1
|
Zhu B, Song L, Li M, Cheng M, Tang W, Miao L. Comparison of the effects between catalase and superoxide dismutase on regulating macrophage inflammatory response and protecting osteogenic function of periodontal ligament cells. Biochem Biophys Res Commun 2025; 756:151523. [PMID: 40058309 DOI: 10.1016/j.bbrc.2025.151523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Reactive oxygen species (ROS) have been confirmed closely associated with the pathological process of periodontitis, but the specific roles played by different ROS types are still to be investigated. Catalase (CAT) and Superoxide dismutase (SOD) specifically eliminate hydrogen peroxide (H2O2) and superoxide anion (O2•-), respectively. We for the first time compare the effects and mechanisms of CAT and SOD in protecting periodontal ligament cells (PDLCs) against oxidative damage, reducing the expression of macrophage inflammatory factors, and preserving the osteogenic differentiation function of PDLCs by modulating the inflammatory environment. METHODS CAT or SOD in combination with lipopolysaccharide (LPS) were added to the culture medium of RAW 264.7 and PDLCs. The intracellular ROS level, lipid peroxidation and DNA damage were observed by confocal microscope. Inflammation levels were assessed by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot. A co-culture system of macrophages and PDLCs was established, and the osteogenic differentiation of PDLCs was evaluated by alkaline phosphatase staining, alizarin red S staining, RT-qPCR and Western blot. Finally, differentially expressed genes (DEGs) in CAT and SOD were detected by RNA sequencing and the biological functions and signaling pathways involved were analyzed. RESULTS CAT or SOD can effectively inhibit intracellular ROS levels, lipid peroxidation and DNA damage, as well as increase the levels of antioxidative molecules and decrease the levels of inflammatory factors. SOD increased the levels of antioxidative molecules more strongly, while CAT reduced inflammatory factors more effectively. The RNA sequencing results indicate that CAT exhibits stronger inhibitory effects on inflammation-related signaling pathways, which could account for the observed differences. CONCLUSIONS In this study, we observed differential antioxidant and anti-inflammatory effects between CAT and SOD, which may be associated with CAT's better inhibition of the activation of inflammatory pathways. Our study will provide scientific references for the future development of highly selective ROS- scavenging antioxidant drugs.
Collapse
Affiliation(s)
- Bijun Zhu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Lutong Song
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Mengchen Li
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Mingyue Cheng
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Wenyue Tang
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
2
|
Khasin M, Darcy GM, Mah E, Bella CD. Role of vascularised fibula graft in the surgical management of radiation-induced midshaft femoral fractures. Case report and literature review. World J Surg Oncol 2024; 22:334. [PMID: 39707363 DOI: 10.1186/s12957-024-03616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Post-radiation fractures (PRF) are a recognised complication of radiation treatment for soft tissue sarcomas. They have a low incidence and typically occur up to 5 years following treatment, more commonly affecting the pelvis, ribs and femur. Due to radiation-induced changes in bone, PRFs typically require more complicated intervention compared to post-trauma fractures, however, limited literature exists, particularly in regards to mid-shaft femoral PRFs. We report a case of a mid-shaft femoral PRF managed with a modified onlay free vascularised fibular grafting (FVFG). CASE PRESENTATION A 40-year-old male with a history of left quadriceps clear cell sarcoma successfully treated with wide local excision, chemotherapy and radiotherapy 18 years prior presented with a displaced oblique pathological fracture of his left femoral shaft. He was initially treated operatively with intramedullary nailing, however, repeat imaging at the one-year post-operative review demonstrated persistent hypotrophic non-union of the fracture. 16 months following the initial fracture, the patient underwent further surgical intervention with implantation of a modified onlay FVFG to the anterior aspect of the distal femur without nail removal. One-year post-revision, the patient was pain-free with normal mobility and imaging of both the graft and fracture site demonstrated complete union. CONCLUSION Despite their operative complexity, we suggest that FVFGs should be considered for treating non-union of mid-shaft femoral PRFs due to their ability to promote healing and bone union in irradiated bone. Here we describe an original technique of a modified onlay FVFG which can be used in PRFs, and we have put this technique in the context of the current literature in FVFG.
Collapse
Affiliation(s)
- Monique Khasin
- Department of Orthopaedic Surgery, Sarcoma Unit, St Vincent's Hospital Melbourne, 41 Victoria Parade, Fitzroy, VIC, 3065, Australia
| | - Genevieve M Darcy
- Department of Orthopaedic Surgery, Sarcoma Unit, St Vincent's Hospital Melbourne, 41 Victoria Parade, Fitzroy, VIC, 3065, Australia
| | - Eldon Mah
- Department of Plastic Surgery, St Vincent's Hospital Melbourne, 41 Victoria Parade, Fitzroy, VIC, 3065, Australia
| | - Claudia Di Bella
- Department of Orthopaedic Surgery, Sarcoma Unit, St Vincent's Hospital Melbourne, 41 Victoria Parade, Fitzroy, VIC, 3065, Australia.
- Department of Surgery, The University of Melbourne, 29 Regent St, Fitzroy, VIC, 365, Australia.
| |
Collapse
|
3
|
Tsai HL, Lin TC, Yang HH, Chang JW. Characterization and Predictors of Fractures Following Hematopoietic Stem Cell Transplantation. J Clin Endocrinol Metab 2024; 109:e2100-e2109. [PMID: 38261995 DOI: 10.1210/clinem/dgae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
CONTEXT Bone loss and fractures are common and serious complications following hematopoietic stem cell transplantation (HSCT), and identifying risk predictors for fractures in transplant recipients remains challenging. The Taiwan Bone Marrow Donation Center is the largest databank of donors in Asia. However, no population-based studies have yet been conducted in Asia to accurately assess the risk of fractures. OBJECTIVE The aims of this study were to determine the incidence and risk factors for fractures in HSCT recipients. METHODS We conducted a retrospective cohort study of patients older than 18 years who received a HSCT from January 1, 2003 to September 30, 2015, using the Taiwan National Health Insurance Research Database. Fractures following HSCT were identified using International Classification of Diseases, Ninth Revision, Clinical Modification codes. Cox regression analysis was used to identify risk factors for fractures. RESULTS A total of 3327 patients underwent a HSCT, of whom 126 (3.8%) had a fracture after HSCT. The cumulative incidence of fractures was 5.3% at 5 years, and 10.8% at 10 years. Multivariable analysis showed that a fracture in the 3 years prior to transplant (HR = 3.79; 95% CI, 2.39-6.03) was associated with a higher risk of fractures post HSCT. With a daily dose equivalent of more than 0.50-3.75 mg, more than 3.75-15.23 mg, and more than 15.23 mg prednisolone, the risk of fractures increased by 1.70-fold (95% CI, 1.07-2.71), 2.23-fold (95% CI 1.32-3.76), and 2.93-fold (95% CI, 1.43-6.01), respectively. CONCLUSION Regular screening to monitor bone loss should be initiated early, and counseling about the importance of general preventive measures for bone loss is warranted in HSCT recipients with a prior fracture and mean daily dose of steroids more than 0.50 mg.
Collapse
Affiliation(s)
- Hsin-Lin Tsai
- Division of Pediatric Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Division of Transplantation Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Tzu-Ching Lin
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hui-Hsin Yang
- Division of Pediatric Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Jei-Wen Chang
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
4
|
Omar O, Rydén L, Wamied AR, Al-Otain I, Alhawaj H, Abuohashish H, Al-Qarni F, Emanuelsson L, Johansson A, Palmquist A, Thomsen P. Molecular mechanisms of poor osseointegration in irradiated bone: In vivo study in a rat tibia model. J Clin Periodontol 2024; 51:1236-1251. [PMID: 38798064 DOI: 10.1111/jcpe.14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
AIM Radiotherapy is associated with cell depletion and loss of blood supply, which are linked to compromised bone healing. However, the molecular events underlying these effects at the tissue-implant interface have not been fully elucidated. This study aimed to determine the major molecular mediators associated with compromised osseointegration due to previous exposure to radiation. MATERIALS AND METHODS Titanium implants were placed in rat tibiae with or without pre-exposure to 20 Gy irradiation. Histomorphometric, biomechanical, quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay analyses were performed at 1 and 4 weeks after implantation. RESULTS The detrimental effects of irradiation were characterized by reduced bone-implant contact and removal torque. Furthermore, pre-exposure to radiation induced different molecular dysfunctions such as (i) increased expression of pro-inflammatory (Tnf) and osteoclastic (Ctsk) genes and decreased expression of the bone formation (Alpl) gene in implant-adherent cells; (ii) increased expression of bone formation (Alpl and Bglap) genes in peri-implant bone; and (iii) increased expression of pro-inflammatory (Tnf) and pro-fibrotic (Tgfb1) genes in peri-implant soft tissue. The serum levels of pro-inflammatory, bone formation and bone resorption proteins were greater in the irradiated rats. CONCLUSIONS Irradiation causes the dysregulation of multiple biological activities, among which perturbed inflammation seems to play a common role in hindering osseointegration.
