1
|
Soler‐Garzón A, Lopes FS, Roy J, Clevenger J, Myers Z, Korani W, Pereira WA, Song Q, Porch T, McClean PE, Miklas PN. Mapping resistance to Sclerotinia white mold in two pinto bean recombinant inbred line populations. THE PLANT GENOME 2025; 18:e20538. [PMID: 39653039 PMCID: PMC11726412 DOI: 10.1002/tpg2.20538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/18/2024] [Accepted: 11/03/2024] [Indexed: 01/14/2025]
Abstract
White mold, caused by the fungus Sclerotinia sclerotiorum (Lib.) de Bary, is a devastating disease affecting common bean (Phaseolus vulgaris L.) production worldwide. Breeding for resistance to white mold is challenging due to its quantitative inheritance and intricate genetic mechanisms. This research aimed to validate and characterize physiological resistance in the pinto dry bean market class through greenhouse straw tests under controlled conditions and field assessments under natural environments. Classical quantitative trait locus (QTL) mapping and Khufu de novo QTL-seq were employed to detect and narrow QTL intervals and identify candidate genes associated with white mold resistance in two pinto bean recombinant inbred line populations, PT9-5-6/USPT-WM-12 (P2) and PT12-37/VCP-13 (P3). Eleven QTL, five in P2 and six in P3, conditioning white mold resistance were identified. New QTL were discovered including WM1.4 and WM11.5 in P2, and WM1.5 and WM7.7 in P3. Existing major-effect QTL were validated: WM5.4 (34%-phenotypic variation explained) and WM7.4 (20%) in straw tests, and WM2.2 (15%) and WM3.1 (27%) under field conditions. QTL for avoidance traits such as resistance to lodging and late maturity overlapped WM2.2 in P2 and WM1.5, WM3.1, WM5.4, and WM7.7 in P3. WM5.4 (Pv05: 7.0-38.7 Mb) was associated with a large Phaseolus coccineus L. genome introgression in the resistant parent VCP-13. These findings offer narrowed genomic intervals and putative candidate genes for marker-assisted selection targeting white mold resistance improvement in pinto beans.
Collapse
Affiliation(s)
- Alvaro Soler‐Garzón
- Irrigated Agriculture Research and Extension CenterWashington State UniversityProsserWashingtonUSA
| | | | - Jayanta Roy
- Department of Plant SciencesNorth Dakota State UniversityFargoNorth DakotaUSA
| | - Josh Clevenger
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Zachary Myers
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Walid Korani
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | | | - Qijian Song
- Soybean Genomics and Improvement Laboratory, USDA‐ARSBeltsvilleMarylandUSA
| | - Timothy Porch
- USDA‐ARS, Tropical Agricultural Research StationMayagüezPuerto RicoUSA
| | - Phillip E. McClean
- Department of Plant SciencesNorth Dakota State UniversityFargoNorth DakotaUSA
| | - Phillip N. Miklas
- USDA‐ARS, Grain Legume Genetics and Physiology Research UnitProsserWashingtonUSA
| |
Collapse
|
2
|
Roy J, Soler-Garzón A, Miklas PN, Lee R, Clevenger J, Myers Z, Korani W, McClean PE. Integrating de novo QTL-seq and linkage mapping to identify quantitative trait loci conditioning physiological resistance and avoidance to white mold disease in dry bean. THE PLANT GENOME 2023; 16:e20380. [PMID: 37602515 DOI: 10.1002/tpg2.20380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
White mold (WM), caused by the ubiquitous fungus Sclerotinia sclerotiorum, is a devastating disease that limits production and quality of dry bean globally. In the present study, classic linkage mapping combined with QTL-seq were employed in two recombinant inbred line (RIL) populations, "Montrose"/I9365-25 (M25) and "Raven"/I9365-31 (R31), with the initial goal of fine-mapping QTL WM5.4 and WM7.5 that condition WM resistance. The RILs were phenotyped for WM reactions under greenhouse (straw test) and field environments. The general region of WM5.4 and WM7.5 were reconfirmed with both mapping strategies within each population. Combining the results from both mapping strategies, WM5.4 was delimited to a 22.60-36.25 Mb interval in the heterochromatic regions on Pv05, while WM7.5 was narrowed to a 0.83 Mb (3.99-4.82 Mb) region on the Pv07 chromosome. Furthermore, additional QTL WM2.2a (3.81-7.24 Mb), WM2.2b (11.18-17.37 Mb, heterochromatic region), and WM2.2c (23.33-25.94 Mb) were mapped to a narrowed genomic interval on Pv02 and WM4.2 in a 0.89 Mb physical interval at the distal end of Pv04 chromosome. Gene models encoding gibberellin 2-oxidase proteins regulating plant architecture are likely candidate genes associated with WM2.2a resistance. Nine gene models encoding a disease resistance protein (quinone reductase family protein and ATWRKY69) found within the WM5.4 QTL interval are putative candidate genes. Clusters of 13 and 5 copies of gene models encoding cysteine-rich receptor-like kinase and receptor-like protein kinase-related family proteins, respectively, are potential candidate genes associated with WM7.5 resistance and most likely trigger physiological resistance to WM. Acquired knowledge of the narrowed major QTL intervals, flanking markers, and candidate genes provides promising opportunities to develop functional molecular markers to implement marker-assisted selection for WM resistant dry bean cultivars.
