1
|
Zhou H, Jia H, Lei G, Zhou T, Wu J, Chang Y, Wang L, Sheng M, Yang X. Quantitative assessment of normal hip cartilage in children under 9 years old by T2 mapping. MAGMA (NEW YORK, N.Y.) 2022; 35:459-466. [PMID: 34652541 DOI: 10.1007/s10334-021-00962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To investigate the variation in T2 at different zones of normal hip cartilage in children and the relationship between T2 value and age. MATERIALS AND METHODS Nineteen children with 30 normal hip joints were evaluated with a coronal T2 mapping sequence at a 3-Tesla MRI system. The femoral cartilage and acetabular cartilage were firstly segmented by mask-based interactive method and then equally divided into eight and six radial sections, respectively. Moreover, each radial section was further divided into two layers referring to the superficial and deep halves of the corresponding cartilage. Cartilage T2 of these sections and layers were measured and subsequently analyzed. RESULTS There was a negative correlation between the T2 values in the hip cartilage and the age of children (rs < - 0.6, P1 < 0.05). Articular cartilage T2 increased at angles close to the magic angle (54.7°). Femoral cartilage and acetabular cartilage had a relatively shorter T2 in the radial sections near the vertex of the femoral head. The T2 values in superficial layers of both cartilages were significantly higher than those in deep layers (P < 0.05). CONCLUSION The T2 value decreases as the cartilage developing into a more mature state. Cartilage T2 values in the weight-bearing areas are relatively low due to an increase of collagen density and the loss of interstitial water. The restriction of the water molecules by solid components in the deeper layer of cartilage may decrease the T2 values.
Collapse
Affiliation(s)
- Hongyan Zhou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Huihui Jia
- Department of Radiology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Gege Lei
- School of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tianli Zhou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jizhi Wu
- Department of Radiology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Yan Chang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Lei Wang
- School of Ophthalmology and Optometry, Eye Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Mao Sheng
- Department of Radiology, Children's Hospital of Soochow University, Suzhou, 215025, China.
| | - Xiaodong Yang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China.
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| |
Collapse
|
2
|
Sveinsson B, Chaudhari AS, Zhu B, Koonjoo N, Torriani M, Gold GE, Rosen MS. Synthesizing Quantitative T2 Maps in Right Lateral Knee Femoral Condyles from Multicontrast Anatomic Data with a Conditional Generative Adversarial Network. Radiol Artif Intell 2021; 3:e200122. [PMID: 34617020 PMCID: PMC8489449 DOI: 10.1148/ryai.2021200122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 04/11/2021] [Accepted: 05/03/2021] [Indexed: 04/09/2023]
Abstract
PURPOSE To develop a proof-of-concept convolutional neural network (CNN) to synthesize T2 maps in right lateral femoral condyle articular cartilage from anatomic MR images by using a conditional generative adversarial network (cGAN). MATERIALS AND METHODS In this retrospective study, anatomic images (from turbo spin-echo and double-echo in steady-state scans) of the right knee of 4621 patients included in the 2004-2006 Osteoarthritis Initiative were used as input to a cGAN-based CNN, and a predicted CNN T2 was generated as output. These patients included men and women of all ethnicities, aged 45-79 years, with or at high risk for knee osteoarthritis incidence or progression who were recruited at four separate centers in the United States. These data were split into 3703 (80%) for training, 462 (10%) for validation, and 456 (10%) for testing. Linear regression analysis was performed between the multiecho spin-echo (MESE) and CNN T2 in the test dataset. A more detailed analysis was performed in 30 randomly selected patients by means of evaluation by two musculoskeletal radiologists and quantification of cartilage subregions. Radiologist assessments were compared by using two-sided t tests. RESULTS The readers were moderately accurate in distinguishing CNN T2 from MESE T2, with one reader having random-chance categorization. CNN T2 values were correlated to the MESE values in the subregions of 30 patients and in the bulk analysis of all patients, with best-fit line slopes between 0.55 and 0.83. CONCLUSION With use of a neural network-based cGAN approach, it is feasible to synthesize T2 maps in femoral cartilage from anatomic MRI sequences, giving good agreement with MESE scans.See also commentary by Yi and Fritz in this issue.Keywords: Cartilage Imaging, Knee, Experimental Investigations, Quantification, Vision, Application Domain, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms© RSNA, 2021.