Collapse
Affiliation(s)
- Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Louise Rydén
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Ibrahim Al-Otain
- Radiation Oncology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Hussain Alhawaj
- Department of Environmental Health Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hatem Abuohashish
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faisal Al-Qarni
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Lena Emanuelsson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Johansson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Astaneh ME, Noori F, Fereydouni N. Curcumin-loaded scaffolds in bone regeneration. Heliyon 2024; 10:e32566. [PMID: 38961905 PMCID: PMC11219509 DOI: 10.1016/j.heliyon.2024.e32566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
In recent years, there has been a notable surge in the development of engineered bone scaffolds intended for the repair of bone defects. While autografts and allografts have traditionally served as the primary methods in bone tissue engineering, their inherent limitations have spurred the exploration of novel avenues in biomedical implant development. The emergence of bone scaffolds not only facilitates bone reconstruction but also offers a platform for the targeted delivery of therapeutic agents. There exists a pervasive interest in leveraging various drugs, proteins, growth factors, and biomolecules with osteogenic properties to augment bone formation, as the enduring side effects associated with current clinical modalities necessitate the pursuit of safer alternatives. Curcumin, the principal bioactive compound found in turmeric, has demonstrated notable efficacy in regulating the proliferation and differentiation of bone cells while promoting bone formation. Nevertheless, its utility is hindered by restricted water solubility and poor bioavailability. Strategies aimed at enhancing the solubility, stability, and bioavailability of curcumin, including formulation techniques such as liposomes and nanoparticles or its complexation with metals, have been explored. This investigation is dedicated to exploring the impact of curcumin on the proliferation, differentiation, and migration of osteocytes, osteoblasts, and osteoclasts.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Fariba Noori
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
6
|
Huang C, Zhao L, Xiao Y, Tang Z, Jing L, Guo K, Tian L, Zong C. M2 macrophage-derived exosomes carry miR-142-3p to restore the differentiation balance of irradiated BMMSCs by targeting TGF-β1. Mol Cell Biochem 2024; 479:993-1010. [PMID: 37269411 DOI: 10.1007/s11010-023-04775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/19/2023] [Indexed: 06/05/2023]
Abstract
Radiotherapy is essential to cancer treatment, while it inevitably injures surrounding normal tissues, and bone tissue is one of the most common sites prone to irradiation. Bone marrow mesenchymal stem cells (BMMSCs) are sensitive to irradiation and the irradiated dysfunction of BMMSCs may be closely related to irradiation-induced bone damage. Macropahges play important role in regulating stem cell function, bone metabolic balance and irradiation response, but the effects of macrophages on irradiated BMMSCs are still unclear. This study aimed to investigate the role of macrophages and macrophage-derived exosomes in restoring irradiated BMMSCs function. The effects of macrophage conditioned medium (CM) and macrophage-derived exosomes on osteogenic and fibrogenic differentiation capacities of irradiated BMMSCs were detected. The key microribonucleic acids (miRNAs) and targeted proteins in exosomes were also determined. The results showed that irradiation significantly inhibited the proliferation of BMMSCs, and caused differentiation imbalance of BMMSCs, with decreased osteogenic differentiation and increased fibrogenic differentiation. M2 macrophage-derived exosomes (M2D-exos) inhibited the fibrogenic differentiation and promoted the osteogenic differentiation of irradiated BMMSCs. We identified that miR-142-3p was significantly overexpressed in M2D-exos and irradiated BMMSCs treated with M2D-exos. After inhibition of miR-142-3p in M2 macrophage, the effects of M2D-exos on irradiated BMMSCs differentiation were eliminated. Furthermore, transforming growth factor beta 1 (TGF-β1), as a direct target of miR-142-3p, was significantly decreased in irradiated BMMSCs treated with M2D-exos. This study indicated that M2D-exos could carry miR-142-3p to restore the differentiation balance of irradiated BMMSCs by targeting TGF-β1. These findings pave a new way for promising and cell-free method to treat irradiation-induced bone damage.
Collapse
Affiliation(s)
- Chong Huang
- Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, 229 Taibai North Road, 710069, Xi'an, People's Republic of China
| | - Lu Zhao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, People's Republic of China
| | - Yun Xiao
- School of Stomatology, Jiamusi University, 522 Hongqi Street, Jiamusi, 154000, People's Republic of China
| | - Zihao Tang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, People's Republic of China
| | - Li Jing
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, People's Republic of China
| | - Kai Guo
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, People's Republic of China
| | - Lei Tian
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, People's Republic of China.
| | - Chunlin Zong
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
7
|
Jiang N, Tian X, Wang Q, Hao J, Jiang J, Wang H. Regulation Mechanisms and Maintenance Strategies of Stemness in Mesenchymal Stem Cells. Stem Cell Rev Rep 2024; 20:455-483. [PMID: 38010581 DOI: 10.1007/s12015-023-10658-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Stemness pertains to the intrinsic ability of mesenchymal stem cells (MSCs) to undergo self-renewal and differentiate into multiple lineages, while simultaneously impeding their differentiation and preserving crucial differentiating genes in a state of quiescence and equilibrium. Owing to their favorable attributes, including uncomplicated isolation protocols, ethical compliance, and ease of procurement, MSCs have become a focal point of inquiry in the domains of regenerative medicine and tissue engineering. As age increases or ex vivo cultivation is prolonged, the functionality of MSCs decreases and their stemness gradually diminishes, thereby limiting their potential therapeutic applications. Despite the existence of several uncertainties surrounding the comprehension of MSC stemness, considerable advancements have been achieved in the clarification of the potential mechanisms that lead to stemness loss, as well as the associated strategies for stemness maintenance. This comprehensive review provides a systematic overview of the factors influencing the preservation of MSC stemness, the molecular mechanisms governing it, the strategies for its maintenance, and the therapeutic potential associated with stemness. Finally, we underscore the obstacles and prospective avenues in present investigations, providing innovative perspectives and opportunities for the preservation and therapeutic utilization of MSC stemness.
Collapse
Affiliation(s)
- Nizhou Jiang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiliang Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Quanxiang Wang
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jiayu Hao
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China
| | - Jian Jiang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China.
| | - Hong Wang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China.
| |
Collapse
|
8
|
Li Y, Zhou Z, Xu S, Jiang J, Xiao J. Review of the Pathogenesis, Diagnosis, and Management of Osteoradionecrosis of the Femoral Head. Med Sci Monit 2023; 29:e940264. [PMID: 37310931 PMCID: PMC10276533 DOI: 10.12659/msm.940264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/13/2023] [Indexed: 06/15/2023] Open
Abstract
Osteoradionecrosis (ORN) of the femoral head is an important issue for orthopedists and radiologists in clinical practice. With the rapid development of technological advances in radiation therapy and the improvement in cancer survival rates, the incidence of ORN is rising, and there is an unmet need for basic and clinical research. The pathogenesis of ORN is complex, and includes vascular injury, mesenchymal stem cell injury, bone loss, reactive oxygen species, radiation-induced fibrosis, and cell senescence. The diagnosis of ORN is challenging and requires multiple considerations, including exposure to ionizing radiation, clinical manifestations, and findings on physical examination and imaging. Differential diagnosis is essential, as clinical symptoms of ORN of the femoral head can resemble many other hip conditions. Hyperbaric oxygen therapy, total hip arthroplasty, and Girdlestone resection arthroplasty are effective treatments, each with their own advantages and disadvantages. The literature on ORN of the femoral head is incomplete and there is no criterion standard or clear consensus on management. Clinicians should gain a better and more comprehensive understanding on this disease to facilitate its early and better prevention, diagnosis, and treatment. This article aims to review the pathogenesis, diagnosis, and management of osteoradionecrosis of the femoral head.
Collapse
Affiliation(s)
- Yang Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Zhongsheng Zhou
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Shenghao Xu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Jianlin Xiao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| |
Collapse
|
9
|
Xu X, Zhao L, Terry PD, Chen J. Reciprocal Effect of Environmental Stimuli to Regulate the Adipogenesis and Osteogenesis Fate Decision in Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs). Cells 2023; 12:1400. [PMID: 37408234 PMCID: PMC10216952 DOI: 10.3390/cells12101400] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Mesenchymal stem cells derived from bone marrow (BM-MSCs) can differentiate into adipocytes and osteoblasts. Various external stimuli, including environmental contaminants, heavy metals, dietary, and physical factors, are shown to influence the fate decision of BM-MSCs toward adipogenesis or osteogenesis. The balance of osteogenesis and adipogenesis is critical for the maintenance of bone homeostasis, and the interruption of BM-MSCs lineage commitment is associated with human health issues, such as fracture, osteoporosis, osteopenia, and osteonecrosis. This review focuses on how external stimuli shift the fate of BM-MSCs towards adipogenesis or osteogenesis. Future studies are needed to understand the impact of these external stimuli on bone health and elucidate the underlying mechanisms of BM-MSCs differentiation. This knowledge will inform efforts to prevent bone-related diseases and develop therapeutic approaches to treat bone disorders associated with various pathological conditions.
