1
|
Hung PHS, Thi Dung H, Thao LD, Van Chao N, Thi Hoa N, Thi Hien B, Mondal A, Nsereko V, Phung LD. Effects of Saccharomyces cerevisiae fermentation-derived postbiotics supplementation in sows and piglets' diet on intestinal morphology, and intestinal barrier function in weaned pigs in an intensive pig production system. Vet Immunol Immunopathol 2025; 283:110934. [PMID: 40187222 DOI: 10.1016/j.vetimm.2025.110934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
This study evaluates the effects of Saccharomyces cerevisiae fermentation-derived postbiotics (SCFP) supplementation on diarrhea incidence, small intestinal morphology, and expression of tight junction genes in piglets. The study compared three groups: a control group (CON), which received a standard basal diet; a standard basal control diet containing 1.0 kg/mT of Beta-glucan 50 % (BG); and a standard basal control diet containing 2.0 kg/mT of SCFP (Diamond V XPC). The experimental design involved feeding the diets to the sows from the day when they were inseminated until their piglets were weaned and to piglets from birth to weaning. Diarrhea incidence was monitored, intestinal morphology was assessed, and gene expression of tight junction proteins (Claudin-1, Claudin-2, Occludin, and ZO-1) and inflammatory cytokines (IL-1β) was analyzed using qPCR. Results revealed that SCFP supplementation significantly reduced diarrhea incidence and upregulated the expression of tight junction proteins Claudin-1 (1.61-fold) and Occludin (1.90-fold) compared to CON. These improvements were not associated with changes in intestinal morphology. BG supplementation showed intermediate effects on tight junction gene expression but did not differ significantly from CON. These findings highlight the potential of SCFP as a dietary supplement to enhance gastrointestinal health in piglets by strengthening the intestinal epithelial barrier and reducing pathogen translocation. The study underscores the efficacy of SCFP in improving gut health without altering intestinal structure, offering an effective approach to manage pre-weaning diarrhea. Future studies are needed to explore the long-term impact of SCFP on growth performance and immunity.
Collapse
Affiliation(s)
- Pham Hoang Son Hung
- Hue University of Agriculture and Forestry, Hue University, 102 Phung Hung, Hue City, Vietnam
| | - Ho Thi Dung
- Hue University of Agriculture and Forestry, Hue University, 102 Phung Hung, Hue City, Vietnam
| | - Le Duc Thao
- Hue University of Agriculture and Forestry, Hue University, 102 Phung Hung, Hue City, Vietnam
| | - Nguyen Van Chao
- Hue University of Agriculture and Forestry, Hue University, 102 Phung Hung, Hue City, Vietnam
| | - Nguyen Thi Hoa
- Hue University of Agriculture and Forestry, Hue University, 102 Phung Hung, Hue City, Vietnam
| | - Bui Thi Hien
- Hue University of Agriculture and Forestry, Hue University, 102 Phung Hung, Hue City, Vietnam
| | - Anjan Mondal
- USAID-- TRANSFORM, Cargill Inc., Iowa City, Iowa, USA
| | | | - Le Dinh Phung
- Hue University of Agriculture and Forestry, Hue University, 102 Phung Hung, Hue City, Vietnam.
| |
Collapse
|
2
|
Luo Y, Luo L, Xia M, Liu Q, Zhang G. Studies on the changes in rectal permeability and intestinal microbiota with developmental age in young rats. Front Microbiol 2025; 16:1551693. [PMID: 40336831 PMCID: PMC12058081 DOI: 10.3389/fmicb.2025.1551693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/31/2025] [Indexed: 05/09/2025] Open
Abstract
Introduction The gut contains a diverse array of commensal microorganisms, forming a vital biological barrier within the intestine that contributes to the overall intestinal mucosal barrier. However, research on the rectal barrier during early development remains limited. This study aims to investigate the relationship between intestinal microbiota and rectal barrier function in young rats. Methods We evaluated the rectal barrier structure and function in rats at 2-, 4-, and 10-week-old. Methodology included histological analysis, Muc2 expression quantification, immunofluorescence localization of tight junction proteins (ZO-1, Occludin, Claudins), blood glucose monitoring after rectal insulin administration, and 16S rDNA sequencing of rectal microbiota. Spearman correlation analysis was used to explore mechanisms linking age-dependent changes in rectal permeability to microbiota dynamics. Results Physiological rectal permeability was significantly higher in 2-week-old rats compared to 4- and 10-week-old rats (p < 0.01), although systemic biomarkers (LPS, D-LA, and LBP) showed no significant differences. The rectal microbiota exhibited marked age-dependent shifts in composition, α/β-diversity, and metabolic pathways, with increased abundance of beneficial taxa (e.g., Muribaculaceae, Akkermansia) in older rats. Correlation analysis revealed strong associations between reduced permeability, elevated Occludin expression, and microbiota maturation (R = 0.65, p < 0.001). Conclusion This study demonstrates that age-dependent maturation of the rectal barrier is closely linked to microbiota composition and tight junction protein expression, providing insights into developmental mechanisms and potential strategies for pediatric rectal drug delivery.
Collapse
Affiliation(s)
- Yunfeng Luo
- Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Liangming Luo
- Yudu County Hospital of Traditional Chinese Medicine, Ganzhou, China
| | - Mengle Xia
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qian Liu
- Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Guosong Zhang
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
3
|
Abranches FF, Genova JL, Hu P, Santana JP, Rocha GC. Effects of monoglyceride blend on performance and intestinal health status of piglets fed diets without growth promoters. Sci Rep 2025; 15:10285. [PMID: 40133511 PMCID: PMC11937294 DOI: 10.1038/s41598-025-88587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/29/2025] [Indexed: 03/27/2025] Open
Abstract
The study aimed to evaluate the effects of supplementing monoglyceride blend in diets without growth promoters on performance, diarrhea occurrence, blood profile, intestinal morphology and pH, mRNA expression of nutrient transporters, inflammatory markers, antioxidant enzymes, and junction proteins in weaned piglets. Forty piglets were randomly allocated to five groups fed the following diets: control (C), or supplemented with 0.75 g/kg of a blend of fatty acids in powder form (PA), or with 3.00 g/kg of a blend of fatty acids in powder form (HPA), or with 0.50 g/kg of a blend of fatty acids in liquid form (LA), or with 2.00 g/kg of a blend of fatty acids in liquid form (HLA). The LA and PA diets reduced (P < 0.05) the occurrence of diarrhea. The pH of intestinal contents was reduced (P < 0.05) in piglets fed monoglycerides blend. Fecal E. coli count tended (0.05 ≤ P < 0.1) to be reduced in piglets receiving all supplemented diets. LA diet increased (P < 0.05) villus height in the duodenum, while others tended to increase it (0.05 ≤ P < 0.1). In the jejunum, all supplemented diets increased (P < 0.05) the goblet cell proportion. In the ileum, PA diet reduced (P < 0.05) crypt depth and increased (P < 0.05) villus: crypt ratio, and PA, HPA, and HLA diets increased (P < 0.05) goblet cell proportion. In the ileum, HPA and LA diets tended to reduce (0.05 ≤ P < 0.1) crypt depth and Peyer's patch. In the jejunum, LA and HLA diets increased (P < 0.05) the expression of Occludin and HPA increased the expression of Interleukin-10. In conclusion, the supplementation with a monoglyceride blend improves intestinal health and morphology, and local immune response in piglets fed diets without growth promoters.
