1
|
Zhang Y, Song D, Han X, Liu H, Wang Y, Wang X, Dou C. Unlocking the potential of melanotransferrin (CD228): implications for targeted drug development and novel therapeutic avenues. Expert Opin Ther Targets 2024; 28:1117-1129. [PMID: 39676256 DOI: 10.1080/14728222.2024.2441705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/05/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Melanotransferrin (CD228), a cell membrane-anchored protein, has emerged as a significant cancer antigen due to its high expression in various solid tumors. This review synthesizes the current understanding and therapeutic potential of CD228. AREAS COVERED We conducted a literature search using PubMed, Web of Science, and ClinicalTrials.gov with the keywords 'melanotransferrin' and 'CD228.' Our comprehensive review examines CD228 and its isoforms, membrane-bound CD228 (mMFI2) and soluble CD228 (sMFI2), their roles in tumorigenesis, angiogenesis, endothelial cell migration, plasminogen activation, and transendothelial transport across the BBB, as well as the current state of drug development efforts targeting CD228. EXPERT OPINION Targeting CD228 represents a promising therapeutic strategy in oncology, with mMFI2 as a potential target for solid tumors and sMFI2 valuable for disease diagnosis in malignant tumors, Alzheimer's disease, and arthritis, and facilitating macromolecular drug delivery across the blood-brain barrier (BBB). Despite its potential to transform the treatment landscape for numerous solid cancers, further research into the precise mechanisms and clinical translation of CD228-directed treatments is needed to maximize its therapeutic utility.
Collapse
Affiliation(s)
- Yanan Zhang
- Research and Development Center, Shandong Boan Biotechnology Co., Ltd, Yantai, Shandong, China
| | - Deyong Song
- Research and Development Center, Shandong Boan Biotechnology Co., Ltd, Yantai, Shandong, China
| | - Xiaolei Han
- Research and Development Center, Shandong Boan Biotechnology Co., Ltd, Yantai, Shandong, China
| | - Hong Liu
- Research and Development Center, Shandong Boan Biotechnology Co., Ltd, Yantai, Shandong, China
| | - Yunfan Wang
- Research and Development Center, Shandong Boan Biotechnology Co., Ltd, Yantai, Shandong, China
| | - Xianju Wang
- Research and Development Center, Shandong Boan Biotechnology Co., Ltd, Yantai, Shandong, China
| | - Changlin Dou
- Research and Development Center, Shandong Boan Biotechnology Co., Ltd, Yantai, Shandong, China
| |
Collapse
|
2
|
Hu S, Han X, Liu G, Wang S. LncRNAs as potential prognosis/diagnosis markers and factors driving drug resistance of osteosarcoma, a review. Front Endocrinol (Lausanne) 2024; 15:1415722. [PMID: 39015175 PMCID: PMC11249743 DOI: 10.3389/fendo.2024.1415722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Osteosarcoma is a common malignancy that often occurs in children, teenagers and young adults. Although the treatment strategy has improved, the results are still poor for most patients with metastatic or recurrent osteosarcomas. Therefore, it is necessary to identify new and effective prognostic biomarkers and therapeutic targets for diseases. Human genomes contain lncRNAs, transcripts with limited or insufficient capacity to encode proteins. They have been implicated in tumorigenesis, particularly regarding the onset, advancement, resistance to treatment, recurrence and remote dissemination of malignancies. Aberrant lncRNA expression in osteosarcomas has been reported by numerous researchers; lncRNAs have the potential to exhibit either oncogenic or tumor-suppressing behaviors and thus, to govern the advancement of this skeletal cancer. They are suspected to influence osteosarcoma cell growth, replication, invasion, migration, remote dissemination and programmed cell death. Additionally, they have been recognized as clinical markers, and may participate in the development of multidrug resistance. Therefore, the study of lncRNAs in the growth, metastasis, treatment and prognosis of osteosarcoma is very important for the active prevention and treatment of osteosarcoma. Consequently, this work reviews the functions of lncRNAs.
Collapse
Affiliation(s)
- Siwang Hu
- The Orthopedic Center, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| | - Xuebing Han
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Shuangshuang Wang
- Department of Cardiology, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| |
Collapse
|
3
|
Riquier S, Mathieu M, Bessiere C, Boureux A, Ruffle F, Lemaitre JM, Djouad F, Gilbert N, Commes T. Long non-coding RNA exploration for mesenchymal stem cell characterisation. BMC Genomics 2021; 22:412. [PMID: 34088266 PMCID: PMC8178833 DOI: 10.1186/s12864-020-07289-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The development of RNA sequencing (RNAseq) and the corresponding emergence of public datasets have created new avenues of transcriptional marker search. The long non-coding RNAs (lncRNAs) constitute an emerging class of transcripts with a potential for high tissue specificity and function. Therefore, we tested the biomarker potential of lncRNAs on Mesenchymal Stem Cells (MSCs), a complex type of adult multipotent stem cells of diverse tissue origins, that is frequently used in clinics but which is lacking extensive characterization. RESULTS We developed a dedicated bioinformatics pipeline for the purpose of building a cell-specific catalogue of unannotated lncRNAs. The pipeline performs ab initio transcript identification, pseudoalignment and uses new methodologies such as a specific k-mer approach for naive quantification of expression in numerous RNAseq data. We next applied it on MSCs, and our pipeline was able to highlight novel lncRNAs with high cell specificity. Furthermore, with original and efficient approaches for functional prediction, we demonstrated that each candidate represents one specific state of MSCs biology. CONCLUSIONS We showed that our approach can be employed to harness lncRNAs as cell markers. More specifically, our results suggest different candidates as potential actors in MSCs biology and propose promising directions for future experimental investigations.