Collapse
Affiliation(s)
- Xinyun Xu
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Ling Zhao
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Paul D. Terry
- Department of Medicine, Graduate School of Medicine, The University of Tennessee, Knoxville, TN 37920, USA;
| | - Jiangang Chen
- Department of Public Health, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
10
|
Chen S, Ni S, Liu C, He M, Pan Y, Cui P, Wang C, Ni X. Neglected immunoregulation: M2 polarization of macrophages triggered by low-dose irradiation plays an important role in bone regeneration. J Cell Mol Med 2023; 27:1095-1109. [PMID: 36929666 PMCID: PMC10098298 DOI: 10.1111/jcmm.17721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Current studies have found that low-dose irradiation (IR) can promote bone regeneration. However, mechanism studies of IR-triggered bone regeneration mainly focus on the effects of osteoblasts, neglecting the role of the surrounding immune microenvironment. Here in this study, in vitro proliferation experiments showed that low-dose IR ≤2 Gy could promote the proliferation of bone marrow mesenchymal stem cells (BMSCs), and qRT-PCR assay showed that low-dose IR ≤2 Gy could exert the M2 polarization of Raw264.7 cells, while IR >2 Gy inhibited BMSC proliferation and triggered M1 polarization in Raw264.7 cells. The ALP and mineralized nodules staining showed that low-dose IR ≤2 Gy not only promoted osteoblast mineralization through IR-triggered osteoblast proliferation but also through M2 polarization of Raw264.7 cells, while high-dose IR >2 Gy had the opposite effect. The co-incubation of BMSC with low-dose IR irradiated Raw264.7 cell supernatants increased the mRNA expression of BMP-2 and Osx. The rat cranial defects model revealed that low-dose IR ≤2 Gy gradually promoted bone regeneration, while high-dose IR >2 Gy inhibited bone regeneration. Detection of macrophage polarity in peripheral blood samples showed that low-dose IR ≤2 Gy increased the expression of CD206 and CD163, but decreased the expression of CD86 and CD80 in macrophages, which indicated M2 polarization of macrophages in vivo, while high-dose IR had the opposite effect. Our finding innovatively revealed that low-dose IR ≤2 Gy promotes bone regeneration not only by directly promoting the proliferation of osteoblasts but also by triggering M2 polarization of macrophages, which provided a new perspective for immune mechanism study in the treatment of bone defects with low-dose IR.
Collapse
Affiliation(s)
- Shaoqing Chen
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, China
| | - Su Ni
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Chun Liu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Mu He
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yiwen Pan
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,School of Pharmacy, Changzhou University, Changzhou, China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Xinye Ni
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, China
| |
Collapse
|
11
|
Liu Q, Liu C, Wang W, Yuan L, Wang Y, Yi X, Pan Z, Yu A. Bioinspired strontium magnesium phosphate cement prepared utilizing the precursor method for bone tissue engineering. Front Bioeng Biotechnol 2023; 11:1142095. [PMID: 36815894 PMCID: PMC9935930 DOI: 10.3389/fbioe.2023.1142095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Bioinspired strontium magnesium phosphate cements for bone tissue engineering were prepared using a new, facile, environmentally friendly and high yielding (98.5%) precursor method. The bioinspired SMPCs have uniform particle distributions, excellent mechanical strengths and high biocompatibilities. The in vitro responses of bone marrow stromal cells to the SMPCs, including viability, osteogenic differentiation and alkaline phosphatase activity, were evaluated. The results show that the SMPC containing 0.5 mol of strontium (referred to as SMPC-2) has a higher degradation rate and biological activity than magnesium phosphate cements and the other SMPCs. In addition, the synergistic effect of strontium and magnesium ion release from SMPC-2 creates a conducive environment for cell proliferation, mineralized calcium deposition and new bone formation. These observations demonstrate the feasibility of using the new precursor method to generate SMPCs and the utility of these biologically compatible and highly effective cements for bone tissue engineering.
Collapse
Affiliation(s)
- Qiaoyun Liu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Changjiang Liu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weixing Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Liangjie Yuan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yu Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,16th Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xinzeyu Yi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhenyu Pan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,*Correspondence: Zhenyu Pan, ; Aixi Yu,
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,*Correspondence: Zhenyu Pan, ; Aixi Yu,
| |
Collapse
|
12
|
Pulik Ł, Mierzejewski B, Sibilska A, Grabowska I, Ciemerych MA, Łęgosz P, Brzóska E. The role of miRNA and lncRNA in heterotopic ossification pathogenesis. Stem Cell Res Ther 2022; 13:523. [PMID: 36522666 PMCID: PMC9753082 DOI: 10.1186/s13287-022-03213-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Heterotopic ossification (HO) is the formation of bone in non-osseous tissues, such as skeletal muscles. The HO could have a genetic or a non-genetic (acquired) background, that is, it could be caused by musculoskeletal trauma, such as burns, fractures, joint arthroplasty (traumatic HO), or cerebral or spinal insult (neurogenetic HO). HO formation is caused by the differentiation of stem or progenitor cells induced by local or systemic imbalances. The main factors described so far in HO induction are TGFβ1, BMPs, activin A, oncostatin M, substance P, neurotrophin-3, and WNT. In addition, dysregulation of noncoding RNAs, such as microRNA or long noncoding RNA, homeostasis may play an important role in the development of HO. For example, decreased expression of miRNA-630, which is responsible for the endothelial-mesenchymal transition, was observed in HO patients. The reduced level of miRNA-421 in patients with humeral fracture was shown to be associated with overexpression of BMP2 and a higher rate of HO occurrence. Down-regulation of miRNA-203 increased the expression of runt-related transcription factor 2 (RUNX2), a crucial regulator of osteoblast differentiation. Thus, understanding the various functions of noncoding RNAs can reveal potential targets for the prevention or treatment of HO.
Collapse
Affiliation(s)
- Łukasz Pulik
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005, Warsaw, Poland.
| | - Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Aleksandra Sibilska
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Paweł Łęgosz
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005, Warsaw, Poland
| | - Edyta Brzóska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| |
Collapse
|
13
|
Rocheteau P, Warot G, Chapellier M, Zampaolo M, Chretien F, Piquemal F. Cryopreserved Stem Cells Incur Damages Due To Terrestrial Cosmic Rays Impairing Their Integrity Upon Long-Term Storage. Cell Transplant 2022; 31:9636897211070239. [PMID: 35170351 PMCID: PMC8855380 DOI: 10.1177/09636897211070239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Stem cells have the capacity to ensure the renewal of tissues and organs. They
could be used in the future for a wide range of therapeutic purposes and are
preserved at liquid nitrogen temperature to prevent any chemical or biological
activity up to several decades before their use. We show that the cryogenized
cells accumulate damages coming from natural radiations, potentially inducing
DNA double-strand breaks (DSBs). Such DNA damage in stem cells could lead to
either mortality of the cells upon thawing or a mutation diminishing the
therapeutic potential of the treatment. Many studies show how stem cells react
to different levels of radiation; the effect of terrestrial cosmic rays being
key, it is thus also important to investigate the effect of the natural
radiation on the cryopreserved stem cell behavior over time. Our study showed
that the cryostored stem cells totally shielded from cosmic rays had less DSBs
upon long-term storage. This could have important implications on the long-term
cryostorage strategy and quality control of different cell banks.
Collapse
Affiliation(s)
- P Rocheteau
- Human Histopathology and Animal Models, Department of Infection & Epidemiology, Institut Pasteur, Paris, France
| | - G Warot
- Laboratoire de Physique Subatomique et Corpusculaire, UMR 5821, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Grenoble Institute of Technology (Institute of Engineering University Grenoble Alpes), LPSC-IN2P3, Grenoble, France
| | - M Chapellier
- Laboratoire de Physique Subatomique et Corpusculaire, UMR 5821, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Grenoble Institute of Technology (Institute of Engineering University Grenoble Alpes), LPSC-IN2P3, Grenoble, France
| | - M Zampaolo
- Laboratoire de Physique Subatomique et Corpusculaire, UMR 5821, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Grenoble Institute of Technology (Institute of Engineering University Grenoble Alpes), LPSC-IN2P3, Grenoble, France
| | - F Chretien
- Human Histopathology and Animal Models, Department of Infection & Epidemiology, Institut Pasteur, Paris, France
| | - F Piquemal
- Centre d'Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, Centre National de la Recherche Scientifique and Université de Bordeaux, Gradignan, France
| |
Collapse
|
14
|
Dai S, Wen Y, Luo P, Ma L, Liu Y, Ai J, Shi C. Therapeutic implications of exosomes in the treatment of radiation injury. BURNS & TRAUMA 2022; 10:tkab043. [PMID: 35071650 PMCID: PMC8778593 DOI: 10.1093/burnst/tkab043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/11/2021] [Indexed: 12/28/2022]
Abstract
Radiotherapy is one of the main cancer treatments, but it may damage normal tissue and cause various side effects. At present, radioprotective agents used in clinics have side effects such as nausea, vomiting, diarrhea and hypotension, which limit their clinical application. It has been found that exosomes play an indispensable role in radiation injury. Exosomes are lipid bilayer vesicles that carry various bioactive substances, such as proteins, lipids and microRNA (miRNA), that play a key role in cell-to-cell communication and affect tissue injury and repair. In addition, studies have shown that radiation can increase the uptake of exosomes in cells and affect the composition and secretion of exosomes. Here, we review the existing studies and discuss the effects of radiation on exosomes and the role of exosomes in radiation injury, aiming to provide new insights for the treatment of radiation injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Junhua Ai
- Correspondence. Junhua Ai, ; Chunmeng Shi,
| | | |
Collapse
|
15
|
Li F, Zhang R, Hu C, Ran Q, Xiang Y, Xiang L, Chen L, Yang Y, Li SC, Zhang G, Li Z. Irradiation Haematopoiesis Recovery Orchestrated by IL-12/IL-12Rβ1/TYK2/STAT3-Initiated Osteogenic Differentiation of Mouse Bone Marrow-Derived Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:729293. [PMID: 34540843 PMCID: PMC8446663 DOI: 10.3389/fcell.2021.729293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Repairing the irradiation-induced osteogenic differentiation injury of bone marrow mesenchymal stem cells (BM-MSCs) is beneficial to recovering haematopoiesis injury in radiotherapy; however, its mechanism is elusive. Our study aimed to help meet the needs of understanding the effects of radiotherapy on BM-MSC osteogenic potential. METHODS AND MATERIALS Balb/c mice and the BM-MSCs were used to evaluate the irradiation-induced osteogenic differentiation injury in vivo. The cellular and molecular characterization were applied to determine the mechanism for recovery of irradiation-derived haematopoiesis injuries. RESULTS We report a functional role of IL-12 in acute irradiation hematopoietic injury recovery and intend to dissect the possible mechanisms through BM-MSC, other than the direct effect of IL-12 on hematopoietic stem and progenitor cells (HSPCs). Specifically, we show that early use of IL-12 enhanced the osteogenic differentiation of BM-MSCs through IL-12Rβ1/TYK2/STAT3 signaling; furthermore, IL-12 induced osteogenesis facilitated bone formation and irradiation hematopoiesis recovery when transplanted BM-MSCs in the femur of Balb/c mice. For the mechanism of action, we found that IL-12 receptor beta 1 (IL-12Rβ1) expression of irradiated BM-MSCs was upregulated rapidly, coincidentally consistent with early use of IL-12 induced osteogenic differentiation enhancement. IL-12Rβ1 and tyrosine kinase 2 gene (Tyk2) silencing experiments and phosphotyrosine of signal transducer and activator of transcription 3 (p-STAT3) suppression experiments indicated the IL-12Rβ1/TYK2/STAT3 signaling was essential in IL-12-induced osteogenic differentiation enhancement of BM-MSCs. CONCLUSION These findings suggested that IL-12 may exert BM-MSCs-based hematopoietic recovery by repairing osteogenic differentiation abilities damages through IL-12Rβ1/TYK2/STAT3 signaling pathway post-irradiation.