Collapse
Affiliation(s)
- F F Abranches
- Departament of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
- Muscle Biology and Nutrigenomics Laboratory, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
| | - J L Genova
- Departament of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
- Muscle Biology and Nutrigenomics Laboratory, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
| | - P Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - J P Santana
- Departament of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
- Muscle Biology and Nutrigenomics Laboratory, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
| | - G C Rocha
- Departament of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil.
- Muscle Biology and Nutrigenomics Laboratory, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil.
| |
Collapse
|
4
|
Mallardi D, Maqoud F, Guido D, Aloisio M, Linsalata M, Russo F. Mapping Research Trends on Intestinal Permeability in Irritable Bowel Syndrome with a Focus on Nutrition: A Bibliometric Analysis. Nutrients 2025; 17:1064. [PMID: 40292517 PMCID: PMC11945834 DOI: 10.3390/nu17061064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 04/30/2025] Open
Abstract
Irritable Bowel Syndrome (IBS) is a complex gastrointestinal disorder characterized by chronic abdominal pain and altered bowel habits, often linked to disruptions in intestinal barrier function. Increased intestinal permeability plays a key role in IBS pathogenesis, affecting immune responses, gut microbiota, and inflammation. This study conducts a bibliometric analysis to explore global research trends on intestinal permeability in IBS, focusing on key contributors, collaboration networks, and thematic shifts, particularly the interplay between the intestinal barrier, gut microbiota, and dietary components. A total of 411 articles were retrieved from Scopus, with 232 studies analyzed using Bibliometrix in R. To optimize screening, ASReview, a machine learning tool, was employed, utilizing the Naïve Bayes algorithm combined with Term Frequency-Inverse Document Frequency (TF-IDF) for adaptive ranking of articles by relevance. This approach significantly improved screening step efficacy. The analysis highlights growing research interest, with China and the USA as leading contributors. Key themes include the role of gut microbiota in modulating permeability, the impact of dietary components (fiber, probiotics, bioactive compounds) on tight junction integrity, and the exploration of therapeutic agents. Emerging studies suggest integrating gut barrier modulation with nutritional and microbiome-targeted strategies for IBS management. This study provides a comprehensive overview of research on intestinal permeability in IBS, mapping its evolution and identifying major trends. By highlighting key contributors and thematic areas, it offers insights to guide future investigations into the interplay between gut permeability, diet, and microbiota, advancing understanding of IBS pathophysiology and management.
Collapse
Affiliation(s)
- Domenica Mallardi
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (D.M.); (F.M.); (M.A.); (M.L.)
| | - Fatima Maqoud
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (D.M.); (F.M.); (M.A.); (M.L.)
| | - Davide Guido
- Data Science Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy;
| | - Michelangelo Aloisio
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (D.M.); (F.M.); (M.A.); (M.L.)
| | - Michele Linsalata
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (D.M.); (F.M.); (M.A.); (M.L.)
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (D.M.); (F.M.); (M.A.); (M.L.)
| |
Collapse
|
5
|
Firoozi D, Masoumi SJ, Mohammad-Kazem Hosseini Asl S, Fararouei M, Jamshidi S. Effects of Short Chain Fatty Acid-Butyrate Supplementation on the Disease Severity, Inflammation, and Psychological Factors in Patients With Active Ulcerative Colitis: A Double-Blind Randomized Controlled Trial. J Nutr Metab 2025; 2025:3165876. [PMID: 40123849 PMCID: PMC11930386 DOI: 10.1155/jnme/3165876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 02/13/2025] [Indexed: 03/25/2025] Open
Abstract
Background: Depression and anxiety are common in UC patients due to gut microbiota dysbiosis and increased proinflammatory markers. Butyrate, a short-chain fatty acid, participates in the regulation of gut microbiota and inflammation and has neuroprotective effects in neurodegenerative disease. Therefore, we assessed the effects of sodium butyrate supplementation on the disease severity, inflammation, and psychological factors in active UC patients. Methods: This study was a randomized, parallel, double-blind controlled trial. Participants in the intervention (n = 18) and control (n = 18) groups received 600 mg/kg of sodium butyrate or rice starch as a placebo with their main meal, respectively, for 12 weeks. The partial Mayo score was used to evaluate disease severity, while the Westergren method was employed to assess the erythrocyte sedimentation rate (ESR). NLR and PLR were determined using an automated analyzer (XS-500i, Sysmex). Moreover, the psychological factors were assessed by the hospital anxiety depression scale (HADS) and the general health questionnaire (GHQ). Results: In comparison with placebo, sodium-butyrate supplementation significantly decreased the ESR level (-6.66 ± 1.56 vs. 3.00 ± 2.11, p=0.01), NLR (-0.24 ± 0.1 vs. 0.33 ± 0.23, p=0.02), Mayo score (-2.33 ± 0.41 vs. 0.22 ± 0.40, p < 0.001), HADS anxiety score (-2.77 ± 0.64 vs. 0.94 ± 0.63, p=0.001), HADS depression score (-2.38 ± 0.47 vs. 0.61 ± 0.33, p < 0.001), and GHQ total score (-12.11 ± 1.48 vs. 3.55 ± 1.39, p < 0.001). Conclusion: Butyrate could serve as an effective adjuvant treatment for reducing disease severity and alleviating psychological symptoms. This trial was registered on the Research Ethics Committee of Shiraz University of Medical Sciences, with the reference number IR.SUMS.SCHEANUT.REC.1400.037. Trial Registration: Iranian Registry of Clinical Trials: IRCT20211214053401N1.