Collapse
Affiliation(s)
- Bragi Sveinsson
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
149 13th St, Suite 2301, Boston, MA 02129 (B.S., B.Z., N.K., M.S.R.);
Division of Musculoskeletal Imaging and Intervention, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.T.);
Department of Radiology, Stanford University, Stanford, Calif (A.S.C., G.E.G.);
and Department of Physics, Harvard University, Cambridge, Mass (M.S.R.)
| | - Akshay S. Chaudhari
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
149 13th St, Suite 2301, Boston, MA 02129 (B.S., B.Z., N.K., M.S.R.);
Division of Musculoskeletal Imaging and Intervention, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.T.);
Department of Radiology, Stanford University, Stanford, Calif (A.S.C., G.E.G.);
and Department of Physics, Harvard University, Cambridge, Mass (M.S.R.)
| | - Bo Zhu
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
149 13th St, Suite 2301, Boston, MA 02129 (B.S., B.Z., N.K., M.S.R.);
Division of Musculoskeletal Imaging and Intervention, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.T.);
Department of Radiology, Stanford University, Stanford, Calif (A.S.C., G.E.G.);
and Department of Physics, Harvard University, Cambridge, Mass (M.S.R.)
| | - Neha Koonjoo
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
149 13th St, Suite 2301, Boston, MA 02129 (B.S., B.Z., N.K., M.S.R.);
Division of Musculoskeletal Imaging and Intervention, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.T.);
Department of Radiology, Stanford University, Stanford, Calif (A.S.C., G.E.G.);
and Department of Physics, Harvard University, Cambridge, Mass (M.S.R.)
| | - Martin Torriani
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
149 13th St, Suite 2301, Boston, MA 02129 (B.S., B.Z., N.K., M.S.R.);
Division of Musculoskeletal Imaging and Intervention, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.T.);
Department of Radiology, Stanford University, Stanford, Calif (A.S.C., G.E.G.);
and Department of Physics, Harvard University, Cambridge, Mass (M.S.R.)
| | - Garry E. Gold
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
149 13th St, Suite 2301, Boston, MA 02129 (B.S., B.Z., N.K., M.S.R.);
Division of Musculoskeletal Imaging and Intervention, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.T.);
Department of Radiology, Stanford University, Stanford, Calif (A.S.C., G.E.G.);
and Department of Physics, Harvard University, Cambridge, Mass (M.S.R.)
| | - Matthew S. Rosen
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
149 13th St, Suite 2301, Boston, MA 02129 (B.S., B.Z., N.K., M.S.R.);
Division of Musculoskeletal Imaging and Intervention, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.T.);
Department of Radiology, Stanford University, Stanford, Calif (A.S.C., G.E.G.);
and Department of Physics, Harvard University, Cambridge, Mass (M.S.R.)