Collapse
Affiliation(s)
- Fengjie Li
- Department of Blood Transfusion, The Irradiation Biology Laboratory, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Qian Ran
- Department of Blood Transfusion, The Irradiation Biology Laboratory, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yang Xiang
- Department of Blood Transfusion, The Irradiation Biology Laboratory, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Lixin Xiang
- Department of Blood Transfusion, The Irradiation Biology Laboratory, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Li Chen
- Department of Blood Transfusion, The Irradiation Biology Laboratory, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yang Yang
- Department of Blood Transfusion, The Irradiation Biology Laboratory, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Shengwen Calvin Li
- CHOC Children’s Research Institute, Children’s Hospital of Orange County, University of California, Irvine, Irvine, CA, United States
| | - Gang Zhang
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Zhongjun Li
- Department of Blood Transfusion, The Irradiation Biology Laboratory, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
16
|
Wagle S, Sim HJ, Bhattarai G, Choi KC, Kook SH, Lee JC, Jeon YM. Supplemental Ferulic Acid Inhibits Total Body Irradiation-Mediated Bone Marrow Damage, Bone Mass Loss, Stem Cell Senescence, and Hematopoietic Defect in Mice by Enhancing Antioxidant Defense Systems. Antioxidants (Basel) 2021; 10:antiox10081209. [PMID: 34439457 PMCID: PMC8388974 DOI: 10.3390/antiox10081209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 12/14/2022] Open
Abstract
While total body irradiation (TBI) is an everlasting curative therapy, the irradiation can cause long-term bone marrow (BM) injuries, along with senescence of hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) via reactive oxygen species (ROS)-induced oxidative damages. Thus, ameliorating or preventing ROS accumulation and oxidative stress is necessary for TBI-requiring clinical treatments. Here, we explored whether administration of ferulic acid, a dietary antioxidant, protects against TBI-mediated systemic damages, and examined the possible mechanisms therein. Sublethal TBI (5 Gy) decreased body growth, lifespan, and production of circulating blood cells in mice, together with ROS accumulation, and senescence induction of BM-conserved HSCs and MSCs. TBI also impaired BM microenvironment and bone mass accrual, which was accompanied by downregulated osteogenesis and by osteoclastogenic and adipogenic activation in BM. Long-term intraperitoneal injection of ferulic acid (50 mg/kg body weight, once per day for 37 consecutive days) protected mice from TBI-mediated mortality, stem cell senescence, and bone mass loss by restoring TBI-stimulated disorders in osteogenic, osteoclastic, and adipogenic activation in BM. In vitro experiments using BM stromal cells supported radioprotective effects of ferulic acid on TBI-mediated defects in proliferation and osteogenic differentiation. Overall, treatment with ferulic acid prevented TBI-mediated liver damage and enhanced endogenous antioxidant defense systems in the liver and BM. Collectively, these results support an efficient protection of TBI-mediated systemic defects by supplemental ferulic acid, indicating its clinical usefulness for TBI-required patients.
Collapse
Affiliation(s)
- Sajeev Wagle
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju 54896, Korea; (S.W.); (H.-J.S.); (G.B.)
| | - Hyun-Jaung Sim
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju 54896, Korea; (S.W.); (H.-J.S.); (G.B.)
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| | - Govinda Bhattarai
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju 54896, Korea; (S.W.); (H.-J.S.); (G.B.)
| | - Ki-Choon Choi
- Grassland and Forages Research Center, National Institute of Animal Science, Cheonan 31002, Korea;
| | - Sung-Ho Kook
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju 54896, Korea; (S.W.); (H.-J.S.); (G.B.)
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (S.-H.K.); (J.-C.L.); (Y.-M.J.); Tel.: +82-63-270-3327 (S.-H.K.); +82-63-270-4049 (J.-C.L.); +82-63-250-2130 (Y.-M.J.); Fax: +82-63-270-4312 (S.-H.K.); +82-63-270-4004 (J.-C.L.); +82-63-270-4312 (Y.-M.J.)
| | - Jeong-Chae Lee
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju 54896, Korea; (S.W.); (H.-J.S.); (G.B.)
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (S.-H.K.); (J.-C.L.); (Y.-M.J.); Tel.: +82-63-270-3327 (S.-H.K.); +82-63-270-4049 (J.-C.L.); +82-63-250-2130 (Y.-M.J.); Fax: +82-63-270-4312 (S.-H.K.); +82-63-270-4004 (J.-C.L.); +82-63-270-4312 (Y.-M.J.)
| | - Young-Mi Jeon
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju 54896, Korea; (S.W.); (H.-J.S.); (G.B.)
- Correspondence: (S.-H.K.); (J.-C.L.); (Y.-M.J.); Tel.: +82-63-270-3327 (S.-H.K.); +82-63-270-4049 (J.-C.L.); +82-63-250-2130 (Y.-M.J.); Fax: +82-63-270-4312 (S.-H.K.); +82-63-270-4004 (J.-C.L.); +82-63-270-4312 (Y.-M.J.)
| |
Collapse
|
17
|
Li S, Shao L, Xu T, Jiang X, Yang G, Dong L. An indispensable tool: Exosomes play a role in therapy for radiation damage. Biomed Pharmacother 2021; 137:111401. [PMID: 33761615 DOI: 10.1016/j.biopha.2021.111401] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is one of the three main treatments for tumors. Almost 70% of tumor patients undergo radiotherapy at different periods. Although radiotherapy can enhance the local control rate of tumors and patients' quality of life, normal tissues often show radiation damage following radiotherapy. In recent years, several studies have shown that exosomes could be biomarkers for diseases and be involved in the treatment of radiation damage. Exosomes are nanoscale vesicles containing complex miRNAs and proteins. They can regulate the inflammatory response, enhance the regeneration effect of damaged tissue, and promote the repair of damaged tissues and cells, extending their survival time. In addition, their functions are achieved by paracrine signaling. In this review, we discuss the potential of exosomes as biomarkers and introduce the impact of exosomes on radiation damage in different organs and the hematopoietic system in detail.
Collapse
Affiliation(s)
- Sijia Li
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China.
| | - Lihong Shao
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Tiankai Xu
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China.
| | - Xin Jiang
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China.
| | - Guozi Yang
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China.
| | - Lihua Dong
- Department of Radiation Oncology and Therapy, Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Jilin, Changchun, 130000, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
18
|
Postradiation Fractures after Combined Modality Treatment in Extremity Soft Tissue Sarcomas. Sarcoma 2021; 2021:8877567. [PMID: 33790687 PMCID: PMC7984930 DOI: 10.1155/2021/8877567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/20/2021] [Accepted: 02/27/2021] [Indexed: 12/26/2022] Open
Abstract
Soft tissue sarcoma (STS) of the extremities is typically treated with limb-sparing surgery and radiation therapy; with this treatment approach, high local control rates can be achieved. However, postradiation bone fractures, fractures occurring in the prior radiation field with minimal or no trauma, are a serious late complication that occurs in 2–22% of patients who receive surgery and radiation for STS. Multiple risk factors for sustaining a postradiation fracture exist, including high radiation dose, female sex, periosteal stripping, older age, femur location, and chemotherapy administration. The treatment of these pathological fractures can be difficult, with complications including delayed union, nonunion, and infection posing particular challenges. Here, we review the mechanisms, risk factors, and treatment challenges associated with postradiation fractures in STS patients.