Collapse
Affiliation(s)
- Donya Firoozi
- Student Research Committee, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Shiraz, Iran
| | - Seyed Jalil Masoumi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Fararouei
- Department of Epidemiology, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Jamshidi
- Center for Cohort Study of Shiraz University of Medical Sciences Employees' Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Xu J, Qiao H, Gan L, Wang P, Zhao Y, Lei Z, Chou Y, Hou C, Li M, Wang J. Impacts of zinc caproate supplementation on growth performance, intestinal health, anti-inflammatory activity, and Zn homeostasis in weaned piglets challenged with Escherichia coli K88. J Anim Sci Biotechnol 2025; 16:44. [PMID: 40087676 PMCID: PMC11908000 DOI: 10.1186/s40104-025-01172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/05/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (ETEC) is one of the primary causes of diarrhea in piglets, creating substantial economic losses in the swine farming industry worldwide. This study aimed to investigate the impacts of zinc caproate (ZnCA, C12H22O4Zn) on the intestinal health, growth performance, inflammatory status, and Zn homeostasis of weaned piglets challenged with ETEC K88. In total, 48 weaned piglets (Duroc × Landrace × Yorkshire, 7.78 ± 0.19 kg, 28 d) were selected for a 21-d experiment. Each experimental treatment consisted of 6 replicate pens with 2 piglets each. The treatment conditions were as follows: i) a basal diet (CON), ii) a basal diet + ETEC K88 (NC), iii) a basal diet + 2,500 mg/kg of Zn (provided as zinc oxide, ZnO) + ETEC K88 (PC), and iv) a basal diet + 1,600 mg/kg of Zn (provided as ZnCA) + ETEC K88 (ZnCA). RESULTS The addition of 1,600 mg/kg ZnCA to the diet of post-weaning piglets effectively enhanced growth performance and nutrient digestibility and reduced the incidence of diarrhea and inflammatory reactions caused by ETEC K88 infection. These therapeutic effects were comparable to those of pharmacological doses of ZnO. In terms of improving intestinal health and Zn homeostasis in post-weaning piglets challenged with ETEC K88, the effectiveness of 1,600 mg/kg ZnCA surpassed that of pharmacological doses of ZnO. CONCLUSIONS Overall, under the experimental conditions of this study, ZnCA exhibited the potential to reduce the pharmacological dosage of ZnO while improving intestinal health and Zn homeostasis in weaned piglets.
Collapse
Affiliation(s)
- Jilong Xu
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Hanzhen Qiao
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Liping Gan
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Peng Wang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Yifeng Zhao
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Zetian Lei
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Yixuan Chou
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Chenrui Hou
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Mengqi Li
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Jinrong Wang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China.
| |
Collapse
|
7
|
He J, Huang C, Kong L, Huang Y, Ou Z, Yang M, Wu J, Yang Y, Yao H, Yi J, Liu S. Betulinic acid mitigates lipopolysaccharide-induced intestinal injury of weaned piglets through modulation of the mitochondrial quality control. Int Immunopharmacol 2025; 148:114097. [PMID: 39827669 DOI: 10.1016/j.intimp.2025.114097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Intestinal injury of weaned piglets often leads to reduced immunity, diarrhea and growth retardation, resulting in significant economic losses to agriculture. Betulinic acid (BA) is a natural plant-derived active ingredient with multiple pharmacological activities including immune modulation and anti-inflammatory. This study was aimed to investigate the potential mechanism that BA as a feed additive mitigated lipopolysaccharide (LPS)-induced intestinal injury in piglets. The results indicated that BA pretreatment improved the morphology and structure of the intestine, enhanced intestinal mucosal barrier function, and activated the PPAR signaling pathway to reduce the mRNA levels of intestinal CD40 and CXCL13. Meanwhile, BA pretreatment improved the LPS-induced disruption of intestinal microbiota by increasing the abundance of the Firmicutes and decreasing the abundance of the Bacteroidota and Proteobacteria. Furthermore, BA pretreatment activated the AMPK/SIRT1/PGC-1α signaling pathway to enhance mitochondrial biogenesis, restored a balance to mitochondrial dynamics, and modulated the PINK1/Parkin, BNIP3 and FUNDC1 signaling pathways to activate mitophagy, thereby alleviating LPS-induced intestinal injury. Overall, the present study elucidated that dietary supplementation with BA could alleviate LPS-induced intestinal injury in weaned piglets by regulating mitochondrial quality control, which provided a novel approach for alleviating intestinal stress in weaned piglets.
Collapse
Affiliation(s)
- Jiayu He
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chunlin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhaoping Ou
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Mingqi Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jiao Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yu Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Huan Yao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Shuiping Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
8
|
da Silva Bomfim N, de Souza Ferreira R, Silva E Oliveira J, de Cássia Gonçalves Alfenas R. Green banana biomass anti-obesogenic, anti-hyperlipidemic, antidiabetic, and intestinal function potential effects: a systematic review. Nutr Rev 2025; 83:e290-e303. [PMID: 38630587 DOI: 10.1093/nutrit/nuae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
CONTEXT Apparently, the consumption of resistant-starch food sources, such as green banana biomass, stimulates the proliferation of short-chain fatty acid intestinal bacteria producers, which can contribute to intestinal health and reduce the risk of chronic diseases. However, the available scientific evidence is scarce and no study has systematically evaluated such evidence. OBJECTIVE The aim of this study was to analyze the potential effects of green banana biomass on anthropometry, body composition, and biochemical and intestinal variables in humans and animals. DATA SOURCES The Cochrane Library, Embase, Medline/PubMed, Scopus, and Web of Science electronic databases were searched in January 2024 for eligible articles. Studies that tested the effects of cooked peeled or unpeeled green banana on anthropometric, biochemical, and/or intestinal variables were included. DATA EXTRACTION This systematic review was conducted according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The classification and assessment of the quality of studies were based on the relevant criteria related to the design of these studies and the quality criteria checklist of the Academy of Nutrition and Dietetics manual. Twelve studies published between 2001 and 2021 were included in the review. DATA ANALYSIS The results of human studies indicate that the ingestion of green banana biomass controlled intestinal dysfunction (50-300 g/day for 5-14 days or 30 g/day for 8 wk) in children, and showed potential anti-obesogenic, anti-hyperlipidemic, and antidiabetic (40 g/day for 24 wk) effects in adults. In rats, biomass consumption led to potential anti-obesogenic (25 g/day for 8 wk), anti-hyperlipidemic, and antidiabetic (∼8-30 g/day for 12 wk) effects. CONCLUSION Consumption of green banana biomass seems to exert beneficial effects on intestinal function and potential effects on obesity, dyslipidemia, and diabetes. These effects may be related to increased fecal short-chain fatty acid concentrations as a result of type 3 resistant starch present in biomass. SYSTEMATIC REVIEW REGISTRATION Open Science Framework (OSF) (https://doi.org/10.17605/OSF.IO/TKCWV).