Collapse
Affiliation(s)
- Sébastien Riquier
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Marc Mathieu
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Chloé Bessiere
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Anthony Boureux
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Florence Ruffle
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Jean-Marc Lemaitre
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Farida Djouad
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Nicolas Gilbert
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Thérèse Commes
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| |
Collapse
|
4
|
Meng X, Zhang Z, Chen L, Wang X, Zhang Q, Liu S. Silencing of the Long Non-Coding RNA TTN-AS1 Attenuates the Malignant Progression of Osteosarcoma Cells by Regulating the miR-16-1-3p/TFAP4 Axis. Front Oncol 2021; 11:652835. [PMID: 34141611 PMCID: PMC8204018 DOI: 10.3389/fonc.2021.652835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/14/2021] [Indexed: 11/27/2022] Open
Abstract
Objectives Osteosarcoma (OS) is a type of bone malignancy. This study attempted to explore the effect of long non-coding RNA TTN-AS1 (TTN-AS1) on OS and to determine its molecular mechanisms. Methods The expression of TTN-AS1, microRNA-16-1-3p (miR-16-1-3p), and transcription factor activating enhancer binding protein 4 (TFAP4) in OS was assessed using qRT-PCR. The OS cell proliferation, migration, and invasion were measured using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), wound-healing, and transwell assays. N-cadherin and MMP-2 protein level was determined with western blot. Interactions between TTN-AS1 and miR-16-1-3p or TFAP4 and miR-16-1-3p were confirmed using the dual-luciferase reporter assay. Additionally, an OS xenograft tumor model was constructed to assess the effect of TTN-AS1 on tumor growth. Results TTN-AS1 and TFAP4 expression was increased in OS, while miR-16-1-3p expression was decreased. TTN-AS1 silencing restrained OS cell proliferation, migration, invasion, N-cadherin and MMP-2 protein expression, and hindered tumor growth. MiR-16-1-3p overexpression retarded the malignant behavior of OS cells. TTN-AS1 played a carcinostatic role by down-regulating miR-16-1-3p in the OS cells. Moreover, miR-16-1-3p inhibition or TFAP4 elevation weakened the suppressive effect of TTN-AS1 silencing on OS cell tumor progression. Conclusion TTN-AS1 promoted the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of OS cells via mediating the miR-16-1-3p/TFAP4 axis. TTN-AS1 may be a critical target for improving OS.
Collapse
Affiliation(s)
- Xianghai Meng
- Trauma Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenjun Zhang
- Trauma Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lin Chen
- Department of Burn Reconstructive Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xi Wang
- Department of Spine Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingguo Zhang
- Department of Spine Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuheng Liu
- Department of Spine Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
5
|
|
6
|
Comprehensive Characterization of Prognostic Long Noncoding RNAs in Osteosarcoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6725753. [PMID: 32908905 PMCID: PMC7468628 DOI: 10.1155/2020/6725753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022]
Abstract
The molecular mechanism of osteosarcoma (OS) based on protein-coding genes has largely been studied in the past decades. However, much remains to be explored when it comes to the role that long noncoding RNAs (lncRNAs) play in the pathogenesis and progression of OS and how they are associated with OS metastasis. In the present study, we collected RNA-seq-based gene expression data of 82 OS samples from the Therapeutically Applicable Research To Generate Effective Treatments (TARGET) database, along with their clinical information. We found that 50 lncRNAs were significantly associated with patients' survival by univariable Cox regression model. Moreover, we built multivariable Cox regression model based on 7 lncRNAs and successfully stratified patients into two risk groups, which exhibited significantly different prognostic outcomes. Significantly enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways detected by differential expression analysis on DEGs between the two groups with different prognostic outcomes were both immune-related, indicating that such GO terms and pathways are critical for OS survival. Among the seven lncRNA signatures, AC011442.1 was predicted to act as an oncogenic driver in OS by correlation analysis of copy number alteration (CNA) and lncRNA expression, and it was predicted to regulate AMPK and hedgehog signaling pathways. In summary, the identification of novel prognostic lncRNAs in OS could not only improved our understanding of the lncRNAs involved in OS tumorigenesis or progression but also assist the diagnosis and development of molecularly targeted therapies for OS, which in turn benefit patients' survival.
