- The Guy Foundation - The Guy Foundation Family Trust, Beaminster, UK
| | - E L Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - J D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| |
Collapse
|
5
|
Venz R, Goyala A, Soto-Gamez A, Yenice T, Demaria M, Ewald CY. In-vivo screening implicates endoribonuclease Regnase-1 in modulating senescence-associated lysosomal changes. GeroScience 2024; 46:1499-1514. [PMID: 37644339 PMCID: PMC10828269 DOI: 10.1007/s11357-023-00909-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
Accumulation of senescent cells accelerates aging and age-related diseases, whereas preventing this accumulation extends the lifespan in mice. A characteristic of senescent cells is increased staining with β-galactosidase (β-gal) ex vivo. Here, we describe a progressive accumulation of β-gal staining in the model organism C. elegans during aging. We show that distinct pharmacological and genetic interventions targeting the mitochondria and the mTORC1 to the nuclear core complex axis, the non-canonical apoptotic, and lysosomal-autophagy pathways slow the age-dependent accumulation of β-gal. We identify a novel gene, rege-1/Regnase-1/ZC3H12A/MCPIP1, modulating β-gal staining via the transcription factor ets-4/SPDEF. We demonstrate that knocking down Regnase-1 in human cell culture prevents senescence-associated β-gal accumulation. Our data provide a screening pipeline to identify genes and drugs modulating senescence-associated lysosomal phenotypes.
Collapse
Affiliation(s)
- Richard Venz
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Anita Goyala
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Abel Soto-Gamez
- European Institute for the Biology of Aging (ERIBA)/University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Tugce Yenice
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Marco Demaria
- European Institute for the Biology of Aging (ERIBA)/University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland.
| |
Collapse
|
6
|
Fraile-Martinez O, De Leon-Oliva D, Boaru DL, De Castro-Martinez P, Garcia-Montero C, Barrena-Blázquez S, García-García J, García-Honduvilla N, Alvarez-Mon M, Lopez-Gonzalez L, Diaz-Pedrero R, Guijarro LG, Ortega MA. Connecting epigenetics and inflammation in vascular senescence: state of the art, biomarkers and senotherapeutics. Front Genet 2024; 15:1345459. [PMID: 38469117 PMCID: PMC10925776 DOI: 10.3389/fgene.2024.1345459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Vascular diseases pose major health challenges, and understanding their underlying molecular mechanisms is essential to advance therapeutic interventions. Cellular senescence, a hallmark of aging, is a cellular state characterized by cell-cycle arrest, a senescence-associated secretory phenotype macromolecular damage, and metabolic dysregulation. Vascular senescence has been demonstrated to play a key role in different vascular diseases, such as atherosclerosis, peripheral arterial disease, hypertension, stroke, diabetes, chronic venous disease, and venous ulcers. Even though cellular senescence was first described in 1961, significant gaps persist in comprehending the epigenetic mechanisms driving vascular senescence and its subsequent inflammatory response. Through a comprehensive analysis, we aim to elucidate these knowledge gaps by exploring the network of epigenetic alterations that contribute to vascular senescence. In addition, we describe the consequent inflammatory cascades triggered by these epigenetic modifications. Finally, we explore translational applications involving biomarkers of vascular senescence and the emerging field of senotherapy targeting this biological process.