Collapse
Affiliation(s)
- Natália da Silva Bomfim
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Renata de Souza Ferreira
- Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais-Campus Barbacena, Barbacena, Minas Gerais, Brazil
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Julia Silva E Oliveira
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | |
Collapse
|
9
|
Jin R, Pei H, Yue F, Zhang X, Zhang Z, Xu Y, Li J. Network Pharmacology Combined With Metabolomics Reveals the Mechanism of Yangxuerongjin Pill Against Type 2 Diabetic Peripheral Neuropathy in Rats. Drug Des Devel Ther 2025; 19:325-347. [PMID: 39834645 PMCID: PMC11745066 DOI: 10.2147/dddt.s473146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose This study aims to explore the mechanism of Yangxuerongjin pill (YXRJP) in the treatment of diabetic peripheral neuropathy (DPN) by network pharmacology and metabolomics technology combined with animal experiments, and to provide scientific basis for the treatment of DPN. Methods In this study, network pharmacology analysis was applied to identify the active compounds, core targets and signal pathways, which might be responsible for the effect of DPN. The DPN model was established by high-fat diet combined with streptozotocin (STZ) injection, and the rats were given administration for 12 weeks. The body weight, thermal withdrawal latency (TWL), sciatic motor nerve conduction velocity (MNCV), biochemical indexes, pathological sections of sciatic nerve, oxidative stress factors and the expression levels of neuroprotection-related proteins were detected. Metabolomics technology was used to analyze the potential biomarkers and potential metabolic pathways in DPN treated with YXRJP. Results The results of network pharmacology showed that YXRJP could treat DPN through baicalin, β-sitosterol, 7-methoxy-2-methylisoflavone, aloe-emodin and luteolin on insulin resistance, Toll-like receptor (TLR), tumor necrosis factor (TNF) and other signaling pathways. YXRJP can prolong the TWL, increase the MNCV of the sciatic nerve, alleviate the injury of the sciatic nerve, reduce the levels of triglyceride (TG), improve the expression of Insulin-like growth factor 1 (IGF-1) protein in the sciatic nerve, and reduce the expression of protein kinase B (AKT) protein. Metabolomics results showed that the potential metabolic pathways of YXRJP in the treatment of DPN mainly involved amino acid metabolism such as arginine, alanine, aspartic acid, lipid metabolism and nucleotide metabolism. Conclusion YXRJP can effectively improve the symptoms of DPN rats and reduce nerve damage. The effects are mainly related to reducing oxidative stress injury, promoting the expression of neuroprotection-related proteins, reducing the expression of inflammation-related proteins, and affecting amino acid metabolism, lipid metabolism, and nucleotide metabolism pathways. Our findings revealed that YXRJP has a good therapeutic potential for DPN, which provides a reference for further studies on YXRJP.
Collapse
Affiliation(s)
- Ran Jin
- Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People’s Republic of China
| | - Hailuan Pei
- Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People’s Republic of China
| | - Feng Yue
- Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People’s Republic of China
| | - Xiaodi Zhang
- Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People’s Republic of China
| | - Zhicong Zhang
- Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People’s Republic of China
| | - Yi Xu
- Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People’s Republic of China
| | - Jinsheng Li
- Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People’s Republic of China
| |
Collapse
|
10
|
Waghmare S, Gupta M, Bahiram KB, Korde JP, Bhat R, Datar Y, Rajora P, Kadam MM, Kaore M, Kurkure NV. Effects of organic acid blends on the growth performance, intestinal morphology, microbiota, and serum lipid parameters of broiler chickens. Poult Sci 2025; 104:104546. [PMID: 39566172 PMCID: PMC11617460 DOI: 10.1016/j.psj.2024.104546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/01/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
Organic acids have emerged as promising alternatives to antibiotic growth promoters in poultry production. The present study was conducted to determine the effects of organic acids blends v.i.z. Acidapure liquid and Acidapure powder supplementation on the growth performance, gut health, gut microbiota, and serum lipid profile of broiler chickens. A total of 120-day-old chicks with similar live body weights were randomly divided into four groups. Each group was further divided into 3 replicates, and each further divided into three replicates of ten bird. The birds in Group 1 (T1) were fed a basal diet supplemented with plain drinking water, those in Group 2 (T2) received basal feed supplemented with Acidapure powder (1 kg/MT feed) and plain drinking water, those in Group 3 (T3) received basal feed supplemented with Acidapure liquid in the drinking water (0.2 ml/l water), and those in Group 4 (T4) received basal feed supplemented with Acidapure powder (1 kg/MT feed) and Acidapure liquid in the drinking water (0.2 ml/l water). Acidapure powder and Acidapure liquid were added to the feed and water of the broilers from 0-42 days of life. The results showed that compared with the control (T1), supplementation with Acidapure powder and liquid in broiler chickens for 42 days increased (P < 0.05) ABW and ADG and reduced FCR in the treatment groups (T2, T3 and T4). At d 21 and 42, all forms of Acidapure supplement increased the VH and CD in the jejunum and ileum and reduced the pH of the ileum. Compared with the control (T1), the combination of Acidapure powder and liquid (T4) increased the gene expression of the tight junction proteins Claudin-1 and Zona Occludense 1 (ZO-1). Compared with the control, Acidapure supplementation reduced the cecal coliform count and total viable count (TVC) and decreased the serum cholesterol and triglyceride levels. In conclusion, Acidapure, as a blend of organic acids, effectively enhances the growth performance and gut health of broilers, making it a viable and safe alternative to traditional antimicrobial growth promoters.
Collapse
Affiliation(s)
- Swapnali Waghmare
- Department of Veterinary Physiology, Nagpur Veterinary College, Maharashtra Animal & Fishery Sciences University, Nagpur, 440006, India
| | - Mahesh Gupta
- Department of Veterinary Physiology, Nagpur Veterinary College, Maharashtra Animal & Fishery Sciences University, Nagpur, 440006, India
| | - K B Bahiram
- Department of Veterinary Physiology, Nagpur Veterinary College, Maharashtra Animal & Fishery Sciences University, Nagpur, 440006, India
| | - J P Korde
- Department of Veterinary Physiology, Nagpur Veterinary College, Maharashtra Animal & Fishery Sciences University, Nagpur, 440006, India
| | - Rekha Bhat
- Mankind Pharma Limited, 208, Okhla Phase 3 Rd, Okhla Phase III, Okhla Industrial Estate, New Delhi, Delhi 110020 India
| | - Yashwant Datar
- Mankind Pharma Limited, 208, Okhla Phase 3 Rd, Okhla Phase III, Okhla Industrial Estate, New Delhi, Delhi 110020 India
| | - Pushpendra Rajora
- Mankind Pharma Limited, 208, Okhla Phase 3 Rd, Okhla Phase III, Okhla Industrial Estate, New Delhi, Delhi 110020 India
| | - M M Kadam
- Department of Poultry Science, Nagpur Veterinary College, Maharashtra Animal & Fishery Sciences University, Nagpur, 440006, India
| | - Megha Kaore
- Department of Veterinary Pathology, Maharashtra Animal & Fishery Sciences University, Nagpur, 440006, India
| | - N V Kurkure
- Department of Veterinary Pathology, Maharashtra Animal & Fishery Sciences University, Nagpur, 440006, India.