Collapse
|
7
|
LINC00266-1/miR-548c-3p/SMAD2 feedback loop stimulates the development of osteosarcoma. Cell Death Dis 2020; 11:576. [PMID: 32709857 PMCID: PMC7381647 DOI: 10.1038/s41419-020-02764-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 11/09/2022]
Abstract
Osteosarcoma (OS) is one of the most common primary bone malignancies and accounts for 3.4% of pediatric tumors. Its 5-year survival is as low as about 20%. Differentially expressed lncRNAs in OS profiling were searched in the downloaded profile of GSE12865. As a result, LINC00266-1 was detected to be upregulated in both GSE12865 and OS tissues we collected. SMAD2 was the downstream target binding to promoter sites of LINC00266-1, displaying a positive regulatory interaction. Knockdown of LINC00266-1 suppressed the proliferative and metastatic abilities, and promoted the apoptosis in OS cells. Besides, knockdown of LINC00266-1 significantly alleviated the growth of OS in vivo. MiR-548c-3p was the sponge miRNA of LINC00266-1, which was able to reverse the regulatory effects of LINC00266-1 on OS cell phenotypes. Moreover, miR-548c-3p bound to the 3'-UTR of SMAD2 and thus downregulated SMAD2. Overexpression of SMAD2 partially reversed the regulatory effects of LINC00266-1 on OS cell phenotypes. Finally, we have identified that LINC00266-1/miR-548c-3p/SMAD2 feedback loop was responsible for stimulating the development of OS.
Collapse
|
8
|
Lee TY, Huang KY, Chuang CH, Lee CY, Chang TH. Incorporating deep learning and multi-omics autoencoding for analysis of lung adenocarcinoma prognostication. Comput Biol Chem 2020; 87:107277. [PMID: 32512487 DOI: 10.1016/j.compbiolchem.2020.107277] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/30/2020] [Indexed: 12/25/2022]
Abstract
Lung cancer is the most occurring cancer type, and its mortality rate is also the highest, among them lung adenocarcinoma (LUAD) accounts for about 40 % of lung cancer. There is an urgent need to develop a prognosis prediction model for lung adenocarcinoma. Previous LUAD prognosis studies only took single-omics data, such as mRNA or miRNA, into consideration. To this end, we proposed a deep learning-based autoencoding approach for combination of four-omics data, mRNA, miRNA, DNA methylation and copy number variations, to construct an autoencoder model, which learned representative features to differentiate the two optimal patient subgroups with a significant difference in survival (P = 4.08e-09) and good consistency index (C-index = 0.65). The multi-omics model was validated though four independent datasets, i.e. GSE81089 for mRNA (n = 198, P = 0.0083), GSE63805 for miRNA (n = 32, P = 0.018), GSE63384 for DNA methylation (n = 35, P = 0.009), and TCGA independent samples for copy number variations (n = 94, P = 0.0052). Finally, a functional analysis was performed on two survival subgroups to discover genes involved in biological processes and pathways. This is the first study incorporating deep autoencoding and four-omics data to construct a robust survival prediction model, and results show the approach is useful at predicting LUAD prognostication.
Collapse
Affiliation(s)
- Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China; School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen, China; School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China.
| | - Kai-Yao Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China; School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen, China; School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China.
| | - Cheng-Hsiang Chuang
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan.
| | - Cheng-Yang Lee
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei City, Taiwan.
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei City, Taiwan; Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei City, Taiwan.
| |
Collapse
|
9
|
Monteiro CF, Santos SC, Custódio CA, Mano JF. Human Platelet Lysates-Based Hydrogels: A Novel Personalized 3D Platform for Spheroid Invasion Assessment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902398. [PMID: 32274296 PMCID: PMC7141025 DOI: 10.1002/advs.201902398] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/19/2019] [Indexed: 05/04/2023]
Abstract
Fundamental physiologic and pathologic phenomena such as wound healing and cancer metastasis are typically associated with the migration of cells through adjacent extracellular matrix. In recent years, advances in biomimetic materials have supported the progress in 3D cell culture and provided biomedical tools for the development of models to study spheroid invasiveness. Despite this, the exceptional biochemical and biomechanical properties of human-derived materials are poorly explored. Human methacryloyl platelet lysates (PLMA)-based hydrogels are herein proposed as reliable 3D platforms to sustain in vivo-like cell invasion mechanisms. A systematic analysis of spheroid viability, size, and invasiveness is performed in three biomimetic materials: PLMA hydrogels at three different concentrations, poly(ethylene glycol) diacrylate, and Matrigel. Results demonstrate that PLMA hydrogels perfectly support the recapitulation of the tumor invasion behavior of cancer cell lines (MG-63, SaOS-2, and A549) and human bone-marrow mesenchymal stem cell spheroids. The distinct invasiveness ability of each cell type is reflected in the PLMA hydrogels and, furthermore, different mechanical properties produce an altered invasive behavior. The herein presented human PLMA-based hydrogels could represent an opportunity to develop accurate cell invasiveness models and open up new possibilities for humanized and personalized high-throughput screening and validation of anticancer drugs.