Collapse
Affiliation(s)
- Jayanta Roy
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Alvaro Soler-Garzón
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA
| | - Phillip N Miklas
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Prosser, WA, USA
| | - Rian Lee
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Josh Clevenger
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, USA
| | - Zachary Myers
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, USA
| | - Walid Korani
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, USA
| | - Phillip E McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
- Genomics, Phenomics, and Bioinformatics Program, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
3
|
Oladzad A, Roy J, Mamidi S, Miklas PN, Lee R, Clevenger J, Myers Z, Korani W, McClean PE. Linked candidate genes of different functions for white mold resistance in common bean ( Phaseolus vulgaris L) are identified by multiple QTL mapping approaches. FRONTIERS IN PLANT SCIENCE 2023; 14:1233285. [PMID: 37583595 PMCID: PMC10425182 DOI: 10.3389/fpls.2023.1233285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023]
Abstract
White mold (WM) is a major disease in common bean (Phaseolus vulgaris L.), and its complex quantitative genetic control limits the development of WM resistant cultivars. WM2.2, one of the nine meta-QTL with a major effect on WM tolerance, explains up to 35% of the phenotypic variation and was previously mapped to a large genomic interval on Pv02. Our objective was to narrow the interval of this QTL using combined approach of classic QTL mapping and QTL-based bulk segregant analysis (BSA), and confirming those results with Khufu de novo QTL-seq. The phenotypic and genotypic data from two RIL populations, 'Raven'/I9365-31 (R31) and 'AN-37'/PS02-029C-20 (Z0726-9), were used to select resistant and susceptible lines to generate subpopulations for bulk DNA sequencing. The QTL physical interval was determined by considering overlapping interval of the identified QTL or peak region in both populations by three independent QTL mapping analyses. Our findings revealed that meta-QTL WM2.2 consists of three regions, WM2.2a (4.27-5.76 Mb; euchromatic), WM 2.2b (12.19 to 17.61 Mb; heterochromatic), and WM2.2c (23.01-25.74 Mb; heterochromatic) found in both populations. Gene models encoding for gibberellin 2-oxidase 8, pentatricopeptide repeat, and heat-shock proteins are the likely candidate genes associated with WM2.2a resistance. A TIR-NBS-LRR class of disease resistance protein (Phvul.002G09200) and LRR domain containing family proteins are potential candidate genes associated with WM2.2b resistance. Nine gene models encoding disease resistance protein [pathogenesis-related thaumatin superfamily protein and disease resistance-responsive (dirigent-like protein) family protein etc] found within the WM2.2c QTL interval are putative candidate genes. WM2.2a region is most likely associated with avoidance mechanisms while WM2.2b and WM2.2c regions trigger physiological resistance based on putative candidate genes.