| |
Collapse
|
3
|
Atkinson HF, Birmingham TB, Moyer RF, Yacoub D, Kanko LE, Bryant DM, Thiessen JD, Thompson RT. MRI T2 and T1ρ relaxation in patients at risk for knee osteoarthritis: a systematic review and meta-analysis. BMC Musculoskelet Disord 2019; 20:182. [PMID: 31039785 PMCID: PMC6492327 DOI: 10.1186/s12891-019-2547-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/28/2019] [Indexed: 12/19/2022] Open
Abstract
Background Magnetic resonance imaging (MRI) T2 and T1ρ relaxation are increasingly being proposed as imaging biomarkers potentially capable of detecting biochemical changes in articular cartilage before structural changes are evident. We aimed to: 1) summarize MRI methods of published studies investigating T2 and T1ρ relaxation time in participants at risk for but without radiographic knee OA; and 2) compare T2 and T1ρ relaxation between participants at-risk for knee OA and healthy controls. Methods We conducted a systematic review of studies reporting T2 and T1ρ relaxation data that included both participants at risk for knee OA and healthy controls. Participant characteristics, MRI methodology, and T1ρ and T2 relaxation data were extracted. Standardized mean differences (SMDs) were calculated within each study. Pooled effect sizes were then calculated for six commonly segmented knee compartments. Results 55 articles met eligibility criteria. There was considerable variability between scanners, coils, software, scanning protocols, pulse sequences, and post-processing. Moderate risk of bias due to lack of blinding was common. Pooled effect sizes indicated participants at risk for knee OA had lengthened T2 relaxation time in all compartments (SMDs from 0.33 to 0.74; p < 0.01) and lengthened T1ρ relaxation time in the femoral compartments (SMD from 0.35 to 0.40; p < 0.001). Conclusions T2 and T1ρ relaxation distinguish participants at risk for knee OA from healthy controls. Greater standardization of MRI methods is both warranted and required for progress towards biomarker validation. Electronic supplementary material The online version of this article (10.1186/s12891-019-2547-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hayden F Atkinson
- School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada.,Wolf Orthopaedic Biomechanics Laboratory, Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Ontario, Canada.,Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada
| | - Trevor B Birmingham
- School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada. .,Wolf Orthopaedic Biomechanics Laboratory, Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Ontario, Canada. .,Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada. .,Musculoskeletal Rehabilitation, Elborn College, University of Western Ontario, London, Ontario, N6G 1H1, Canada.
| | - Rebecca F Moyer
- Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada.,School of Physiotherapy, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniel Yacoub
- Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Lauren E Kanko
- School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada.,Wolf Orthopaedic Biomechanics Laboratory, Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Ontario, Canada.,Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada
| | - Dianne M Bryant
- School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada.,Wolf Orthopaedic Biomechanics Laboratory, Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Ontario, Canada.,Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada
| | - Jonathan D Thiessen
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
| | - R Terry Thompson
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
4
|
Bruno F, Arrigoni F, Palumbo P, Natella R, Maggialetti N, Reginelli A, Splendiani A, Di Cesare E, Brunese L, Guglielmi G, Giovagnoni A, Masciocchi C, Barile A. New advances in MRI diagnosis of degenerative osteoarthropathy of the peripheral joints. Radiol Med 2019; 124:1121-1127. [PMID: 30771216 DOI: 10.1007/s11547-019-01003-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 12/31/2022]
Abstract
Degenerative osteoarthropathy is one of the leading causes of the pain and disability from musculoskeletal disease in the adult population. Magnetic resonance imaging (MRI) allows optimal visualization of all tissues involved in degenerative osteoarthritis disease process, mainly the articular cartilage. In addition to qualitative and semiquantitative morphologic assessment, several MRI-based advanced techniques have been developed to allow characterization and quantification of the biochemical cartilage composition. These include quantitative analysis and several compositional techniques (T1 and T2 relaxometry measurements and mapping, sodium imaging, delayed gadolinium-enhanced MRI of cartilage dGEMRIC, glycosaminoglycan-specific chemical exchange saturation transfer gagCEST, diffusion-weighted imaging DWI and diffusion tensor imaging DTI). These compositional MRI techniques may have the potential to serve as quantitative, reproducible, noninvasive and objective endpoints for OA assessment, particularly in diagnosis of early and pre-radiographic stages of the disease and in monitoring disease progression and treatment effects over time.