Collapse
Affiliation(s)
- Cátia F. Monteiro
- Department of ChemistryCICECOUniversity of AveiroCampus Universitário de Santiago3810‐193AveiroPortugal
| | - Sara C. Santos
- Department of ChemistryCICECOUniversity of AveiroCampus Universitário de Santiago3810‐193AveiroPortugal
| | - Catarina A. Custódio
- Department of ChemistryCICECOUniversity of AveiroCampus Universitário de Santiago3810‐193AveiroPortugal
| | - João F. Mano
- Department of ChemistryCICECOUniversity of AveiroCampus Universitário de Santiago3810‐193AveiroPortugal
| |
Collapse
|
10
|
Luo X, Wang J, Wei X, Wang S, Wang A. Knockdown of lncRNA MFI2-AS1 inhibits lipopolysaccharide-induced osteoarthritis progression by miR-130a-3p/TCF4. Life Sci 2019; 240:117019. [PMID: 31678554 DOI: 10.1016/j.lfs.2019.117019] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/16/2019] [Accepted: 10/27/2019] [Indexed: 12/11/2022]
Abstract
AIMS Long noncoding RNA melanotransferrin antisense RNA (MFI2-AS1) plays a vital role in the development of multiple diseases. This study aimed to investigate the effect of this lncRNA on osteoarthritis progression and explore the interaction among MFI2-AS1, microRNA (miR)-130a-3p and transcription factor 4 (TCF4). METHODS Forty-six knee osteoarthritis tissues and 28 normal samples were collected. Human chondrocytes C28/I2 cells treated by lipopolysaccharide (LPS) were used as the model of osteoarthritis. The expression levels of MFI2-AS1, miR-130a-3p and TCF4 were detected by quantitative real-time polymerase chain reaction or western blot. LPS-induced chondrocytes injury was investigated by cell viability, apoptosis, inflammatory response and extracellular matrix degradation using MTT, flow cytometry, enzyme-linked immunosorbent assay and western blot. The target association between miR-130a-3p and MFI2-AS1 or TCF4 was confirmed by luciferase reporter assay and RNA immunoprecipitation. RESULTS MFI2-AS1 expression was increased in osteoarthritis tissues and LPS-treated C28/I2 cells. Silence of MFI2-AS1 attenuated LPS-induced viability suppression, apoptosis production, inflammatory response and extracellular matrix degradation. MFI2-AS1 was validated as a decoy of miR-130a-3p and TCF4 was confirmed as a target of miR-130a-3p. miR-130a-3p overexpression inhibited LPS-induced cell injury in C28/I2 cells by decreasing TCF4 expression. Moreover, knockdown of MFI2-AS1 alleviated LPS-induced cell injury in C28/I2 cells by mediating miR-130a-3p and TCF4. CONCLUSION Knockdown of MFI2-AS1 increased cell viability but suppressed apoptosis, inflammatory response and extracellular matrix degradation in LPS-treated chondrocytes by increasing miR-130a-3p and decreasing TCF4, indicating a novel target for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Xiaofei Luo
- Zhengzhou Orthopaedics Hospital, 450052, China
| | | | - Xuan Wei
- Zhengzhou Orthopaedics Hospital, 450052, China.
| | | | - Aiguo Wang
- Zhengzhou Orthopaedics Hospital, 450052, China
| |
Collapse
|
11
|
Wang G, Wang X, Jin Y. LINC01410/ miR-3619-5p/ FOXM1 Feedback Loop Regulates Papillary Thyroid Carcinoma Cell Proliferation and Apoptosis. Cancer Biother Radiopharm 2019; 34:572-580. [PMID: 31644316 DOI: 10.1089/cbr.2019.2854] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Backgrounds: Thyroid cancer (TC) is a prevalent type of cancer in endocrine system. Past decades have seen the rising mortality and morbidity of TC. Long noncoding RNAs are renowned modulators of cancer onset and progression as validated by mounting studies. Long intergenic non-protein coding RNA 1410 (LINC01410) has been suggested as tumor-promoting gene in colon cancer and gastric cancer, but its role in TC is elusive. This study investigated the impact and mechanism of LINC01410 in TC. Materials and Methods: RT-qPCR and western blot were used to detect gene expression levels. Cell counting kit-8 (CCK-8) and ethynyl-2'-deoxyuridine (EdU) assays were used to determine proliferation. Caspase-3 activity assay was used to examine apoptosis. Intermolecular interaction was investigated by luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay. Results: We confirmed the elevation of LINC01410 expression in TC cells. Loss-of-function experiments indicated that LINC01410 knockdown suppressed proliferation and facilitated apoptosis in TC. Mechanism research illustrated that LINC01410 positively regulated forkhead box M1 (FOXM1) expression through targeting miR-3619-5p, and that FOXM1 in turn transcriptionally activated LINC01410. Rescue experiments validated that LINC01410 regulated TC proliferation and apoptosis through miR-3619-5p/FOXM1. Conclusions: This study demonstrated that LINC01410/miR-3619-5p/FOXM1 positive feedback loop regulated cell proliferation and apoptosis in TC, shedding a light on the molecular target identification and promising treatment improvement in TC.