| |
Collapse
|
11
|
Saban Güler M, Arslan S, Ağagündüz D, Cerqua I, Pagano E, Berni Canani R, Capasso R. Butyrate: A potential mediator of obesity and microbiome via different mechanisms of actions. Food Res Int 2025; 199:115420. [PMID: 39658184 DOI: 10.1016/j.foodres.2024.115420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024]
Abstract
Butyrate, a short-chain fatty acid, is a crucial product of gut microbial fermentation with significant implications for various metabolic and physiological processes. Dietary sources of butyrate are limited, primarily derived from the fermentation of dietary fibers by butyrate-producing gut bacteria. Butyrate exerts its effects primarily as a histone deacetylase (HDAC) inhibitor and through signaling pathways involving G protein-coupled receptors (GPCRs). Its diverse benefits include promoting gut health, enhancing energy metabolism, and potentially alleviating complications associated with obesity. However, the exact role of butyrate in obesity is still under investigation, with a limited number of human trials necessitating further research to determine its efficacy and safety profile. Moreover, butyrate impact on the gut-brain axis and its modulation of microbiome effect on behavior highlight its broader importance in regulating host physiology. A thorough understanding of the metabolic pathways and mechanisms of butyrate is essential for developing targeted interventions for metabolic disorders. Continued research is crucial to fully realize its therapeutic potential and optimize its clinical applications in human health. In summary, this review illuminates the multifaceted role of butyrate as a potential mediator of obesity and related metabolic changes.
Collapse
Affiliation(s)
- Meryem Saban Güler
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Turkey
| | - Sabriye Arslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Turkey
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Turkey.
| | - Ida Cerqua
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science and ImmunoNutritionLab at CEINGE Biotechnologies Research Center and Task Force for Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy.
| |
Collapse
|
12
|
Dong S, Zhang N, Wang J, Cao Y, Johnston LJ, Ma Y. Effects of Medium- and Short-Chain Fatty Acids on Growth Performance, Nutrient Digestibility, Gut Microbiota and Immune Function in Weaned Piglets. Animals (Basel) 2024; 15:37. [PMID: 39794980 PMCID: PMC11718992 DOI: 10.3390/ani15010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
The aim of this study was to investigate the combination effects of α-glycerol monolaurate (GML) and glyceryl tributyrate (TB) on growth performance, nutrient digestibility, gut microbiota, and immune function in weaned piglets. A total of 120 weaned piglets with an average body weight (BW) of 6.88 kg were randomly allocated to one of the three dietary treatments: (1) CON: a basal diet; (2) 0.1%: a basal diet with 0.1% MSCFA (GML/TB = 1:1); (3) 0.2%: a basal diet with 0.2% MSCFA (GML/TB = 1:1). The experiment lasted 28 days. There were no differences on average daily growth (ADG), average daily feed intake (ADFI), and feed conversion ratio (FCR). Supplementation with 0.1% MSCFA increased apparent total tract digestibility (ATTD) of crude protein (CP) and gross energy (GE, p < 0.05) on d 14 and increased GE (p < 0.05) on d 28 compared with the CON group. The ATTD of dry matter (DM), organic matter (OM) and crude protein (CP) of piglets supplemented with 0.1% MSCFA was higher (p < 0.05). Compared with the CON group, supplementation with 0.1% MSCFA increased immunoglobulin M (IgM) concentration, decreased interleukin-6 (IL-6) content (p < 0.05) on d 14 and decreased malonaldehyde (MDA), interleukin-1beta (IL-1β), IL-6 concentrations (p < 0.05) on d 28. Supplementation with 0.1% MSCFA increased total antioxidant capacity (T-AOC) concentration (p < 0.05), decreased GSH-Px, MDA content (p < 0.05) in jejunum compared with the CON group. Moreover, supplementation with MSCFA increased the activity of duodenal lipase (p < 0.05) and the abundance of firmicutes and decreased the abundance of proteobacteria compared with the CON group. Overall, supplementation with MSCFA can improve nutrient digestibility, enhance immunity and antioxidant capacity, and improve the intestinal health of piglets. The combined use of MSCFA is a nutrition regulation strategy worthy of further exploration in modern animal husbandry.
Collapse
Affiliation(s)
- Shuang Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.D.); (N.Z.)
| | - Nan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.D.); (N.Z.)
| | - Jihua Wang
- Galido Biotechnology Co., Ltd., Wuhan 430074, China; (J.W.); (Y.C.)
| | - Yu Cao
- Galido Biotechnology Co., Ltd., Wuhan 430074, China; (J.W.); (Y.C.)
| | - Lee J. Johnston
- Department of Animal Science, West Central Research and Outreach Center, University of Minnesota, Morris, MN 56267, USA;
| | - Yongxi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.D.); (N.Z.)
| |
Collapse
|
13
|
Hu J, Bai M, Xing Y, Liu J, Xu K, Xiong X, Liu H, Yin Y. Artemisia annua Residue Regulates Immunity, Antioxidant Ability, Intestinal Barrier Function, and Microbial Structure in Weaned Piglets. Animals (Basel) 2024; 14:3569. [PMID: 39765473 PMCID: PMC11672813 DOI: 10.3390/ani14243569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Artemisia annua residue (AR), as the byproduct of industrial extraction of artemisinin, contains rich nutrients and active ingredients. This study was conducted to determine the effects of AR as an unconventional feed material on growth performance, immunity, and intestinal health in weaned piglets. Thirty-two piglets weaned at 21 days (7.53 ± 0.31 kg average BW) were fed with a corn-soybean basal diet (BD) and a basal diet with 1% (LAR), 2% (MAR), and 4% (HAR) AR diets for 28 days. AR diets increased the serum IgA and complement component 3 levels, superoxide dismutase activity, and villus height in the duodenum (p < 0.05). The MAR group increased the ADG, serum total protein, and mRNA expression levels of Claudin-1 in the duodenum and zonula occludens-1 (ZO-1) and the mucin 2 (MUC2) in the colon, as well as colonic Romboutsia and Anaerostipes abundances, and decreased the Proteobacteria abundance (p < 0.05). To sum up, dietary AR supplementation may enhance growth performance by improving serum immunoglobulin and antioxidant enzyme activity, intestinal morphology, tight junction protein expression, and gut microbiota of weaned piglets. Regression analysis showed that the optimal AR supplemental level for growth performance, immunity, antioxidant ability, and intestinal health of weaned piglets was 2.08% to 4.24%.
Collapse
Affiliation(s)
- Jinjie Hu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.H.); (Y.X.); (Y.Y.)
| | - Miaomiao Bai
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (K.X.); (X.X.)
| | - Yueyao Xing
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.H.); (Y.X.); (Y.Y.)
| | - Junhong Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China;
| | - Kang Xu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (K.X.); (X.X.)
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Xia Xiong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (K.X.); (X.X.)
| | - Hongnan Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (K.X.); (X.X.)
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.H.); (Y.X.); (Y.Y.)