Collapse
Affiliation(s)
- Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Joaquin García-García
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, Alcala deHenares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala deHenares, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala deHenares, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, Alcala deHenares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, Alcala deHenares, Spain
| |
Collapse
|
7
|
Xie Y, Chen S, Sheng L, Sun Y, Liu S. A New Landscape of Human Dental Aging: Causes, Consequences, and Intervention Avenues. Aging Dis 2023:AD.2022.1224. [PMID: 37163430 PMCID: PMC10389823 DOI: 10.14336/ad.2022.1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/24/2022] [Indexed: 05/12/2023] Open
Abstract
Aging is accompanied by physical dysfunction and physiologic degeneration that occurs over an individual's lifetime. Human teeth, like many other organs, inevitably undergo chronological aging and age-related changes throughout the lifespan, resulting in a substantial need for preventive, restorative as well as periodontal dental care. This is particularly the case for seniors at 65 years of age and those older but economically disadvantaged. Dental aging not only interferes with normal chewing and digestion, but also affects daily appearance and interpersonal communications. Further dental aging can incur the case of multiple disorders such as oral cancer, encephalitis, and other systemic diseases. In the next decades or even hundreds of years, the proportion of the elderly in the global population will continue to rise, a tendency that attracts increasing attention across multiple scientific and medical disciplines. Dental aging will bring a variety of problems to the elderly themselves and poses serious challenges to the medical profession and social system. A reduced, but functional dentition comprising 20 teeth in occlusion has been proposed as a measurement index of successful dental aging. Healthy dental aging is critical to healthy aging, from both medical and social perspectives. To date, biomedical research on the causes, processes and regulatory mechanisms of dental aging is still in its infancy. In this article, updated insights into typical manifestations, associated pathologies, preventive strategies and molecular changes of dental aging are provided, with future research directions largely projected.
Collapse
Affiliation(s)
- Yajia Xie
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Shuang Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Lu Sheng
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, Shandong, China
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA 98195, USA
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Chou Y, Alfarafisa NM, Ikezawa M, Khairani AF. Progress in the Development of Stem Cell-Derived Cell-Free Therapies for Skin Aging. Clin Cosmet Investig Dermatol 2023; 16:3383-3406. [PMID: 38021432 PMCID: PMC10676866 DOI: 10.2147/ccid.s434439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
Introduction The skin is a vital organ as the body's largest barrier, but its function declines with aging. Therefore, research into effective regeneration treatments must continue to advance. Stem cell transplantation, a cell-based therapy, has become a popular skin-aging treatment, although it comes with drawbacks like host immune reactions. Stem cell-derived cell-free therapies have emerged as an alternative, backed by promising preclinical findings. Stem cell secretomes and extracellular vesicles (EVs) are the key components in cell-free therapy from stem cells. However, comprehensive reviews on the mechanisms of such treatments for skin aging are still limited. Purpose This review discusses stem cell-derived cell-free therapy's potential mechanisms of action related to skin aging prevention by identifying specific molecular targets suitable for the interventions. Methods A search identified 27 relevant in vitro studies on stem cell-derived cell-free therapy interventions in skin aging model cells without restricting publication years using PubMed, Scopus, and Google Scholar. Results Stem cell-derived cell-free therapy can prevent skin aging through various mechanisms, such as (1) involvement of multiple regenerative pathways [NFkb, AP-1, MAPK, P-AKT, NRF2, SIRT-1]; (2) oxidative stress regulation [by reducing oxidants (HO-1, NQO1) and enhancing antioxidants (SOD1, CAT, GP, FRAP)]; (3) preventing ECM degradation [by increasing elastin, collagen, HA, TIMP, and reducing MMP]; (4) regulating cell activity [by reducing cell senescence (SA-β-gal), apoptosis, and cell cycle arrest (P53, P12, P16); and enhancing autophagy, cell migration, and cell proliferation (Ki67)] (5) Regulating the inflammatory pathway [by reducing IL-6, IL-1, TNF-⍺, and increasing TGF-β]. Several clinical trials have also revealed improvements in wrinkles, elasticity, hydration, pores, and pigmentation. Conclusion Stem cell-derived cell-free therapy is a potential novel treatment for skin aging by cell rejuvenation through various molecular mechanisms.