Collapse
Affiliation(s)
- Federico Bruno
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Francesco Arrigoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Pierpaolo Palumbo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Raffaele Natella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicola Maggialetti
- Department Life and Health "V. Tiberio", University of Molise, Campobasso, Italy
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Splendiani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Ernesto Di Cesare
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Luca Brunese
- Department Life and Health "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giuseppe Guglielmi
- Department of Radiology, Scientific Institute "Casa Sollievo della Sofferenza" Hospital, University of Foggia, Foggia, Italy
| | - Andrea Giovagnoni
- Department of Radiology, Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - Carlo Masciocchi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy.
| |
Collapse
|
5
|
Duarte A, Ruiz A, Ferizi U, Bencardino J, Abramson SB, Samuels J, Krasnokutsky-Samuels S, Raya JG. Diffusion tensor imaging of articular cartilage using a navigated radial imaging spin-echo diffusion (RAISED) sequence. Eur Radiol 2018; 29:2598-2607. [PMID: 30382348 DOI: 10.1007/s00330-018-5780-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/27/2018] [Accepted: 09/19/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To validate a radial imaging spin-echo diffusion tensor (RAISED) sequence for high-resolution diffusion tensor imaging (DTI) of articular cartilage at 3 T. METHODS The RAISED sequence implementation is described, including the used non-linear motion correction algorithm. The robustness to eddy currents was tested on phantoms, and accuracy of measurement was assessed with measurements of temperature-dependent diffusion of free water. Motion correction was validated by comparing RAISED with single-shot diffusion-weighted echo-planar imaging (EPI) measures. DTI was acquired in asymptomatic subjects (n = 6) and subjects with doubtful (Kellgren-Lawrence [KL] grade 1, n = 9) and mild (KL = 2, n = 9) symptomatic knee osteoarthritis (OA). MD and FA values without correction, and after all corrections, were calculated. A test-retest evaluation of the DTI acquisition on three asymptomatic and three OA subjects was also performed. RESULTS The root mean squared coefficient of variation of the global test-restest reproducibility was 3.54% for MD and 5.34% for FA. MD was significantly increased in both femoral condyles (7-9%) of KL 1 and in the medial (11-17%) and lateral (10-12%) compartments of KL 2 subjects. Averaged FA presented a trend of lower values with increasing KL grade, which was significant for the medial femoral condyle (-11%) of KL 1 and all three compartments in KL 2 subjects (-18 to -11%). Group differences in MD and FA were only significant after motion correction. CONCLUSION The RAISED sequence with the proposed reconstruction framework provides reproducible assessment of DTI parameters in vivo at 3 T and potentially the early stages of the disease in large regions of interest. KEY POINTS • DTI of articular cartilage is feasible at 3T with a multi-shot RAISED sequence with non-linear motion correction. • RAISED sequence allows estimation of the diffusion indices MD and FA with test-retest errors below 4% (MD) and 6% (FA). • RAISED-based measurement of DTI of articular cartilage with non-linear motion correction holds potential to differentiate healthy from OA subjects.
Collapse
Affiliation(s)
- Alejandra Duarte
- Center for Biomedical Imaging, Department of Radiology, New York University Langone Health, 660 First avenue, 4th Floor, New York, NY, 10016, USA
| | - Amparo Ruiz
- Center for Biomedical Imaging, Department of Radiology, New York University Langone Health, 660 First avenue, 4th Floor, New York, NY, 10016, USA
| | - Uran Ferizi
- Center for Biomedical Imaging, Department of Radiology, New York University Langone Health, 660 First avenue, 4th Floor, New York, NY, 10016, USA
| | - Jenny Bencardino
- Center for Biomedical Imaging, Department of Radiology, New York University Langone Health, 660 First avenue, 4th Floor, New York, NY, 10016, USA
| | - Steven B Abramson
- Division of Rheumatology, Department of Medicine, New York University Langone Health, New York, NY, USA
| | - Jonathan Samuels
- Division of Rheumatology, Department of Medicine, New York University Langone Health, New York, NY, USA
| | | | - José G Raya
- Center for Biomedical Imaging, Department of Radiology, New York University Langone Health, 660 First avenue, 4th Floor, New York, NY, 10016, USA.