Collapse
|
19
|
Tong L, Wang Y, Wang J, He F, Zhai J, Bai J, Zhu G. Radiation alters osteoclastogenesis by regulating the cytoskeleton and lytic enzymes in RAW 264.7 cells and mouse bone marrow-derived macrophages. Int J Radiat Biol 2020; 96:1296-1308. [PMID: 32687425 DOI: 10.1080/09553002.2020.1798542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE The aim of the present study was to investigate the duality of irradiation effect on osteoclastogenesis, particularly on the cytoskeleton and expression of lytic enzymes in osteoclast precursors. Therefore, the present study may serve as a useful reference for the prevention and treatment of radiation-induced bone loss in the clinic. MATERIALS AND METHODS Two typical osteoclast precursors, murine RAW 264.7 macrophage cells and mouse bone marrow-derived macrophages (BMMs), were exposed to radiation in the order of 0.25-8 Gy, and the effects on cell viability, TRAP activity and bone resorption were subsequently investigated. Furthermore, changes in the cytoskeleton, cell apoptosis, and expression of lytic enzymes in osteoclasts were examined to elucidate the molecular mechanism of the duality of irradiation on osteoclastogenesis. RESULTS Morphological changes and impaired viability were observed in RAW 264.7 cells and BMMs treated with 1-8 Gy irradiation with or without RANKL. However, the cell fusion tendency of osteoclasts was enhanced after 2 Gy irradiation, and an increased number of fused giant osteoclasts and enhanced F-actin ring formation were observed. Consistently, the bone resorption activity and the enzyme expression of TRAP, cathepsin K, matrix metalloproteinase 9, activator protein 1, and Caspase 9 were increased following irradiation with 2 Gy. Furthermore, intracellular ROS production and apoptosis of osteoclast precursors were increased. CONCLUSIONS Irradiation with 2 Gy inhibited the viability of osteoclast precursors, but increased osteoclastogenesis by enhancing cell fusion and increasing the secretion of lytic enzymes, which may be an important mechanism of radiation-induced bone loss.
Collapse
Affiliation(s)
- Ling Tong
- Institute of Radiation Medicine, Fudan University, Shanghai, PR China.,Shanghai Municipal Center for Disease Control & Prevention, Shanghai, PR China
| | - Yuyang Wang
- Institute of Radiation Medicine, Fudan University, Shanghai, PR China
| | - Jianping Wang
- Institute of Radiation Medicine, Fudan University, Shanghai, PR China
| | - Feilong He
- Institute of Radiation Medicine, Fudan University, Shanghai, PR China.,Shanghai Municipal Center for Disease Control & Prevention, Shanghai, PR China
| | - Jianglong Zhai
- Institute of Radiation Medicine, Fudan University, Shanghai, PR China
| | - Jiangtao Bai
- Institute of Radiation Medicine, Fudan University, Shanghai, PR China
| | - Guoying Zhu
- Institute of Radiation Medicine, Fudan University, Shanghai, PR China
| |
Collapse
|
20
|
Li J, Yin P, Chen X, Kong X, Zhong W, Ge Y, She Y, Xian X, Qi L, Lin Z, Moe J, Fang S. Effect of α2‑macroglobulin in the early stage of jaw osteoradionecrosis. Int J Oncol 2020; 57:213-222. [PMID: 32377713 PMCID: PMC7252453 DOI: 10.3892/ijo.2020.5051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
Advanced osteoradionecrosis (ORN) is one of the most serious complications in patients with head and neck cancer, resulting in poor prognosis. Numerous studies have therefore focused on the pathogenesis and interventions of ORN early stage. The present study aimed to investigate whether α2-macroglobulin (α2M) could prevent early-stage jaw osteoradionecrosis caused by radiotherapy (RT). Following local injection of α2M, a single dose of 30 Gy was delivered to rats for pathological exploration. For 28 days, the irradiated mandible and soft tissues were examined for potential changes. Furthermore, primary human bone marrow mesenchymal stem cells pretreated with α2M followed by 8 Gy irradiation (IR) were also used. Tartrate-resistant acid phosphatase assay, terminal uridine deoxynucleotidyl nick end labeling assay and immunohistochemical staining were performed on irradiated mandibular bone, tongue or buccal mucosa tissues from rats. Cell proliferation was assessed by evaluating the cell morphology by microscopy and by using the cell counting kit-8. Fluorescence staining, flow cytometry and western blotting were conducted to detect the reactive oxygen species level, cell apoptosis and protein expression of superoxide dismutase 2 (SOD2), heme oxygenase-1 (HO-1) and phosphorylated Akt following irradiation. The results demonstrated that α2M attenuated physical inflammation, osteoclasts number and fat vacuole accumulation in mandibular bone marrow and bone marrow cell apoptosis following IR in vivo. Furthermore, α2M pretreatment suppressed the expression of 8-hydroxy-2′-deoxyguanosine in mandibular bone and tongue paraffin embedded sections, which is a marker of oxidative damage, and increased SOD2 expression in mucosa and tongue paraffin embedded sections. The present study demonstrated the efficient regulation of antioxidative enzymes, including SOD2 and heme oxygenase-1, and reduction in oxidative damage by α2M. In addition, in vitro results confirmed that α2M may protect cells from apoptosis and suppress reactive oxygen species accumulation. Overall, the present study demonstrated that α2M treatment may exert some radioprotective effects in early-stage ORN via antioxidant mechanisms, and may therefore be considered as a potential alternative molecule in clinical prophylactic treatments.
Collapse
Affiliation(s)
- Jie Li
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Ping Yin
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xueying Chen
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiangbo Kong
- Department of Stomatology, Sun Yat‑sen Memorial Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wanzhen Zhong
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yaping Ge
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yangyang She
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xuehong Xian
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Lei Qi
- Department of Oral and Cranio‑maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai 200001, P.R. China
| | - Zhi Lin
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Justine Moe
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Silian Fang
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
21
|
Farris MK, Helis CA, Hughes RT, LeCompte MC, Borg AM, Nieto K, Munley MT, Willey JS. Bench to Bedside: Animal Models of Radiation Induced Musculoskeletal Toxicity. Cancers (Basel) 2020; 12:cancers12020427. [PMID: 32059447 PMCID: PMC7073177 DOI: 10.3390/cancers12020427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/29/2022] Open
Abstract
Ionizing radiation is a critical aspect of current cancer therapy. While classically mature bone was thought to be relatively radio-resistant, more recent data have shown this to not be the case. Radiation therapy (RT)-induced bone loss leading to fracture is a source of substantial morbidity. The mechanisms of RT likely involve multiple pathways, including changes in angiogenesis and bone vasculature, osteoblast damage/suppression, and increased osteoclast activity. The majority of bone loss appears to occur rapidly after exposure to ionizing RT, with significant changes in cortical thickness being detectable on computed tomography (CT) within three to four months. Additionally, there is a dose–response relationship. Cortical thinning is especially notable in areas of bone that receive >40 gray (Gy). Methods to mitigate toxicity due to RT-induced bone loss is an area of active investigation. There is an accruing clinical trial investigating the use of risderonate, a bisphosphonate, to prevent rib bone loss in patients undergoing lung stereotactic body radiation therapy (SBRT). Additionally, several other promising therapeutic/preventative approaches are being explored in preclinical studies, including parathyroid hormone (PTH), amifostine, and mechanical loading of irradiated bones.
Collapse
|
22
|
González-González A, García Nieto E, González A, Sánchez-Fernández C, Alonso-González C, Menéndez-Menéndez J, Gómez-Arozamena J, Cos S, Martínez-Campa C. Melatonin Modulation of Radiation and Chemotherapeutics-induced Changes on Differentiation of Breast Fibroblasts. Int J Mol Sci 2019; 20:3935. [PMID: 31412584 PMCID: PMC6719206 DOI: 10.3390/ijms20163935] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/05/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023] Open
Abstract
Melatonin exerts oncostatic actions and sensitizes tumor cells to chemotherapeutics or radiation. In our study, we investigated the effects of docetaxel, vinorelbine, and radiation on human breast fibroblasts and its modulation by melatonin. Docetaxel or vinorelbine inhibits proliferation and stimulates the differentiation of breast preadipocytes, by increasing C/EBPα and PPARγ expression and by downregulating tumor necrosis factor α (TNFα), interleukin 6 (IL-6), and IL-11 expression. Radiation inhibits both proliferation and differentiation through the downregulation of C/EBPα and PPARγ and by stimulating TNFα expression. In addition, docetaxel and radiation decrease aromatase activity and expression by decreasing aromatase promoter II and cyclooxygenases 1 and 2 (COX-1 and COX-2) expression. Melatonin potentiates the stimulatory effect of docetaxel and vinorelbine on differentiation and their inhibitory effects on aromatase activity and expression, by increasing the stimulatory effect on C/EBPα and PPARγ expression and the downregulation of antiadipogenic cytokines and COX expression. Melatonin also counteracts the inhibitory effect of radiation on differentiation of preadipocytes, by increasing C/EBPα and PPARγ expression and by decreasing TNFα expression. Melatonin also potentiates the inhibitory effect exerted by radiation on aromatase activity and expression by increasing the downregulation of promoter II, and COX-1 and COX-2 expression. Our findings suggest that melatonin modulates regulatory effects induced by chemotherapeutic drugs or radiation on preadipocytes, which makes it a promising adjuvant for chemotherapy and radiotherapy sensibilization.