Collapse
Affiliation(s)
- Yoan Chou
- Graduate School of Master Program in Anti Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, West Java, Indonesia
| | - Nayla Majeda Alfarafisa
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, West Java, Indonesia
| | - Maiko Ikezawa
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Astrid Feinisa Khairani
- Graduate School of Master Program in Anti Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, West Java, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, West Java, Indonesia
| |
Collapse
|
9
|
Fernandez-Del-Rio L, Benincá C, Villalobos F, Shu C, Stiles L, Liesa M, Divakaruni AS, Acin-Perez R, Shirihai OS. A novel approach to measure complex V ATP hydrolysis in frozen cell lysates and tissue homogenates. Life Sci Alliance 2023; 6:e202201628. [PMID: 36918278 PMCID: PMC10019470 DOI: 10.26508/lsa.202201628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 03/16/2023] Open
Abstract
Mitochondrial depolarization can initiate reversal activity of ATP synthase, depleting ATP by its hydrolysis. We have recently shown that increased ATP hydrolysis contributes to ATP depletion leading to a maladaptation in mitochondrial disorders, where maximal hydrolytic capacity per CV content is increasing. However, despite its importance, ATP hydrolysis is not a commonly studied parameter because of the limitations of the currently available methods. Methods that measure CV hydrolytic activity indirectly require the isolation of mitochondria and involve the introduction of detergents, preventing their utilization in clinical studies or any high-throughput analyses. Here, we describe a novel approach to assess maximal ATP hydrolytic capacity and maximal respiratory capacity in a single assay in cell lysates, PBMCs, and tissue homogenates that were previously frozen. The methodology described here has the potential to be used in clinical samples to determine adaptive and maladaptive adjustments of CV function in diseases, with the added benefit of being able to use frozen samples in a high-throughput manner and to explore ATP hydrolysis as a drug target for disease treatment.
Collapse
Affiliation(s)
- Lucia Fernandez-Del-Rio
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Cristiane Benincá
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Frankie Villalobos
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Cynthia Shu
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Linsey Stiles
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Marc Liesa
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Molecular and Cellular Integrative Physiology, University of California, Los Angeles, CA, USA
- Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Barcelona, Spain
| | - Ajit S Divakaruni
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Rebeca Acin-Perez
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Molecular and Cellular Integrative Physiology, University of California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Deryabin PI, Shatrova AN, Borodkina AV. Targeting Multiple Homeostasis-Maintaining Systems by Ionophore Nigericin Is a Novel Approach for Senolysis. Int J Mol Sci 2022; 23:ijms232214251. [PMID: 36430735 PMCID: PMC9693507 DOI: 10.3390/ijms232214251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Within the present study we proposed a novel approach for senolysis based on the simultaneous disturbance of the several homeostasis-maintaining systems in senescent cells including intracellular ionic balance, energy production and intracellular utilization of damaged products. Of note, we could not induce senolysis by applying ouabain, amiloride, valinomycin or NH4Cl-compounds that modify each of these systems solely. However, we found that ionophore nigericin can disturb plasma membrane potential, intracellular pH, mitochondrial membrane potential and autophagy at once. By affecting all of the tested homeostasis-maintaining systems, nigericin induced senolytic action towards stromal and epithelial senescent cells of different origins. Moreover, the senolytic effect of nigericin was independent of the senescence-inducing stimuli. We uncovered that K+ efflux caused by nigericin initiated pyroptosis in senescent cells. According to our data, the higher sensitivity of senescent cells compared to the control ones towards nigericin-induced death was partially mediated by the lower intracellular K+ content in senescent cells and by their predisposition towards pyroptosis. Finally, we proposed an interval dosing strategy to minimize the negative effects of nigericin on the control cells and to achieve maximal senolytic effect. Hence, our data suggest ionophore nigericin as a new senotherapeutic compound for testing against age-related diseases.