| |
Collapse
|
6
|
Martín Noguerol T, Luna A, Gómez Cabrera M, Riofrio AD. Clinical applications of advanced magnetic resonance imaging techniques for arthritis evaluation. World J Orthop 2017; 8:660-673. [PMID: 28979849 PMCID: PMC5605351 DOI: 10.5312/wjo.v8.i9.660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/18/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
Magnetic resonance imaging (MRI) has allowed a comprehensive evaluation of articular disease, increasing the detection of early cartilage involvement, bone erosions, and edema in soft tissue and bone marrow compared to other imaging techniques. In the era of functional imaging, new advanced MRI sequences are being successfully applied for articular evaluation in cases of inflammatory, infectious, and degenerative arthropathies. Diffusion weighted imaging, new fat suppression techniques such as DIXON, dynamic contrast enhanced-MRI, and specific T2 mapping cartilage sequences allow a better understanding of the physiopathological processes that underlie these different arthropathies. They provide valuable quantitative information that aids in their differentiation and can be used as potential biomarkers of articular disease course and treatment response.
Collapse
Affiliation(s)
| | - Antonio Luna
- MRI Unit, Clínica Las Nieves, SERCOSA, Health Time, 23007 Jaén, Spain
- Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH 44106, United States
| | | | - Alexie D Riofrio
- Department of Radiology, Duke Regional Hospital, Durham, NC 27710, United States
| |
Collapse
|
7
|
Diffusion-weighted imaging and the skeletal system: a literature review. Clin Radiol 2016; 71:1071-82. [PMID: 27519973 DOI: 10.1016/j.crad.2016.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/24/2016] [Accepted: 07/08/2016] [Indexed: 01/26/2023]
Abstract
Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) sequence that has a well-established role in neuroimaging, and is increasingly being utilised in other clinical contexts, including the assessment of various skeletal disorders. It utilises the variability of Brownian motion of water molecules; the differing patterns of water molecular diffusion in various biological tissues help determine the contrast obtained in DWI. Although early research on the clinical role of DWI focused mainly on the field of neuroimaging, there are now more studies demonstrating the promising role DWI has in the diagnosis and monitoring of various osseous diseases. DWI has been shown to be useful in assessing a patient's skeletal tumour burden, monitoring the post-chemotherapy response of various bony malignancies, detecting hip ischaemia in patients with Legg-Calvé-Perthes disease, as well as determining the quality of repaired articular cartilage. Despite its relative successes, DWI has several limitations, including its limited clinical value in differentiating chondrosarcomas from benign bone lesions, as well as osteoporotic vertebral compression fractures from compression fractures due to malignancy. This literature review aims to provide an overview of the recent developments in the use of DWI in imaging the skeletal system, and to clarify the role of DWI in assessing various osseous diseases.
Collapse
|
8
|
Raya JG. Techniques and applications of in vivo diffusion imaging of articular cartilage. J Magn Reson Imaging 2015; 41:1487-504. [PMID: 25865215 DOI: 10.1002/jmri.24767] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/11/2014] [Indexed: 01/07/2023] Open
Abstract
Early in the process of osteoarthritis (OA) the composition (water, proteoglycan [PG], and collagen) and structure of articular cartilage is altered leading to changes in its mechanical properties. A technique that can assess the composition and structure of the cartilage in vivo can provide insight in the mechanical integrity of articular cartilage and become a powerful tool for the early diagnosis of OA. Diffusion tensor imaging (DTI) has been proposed as a biomarker for cartilage composition and structure. DTI is sensitive to the PG content through the mean diffusivity and to the collagen architecture through the fractional anisotropy. However, the acquisition of DTI of articular cartilage in vivo is challenging due to the short T2 of articular cartilage (∼40 ms at 3 Tesla) and the high resolution needed (0.5-0.7 mm in plane) to depict the cartilage anatomy. We describe the pulse sequences used for in vivo DTI of articular cartilage and discus general strategies for protocol optimization. We provide a comprehensive review of measurements of DTI of articular cartilage from ex vivo validation experiments to its recent clinical applications.