Collapse
Affiliation(s)
- Gang Wang
- Geriatrics Department, Lianshui County People's Hospital, Lianshui County, Jiangsu Province, China
| | - Xin Wang
- Endocrine Department, Lianshui County People's Hospital, Lianshui County, Jiangsu Province, China
| | - Ying Jin
- Hongze Huai'an District People's Hospital, Huai'an, Jiangsu Province, China
| |
Collapse
|
12
|
Smith CM, Catchpoole D, Hutvagner G. Non-Coding RNAs in Pediatric Solid Tumors. Front Genet 2019; 10:798. [PMID: 31616462 PMCID: PMC6764412 DOI: 10.3389/fgene.2019.00798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Pediatric solid tumors are a diverse group of extracranial solid tumors representing approximately 40% of childhood cancers. Pediatric solid tumors are believed to arise as a result of disruptions in the developmental process of precursor cells which lead them to accumulate cancerous phenotypes. In contrast to many adult tumors, pediatric tumors typically feature a low number of genetic mutations in protein-coding genes which could explain the emergence of these phenotypes. It is likely that oncogenesis occurs after a failure at many different levels of regulation. Non-coding RNAs (ncRNAs) comprise a group of functional RNA molecules that lack protein coding potential but are essential in the regulation and maintenance of many epigenetic and post-translational mechanisms. Indeed, research has accumulated a large body of evidence implicating many ncRNAs in the regulation of well-established oncogenic networks. In this review we cover a range of extracranial solid tumors which represent some of the rarer and enigmatic childhood cancers known. We focus on two major classes of ncRNAs, microRNAs and long non-coding RNAs, which are likely to play a key role in the development of these cancers and emphasize their functional contributions and molecular interactions during tumor formation.
Collapse
Affiliation(s)
- Christopher M Smith
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Daniel Catchpoole
- School of Software, University of Technology Sydney, Sydney, Australia.,The Tumour Bank-CCRU, Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
13
|
Abstract
Long noncoding RNAs (lncRNAs) have recently considered as central regulators in diverse biological processes and emerged as vital players controlling tumorigenesis. Several lncRNAs can be classified into oncogenes and tumor suppressor genes depending on their function in cancer. A maternally expressed gene 3 (MEG3) gene transcripts a 1.6 kb lncRNA whose act as an antitumor component in different cancer cells, such as breast, liver, glioma, colorectal, cervical, gastric, lung, ovarian and osteosarcoma cancer cells. The present review highlights biological function of MEG3 to repress tumor through regulating the major tumor suppressor genes p53 and Rb, inhibiting angiogenesis-related factor, or controlling miRNAs. On the other hand, previous studies have also suggested that MEG3 mediates epithelial-mesenchymal transition (EMT). However, deregulation of MEG3 is associated with the development and progression of cancer, suggesting that MEG3 may function as a potential biomarker and therapeutic target for human cancers.
Collapse
|
14
|
Emerging roles of non-coding RNAs in the pathogenesis, diagnosis and prognosis of osteosarcoma. Invest New Drugs 2018; 36:1116-1132. [DOI: 10.1007/s10637-018-0624-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
|
15
|
Smolle MA, Pichler M. The Role of Long Non-Coding RNAs in Osteosarcoma. Noncoding RNA 2018; 4:ncrna4010007. [PMID: 29657304 PMCID: PMC5890394 DOI: 10.3390/ncrna4010007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 12/26/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) constitute non-protein coding transcripts with a size > than 200 nucleotides. They are involved in many cellular processes, such as chromatin remodelling, transcription, and gene expression. They play a role in the development, progression, and invasion of many human cancers, including osteosarcoma. This rare tumor entity predominantly arises in children and young adults. Treatment consists of polychemotherapy and surgical resection, increasing survival rates up to 60%. In the present review, the role of lncRNAs with prognostic, predictive, therapeutic, and diagnostic significance in osteosarcoma is discussed. Moreover, their potential application in clinical practice is highlighted.