Collapse
Affiliation(s)
- Pavel I. Deryabin
- Mechanisms of Cellular Senescence Group, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Avenue 4, 194064 Saint-Petersburg, Russia
| | - Alla N. Shatrova
- Laboratory of Intracellular Membranes Dynamic, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Avenue 4, 194064 Saint-Petersburg, Russia
| | - Aleksandra V. Borodkina
- Mechanisms of Cellular Senescence Group, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Avenue 4, 194064 Saint-Petersburg, Russia
- Correspondence:
| |
Collapse
|
11
|
Biological Mechanisms to Reduce Radioresistance and Increase the Efficacy of Radiotherapy: State of the Art. Int J Mol Sci 2022; 23:ijms231810211. [PMID: 36142122 PMCID: PMC9499172 DOI: 10.3390/ijms231810211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer treatment with ionizing radiation (IR) is a well-established and effective clinical method to fight different types of tumors and is a palliative treatment to cure metastatic stages. Approximately half of all cancer patients undergo radiotherapy (RT) according to clinical protocols that employ two types of ionizing radiation: sparsely IR (i.e., X-rays) and densely IR (i.e., protons). Most cancer cells irradiated with therapeutic doses exhibit radio-induced cytotoxicity in terms of cell proliferation arrest and cell death by apoptosis. Nevertheless, despite the more tailored advances in RT protocols in the last few years, several tumors show a relatively high percentage of RT failure and tumor relapse due to their radioresistance. To counteract this extremely complex phenomenon and improve clinical protocols, several factors associated with radioresistance, of both a molecular and cellular nature, must be considered. Tumor genetics/epigenetics, tumor microenvironment, tumor metabolism, and the presence of non-malignant cells (i.e., fibroblast-associated cancer cells, macrophage-associated cancer cells, tumor-infiltrating lymphocytes, endothelial cells, cancer stem cells) are the main factors important in determining the tumor response to IR. Here, we attempt to provide an overview of how such factors can be taken advantage of in clinical strategies targeting radioresistant tumors.
Collapse
|
12
|
Inagaki E, Yoshimatsu S, Okano H. Accelerated neuronal aging in vitro ∼melting watch ∼. Front Aging Neurosci 2022; 14:868770. [PMID: 36016855 PMCID: PMC9397486 DOI: 10.3389/fnagi.2022.868770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
In developed countries, the aging of the population and the associated increase in age-related diseases are causing major unresolved medical, social, and environmental matters. Therefore, research on aging has become one of the most important and urgent issues in life sciences. If the molecular mechanisms of the onset and progression of neurodegenerative diseases are elucidated, we can expect to develop disease-modifying methods to prevent neurodegeneration itself. Since the discovery of induced pluripotent stem cells (iPSCs), there has been an explosion of disease models using disease-specific iPSCs derived from patient-derived somatic cells. By inducing the differentiation of iPSCs into neurons, disease models that reflect the patient-derived pathology can be reproduced in culture dishes, and are playing an active role in elucidating new pathological mechanisms and as a platform for new drug discovery. At the same time, however, we are faced with a new problem: how to recapitulate aging in culture dishes. It has been pointed out that cells differentiated from pluripotent stem cells are juvenile, retain embryonic traits, and may not be fully mature. Therefore, attempts are being made to induce cell maturation, senescence, and stress signals through culture conditions. It has also been reported that direct conversion of fibroblasts into neurons can reproduce human neurons with an aged phenotype. Here, we outline some state-of-the-art insights into models of neuronal aging in vitro. New frontiers in which stem cells and methods for inducing differentiation of tissue regeneration can be applied to aging research are just now approaching, and we need to keep a close eye on them. These models are forefront and intended to advance our knowledge of the molecular mechanisms of aging and contribute to the development of novel therapies for human neurodegenerative diseases associated with aging.