Collapse
Affiliation(s)
- José G Raya
- Department Radiology, New York University Langone Medical Center, New York, New York, USA
| |
Collapse
|
9
|
Surowiec RK, Lucas EP, Ho CP. Quantitative MRI in the evaluation of articular cartilage health: reproducibility and variability with a focus on T2 mapping. Knee Surg Sports Traumatol Arthrosc 2014; 22:1385-95. [PMID: 24170187 DOI: 10.1007/s00167-013-2714-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 10/08/2013] [Indexed: 01/14/2023]
Abstract
PURPOSE Early diagnosis of cartilage degeneration and longitudinal tracking of cartilage health including repair following surgical intervention would benefit from the ability to detect and monitor changes of the articular cartilage non-invasively and before gross morphological alterations appear. METHODS Quantitative MR imaging has shown promising results with various imaging biomarkers such as T2 mapping, T1 rho and dGEMRIC demonstrating sensitivity in the detection of biochemical alterations within tissues of interest. However, acquiring accurate and clinically valuable quantitative data has proven challenging, and the reproducibility of the quantitative mapping technique and its values are essential. Although T2 mapping has been the focus in this discussion, all quantitative mapping techniques are subject to the same issues including variability in the imaging protocol, unloading and exercise, analysis, scanner and coil, calculation methods, and segmentation and registration concerns. RESULTS The causes for variability between time points longitudinally in a patient, among patients, and among centres need to be understood further and the issues addressed. CONCLUSIONS The potential clinical applications of quantitative mapping are vast, but, before the clinical community can take full advantage of this tool, it must be automated, standardized, validated, and have proven reproducibility prior to its implementation into the standard clinical care routine.
Collapse
Affiliation(s)
- Rachel K Surowiec
- Steadman Philippon Research Institute, 181 W Meadow Dr, Suite 1000, Vail, CO, 81657, USA,
| | | | | |
Collapse
|
10
|
Raya JG, Dettmann E, Notohamiprodjo M, Krasnokutsky S, Abramson S, Glaser C. Feasibility of in vivo diffusion tensor imaging of articular cartilage with coverage of all cartilage regions. Eur Radiol 2014; 24:1700-6. [PMID: 24816930 DOI: 10.1007/s00330-014-3155-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 03/04/2014] [Accepted: 03/18/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To investigate the value of diffusion tensor imaging (DTI) of articular cartilage to differentiate healthy from osteoarthritis (OA) subjects in all cartilage regions. METHODS DTI was acquired sagittally at 7 T in ten healthy and five OA (Kellgren-Lawrence grade 2) subjects with a line scan diffusion tensor sequence (LSDTI). Three healthy volunteers and two OA subjects were examined twice to assess the test-retest reproducibility. Averaged mean diffusivity (MD) and fractional anisotropy (FA) were calculated in each cartilage region (femoral trochlea, lateral and medial femoral condyles, patella, and lateral and medial tibia). RESULTS The test-retest reproducibility was 2.9% for MD and 5.6% for FA. Averaged MD was significantly increased (+20%, p < 0.05) in the OA subjects in the lateral femoral condyle, lateral tibia and the femoral trochlea compartments. Averaged FA presented a trend of lower values in the OA subjects (-12%), which was only significant for the lateral tibia. CONCLUSIONS In vivo DTI of articular cartilage with coverage of all cartilage regions using an LSDTI sequence is feasible, shows excellent reproducibility for MD and FA, and holds potential for the diagnosis of OA. KEY POINTS • DTI of articular cartilage is feasible at 7 T in all cartilage regions • DTI of articular cartilage can potentially differentiate healthy and OA subjects.
Collapse
Affiliation(s)
- José G Raya
- Department Radiology, New York University Langone Medical Center, 660 First Avenue, 4th Floor, 10016, New York, NY, USA,
| | | | | | | | | | | |
Collapse
|
11
|
|