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (K.X.); (X.X.)
| |
Collapse
|
14
|
He K, Cheng H, McClements DJ, Xu Z, Meng M, Zou Y, Chen G, Chen L. Utilization of diverse probiotics to create human health promoting fatty acids: A review. Food Chem 2024; 458:140180. [PMID: 38964111 DOI: 10.1016/j.foodchem.2024.140180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Many probiotics produce functional lipids with health-promoting properties, such as short-chain fatty acids, linoleic acid and omega-3 fatty acids. They have been shown to maintain gut health, strengthen the intestinal barrier, and have anti-inflammatory and antioxidant effects. In this article, we provide an up-to-date review of the various functional lipids produced by probiotics. These probiotics can be incorporated into foods, supplements, or pharmaceuticals to produce these functional lipids in the human colon, or they can be used in industrial biotechnology processes to generate functional lipids, which are then isolated and used as ingredients. We then highlight the different physiological functions for which they may be beneficial to human health, in addition to discussing some of the challenges of incorporating probiotics into commercial products and some potential solutions to address these challenges. Finally, we highlight the importance of testing the efficacy and safety of the new generation of probiotic-enhanced products, as well as the great potential for the marketization of related products.
Collapse
Affiliation(s)
- Kuang He
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Hao Cheng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | | | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Man Meng
- Licheng Detection & Certification Group Co., Ltd., Zhongshan 528400, China
| | - Yidong Zou
- Skystone Feed Co., Ltd., Wuxi 214258, China
| | | | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Lab of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
15
|
Galli GM, Forero Salamanca A, Haydon K, Levesque CL, Perez-Palencia JY. Effect of Dietary Xylanase Inclusion on Growth Performance, Nutrient Digestibility, and Digesta Viscosity of Weaned Pigs Fed Wheat-Soybean Meal-Based Diets. Animals (Basel) 2024; 14:3255. [PMID: 39595308 PMCID: PMC11591498 DOI: 10.3390/ani14223255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
(1) Background: This study aimed to evaluate the effects of dietary xylanase addition on growth performance, nutrient digestibility, volatile fatty acids, and digesta viscosity at different digestive sites in weaned pigs fed wheat-soybean meal-based diets with reduced metabolizable energy. (2) Methods: A total of 312 weaned pigs (5.1 ± 0.9 kg, 20 ± 2 days of age) were assigned to one of six dietary treatments. The experimental diets were formulated in a three-phase nursery feeding program: phase 1 (d0-d7), phase 2 (d8-d21), and phase 3 (d22-d42). The experimental diets consisted of a wheat-soybean meal-based diet formulated to meet pig requirements (positive control, PC); the PC diet with a reduction of 100 kcal of metabolizable energy (ME) (negative control, NC); and the NC diet with either 900, 1800, 3600, or 7200 units of xylanase. Feed disappearance and body weight were measured at d7, 14, 21, and 42 in the nursery phase. The pen fecal score was assessed daily from d0 to d14 and three times a week from d15 to d28. On d21-d24 of the experiment (12 pigs per day), one pig per pen was selected for sample collection: ileal, cecal, and mid-colon digesta for viscosity and ileal digesta, feces for nutrient digestibility, and feces and cecal digesta for the measurement of volatile fatty acid. (3) Results: The addition of xylanase to the NC diets did not improve pig growth performance (body weight, feed conversion ratio, and average daily gain; p > 0.10) during the entire nursery phase. In Week 2 and Week 3, pigs fed xylanase had a lower (χ2 < 0.05) incidence of fecal scores 3 and 4 (diarrhea) than the PC and NC diets. In addition, the apparent total tract digestibility of neutral detergent fiber and acid detergent fiber increased linearly (p < 0.1) in response to xylanase addition. Xylanase addition (900 to 7200 U) decreased digesta viscosity in the colon compared to the PC and NC diets. Furthermore, xylanase addition resulted in a lower (p < 0.05) concentration of acetic, propionic, butyric, valeric, and total volatile fatty acid in cecal samples compared to PC. The addition of xylanase resulted in greater acetic and valeric acid concentrations in cecal samples compared to the NC group (p < 0.10). (4) Conclusions: Xylanase addition can improve nutrient digestibility, particularly at the total tract level, and reduce viscosity in the hindgut, which could be related to decreasing the occurrence of looseness. However, its impact on growth performance was minimal in wheat-soybean meal-based diets with a reduction of 100 kcal of ME.
Collapse
Affiliation(s)
- Gabriela M. Galli
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (G.M.G.); (A.F.S.); (C.L.L.)
| | - Alejandra Forero Salamanca
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (G.M.G.); (A.F.S.); (C.L.L.)
| | - Keith Haydon
- CJ Bio America Inc., Downers Grove, IL 60515, USA;
| | - Crystal L. Levesque
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (G.M.G.); (A.F.S.); (C.L.L.)
| | - Jorge Y. Perez-Palencia
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (G.M.G.); (A.F.S.); (C.L.L.)
| |
Collapse
|
16
|
Liu H, Lu H, Wang Y, Yu C, He Z, Dong H. Unlocking the power of short-chain fatty acids in ameliorating intestinal mucosal immunity: a new porcine nutritional approach. Front Cell Infect Microbiol 2024; 14:1449030. [PMID: 39286812 PMCID: PMC11402818 DOI: 10.3389/fcimb.2024.1449030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Short-chain fatty acids (SCFAs), a subset of organic fatty acids with carbon chains ranging from one to six atoms in length, encompass acetate, propionate, and butyrate. These compounds are the endproducts of dietary fiber fermentation, primarily catalyzed by the glycolysis and pentose phosphate pathways within the gut microbiota. SCFAs act as pivotal energy substrates and signaling molecules in the realm of animal nutrition, exerting a profound influence on the intestinal, immune system, and intestinal barrier functions. Specifically, they contibute to 60-70% of the total energy requirements in ruminants and 10-25% in monogastric animals. SCFAs have demonstrated the capability to effectively modulate intestinal pH, optimize the absorption of mineral elements, and impede pathogen invasion. Moreover, they enhance the expression of proteins associated with intestinal tight junctions and stimulate mucus production, thereby refining intestinal tissue morphology and preserving the integrity of the intestinal structure. Notably, SCFAs also exert anti-inflammatory properties, mitigating inflammation within the intestinal epithelium and strengthening the intestinal barrier's defensive capabilities. The present review endeavors to synthesize recent findings regarding the role of SCFAs as crucial signaling intermediaries between the metabolic activities of gut microbiota and the status of porcine cells. It also provides a comprehensive overview of the current literature on SCFAs' impact on immune responses within the porcine intestinal mucosa.