Collapse
Affiliation(s)
- Atena Oladzad
- Genomics Data Scientist II, Sound Agriculture, Emeryville, CA, United States
| | - Jayanta Roy
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Sujan Mamidi
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, United States
| | - Phillip N. Miklas
- Grain Legume Genetics and Physiology Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Prosser, WA, United States
| | - Rian Lee
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Josh Clevenger
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, United States
| | - Zachary Myers
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, United States
| | - Walid Korani
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, United States
| | - Phillip E. McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
- Genomics, Phenomics, and Bioinformatics Program, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
4
|
Escobar E, Oladzad A, Simons K, Miklas P, Lee RK, Schroder S, Bandillo N, Wunsch M, McClean PE, Osorno JM. New genomic regions associated with white mold resistance in dry bean using a MAGIC population. THE PLANT GENOME 2022; 15:e20190. [PMID: 35106945 DOI: 10.1002/tpg2.20190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Dry bean (Phaseolus vulgaris L.) production in many regions is threatened by white mold (WM) [Sclerotinia sclerotiorum (Lib.) de Bary]. Seed yield losses can be up to 100% under conditions favorable for the pathogen. The low heritability, polygenic inheritance, and cumbersome screening protocols make it difficult to breed for improved genetic resistance. Some progress in understanding genetic resistance and germplasm improvement has been accomplished, but cultivars with high levels of resistance are yet to be released. A WM multiparent advanced generation inter-cross (MAGIC) population (n = 1060) was developed to facilitate mapping and breeding efforts. A seedling straw test screening method provided a quick assay to phenotype the population for response to WM isolate 1980. Nineteen MAGIC lines were identified with improved resistance. For genome-wide association studies (GWAS), the data was transformed into three phenotypic distributions-quantitative, polynomial, and binomial-and coupled with ∼52,000 single-nucleotide polymorphisms (SNPs). The three phenotypic distributions identified 30 significant genomic intervals [-log10 (P value) ≥ 3.0]. However, across distributions, four new genomic regions as well as two regions previously reported were found to be associated with resistance. Cumulative R2 values were 57% for binomial distribution using 13 genomic intervals, 41% for polynomial using eight intervals, and 40% for quantitative using 11 intervals. New resistant germplasm as well as new genomic regions associated with resistance are now available for further investigation.
Collapse
Affiliation(s)
- Edgar Escobar
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 50108-6050, USA
| | - Atena Oladzad
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 50108-6050, USA
- Genomics and Bioinformatics Program, North Dakota State Univ., Fargo, ND, 50108-6050, USA
| | - Kristin Simons
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 50108-6050, USA
| | - Phillip Miklas
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Prosser, WA, 99350, USA
| | - Rian K Lee
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 50108-6050, USA
- Genomics and Bioinformatics Program, North Dakota State Univ., Fargo, ND, 50108-6050, USA
| | - Stephan Schroder
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 50108-6050, USA
- Breeding Technology, Hazera, Netherlands
| | - Nonoy Bandillo
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 50108-6050, USA
| | - Michael Wunsch
- Carrington Research and Extension Center, North Dakota State Univ, Carrington, ND, 58421-0219, USA
| | - Phillip E McClean
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 50108-6050, USA
- Genomics and Bioinformatics Program, North Dakota State Univ., Fargo, ND, 50108-6050, USA
| | - Juan M Osorno
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 50108-6050, USA
| |
Collapse
|
5
|
Soler-Garzón A, Oladzad A, Beaver J, Beebe S, Lee R, Lobaton JD, Macea E, McClean P, Raatz B, Rosas JC, Song Q, Miklas PN. NAC Candidate Gene Marker for bgm-1 and Interaction With QTL for Resistance to Bean Golden Yellow Mosaic Virus in Common Bean. FRONTIERS IN PLANT SCIENCE 2021; 12:628443. [PMID: 33841459 PMCID: PMC8027503 DOI: 10.3389/fpls.2021.628443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/03/2021] [Indexed: 05/16/2023]
Abstract