Collapse
Affiliation(s)
- Emi Inagaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Japanese Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Sho Yoshimatsu
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- *Correspondence: Hideyuki Okano,
| |
Collapse
|
13
|
Antitumor Effects of Ral-GTPases Downregulation in Glioblastoma. Int J Mol Sci 2022; 23:ijms23158199. [PMID: 35897776 PMCID: PMC9330696 DOI: 10.3390/ijms23158199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most common tumor in the central nervous system in adults. This neoplasia shows a high capacity of growth and spreading to the surrounding brain tissue, hindering its complete surgical resection. Therefore, the finding of new antitumor therapies for GBM treatment is a priority. We have previously described that cyclin D1-CDK4 promotes GBM dissemination through the activation of the small GTPases RalA and RalB. In this paper, we show that RalB GTPase is upregulated in primary GBM cells. We found that the downregulation of Ral GTPases, mainly RalB, prevents the proliferation of primary GBM cells and triggers a senescence-like response. Moreover, downregulation of RalA and RalB reduces the viability of GBM cells growing as tumorspheres, suggesting a possible role of these GTPases in the survival of GBM stem cells. By using mouse subcutaneous xenografts, we have corroborated the role of RalB in GBM growth in vivo. Finally, we have observed that the knockdown of RalB also inhibits cell growth in temozolomide-resistant GBM cells. Overall, our work shows that GBM cells are especially sensitive to Ral-GTPase availability. Therefore, we propose that the inactivation of Ral-GTPases may be a reliable therapeutic approach to prevent GBM progression and recurrence.
Collapse
|
14
|
SCA ® Slows the Decline of Functional Parameters Associated with Senescence in Skin Cells. Int J Mol Sci 2022; 23:ijms23126538. [PMID: 35742982 PMCID: PMC9224471 DOI: 10.3390/ijms23126538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022] Open
Abstract
The identification of compounds and natural ingredients that can counteract tissue stress and dysfunction induced by aging in skin cells is warranted. Here, we investigated the activity of the secretion from the snail Cryptomphalus aspersa (SCA®), an active compound with well-established beneficial effects on skin integrity and aging. To determinate its senescence-regulation mechanisms, we used a model where damage was induced by hydrogen peroxide (H2O2). The results showed that SCA® positively modulated factors involved in cell senescence such as β-galactosidase and cell morphology, secretory efficiency markers (SIRT1/6 and carboxymethyl-lysine), and metabolic and redox homeostasis (mTOR and ROS). This study demonstrated a novel compound that is activity-modulating, reduces cell senescence, and increases longevity to maintain skin homeostasis and functionality.
Collapse
|
15
|
Soto-Gamez A, Wang Y, Zhou X, Seras L, Quax W, Demaria M. Enhanced extrinsic apoptosis of therapy-induced senescent cancer cells using a death receptor 5 (DR5) selective agonist. Cancer Lett 2022; 525:67-75. [PMID: 34728311 DOI: 10.1016/j.canlet.2021.10.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/05/2023]
Abstract
Genotoxic agents are widely used anti-cancer therapies because of their ability to interfere with highly proliferative cells. An important outcome of these interventions is the induction of a state of permanent arrest also known as cellular senescence. However, senescent cancer cells are characterized by genomic instability and are at risk of escaping the growth arrest to eventually facilitate cancer relapse. The tumor necrosis factor related apoptosis inducing ligand (TRAIL) signals extrinsic apoptosis via Death Receptors (DR) 4 and 5, while Decoy Receptors (DcR) 1 and 2, and Osteoprotegerin (OPG) are homologous to death receptors but incapable of transducing an apoptotic signal. The use of recombinant TRAIL as an anti-cancer strategy in combination with chemotherapy is currently in development, and a major question remains whether senescent cancer cells respond to TRAIL. Here, we show variable sensitivity of cancer cells to TRAIL after senescence induction, and upregulation of both pro-apoptotic and anti-apoptotic receptors in therapy-induced senescent cancer cells. A DR5-selective TRAIL variant (DHER), unable to bind to DcR1 or OPG, was more effective in inducing apoptosis of senescent cancer cells compared to wild-type TRAIL. Importantly, no apoptosis induction was observed in non-cancerous cells, even at the highest concentrations tested. Our results suggest that targeting DR5 can serve as a novel therapeutic strategy for the elimination of therapy-induced senescent cancer cells.