Collapse
Affiliation(s)
- Alicia González-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Enrique García Nieto
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Alicia González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain.
| | - Cristina Sánchez-Fernández
- Department of Anatomy and Cellular Biology, School of Medicine, University of Cantabria, 39011 Santander, Spain
| | - Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain.
| | - Javier Menéndez-Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - José Gómez-Arozamena
- Department of Medical Physics, School of Medicine, University of Cantabria, 39011 Santander, Spain
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
23
|
Printzell L, Reseland JE, Edin NFJ, Ellingsen JE. Effects of ionizing irradiation and interface backscatter on human mesenchymal stem cells cultured on titanium surfaces. Eur J Oral Sci 2019; 127:500-507. [PMID: 31322296 DOI: 10.1111/eos.12654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/28/2022]
Abstract
Radiotherapy to the head and neck region negatively influences the osseointegration and survival of dental implants. The effects of cobalt 60 (60 Co) ionizing radiation and the impact of backscatter rays were investigated on human mesenchymal stem cells cultured on titanium surfaces. Bone marrow-derived human mesenchymal stem cells were seeded on titanium (Ti), fluoride-modified titanium (TiF), and tissue culture plastic. Cells were exposed to ionizing γ-radiation in single doses of 2, 6, or 10 Gy using a 60 Co source. Density and distribution of cells were evaluated using confocal laser-scanning microscopy, 21 d post-irradiation. Lactate dehydrogenase concentration and the levels of total protein and cytokines/chemokines were measured in the cell-culture medium on days 1, 3, 7, 14, and 21 post-irradiation. Unirradiated cells were used as the control. Irradiation had no effect on cell viability, collagen and actin expression, or cell distribution, but induced an initial increase in the secretion of interleukin (IL)-6, IL-8, monocyte chemotactic protein 1 (MCP-1), and vascular endothelial growth factor (VEGF), followed by a decrease in secretion after 3 or 7 d. Irradiation resulted in secretion of a lower amount of all analytes examined compared with controls on day 21, irrespective of radiation dose and growth surface. Backscattering from titanium did not influence the cell response significantly, suggesting a clinical potential for achieving successful osseointegration of dental implants placed before radiotherapy.
Collapse
Affiliation(s)
- Lisa Printzell
- Department of Prosthodontics, Faculty for Dentistry, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Janne E Reseland
- Department of Biomaterials, Faculty for Dentistry, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Nina F J Edin
- Department of Physics, Faculty of Mathematics and Natural Science, University of Oslo, Oslo, Norway
| | - Jan E Ellingsen
- Department of Prosthodontics, Faculty for Dentistry, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Liu H, Dong Y, Feng X, Li L, Jiao Y, Bai S, Feng Z, Yu H, Li X, Zhao Y. miR-34a promotes bone regeneration in irradiated bone defects by enhancing osteoblastic differentiation of mesenchymal stromal cells in rats. Stem Cell Res Ther 2019; 10:180. [PMID: 31215466 PMCID: PMC6582588 DOI: 10.1186/s13287-019-1285-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/22/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022] Open
Abstract
Background Radiation exposure negatively affects the regenerative ability and makes reconstruction of bone defects after tumor section difficult. miR-34a is involved in radiation biology and bone metabolism. The aim of this study was to investigate whether miR-34a could contribute to bone regeneration in irradiated bone defects. Methods The expression of miR-34a was analyzed during the osteoblastic differentiation of irradiated BMSCs and bone formation in irradiated bone defects. miR-34a mimics and miR-34a inhibitor were used to upregulate or suppress the expression of miR-34a in BMSCs irradiated with 2 or 4 Gy X-ray radiation. In vitro osteogenesis and subcutaneous osteogenesis were used to assess the effects of miR-34a on the osteogenic ability of radiation-impaired BMSCs. Collagen-based hydrogel containing agomiR-34a or antagomiR-34a were placed into the 3-mm defects of irradiated rat tibias to test the effect of miR-34a on bone defect healing after irradiation. Results miR-34a was upregulated in the process of bone formation after irradiation. Transfecting radiation-impaired BMSCs with miR-34a mimics enhanced their osteoblastic differentiation in vitro by targeting NOTCH1. Overexpression of miR-34a enhanced the ectopic bone formation of irradiated BMSCs. In situ delivery of miR-34a promoted bone regeneration in irradiated bone defects. Conclusions miR-34a promoted the osteoblastic differentiation of BMSCs and enhanced the ectopic bone formation after irradiation. miR-34a promoted bone defect healing in irradiated rat tibias. miR-34a-targeted therapy might be a promising strategy for promoting the reconstruction of bone defects after radiotherapy. Electronic supplementary material The online version of this article (10.1186/s13287-019-1285-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Yan Dong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Xiaoke Feng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Liya Li
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, No. 169 West Changle Road, Xi'an, 710032, China
| | - Yang Jiao
- Department of Stomatology, The 7th Medical Center of PLA General Hospital, NO.5, Nanmencang, Dongsishitiao Street, Beijing, 100700, China
| | - Shizhu Bai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Zhihong Feng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Hao Yu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Xuejian Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Yimin Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China.
| |
Collapse
|
25
|
Preciado S, Muntión S, Corchete LA, Ramos TL, de la Torre AG, Osugui L, Rico A, Espinosa-Lara N, Gastaca I, Díez-Campelo M, Del Cañizo C, Sánchez-Guijo F. The Incorporation of Extracellular Vesicles from Mesenchymal Stromal Cells Into CD34 + Cells Increases Their Clonogenic Capacity and Bone Marrow Lodging Ability. Stem Cells 2019; 37:1357-1368. [PMID: 31184411 PMCID: PMC6852558 DOI: 10.1002/stem.3032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/11/2019] [Accepted: 04/20/2019] [Indexed: 12/22/2022]
Abstract
Mesenchymal stromal cells (MSC) may exert their functions by the release of extracellular vesicles (EV). Our aim was to analyze changes induced in CD34+ cells after the incorporation of MSC‐EV. MSC‐EV were characterized by flow cytometry (FC), Western blot, electron microscopy, and nanoparticle tracking analysis. EV incorporation into CD34+ cells was confirmed by FC and confocal microscopy, and then reverse transcription polymerase chain reaction and arrays were performed in modified CD34+ cells. Apoptosis and cell cycle were also evaluated by FC, phosphorylation of signal activator of transcription 5 (STAT5) by WES Simple, and clonal growth by clonogenic assays. Human engraftment was analyzed 4 weeks after CD34+ cell transplantation in nonobese diabetic/severe combined immunodeficient mice. Our results showed that MSC‐EV incorporation induced a downregulation of proapoptotic genes, an overexpression of genes involved in colony formation, and an activation of the Janus kinase (JAK)‐STAT pathway in CD34+ cells. A significant decrease in apoptosis and an increased CD44 expression were confirmed by FC, and increased levels of phospho‐STAT5 were confirmed by WES Simple in CD34+ cells with MSC‐EV. In addition, these cells displayed a higher colony‐forming unit granulocyte/macrophage clonogenic potential. Finally, the in vivo bone marrow lodging ability of human CD34+ cells with MSC‐EV was significantly increased in the injected femurs. In summary, the incorporation of MSC‐EV induces genomic and functional changes in CD34+ cells, increasing their clonogenic capacity and their bone marrow lodging ability. stem cells2019;37:1357–1368
Collapse
Affiliation(s)
- Silvia Preciado
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.,Department of Medicine, Universidad de Salamanca, Salamanca, Spain.,RETIC TerCel, ISCIII, Salamanca, Spain
| | - Sandra Muntión
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.,RETIC TerCel, ISCIII, Salamanca, Spain
| | - Luis A Corchete
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain
| | - Teresa L Ramos
- RETIC TerCel, ISCIII, Salamanca, Spain.,Laboratorio de Terapia Celular, Instituto de Biomedicina de Sevilla (IBIS), UGC-Hematología, Hospital Universitario Virgen del Rocío/CSIC/CIBERONC, Sevilla, Spain
| | - Ana G de la Torre
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| | - Lika Osugui
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain
| | - Ana Rico
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Natalia Espinosa-Lara
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Irene Gastaca
- Servicio de Ginecología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - María Díez-Campelo
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Department of Medicine, Universidad de Salamanca, Salamanca, Spain.,RETIC TerCel, ISCIII, Salamanca, Spain
| | - Consuelo Del Cañizo
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.,Department of Medicine, Universidad de Salamanca, Salamanca, Spain.,RETIC TerCel, ISCIII, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| | - Fermín Sánchez-Guijo
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.,Department of Medicine, Universidad de Salamanca, Salamanca, Spain.,RETIC TerCel, ISCIII, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
26
|
Wang Y, Zhang J, Li J, Gui R, Nie X, Huang R. CircRNA_014511 affects the radiosensitivity of bone marrow mesenchymal stem cells by binding to miR-29b-2-5p. Bosn J Basic Med Sci 2019; 19:155-163. [PMID: 30640591 DOI: 10.17305/bjbms.2019.3935] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/20/2018] [Indexed: 12/25/2022] Open
Abstract
Hematopoietic stem cell transplantation is commonly used in patients with certain hematological or bone marrow tumors. Total body irradiation combined with chemotherapy is part of the preconditioning protocol that was the most commonly used before hematopoietic stem cell transplantation. However, total body irradiation preconditioning damages other normal cells in bone marrow. Therefore, exploring the mechanism of radiation resistance in bone marrow mesenchymal stem cells is of great significance for recovering the hematopoietic function after cell transplantation. This study aimed to demonstrate the miR-29b adsorption of circRNA_014511 and explore the effect of circRNA_014511 on radiosensitivity of bone marrow mesenchymal stem cells. In this study, circRNA_014511 overexpression vector was constructed and transfected into bone marrow mesenchymal stem cells, miR-29b-2-5p and P53 were found to be decreased, which could be reversed by miR29b-mimics. Dual luciferase reporter assay confirmed the binding of circRNA_014511 and mmu-miR-29b-2-5p. Flow cytometry analysis showed the apoptosis rate of bone marrow mesenchymal stem cells overexpressing circRNA_014511 was significantly decreased. In the circRNA_014511 transfection group, after cells were subjected to 6Gy irradiation, G2 phase arrest appeared, the expression of P21 and GADD45A was significantly decreased, and cyclin B1 was significantly increased. Colony formation assay showed the survival fraction of circRNA_014511 overexpression cells after irradiation was significantly higher than control group, and the radiosensitivity was decreased. In conclusion,our findings demonstrated that circRNA_014511 could inhibit the expression of P53 by binding miR-29b-2-5p, and decrease the radiosensitivity of bone marrow mesenchymal stem cells by affecting cell cycle and cell apoptosis.