Collapse
Affiliation(s)
- Haoyang Liu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Engineering Research Center of Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Hongde Lu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Engineering Research Center of Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Yuxuan Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Engineering Research Center of Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Chenyun Yu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Engineering Research Center of Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Zhiyuan He
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Engineering Research Center of Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
17
|
Petakh P, Duve K, Oksenych V, Behzadi P, Kamyshnyi O. Molecular mechanisms and therapeutic possibilities of short-chain fatty acids in posttraumatic stress disorder patients: a mini-review. Front Neurosci 2024; 18:1394953. [PMID: 38887367 PMCID: PMC11182003 DOI: 10.3389/fnins.2024.1394953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
This mini-review explores the role of short-chain fatty acids (SCFAs) in posttraumatic stress disorder (PTSD). Highlighting the microbiota-gut-brain axis, this study investigated the bidirectional communication between the gut microbiome and mental health. SCFAs, byproducts of gut microbial fermentation, have been examined for their potential impact on PTSD, with a focus on molecular mechanisms and therapeutic interventions. This review discusses changes in SCFA levels and bacterial profiles in individuals with PTSD, emphasizing the need for further research. Promising outcomes from clinical trials using probiotics and fermented formulations suggest potential avenues for PTSD management. Future directions involve establishing comprehensive human cohorts, integrating multiomics data, and employing advanced computational methods, with the goal of deepening our understanding of the role of SCFAs in PTSD and exploring microbiota-targeted interventions.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Khrystyna Duve
- Department of Neurology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|
18
|
Huang Y, Wang YF, Miao J, Zheng RF, Li JY. Short-chain fatty acids: Important components of the gut-brain axis against AD. Biomed Pharmacother 2024; 175:116601. [PMID: 38749177 DOI: 10.1016/j.biopha.2024.116601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/03/2024] Open
Abstract
Alzheimer's disease (AD) comprises a group of neurodegenerative disorders with some changes in the brain, which could lead to the deposition of certain proteins and result in the degeneration and death of brain cells. Patients with AD manifest primarily as cognitive decline, psychiatric symptoms, and behavioural disorders. Short-chain fatty acids (SCFAs) are a class of saturated fatty acids (SFAs) produced by gut microorganisms through the fermentation of dietary fibre ingested. SCFAs, as a significant mediator of signalling, can have diverse physiological and pathological roles in the brain through the gut-brain axis, and play a positive effect on AD via multiple pathways. Firstly, differences in SCFAs and microbial changes have been stated in AD cases of humans and mice in this paper. And then, mechanisms of three main SCFAs in treating with AD have been summarized, as well as differences of gut bacteria. Finally, functions of SCFAs played in regulating intestinal flora homeostasis, modulating the immune system, and the metabolic system, which were considered to be beneficial for the treatment of AD, have been elucidated, and the key roles of gut bacteria and SCFAs were pointed out. All in all, this paper provides an overview of SCFAs and gut bacteria in AD, and can help people to understand the importance of gut-brain axis in AD.
Collapse
Affiliation(s)
- Yan Huang
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Yi Feng Wang
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Jing Miao
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830004, China.
| | - Rui Fang Zheng
- Xinjiang Key Laboratory of Uygur Medical Research, Xinjiang Institute of Materia Medica, Urumqi 830004, China.
| | - Jin Yao Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830004, China.
| |
Collapse
|
19
|
Han X, Hu X, Jin W, Liu G. Dietary nutrition, intestinal microbiota dysbiosis and post-weaning diarrhea in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:188-207. [PMID: 38800735 PMCID: PMC11126776 DOI: 10.1016/j.aninu.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 05/29/2024]
Abstract
Weaning is a critical transitional point in the life cycle of piglets. Early weaning can lead to post-weaning syndrome, destroy the intestinal barrier function and microbiota homeostasis, cause diarrhea and threaten the health of piglets. The nutritional components of milk and solid foods consumed by newborn animals can affect the diversity and structure of their intestinal microbiota, and regulate post-weaning diarrhea in piglets. Therefore, this paper reviews the effects and mechanisms of different nutrients, including protein, dietary fiber, dietary fatty acids and dietary electrolyte balance, on diarrhea and health of piglets by regulating intestinal function. Protein is an essential nutrient for the growth of piglets; however, excessive intake will cause many harmful effects, such as allergic reactions, intestinal barrier dysfunction and pathogenic growth, eventually aggravating piglet diarrhea. Dietary fiber is a nutrient that alleviates post-weaning diarrhea in piglets, which is related to its promotion of intestinal epithelial integrity, microbial homeostasis and the production of short-chain fatty acids. In addition, dietary fatty acids and dietary electrolyte balance can also facilitate the growth, function and health of piglets by regulating intestinal epithelial function, immune system and microbiota. Thus, a targeted control of dietary components to promote the establishment of a healthy bacterial community is a significant method for preventing nutritional diarrhea in weaned piglets.
Collapse
Affiliation(s)
- Xuebing Han
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| | - Xiangdong Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wei Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| |
Collapse
|
20
|
Correia AM, Genova JL, Kim SW, Abranches FF, Rocha GC. Autolyzed yeast and sodium butyrate supplemented alone to diets promoted improvements in performance, intestinal health and nutrient transporter in weaned piglets. Sci Rep 2024; 14:11885. [PMID: 38789563 PMCID: PMC11126410 DOI: 10.1038/s41598-024-62551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigated the effects of supplemental nucleotides, autolyzed yeast (Saccharomyces cerevisiae), and sodium butyrate in diets for nursery pigs on growth performance, diarrhea incidence, blood profile, intestinal morphology, mRNA expression of nutrient transporters, inflammatory markers, antioxidant profile, and tight junction proteins in the small intestine. One hundred eighty 21-day-old pigs (5.17 ± 0.57 kg) were assigned in a randomized block design to 1 of 4 dietary treatments: (1) CON: control, basal diet, (2) NUC: CON + nucleotides, (3) YSC: CON + lysed yeast S. cerevisiae, (4) ASB: CON + acidifier sodium butyrate. Pigs were fed for 24 days, phase 1 (21-32 days) and 2 (32-45 days). During phase 1, YSC and ASB improved average daily gain (ADG) and feed conversion (FC) compared with CON. At the overall period, ASB improved ADG and YSC improved FC compared with CON. The NUC diet did not affect growth performance. The ASB increased ileal villus height compared to CON. The YSC and ASB reduced the number of Peyer's patches in the ileum compared with CON. The YSC increased mRNA expression of nutrient transporters (SMCT2, MCT1, and PepT1), tight junction proteins (OCL and ZO-1), antioxidants (GPX), and IL1-β in the jejunum compared with CON. The ASB increased mRNA expression of nutrient transporters (SGLT1 and MCT1), tight junction proteins (OCL and ZO-1), and antioxidants (GPX and SOD) compared with CON. In conclusion, autolyzed yeast and sodium butyrate promoted growth performance by improving the integrity of the intestinal barrier, the mRNA expression of nutrient transporters, and antioxidant enzymes in the jejunum of nursery pigs whereas supplementation of nucleotides did not show such effects.