Collapse
Affiliation(s)
- Abel Soto-Gamez
- European Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, Netherlands; University of Groningen, Groningen Research Institute of Pharmacy, Chemical and Pharmaceutical Biology, Groningen, Netherlands
| | - Yizhou Wang
- University of Groningen, Groningen Research Institute of Pharmacy, Chemical and Pharmaceutical Biology, Groningen, Netherlands
| | - Xinyu Zhou
- University of Groningen, Groningen Research Institute of Pharmacy, Chemical and Pharmaceutical Biology, Groningen, Netherlands
| | - Lorina Seras
- University of Groningen, Groningen Research Institute of Pharmacy, Chemical and Pharmaceutical Biology, Groningen, Netherlands
| | - Wim Quax
- University of Groningen, Groningen Research Institute of Pharmacy, Chemical and Pharmaceutical Biology, Groningen, Netherlands.
| | - Marco Demaria
- European Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, Netherlands.
| |
Collapse
|
16
|
Gasek NS, Kuchel GA, Kirkland JL, Xu M. Strategies for Targeting Senescent Cells in Human Disease. NATURE AGING 2021; 1:870-879. [PMID: 34841261 PMCID: PMC8612694 DOI: 10.1038/s43587-021-00121-8] [Citation(s) in RCA: 286] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022]
Abstract
Cellular senescence represents a distinct cell fate characterized by replicative arrest in response to a host of extrinsic and intrinsic stresses. Senescence provides programming during development and wound healing, while limiting tumorigenesis. However, pathologic accumulation of senescent cells is implicated in a range of diseases and age-associated morbidities across organ systems. Senescent cells produce distinct paracrine and endocrine signals, causing local tissue dysfunction and exerting deleterious systemic effects. Senescent cell removal by apoptosis-inducing "senolytic" agents or therapies that inhibit the senescence-associated secretory phenotype, SASP inhibitors, have demonstrated benefit in both pre-clinical and clinical models of geriatric decline and chronic diseases, suggesting senescent cells represent a pharmacologic target for alleviating effects of fundamental aging processes. However, senescent cell populations are heterogeneous in form, function, tissue distribution, and even differ among species, possibly explaining issues of bench-to-bedside translation in current clinical trials. Here, we review features of senescent cells and strategies for targeting them, including immunologic approaches, as well as key intracellular signaling pathways. Additionally, we survey current senolytic therapies in human trials. Collectively, there is demand for research to develop targeted senotherapeutics that address the needs of the aging and chronically-ill.
Collapse
Affiliation(s)
- Nathan S. Gasek
- UConn Center on Aging, UConn Health, Farmington, CT
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT
| | | | | | - Ming Xu
- UConn Center on Aging, UConn Health, Farmington, CT
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT
| |
Collapse
|
17
|
Hernández-Mercado E, Prieto-Chávez JL, Arriaga-Pizano LA, Hernández-Gutierrez S, Mendlovic F, Königsberg M, López-Díazguerrero NE. Increased CD47 and MHC Class I Inhibitory Signals Expression in Senescent CD1 Primary Mouse Lung Fibroblasts. Int J Mol Sci 2021; 22:ijms221910215. [PMID: 34638556 PMCID: PMC8508564 DOI: 10.3390/ijms221910215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/22/2022] Open
Abstract
Cellular senescence is more than a proliferative arrest in response to various stimuli. Senescent cells (SC) participate in several physiological processes, and their adequate removal is essential to maintain tissue and organism homeostasis. However, SC accumulation in aging and age-related diseases alters the tissue microenvironment leading to deterioration. The immune system clears the SC, but the specific scenarios and mechanisms related to recognizing and eliminating them are unknown. Hence, we aimed to evaluate the existence of three regulatory signals of phagocytic function, CD47, major histocompatibility complex class I (MHC-I), and calreticulin, present in the membrane of SC. Therefore, primary fibroblasts were isolated from CD1 female mice lungs, and stress-induced premature senescence (SIPS) was induced with hydrogen peroxide. Replicative senescence (RS) was used as a second senescent model. Our results revealed a considerable increment of CD47 and MHC-I in RS and SIPS fibroblasts. At the same time, no significant changes were found in calreticulin, suggesting that those signals might be associated with evading immune system recognition and thus averting senescent cells clearance.