Collapse
Affiliation(s)
- Yanjie Wang
- Department of Clinical Laboratory, The Third Xiangya Hospital, Central South University, Hunan, China.
| | | | | | | | | | | |
Collapse
|
27
|
Regulatory roles of miR-22/Redd1-mediated mitochondrial ROS and cellular autophagy in ionizing radiation-induced BMSC injury. Cell Death Dis 2019; 10:227. [PMID: 30846680 PMCID: PMC6405932 DOI: 10.1038/s41419-019-1373-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 11/27/2018] [Accepted: 01/15/2019] [Indexed: 12/26/2022]
Abstract
Ionizing radiation (IR) response has been extensively investigated in BMSCs with an increasing consensus that this type of cells showed relative radiosensitivity in vitro analysis. However, the underlying mechanism of IR-induced injury of BMSCs has not been elucidated. In current study, the regulatory role of miR-22/Redd1 pathway-mediated mitochondrial reactive oxygen species (ROS) and cellular autophagy in IR-induced apoptosis of BMSCs was determined. IR facilitated the generation and accumulation of mitochondrial ROS, which promoted IR-induced apoptosis in BMSCs; meanwhile, cellular autophagy activated by IR hold a prohibitive role on the apoptosis program. The expression of miR-22 significantly increased in BMSCs after IR exposure within 24 h. Overexpression of miR-22 evidently accelerated IR-induced accumulation of mitochondrial ROS, whereas attenuated IR stimulated cellular autophagy, thus advancing cellular apoptosis. Furthermore, we verified Redd1 as a novel target for miR-22 in rat genome. Redd1 overexpression attenuated the regulatory role of miR-22 on mitochondrial ROS generation and alleviated the inhibitive role of miR-22 on cell autophagy activated by IR, thus protecting BMSCs from miR-22-mediated cell injury induced by IR exposure. These results confirmed the role of miR-22/Redd1 pathway in the regulation of IR-induced mitochondrial ROS and cellular autophagy, and subsequent cellular apoptosis.
Collapse
|
28
|
Zuo R, Liu M, Wang Y, Li J, Wang W, Wu J, Sun C, Li B, Wang Z, Lan W, Zhang C, Shi C, Zhou Y. BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/β-catenin signaling. Stem Cell Res Ther 2019; 10:30. [PMID: 30646958 PMCID: PMC6334443 DOI: 10.1186/s13287-018-1121-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Background Radiotherapy to cancer patients is inevitably accompanied by normal tissue injury, and the bone is one of the most commonly damaged tissues. Damage to bone marrow mesenchymal stem cells (BM-MSCs) induced by radiation is thought to be a major cause of radiation-induced bone loss. Exosomes exhibit great therapeutic potential in the treatment of osteoporosis, but whether exosomes are involved in radiation-induced bone loss has not been thoroughly elucidated to date. The main purpose of this study is to investigate the role of exosomes derived from BM-MSCs in restoring recipient BM-MSC function and alleviating radiation-induced bone loss. Methods BM-MSC-derived exosomes were intravenously injected to rats immediately after irradiation. After 28 days, the left tibiae were harvested for micro-CT and histomorphometric analysis. The effects of exosomes on antioxidant capacity, DNA damage repair, proliferation, and cell senescence of recipient BM-MSCs were determined. Osteogenic and adipogenic differentiation assays were used to detect the effects of exosomes on the differentiation potential of recipient BM-MSCs, and related genes were measured by qRT-PCR and Western blot analysis. β-Catenin expression was detected at histological and cytological levels. Results BM-MSC-derived exosomes can attenuate radiation-induced bone loss in a rat model that is similar to mesenchymal stem cell transplantation. Exosome-treated BM-MSCs exhibit reduced oxidative stress, accelerated DNA damage repair, and reduced proliferation inhibition and cell senescence-associate protein expression compared with BM-MSCs that exclusively received irradiation. Following irradiation, exosomes promote β-catenin expression in BM-MSCs and restore the balance between adipogenic and osteogenic differentiation. Conclusions Our findings indicate that BM-MSC-derived exosomes take effects by restoring the function of recipient BM-MSCs. Therefore, exosomes may represent a promising cell-free therapeutic approach for the treatment of radiation-induced bone loss. Electronic supplementary material The online version of this article (10.1186/s13287-018-1121-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Zuo
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Yanqiu Wang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Jie Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Wenkai Wang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Junlong Wu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Chao Sun
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Bin Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Ziwen Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University(Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Weiren Lan
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Chao Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University(Third Military Medical University), Chongqing, 400038, People's Republic of China.
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
29
|
Zhang J, Qiu X, Xi K, Hu W, Pei H, Nie J, Wang Z, Ding J, Shang P, Li B, Zhou G. Therapeutic ionizing radiation induced bone loss: a review of in vivo and in vitro findings. Connect Tissue Res 2018; 59:509-522. [PMID: 29448860 DOI: 10.1080/03008207.2018.1439482] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Radiation therapy is one of the routine treatment modalities for cancer patients. Ionizing radiation (IR) can induce bone loss, and consequently increases the risk of fractures with delayed and nonunion of the bone in the cancer patients who receive radiotherapy. The orchestrated bone remodeling can be disrupted due to the affected behaviors of bone cells, including bone mesenchymal stem cells (BMSCs), osteoblasts and osteoclasts. BMSCs and osteoblasts are relatively radioresistant compared with osteoclasts and its progenitors. Owing to different radiosensitivities of bone cells, unbalanced bone remodeling caused by IR is closely associated with the dose absorbed. For doses less than 2 Gy, osteoclastogenesis and adipogenesis by BMSCs are enhanced, while there are limited effects on osteoblasts. High doses (>10 Gy) induce disrupted architecture of bone, which is usually related to decreased osteogenic potential. In this review, studies elucidating the biological effects of IR on bone cells (BMSCs, osteoblasts and osteoclasts) are summarized. Several potential preventions and therapies are also proposed.
Collapse
Affiliation(s)
- Jian Zhang
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Xinyu Qiu
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Kedi Xi
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Wentao Hu
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Hailong Pei
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Jing Nie
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Ziyang Wang
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Jiahan Ding
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Peng Shang
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China.,c Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences , Northwestern Polytechnical University , Xi'an , China.,d Research & Development Institute in Shenzhen , Northwestern Polytechnical University, Fictitious College Garden , Shenzhen , China
| | - Bingyan Li
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China
| | - Guangming Zhou
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| |
Collapse
|
30
|
Liu Y, Cao W, Kong X, Li J, Chen X, Ge Y, Zhong W, Fang S. Protective effects of α‑2‑macroglobulin on human bone marrow mesenchymal stem cells in radiation injury. Mol Med Rep 2018; 18:4219-4228. [PMID: 30221711 PMCID: PMC6172405 DOI: 10.3892/mmr.2018.9449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022] Open
Abstract
Osteoradionecrosis of the jaws (ORNJ) is a complication of oral and maxillofacial malignancy that arises following radiotherapy; progressive jaw necrosis severely decreases the quality of life of patients. Human bone marrow mesenchymal stem cells (hBMMSCs) are a cell type with self‑renewal and pluripotent differentiation potential in the bone marrow stroma. These cells are associated with bone tissue regeneration and are one of the primary cell types affected by bone tissue radiation injury. α‑2‑macroglobulin (α2M) is a glycoprotein‑rich macromolecule that interacts with cytokines, growth factors and hormones to serve a variety of biological roles. In addition, α2M possesses radio‑protective effects. The aim of the present study was to investigate whether α2M has protective effects against radiation injury of hBMMSCs. Cell counting kit‑8 and colony formation assays were used to monitor cell proliferation. Western blot analysis and reverse transcription‑quantitative polymerase chain reaction were used to detect Beclin1, microtubule‑associated protein 1A/1B, sex determining region Y, Nanog, runt‑related transcription factor 2, osteoglycin and manganese superoxide dismutase expression. The formation of calcium nodules was evaluated by Alizarin red staining after osteogenic induction. Flow cytometric analysis of Annexin‑V and propidium iodide double staining was used to detect changes in apoptosis rate. Alkaline phosphatase and superoxide dismutase activity were determined using colorimetric assays. Reactive oxygen species levels were detected using 2',7'‑dichlorodihydrofluorescein diacetate. The results of the present study revealed that α2M increased the rate of proliferation, reduced autophagy, alleviated pluripotent differentiation injury, increased the osteogenic differentiation ability and decreased the rate of apoptosis in hBMMSCs following irradiation via an antioxidative pathway. In conclusion, α2M exhibited protective effects against radiation injury in hBMMSCs and may be considered a potential therapeutic agent for the prevention and treatment of ORNJ.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Wanting Cao
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiangbo Kong
- Department of Stomatology, Sun Yat‑Sen Memorial Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jie Li
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xueying Chen
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yaping Ge
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Wanzhen Zhong
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Silian Fang
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
31
|
Radiation Induces Apoptosis and Osteogenic Impairment through miR-22-Mediated Intracellular Oxidative Stress in Bone Marrow Mesenchymal Stem Cells. Stem Cells Int 2018; 2018:5845402. [PMID: 30158985 PMCID: PMC6109564 DOI: 10.1155/2018/5845402] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) were characterized by their multilineage potential and were involved in both bony and soft tissue repair. Exposure of cells to ionizing radiation (IR) triggers numerous biological reactions, including reactive oxygen species (ROS), cellular apoptosis, and impaired differentiation capacity, while the mechanisms of IR-induced BMSC apoptosis and osteogenic impairment are still unclear. Through a recent study, we found that 6 Gy IR significantly increased the apoptotic ratio and ROS generation, characterized by ROS staining and mean fluorescent intensity. Intervention with antioxidant (NAC) indicated that IR-induced cellular apoptosis was partly due to the accumulation of intracellular ROS. Furthermore, we found that the upregulation of miR-22 in rBMSCs following 6 Gy IR played an important role on the ROS generation and subsequent apoptosis. In addition, we firstly demonstrated that miR-22-mediated ROS accumulation and cell injury had an important regulated role on the osteogenic capacity of BMSCs both in vitro and in vivo. In conclusion, IR-induced overexpression of miR-22 regulated the cell viability and differentiation potential through targeting the intracellular ROS.