Collapse
Affiliation(s)
- Maria Anna Smolle
- Department of Orthopaedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Martin Pichler
- Division of Clinical Oncology, Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
- Division of Cancer Medicine, MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| |
Collapse
|
16
|
Mimura I, Hirakawa Y, Kanki Y, Kushida N, Nakaki R, Suzuki Y, Tanaka T, Aburatani H, Nangaku M. Novel lnc RNA regulated by HIF-1 inhibits apoptotic cell death in the renal tubular epithelial cells under hypoxia. Physiol Rep 2018; 5:5/8/e13203. [PMID: 28420760 PMCID: PMC5408278 DOI: 10.14814/phy2.13203] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 02/15/2017] [Indexed: 12/22/2022] Open
Abstract
Chronic tubulointerstitial hypoxia plays an important role as the final common pathway to end-stage renal disease. HIF-1 (hypoxia-inducible factor-1) is a master transcriptional factor under hypoxia, regulating downstream target genes. Genome-wide analysis of HIF-1 binding sites using high-throughput sequencers has clarified various kinds of downstream targets and made it possible to demonstrate the novel roles of HIF-1. Our aim of this study is to identify novel HIF-1 downstream epigenetic targets which may play important roles in the kidney. Immortalized tubular cell lines (HK2; human kidney-2) and primary cultured cells (RPTEC; renal proximal tubular cell lines) were exposed to 1% hypoxia for 24-72 h. We performed RNA-seq to clarify the expression of mRNA and long non-coding RNA (lncRNA). We also examined ChIP-seq to identify HIF-1 binding sites under hypoxia. RNA-seq identified 44 lncRNAs which are up-regulated under hypoxic condition in both cells. ChIP-seq analysis demonstrated that HIF-1 also binds to the lncRNAs under hypoxia. The expression of novel lncRNA, DARS-AS1 (aspartyl-tRNA synthetase anti-sense 1), is up-regulated only under hypoxia and HIF-1 binds to its promoter region, which includes two hypoxia-responsive elements. Its expression is also up-regulated with cobalt chloride exposure, while it is not under hypoxia when HIF-1 is knocked down by siRNA To clarify the biological roles of DARS-AS1, we measured the activity of caspase 3/7 using anti-sense oligo of DARS-AS1. Knockdown of DARS-AS1 deteriorated apoptotic cell death. In conclusion, we identified the novel lncRNAs regulated by HIF-1 under hypoxia and clarified that DARS-AS1 plays an important role in inhibiting apoptotic cell death in renal tubular cells.
Collapse
Affiliation(s)
- Imari Mimura
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Hirakawa
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuharu Kanki
- Isotope Science Center, The University of Tokyo., Tokyo, Japan
| | - Natsuki Kushida
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Nakaki
- Division of GenomeScience, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Division of GenomeScience, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Lu L, Dai Z, Luo Q, Lv G. The long noncoding RNA cancer susceptibility candidate 2 inhibits tumor progression in osteosarcoma. Mol Med Rep 2017; 17:1947-1953. [PMID: 29257211 DOI: 10.3892/mmr.2017.8080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 06/15/2017] [Indexed: 11/06/2022] Open
Abstract
Long noncoding RNA (lncRNA) has been identified to serve a critical role in the development of various types of cancer. Cancer susceptibility candidate 2 (CASC2) is a cancer‑associated lncRNA. However, whether CASC2 regulates osteosarcoma progression remains unclear. Reverse transcription‑quantitative polymerase chain reaction, western blot, invasion and migration assays were used to evaluate the role of CASC2 in osteosarcoma. The present study reported that CASC2 may inhibit osteosarcoma development. Osteosarcoma tissues demonstrated reduced CASC2 expression compared with normal adjacent tissues. In addition, CASC2 transduction may decrease proliferation, migration and invasion of osteosarcoma cell lines whereas knockdown of CASC2 displayed opposing effects. Patients with low CASC2 levels were predicted to have a poor survival. In vivo implantation studies using pcDNA‑CASC2 or short interfering‑CASC2 exhibited decreased or increased tumor weight, respectively. These results suggested that CASC2 may serve as a potential tumor suppressor lncRNA in osteosarcoma and may provide potential insight into targeted intervention.
Collapse
Affiliation(s)
- Lingyun Lu
- Department of Orthopedics, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Zhehao Dai
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Qing Luo
- Molecular Oncology Laboratory, Cancer Hospital, Affiliated Hospital of Zunyi Medical College, Zunyi, Guiyang 563000, P.R. China
| | - Guohua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
18
|
Wang H, Yu Y, Fan S, Luo L. Knockdown of Long Non-Coding RNA NEAT1 Inhibits Proliferation and Invasion and Induces Apoptosis of Osteosarcoma by Inhibiting miR-194 Expression. Yonsei Med J 2017; 58:1092-1100. [PMID: 29047232 PMCID: PMC5653473 DOI: 10.3349/ymj.2017.58.6.1092] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) has been implicated as an oncogene in the development and progression of osteosarcoma. This study aims to explore the mechanism of NEAT1 in osteosarcoma. MATERIALS AND METHODS Expressions of NEAT1 and miR-194 in osteosarcoma tissues and cells were detected by quantitative real-time PCR. The effects of NEAT1 knockdown or miR-194 overexpression on cell proliferation, invasion, and apoptosis were determined by 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide (MTT) assay, transwell invasive assay, and flow cytometry analysis, respectively. Luciferase reporter assay was performed to observe the possible interaction between NEAT1 and miR-194. RESULTS NEAT1 was upregulated and miR-194 was downregulated in osteosarcoma tissues and cells. Knockdown of NEAT1 or overexpression of miR-194 suppressed proliferation and invasion and induced apoptosis of osteosarcoma cells in vitro. Luciferase reporter assay validated that NEAT1 could interact with miR-194 and negatively modulated its expression. Furthermore, inhibition of miR-194 reversed the suppression of proliferation and invasion and the promotion of apoptosis induced by NEAT1 depletion in osteosarcoma cells. CONCLUSION Knockdown of NEAT1 suppressed proliferation and invasion and induced apoptosis in osteosarcoma cells by inhibiting miR-194 expression.