Collapse
Affiliation(s)
- Elisa Hernández-Mercado
- Laboratorio de Bioenergetica y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (E.H.-M.); (M.K.)
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | | | | | - Salomon Hernández-Gutierrez
- Laboratorio de Biología Molecular, Escuela de Medicina, Universidad Panamericana, Mexico City 04510, Mexico;
| | - Fela Mendlovic
- Facultad de Medicina, UNAM, Mexico City 04360, Mexico;
- Facultad de Ciencias de la Salud, Universidad Anáhuac Mexico Norte, Mexico City 04510, Mexico
| | - Mina Königsberg
- Laboratorio de Bioenergetica y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (E.H.-M.); (M.K.)
| | - Norma Edith López-Díazguerrero
- Laboratorio de Bioenergetica y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (E.H.-M.); (M.K.)
- Correspondence:
| |
Collapse
|
18
|
Tripathi U, Misra A, Tchkonia T, Kirkland JL. Impact of Senescent Cell Subtypes on Tissue Dysfunction and Repair: Importance and Research Questions. Mech Ageing Dev 2021; 198:111548. [PMID: 34352325 PMCID: PMC8373827 DOI: 10.1016/j.mad.2021.111548] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022]
Abstract
Cellular senescence, first observed and defined through cell culture studies, is a cell fate associated with essentially permanent cell cycle arrest and that can be triggered by a variety of inducers. Emerging evidence suggests senescence is a dynamic process with diverse functional characteristics. Depending on the tissue, type of inducer, and time since induction, senescent cells can promote tissue repair and re-modeling, prevent tumor development, or contribute to age-related disorders and chronic diseases, including cancers. Senescent cell characteristics appear to depend on multiple factors and be influenced by the milieu and other senescent cells locally and at a distance. We review diverse phenotypes of senescent cells originating from different cell types, senescence inducers over time since induction of senescence, and across conditions and diseases. This background is essential to inform further understanding about senescent cell subtypes and will point towards rational senescence-modulating strategies for achieving therapeutic benefit.
Collapse
Affiliation(s)
- Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Avanish Misra
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
19
|
Webb M, Sideris DP. Intimate Relations-Mitochondria and Ageing. Int J Mol Sci 2020; 21:ijms21207580. [PMID: 33066461 PMCID: PMC7589147 DOI: 10.3390/ijms21207580] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction is associated with ageing, but the detailed causal relationship between the two is still unclear. We review the major phenomenological manifestations of mitochondrial age-related dysfunction including biochemical, regulatory and energetic features. We conclude that the complexity of these processes and their inter-relationships are still not fully understood and at this point it seems unlikely that a single linear cause and effect relationship between any specific aspect of mitochondrial biology and ageing can be established in either direction.