Genetic resistance is the primary means for control of Bean golden yellow mosaic virus (BGYMV) in common bean (Phaseolus vulgaris L.). Breeding for resistance is difficult because of sporadic and uneven infection across field nurseries. We sought to facilitate breeding for BGYMV resistance by improving marker-assisted selection (MAS) for the recessive bgm-1 gene and identifying and developing MAS for quantitative trait loci (QTL) conditioning resistance. Genetic linkage mapping in two recombinant inbred line populations and genome-wide association study (GWAS) in a large breeding population and two diversity panels revealed a candidate gene for bgm-1 and three QTL BGY4.1, BGY7.1, and BGY8.1 on independent chromosomes. A mutation (5 bp deletion) in a NAC (No Apical Meristem) domain transcriptional regulator superfamily protein gene Phvul.003G027100 on chromosome Pv03 corresponded with the recessive bgm-1 resistance allele. The five bp deletion in exon 2 starting at 20 bp (Pv03: 2,601,582) is expected to cause a stop codon at codon 23 (Pv03: 2,601,625), disrupting further translation of the gene. A T m -shift assay marker named PvNAC1 was developed to track bgm-1. PvNAC1 corresponded with bgm-1 across ∼1,000 lines which trace bgm-1 back to a single landrace "Garrapato" from Mexico. BGY8.1 has no effect on its own but exhibited a major effect when combined with bgm-1. BGY4.1 and BGY7.1 acted additively, and they enhanced the level of resistance when combined with bgm-1. T m -shift assay markers were generated for MAS of the QTL, but their effectiveness requires further validation.
Collapse
Affiliation(s)
- Alvaro Soler-Garzón
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, United States
| | - Atena Oladzad
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - James Beaver
- Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Stephen Beebe
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Rian Lee
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Juan David Lobaton
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- School of Environmental and Rural Sciences, University of New England, Armidale, SA, Australia
| | - Eliana Macea
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Phillip McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Bodo Raatz
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Juan Carlos Rosas
- Department of Agricultural Engineering, Zamorano University, Zamorano, Honduras
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture – Agricultural Research Service (USDA-ARS), Beltsville, MD, United States
| | - Phillip N. Miklas
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, United States
- Grain Legume Genetics and Physiology Research Unit, United States Department of Agriculture – Agricultural Research Service (USDA-ARS), Prosser, WA, United States
| |
Collapse
|
6
|
Luo Z, Cui R, Chavarro C, Tseng YC, Zhou H, Peng Z, Chu Y, Yang X, Lopez Y, Tillman B, Dufault N, Brenneman T, Isleib TG, Holbrook C, Ozias-Akins P, Wang J. Mapping quantitative trait loci (QTLs) and estimating the epistasis controlling stem rot resistance in cultivated peanut (Arachis hypogaea). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1201-1212. [PMID: 31974667 DOI: 10.1007/s00122-020-03542-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
A total of 33 additive stem rot QTLs were identified in peanut genome with nine of them consistently detected in multiple years or locations. And 12 pairs of epistatic QTLs were firstly reported for peanut stem rot disease. Stem rot in peanut (Arachis hypogaea) is caused by the Sclerotium rolfsii and can result in great economic loss during production. In this study, a recombinant inbred line population from the cross between NC 3033 (stem rot resistant) and Tifrunner (stem rot susceptible) that consists of 156 lines was genotyped by using 58 K peanut single nucleotide polymorphism (SNP) array and phenotyped for stem rot resistance at multiple locations and in multiple years. A linkage map consisting of 1451 SNPs and 73 simple sequence repeat (SSR) markers was constructed. A total of 33 additive quantitative trait loci (QTLs) for stem rot resistance were detected, and six of them with phenotypic variance explained of over 10% (qSR.A01-2, qSR.A01-5, qSR.A05/B05-1, qSR.A05/B05-2, qSR.A07/B07-1 and qSR.B05-1) can be consistently detected in multiple years or locations. Besides, 12 pairs of QTLs with epistatic (additive × additive) interaction were identified. An additive QTL qSR.A01-2 also with an epistatic effect interacted with a novel locus qSR.B07_1-1 to affect the percentage of asymptomatic plants in a row. A total of 193 candidate genes within 38 stem rot QTLs intervals were annotated with functions of biotic stress resistance such as chitinase, ethylene-responsive transcription factors and pathogenesis-related proteins. The identified stem rot resistance QTLs, candidate genes, along with the associated SNP markers in this study, will benefit peanut molecular breeding programs for improving stem rot resistance.