Collapse
Affiliation(s)
- Heping Wang
- Department of Orthopedics, Zhoukou Central Hospital, Zhoukou, China.
| | - Yanzhang Yu
- Department of Surgery, Zhoukou Central Hospital, Zhoukou, China
| | - Shuxin Fan
- Department of Orthopedics, Zhoukou Central Hospital, Zhoukou, China
| | - Leifeng Luo
- Department of Orthopedics, Zhoukou Central Hospital, Zhoukou, China
| |
Collapse
|
19
|
Wang Z, Tan M, Chen G, Li Z, Lu X. LncRNA SOX2-OT is a novel prognostic biomarker for osteosarcoma patients and regulates osteosarcoma cells proliferation and motility through modulating SOX2. IUBMB Life 2017; 69:867-876. [PMID: 28960757 DOI: 10.1002/iub.1681] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/10/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Zhi Wang
- Department of Bone and Joint Surgery; The Affiliated Hospital of Southwest Medical University; Luzhou Sichuan People's Republic of China
| | - Meiyun Tan
- Department of Bone and Joint Surgery; The Affiliated Hospital of Southwest Medical University; Luzhou Sichuan People's Republic of China
| | - Ge Chen
- Department of Bone and Joint Surgery; The Affiliated Hospital of Southwest Medical University; Luzhou Sichuan People's Republic of China
| | - Zhong Li
- Department of Bone and Joint Surgery; The Affiliated Hospital of Southwest Medical University; Luzhou Sichuan People's Republic of China
| | - Xiaobo Lu
- Department of Bone and Joint Surgery; The Affiliated Hospital of Southwest Medical University; Luzhou Sichuan People's Republic of China
| |
Collapse
|
20
|
Chen R, Wang G, Zheng Y, Hua Y, Cai Z. Long non-coding RNAs in osteosarcoma. Oncotarget 2017; 8:20462-20475. [PMID: 28103585 PMCID: PMC5386777 DOI: 10.18632/oncotarget.14726] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) with more than 200 nuleotides, have been explored to participate in various cancer types including osteosarcoma (OS), which is the most common kind of primary bone tumors with high morbidity in infants and adolescents. These oncogenic or tumor suppressive lncRNAs regulate OS pathogenesis, such as cell growth, proliferation, invasion, migration, metastasis and cell apoptosis, serve as independent prognostic biomarkers or play a significant role in multidrug resistance (MDR) in OS cells. In this review, we attempt to dissect the participation of lncRNAs in pathogenesis of OS and their potential clinical values, and also provide an outlook for viable biomarkers and therapeutic targets in OS.
Collapse
Affiliation(s)
- Ruiling Chen
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gangyang Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zheng
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingqi Hua
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Xu T, Jiang W, Fan L, Gao Q, Li G. Upregulation of long noncoding RNA Xist promotes proliferation of osteosarcoma by epigenetic silencing of P21. Oncotarget 2017; 8:101406-101417. [PMID: 29254174 PMCID: PMC5731884 DOI: 10.18632/oncotarget.20738] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022] Open
Abstract
Recent studies show that lncRNAs involve in the initiation and progression of various cancers including osteosarcoma (OS). IncRNA Xist has been verified as an oncogene in several human cancers, and its abnormal expression was closely associated with tumor initiation and progression. Nevertheless, the role of Xist in OS remains unclear. Here, we revealed the Xist expression level was up-regulated in OS tissues and discovered that Xist knockdown significantly repressed OS cell proliferation. Additionally, mechanistic analysis revealed that Xist can repress P21 expression to regulate OS cell cycle and proliferation by binding to EZH2. Taking all into account, Xist may function in promoting OS cell proliferation and may potentially serve as a novel biomarker and therapeutic target for OS.
Collapse
Affiliation(s)
- Tianyang Xu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tong Ji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Wenwei Jiang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tong Ji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Lin Fan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tong Ji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Qiuming Gao
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tong Ji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Guodong Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tong Ji University School of Medicine, Shanghai 200072, People's Republic of China
| |
Collapse
|
22
|
Expression of long non-coding RNA MFI2-AS1 is a strong predictor of recurrence in sporadic localized clear-cell renal cell carcinoma. Sci Rep 2017; 7:8540. [PMID: 28819235 PMCID: PMC5561098 DOI: 10.1038/s41598-017-08363-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/06/2017] [Indexed: 01/09/2023] Open
Abstract
Prediction of recurrence is a challenge for the development of adjuvant treatments in clear-cell renal cell carcinoma (ccRCC). In these tumors, expression of long non-coding RNAs (lncRNAs) are deregulated and closely associated with prognosis. Thus, we aimed to predict ccRCC recurrence risk using lncRNA expression. We identified prognostic lncRNAs in a training set of 351 localized ccRCCs from The Cancer Genome Atlas and validated lncRNA-based recurrence classification in an independent cohort of 167 localized ccRCCs. We identified lncRNA MFI2-AS1 as best candidate in the training set. In the validation cohort, MFI2-AS1 expression was independently associated with shorter disease-free survival (Hazard Ratio (HR) for relapse 3.5, p = 0.0001). Combined with Leibovich classification, MFI2-AS1 status improved prediction of recurrence (C-index 0.70) compared to MFI2-AS1 alone (0.67) and Leibovich classification alone (0.66). In patients with aggressive tumors (Leibovich ≥5), MFI2-AS1 expression was associated with dramatically increased risk of relapse (HR 12.16, p < 0.0001) compared to patients with undetectable MFI2-AS1 who had favorable outcomes. Compared to normal samples, MFI2-AS1 was upregulated in tumor tissue, and higher expression was associated with metastatic dissemination. Overall, MFI2-AS1 status improves patient stratification in localized ccRCC, which supports further integration of lncRNAs in molecular cancer classifications.