Collapse
Affiliation(s)
- Michael Webb
- Mitobridge Inc., an Astellas Company, 1030 Massachusetts Ave, Cambridge, MA 02138, USA
| | - Dionisia P Sideris
- Mitobridge Inc., an Astellas Company, 1030 Massachusetts Ave, Cambridge, MA 02138, USA
| |
Collapse
|
20
|
Del Rey MJ, Valín Á, Usategui A, Ergueta S, Martín E, Municio C, Cañete JD, Blanco FJ, Criado G, Pablos JL. Senescent synovial fibroblasts accumulate prematurely in rheumatoid arthritis tissues and display an enhanced inflammatory phenotype. Immun Ageing 2019; 16:29. [PMID: 31708994 PMCID: PMC6833299 DOI: 10.1186/s12979-019-0169-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/17/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Accumulation of senescent cells has been associated with pro-inflammatory effects with deleterious consequences in different human diseases. The purpose of this study was to analyze cell senescence in human synovial tissues (ST), and its impact on the pro-inflammatory function of synovial fibroblasts (SF). RESULTS The expression of the senescence marker p16INK4a (p16) was analyzed by immunohistochemistry in rheumatoid arthritis (RA), osteoarthritis (OA), and normal ST from variably aged donors. The proportion of p16(+) senescent cells in normal ST from older donors was higher than from younger ones. Although older RA and OA ST showed proportions of senescent cells similar to older normal ST, senescence was increased in younger RA ST compared to age-matched normal ST. The percentage of senescent SA-β-gal(+) SF after 14 days in culture positively correlated with donor's age. Initial exposure to H2O2 or TNFα enhanced SF senescence and increased mRNA expression of IL6, CXCL8, CCL2 and MMP3 and proteins secretion. Senescent SF show a heightened IL6, CXCL8 and MMP3 mRNA and IL-6 and IL-8 protein expression response upon further challenge with TNFα. Treatment of senescent SF with the senolytic drug fenofibrate normalized IL6, CXCL8 and CCL2 mRNA expression. CONCLUSIONS Accumulation of senescent cells in ST increases in normal aging and prematurely in RA patients. Senescence of cultured SF is accelerated upon exposure to TNFα or oxidative stress and may contribute to the pathogenesis of synovitis by increasing the production of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Manuel J. Del Rey
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Álvaro Valín
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Alicia Usategui
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Sandra Ergueta
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Eduardo Martín
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Cristina Municio
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Juan D. Cañete
- Unitat d’Artritis, Servei de Reumatologia, Hospital Clínic de Barcelona and Institut d’Investigacions Biomèdiques August Pí i Sunyer, Barcelona, Spain
| | - Francisco J. Blanco
- Laboratorio de Investigación Osteoarticular y del Envejecimiento, Instituto de Investigación Biomédica de A Coruña, INIBIC, A Coruña, Spain
| | - Gabriel Criado
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Centro de Investigación, Hospital 12 de Octubre, 28041 Madrid, Spain
| | - José L. Pablos
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Servicio de Reumatología, Hospital 12 de Octubre, Universidad Complutense de Madrid, 28041 Madrid, Spain
| |
Collapse
|
21
|
Hernandez-Segura A, Rubingh R, Demaria M. Identification of stable senescence-associated reference genes. Aging Cell 2019; 18:e12911. [PMID: 30710410 PMCID: PMC6413663 DOI: 10.1111/acel.12911] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/10/2018] [Accepted: 12/23/2018] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a state of permanent cell cycle arrest activated in response to damaging stimuli. Many hallmarks associated with senescent cells are measured by quantitative real-time PCR (qPCR). As the selection of stable reference genes for interpretation of qPCR data is often overlooked, we performed a systematic review to understand normalization strategies entailed in experiments involving senescent cells. We found that, in violation of the Minimum Information for publication of qPCR Experiments (MIQE) guidelines, most reports used only one reference gene to normalize qPCR data, and that stability of the reference genes was either not tested or not reported. To identify new and more stable reference genes in senescent fibroblasts, we analyzed the Shapiro-Wilk normality test and the coefficient of variation per gene using in public RNAseq datasets. We then compared the new reference gene candidates with commonly used ones by using both RNAseq and qPCR data. Finally, we defined the best reference genes to be used universally or in a strain-dependent manner. This study intends to raise awareness of the instability of classical reference genes in senescent cells and to serve as a first attempt to define guidelines for the selection of more reliable normalization methods.
Collapse
Affiliation(s)
- Alejandra Hernandez-Segura
- European Research Institute for the Biology of Ageing, University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| | - Richard Rubingh
- European Research Institute for the Biology of Ageing, University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing, University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| |
Collapse
|