Collapse
|
32
|
Titanium implant functionalized with antimiR-138 delivered cell sheet for enhanced peri-implant bone formation and vascularization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:52-64. [PMID: 29752119 DOI: 10.1016/j.msec.2018.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/20/2018] [Accepted: 03/14/2018] [Indexed: 01/12/2023]
Abstract
Patients with compromised bone conditions still suffer the problem of deficient osseointegration during dental implant treatment. Developing mesenchymal stem cell (MSC) sheet functionalized titanium implant with proper inductive cue to promote osteogenesis and angiogenesis coupling shall be a good solution. In the present study, the antimiR-138 delivered MSC sheet is used to functionalize the Ti implant. The cell sheet can well integrate with the Ti implant to form the MSC sheet-implant complex (MSIC). The antimiR-138 delivered MSIC shows greatly improved osteogenesis and angiogenesis coupling both in vitro and in vivo. In vitro, the antimiR-138 delivered MSIC significantly promotes the expression of endogenous osteogenesis and angiogenesis related genes and proteins, alkaline phosphatase activity, extracellular matrix mineralization and collagen secretion compared to the antimiR-control and the nothing delivered control. The in vivo ectopic implantation assay uncovers the robust vascularized bone formation of the antimiR-138 delivered MSIC. The antimiR-138 delivered MSIC with promoted osteogenesis and angiogenesis coupling is anticipated to lead to rigid osseointegration in the compromised bone conditions.
Collapse
|
33
|
Mesenchymal Stromal Cell Irradiation Interferes with the Adipogenic/Osteogenic Differentiation Balance and Improves Their Hematopoietic-Supporting Ability. Biol Blood Marrow Transplant 2018; 24:443-451. [DOI: 10.1016/j.bbmt.2017.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022]
|
34
|
|
35
|
Sun R, Zhu G, Wang J, Tong L, Zhai J. Indirect effects of X-irradiation on proliferation and osteogenic potential of bone marrow mesenchymal stem cells in a local irradiated rat model. Mol Med Rep 2017; 15:3706-3714. [PMID: 28440500 PMCID: PMC5436268 DOI: 10.3892/mmr.2017.6464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 04/03/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer survivors after radiotherapy may suffer a variety of bone-related adverse side effects, including radioactive osteoporosis and fractures. Localized irradiation is a common treatment modality for malignancies. Recently, a series of reactions and injuries called indirect effects (remote changes in bone when other parts of the body are irradiated) have been reported on the indirect irradiated area of bone tissue after radiotherapy. To address this issue, we developed a rat localized irradiation model. Rats were irradiated with a single dose of X-rays to the left hind limbs, and bone marrow mesenchymal stem cells (BMMSCs) were isolated from bone marrow of the left (direct irradiated) and right (indirect irradiated) hind limbs 3, 7 and 14 days after irradiation, and assayed for the proliferation ability and osteogenic potential by alkaline phosphatase (ALP) activity, mineralization assay, RT-PCR and western blot analysis. The results showed that there were significant morphology changes in the BMMSCs from direct and indirect irradiated bone tissue with bigger cell bodies and increased granules. The proliferation of BMMSCs decreased both in the direct irradiated and non-irradiated bone tissue. The ALP expression and activities of BMMSCs from direct irradiated bone was consistently defected following a transient enhancement, the mRNA levels of RUNX2 and OCN, the protein expression of RUNX2, and the mineralization ability also showed the same trend. Simultaneously, in indirect irradiated group, the osteogenic potential indicators of BMMSCs decreased in the early stage of post-irradiation and were still impaired 14 days after irradiation. Our data demonstrate that localized irradiation may have both direct and indirect adverse effects on BMMSCs' proliferation and osteogenic potential into osteoblast, which may be the mechanism of radiation-induced abscopal impairment to the skeleton in the cancer radiotherapy-induced bone loss.
Collapse
Affiliation(s)
- Ruilian Sun
- Department of Radiation Protection, Institute of Radiation Medicine, Fudan University, Shanghai 200032, P.R. China
| | - Guoying Zhu
- Department of Radiation Protection, Institute of Radiation Medicine, Fudan University, Shanghai 200032, P.R. China
| | - Jianping Wang
- Department of Radiation Protection, Institute of Radiation Medicine, Fudan University, Shanghai 200032, P.R. China
| | - Ling Tong
- Department of Radiation Protection, Institute of Radiation Medicine, Fudan University, Shanghai 200032, P.R. China
| | - Jianglong Zhai
- Department of Radiation Protection, Institute of Radiation Medicine, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
36
|
Chandra A, Lin T, Young T, Tong W, Ma X, Tseng WJ, Kramer I, Kneissel M, Levine MA, Zhang Y, Cengel K, Liu XS, Qin L. Suppression of Sclerostin Alleviates Radiation-Induced Bone Loss by Protecting Bone-Forming Cells and Their Progenitors Through Distinct Mechanisms. J Bone Miner Res 2017; 32:360-372. [PMID: 27635523 PMCID: PMC5476363 DOI: 10.1002/jbmr.2996] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/15/2022]
Abstract
Focal radiotherapy is frequently associated with skeletal damage within the radiation field. Our previous in vitro study showed that activation of Wnt/β-catenin pathway can overcome radiation-induced DNA damage and apoptosis of osteoblastic cells. Neutralization of circulating sclerostin with a monoclonal antibody (Scl-Ab) is an innovative approach for treating osteoporosis by enhancing Wnt/β-catenin signaling in bone. Together with the fact that focal radiation increases sclerostin amount in bone, we sought to determine whether weekly treatment with Scl-Ab would prevent focal radiotherapy-induced osteoporosis in mice. Micro-CT and histomorphometric analyses demonstrated that Scl-Ab blocked trabecular bone structural deterioration after radiation by partially preserving osteoblast number and activity. Consistently, trabecular bone in sclerostin null mice was resistant to radiation via the same mechanism. Scl-Ab accelerated DNA repair in osteoblasts after radiation by reducing the number of γ-H2AX foci, a DNA double-strand break marker, and increasing the amount of Ku70, a DNA repair protein, thus protecting osteoblasts from radiation-induced apoptosis. In osteocytes, apart from using similar DNA repair mechanism to rescue osteocyte apoptosis, Scl-Ab restored the osteocyte canaliculi structure that was otherwise damaged by radiation. Using a lineage tracing approach that labels all mesenchymal lineage cells in the endosteal bone marrow, we demonstrated that radiation damage to mesenchymal progenitors mainly involves shifting their fate to adipocytes and arresting their proliferation ability but not inducing apoptosis, which are different mechanisms from radiation damage to mature bone forming cells. Scl-Ab treatment partially blocked the lineage shift but had no effect on the loss of proliferation potential. Taken together, our studies provide proof-of-principle evidence for a novel use of Scl-Ab as a therapeutic treatment for radiation-induced osteoporosis and establish molecular and cellular mechanisms that support such treatment. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tiao Lin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tiffany Young
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Tong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyuan Ma
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei-Ju Tseng
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ina Kramer
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Michaela Kneissel
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Michael A Levine
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Endocrinology and Diabetes and the Center for Bone Health, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yejia Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Philadelphia Veterans Affairs Medical Center and Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keith Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - X Sherry Liu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
37
|
Yang X, Huo H, Xiu C, Song M, Han Y, Li Y, Zhu Y. Inhibition of osteoblast differentiation by aluminum trichloride exposure is associated with inhibition of BMP-2/Smad pathway component expression. Food Chem Toxicol 2016; 97:120-126. [PMID: 27600293 DOI: 10.1016/j.fct.2016.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic protein-2 (BMP-2)/Smad signaling pathway plays an important role in regulating osteoblast (OB) differentiation. OB differentiation is a key process of bone formation. Aluminum (Al) exposure inhibits bone formation and causes Al-induced bone disease. However, the mechanism is not fully understood. To investigate whether BMP-2/Smad signaling pathway is associated with OB differentiation in aluminum trichloride (AlCl3)-treated OBs, the primary rat OBs were cultured and exposed to 0 (control group, CG), 1/40 IC50 (low-dose group, LG), 1/20 IC50 (mid-dose group, MG), and 1/10 IC50 (high-dose group, HG) of AlCl3 for 24 h, respectively. We found that the expressions of OB differentiation markers (Runx-2, Osterix and ALP) and BMP-2/Smad signaling pathway components (BMP-2, BMPR-IA, p-BMPR-IA, BMPR-II, p-Smad1/5/8 and p-Smad1/5/8/4) were all decreased in AlCl3-treated OBs compared with the CG. These results indicated that inhibition of OB differentiation by AlCl3 was associated with inhibition of BMP-2/Smad pathway component expression. Our findings provide a novel insight into the mechanism of AlCl3-induced bone disease.
Collapse
Affiliation(s)
- Xu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hui Huo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Chunyu Xiu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yanzhu Zhu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| |
Collapse
|