Collapse
|
23
|
Prediction of clinical outcome and survival in soft-tissue sarcoma using a ten-lncRNA signature. Oncotarget 2017; 8:80336-80347. [PMID: 29113307 PMCID: PMC5655202 DOI: 10.18632/oncotarget.18165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
The prognostic value of long non-coding RNAs (lncRNAs) in patients with soft-tissue sarcoma has rarely been unraveled. The aim of the study was to find a lncRNA signature to predict the clinical outcome and survival in soft-tissue sarcoma based on the high-throughput RNA-seq data from The Cancer Genome Atlas (TCGA) database. The lncRNAs which closely correlated with overall survival in 258 soft-tissue sarcoma patients were identified with Cox proportional regression model. Ten lncRNAs, including RP11-560J1.2, AP001432.14, RP4-665J23.1, LINC00680, AC006129.2, RP11-230G5.2, BACH1-IT2, RP11-274B21.9, RP11-504A18.1 and RP11-713P17.3, were selected to calculate a risk score. The risk score could effectively predict patients’ outcome, such as the status of mitotic count of tumor cells, person neoplasm cancer and residual tumor. More inspiringly, the risk score generated from the 10-lncRNA signature was an independent prognostic indicator for soft-tissue sarcoma patients. Overall, this 10-lncRNA signature gains the potential as an effective prognostic tool for soft-tissue sarcoma as part of the integrated clinical RNA-seq program.
Collapse
|
24
|
Min L, Garbutt C, Tu C, Hornicek F, Duan Z. Potentials of Long Noncoding RNAs (LncRNAs) in Sarcoma: From Biomarkers to Therapeutic Targets. Int J Mol Sci 2017; 18:E731. [PMID: 28353666 PMCID: PMC5412317 DOI: 10.3390/ijms18040731] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 02/05/2023] Open
Abstract
Sarcoma includes some of the most heterogeneous tumors, which make the diagnosis, prognosis and treatment of these rare yet diverse neoplasms especially challenging. Long noncoding RNAs (lncRNAs) are important regulators of cancer initiation and progression, which implies their potential as neoteric prognostic and diagnostic markers in cancer, including sarcoma. A relationship between lncRNAs and sarcoma pathogenesis and progression is emerging. Recent studies demonstrate that lncRNAs influence sarcoma cell proliferation, metastasis, and drug resistance. Additionally, lncRNA expression profiles are predictive of sarcoma prognosis. In this review, we summarize contemporary advances in the research of lncRNA biogenesis and functions in sarcoma. We also highlight the potential for lncRNAs to become innovative diagnostic and prognostic biomarkers as well as therapeutic targets in sarcoma.
Collapse
Affiliation(s)
- Li Min
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA.
- Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, Sichuan, China.
| | - Cassandra Garbutt
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA.
| | - Chongqi Tu
- Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, Sichuan, China.
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA.
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA.
| |
Collapse
|
25
|
Wang Y, Xue K, Guan Y, Jin Y, Liu S, Wang Y, Liu S, Wang L, Han L. Long Noncoding RNA LINC00261 Suppresses Cell Proliferation and Invasion and Promotes Cell Apoptosis in Human Choriocarcinoma. Oncol Res 2016; 25:733-742. [PMID: 27983929 PMCID: PMC7841083 DOI: 10.3727/096504016x14772362173376] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Choriocarcinoma is one of the gestational trophoblastic neoplasias (GTNs) that originate in the chorionic villi and the extravillous trophoblast. Long noncoding RNAs (lncRNAs) are a type of non-protein-coding RNAs that have recently been implicated in human tumorigenesis. The present study investigated the role of the lncRNA LINC00261 in cell proliferation, metastasis, and apoptosis in choriocarcinoma cell lines. The transcription level of LINC00261 was significantly lower in choriocarcinoma tissues and in choriocarcinoma cell lines. Overexpression of LINC00261 caused a decrease in cell proliferation and arrested the cell cycle at the G0/G1 phase. Furthermore, overexpression of LINC00261 inhibited cell migration and invasion. Meanwhile, it promoted cell apoptosis and the relative activities of caspase 3 and caspase 9 in choriocarcinoma JEG-3 and JAR cells. These data suggested that LINC00261 promotes cell proliferation and metastasis in choriocarcinoma. Our data might provide novel insight into the early diagnosis and treatment of choriocarcinoma in clinics.
Collapse
|