Collapse
Affiliation(s)
- Ziliang Luo
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Renjie Cui
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - Carolina Chavarro
- Center for Applied Genetic Technologies, Institute of Plant Breeding, Genetics and Genomics, The University of Georgia, Athens, GA, USA
| | - Yu-Chien Tseng
- Agronomy Department, University of Florida, Gainesville, FL, USA
- Department of Agronomy, National Chiayi University, Chiayi, Taiwan
| | - Hai Zhou
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Ze Peng
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Ye Chu
- Department of Horticulture, Institute for Plant Breeding, Genetics and Genomics, University of Georgia Tifton Campus, Tifton, GA, USA
| | - Xiping Yang
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Yolanda Lopez
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Barry Tillman
- Agronomy Department, University of Florida, Gainesville, FL, USA
- North Florida Research and Education Center, Marianna, FL, USA
| | - Nicholas Dufault
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Timothy Brenneman
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - Thomas G Isleib
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | - Corley Holbrook
- Crop Genetics and Breeding Research Unit, USDA-ARS, Tifton, GA, USA
| | - Peggy Ozias-Akins
- Department of Horticulture, Institute for Plant Breeding, Genetics and Genomics, University of Georgia Tifton Campus, Tifton, GA, USA
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
Abstract
White mold, caused by the fungus Sclerotinia sclerotiorum (Lib.) de Bary, is a major disease that limits common bean production and quality worldwide. The host-pathogen interaction is complex, with partial resistance in the host inherited as a quantitative trait with low to moderate heritability. Our objective was to identify meta-QTL conditioning partial resistance to white mold from individual QTL identified across multiple populations and environments. The physical positions for 37 individual QTL were identified across 14 recombinant inbred bi-parental populations (six new, three re-genotyped, and five from the literature). A meta-QTL analysis of the 37 QTL was conducted using the genetic linkage map of Stampede x Red Hawk population as the reference. The 37 QTL condensed into 17 named loci (12 previously named and five new) of which nine were defined as meta-QTL WM1.1, WM2.2, WM3.1, WM5.4, WM6.2, WM7.1, WM7.4, WM7.5, and WM8.3. The nine meta-QTL had confidence intervals ranging from 0.65 to 9.41 Mb. Candidate genes shown to express under S. sclerotiorum infection in other studies, including cell wall receptor kinase, COI1, ethylene responsive transcription factor, peroxidase, and MYB transcription factor, were found within the confidence interval for five of the meta-QTL. The nine meta-QTL are recommended as potential targets for MAS for partial resistance to white mold in common bean.
Collapse
|
8
|
Muñoz N, Liu A, Kan L, Li MW, Lam HM. Potential Uses of Wild Germplasms of Grain Legumes for Crop Improvement. Int J Mol Sci 2017; 18:E328. [PMID: 28165413 PMCID: PMC5343864 DOI: 10.3390/ijms18020328] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 01/14/2023] Open
Abstract
Challenged by population increase, climatic change, and soil deterioration, crop improvement is always a priority in securing food supplies. Although the production of grain legumes is in general lower than that of cereals, the nutritional value of grain legumes make them important components of food security. Nevertheless, limited by severe genetic bottlenecks during domestication and human selection, grain legumes, like other crops, have suffered from a loss of genetic diversity which is essential for providing genetic materials for crop improvement programs. Illustrated by whole-genome-sequencing, wild relatives of crops adapted to various environments were shown to maintain high genetic diversity. In this review, we focused on nine important grain legumes (soybean, peanut, pea, chickpea, common bean, lentil, cowpea, lupin, and pigeonpea) to discuss the potential uses of their wild relatives as genetic resources for crop breeding and improvement, and summarized the various genetic/genomic approaches adopted for these purposes.
Collapse
Affiliation(s)
- Nacira Muñoz
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- Centro de Investigaciones Agropecuarias-INTA, Instituto de Fisiología y Recursos Genéticos Vegetales, Córdoba X5000, Argentina.
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba X5000, Argentina.
| | - Ailin Liu
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Leo Kan
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Man-Wah Li
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Hon-Ming Lam
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|