Collapse
Affiliation(s)
- Amanda Medeiros Correia
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Jansller Luiz Genova
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Fernanda Fialho Abranches
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Gabriel Cipriano Rocha
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
21
|
Zheng J, Li S, He J, Liu H, Huang Y, Jiang X, Zhao X, Li J, Feng B, Che L, Fang Z, Xu S, Lin Y, Hua L, Zhuo Y, Wu D. A Gestational Pectin Diet Could Improve the Health of Multiparous Sows by Modulating the Gut Microbiota and Cytokine Level during Late Pregnancy. Animals (Basel) 2024; 14:1559. [PMID: 38891606 PMCID: PMC11171106 DOI: 10.3390/ani14111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
This study aimed to investigate the effects of the dietary fiber pectin on the gut microbiota and health of parturient sows. A total of 30 parity 5-7, multiparous gestation sows (Large White × Landrace) were randomly assigned to two treatment groups after mating: Con (control, basic diet) and Pec (pectin, 3%). The sows received the two diets during gestation, and all sows were fed the same standard basic diet during lactation. The results of β-diversity showed that the composition of the gut microbiota was different in the Con and Pec groups. Compared with the sows in the Con group, the Pec sows showed a higher abundance of the gut bacteria Clostridium and Romboutsia and a lower abundance of harmful bacteria (Micrococcaceae, Coriobacteriaceae, Dorea, Actinomyces). On the other hand, the SCFA plasma concentration was increased in the Pec group, while pro-inflammatory cytokine (IL-6, IL-1β, and TNF-α) concentrations were decreased. In conclusion, the soluble dietary fiber pectin could improve the reproductive performance and health of sows by increasing the abundance of some commensal bacteria enhancing the metabolite SCFA levels and reducing the pro-inflammatory cytokine plasma levels.
Collapse
Affiliation(s)
- Jie Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Shuang Li
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Jiaqi He
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Hao Liu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yingyan Huang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Xilun Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Lun Hua
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| |
Collapse
|
22
|
Hu X, Yuan X, Zhang G, Song H, Ji P, Guo Y, Liu Z, Tian Y, Shen R, Wang D. The intestinal epithelial-macrophage-crypt stem cell axis plays a crucial role in regulating and maintaining intestinal homeostasis. Life Sci 2024; 344:122452. [PMID: 38462226 DOI: 10.1016/j.lfs.2024.122452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 03/12/2024]
Abstract
The intestinal tract plays a vital role in both digestion and immunity, making its equilibrium crucial for overall health. This equilibrium relies on the dynamic interplay among intestinal epithelial cells, macrophages, and crypt stem cells. Intestinal epithelial cells play a pivotal role in protecting and regulating the gut. They form vital barriers, modulate immune responses, and engage in pathogen defense and cytokine secretion. Moreover, they supervise the regulation of intestinal stem cells. Macrophages, serving as immune cells, actively influence the immune response through the phagocytosis of pathogens and the release of cytokines. They also contribute to regulating intestinal stem cells. Stem cells, known for their self-renewal and differentiation abilities, play a vital role in repairing damaged intestinal epithelium and maintaining homeostasis. Although research has primarily concentrated on the connections between epithelial and stem cells, interactions with macrophages have been less explored. This review aims to fill this gap by exploring the roles of the intestinal epithelial-macrophage-crypt stem cell axis in maintaining intestinal balance. It seeks to unravel the intricate dynamics and regulatory mechanisms among these essential players. A comprehensive understanding of these cell types' functions and interactions promises insights into intestinal homeostasis regulation. Moreover, it holds potential for innovative approaches to manage conditions like radiation-induced intestinal injury, inflammatory bowel disease, and related diseases.
Collapse
Affiliation(s)
- Xiaohui Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Xinyi Yuan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Guokun Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Haoyun Song
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Pengfei Ji
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Yanan Guo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Zihua Liu
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu Province 73000, China
| | - Yixiao Tian
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Lanzhou, Gansu Province 730000, China.
| |
Collapse
|
23
|
Huangfu W, Cao S, Li S, Zhang S, Liu M, Liu B, Zhu X, Cui Y, Wang Z, Zhao J, Shi Y. In vitro and in vivo fermentation models to study the function of dietary fiber in pig nutrition. Appl Microbiol Biotechnol 2024; 108:314. [PMID: 38683435 PMCID: PMC11058960 DOI: 10.1007/s00253-024-13148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
The importance of dietary fiber (DF) in animal diets is increasing with the advancement of nutritional research. DF is fermented by gut microbiota to produce metabolites, which are important in improving intestinal health. This review is a systematic review of DF in pig nutrition using in vitro and in vivo models. The fermentation characteristics of DF and the metabolic mechanisms of its metabolites were summarized in an in vitro model, and it was pointed out that SCFAs and gases are the important metabolites connecting DF, gut microbiota, and intestinal health, and they play a key role in intestinal health. At the same time, some information about host-microbe interactions could have been improved through traditional animal in vivo models, and the most direct feedback on nutrients was generated, confirming the beneficial effects of DF on sow reproductive performance, piglet intestinal health, and growing pork quality. Finally, the advantages and disadvantages of different fermentation models were compared. In future studies, it is necessary to flexibly combine in vivo and in vitro fermentation models to profoundly investigate the mechanism of DF on the organism in order to promote the development of precision nutrition tools and to provide a scientific basis for the in-depth and rational utilization of DF in animal husbandry. KEY POINTS: • The fermentation characteristics of dietary fiber in vitro models were reviewed. • Metabolic pathways of metabolites and their roles in the intestine were reviewed. • The role of dietary fiber in pigs at different stages was reviewed.
Collapse
Affiliation(s)
- Weikang Huangfu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shuhang Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China.
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China.
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
24
|
Yan S, Ji Q, Ding J, Liu Z, Wei W, Li H, Li L, Ma C, Liao D, He Z, Ai S. Protective effects of butyrate on cerebral ischaemic injury in animal models: a systematic review and meta-analysis. Front Neurosci 2024; 18:1304906. [PMID: 38486971 PMCID: PMC10937403 DOI: 10.3389/fnins.2024.1304906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction Cerebral ischaemic stroke is a common disease that poses a serious threat to human health. Butyrate is an important metabolite of intestinal microorganisms. Recent studies have shown that butyrate has a significant protective effect in animal models of cerebral ischaemic injury. Objective The aim of this study was to evaluate the protective effect of butyrate on cerebral ischaemic stroke by meta-analysis, aiming to provide a scientific basis for the clinical application of butyrate in patients with cerebral ischaemia. Materials and methods A systematic search was conducted for all relevant studies published before 23 January 2024, in PubMed, Web of Science, Cochrane Library, and Embase. Methodological quality was assessed using Syrcle's risk of bias tool for animal studies. Data were analysed using Rev Man 5.3 software. Results A total of nine studies were included, and compared with controls, butyrate significantly increased BDNF levels in the brain (SMD = 2.33, 95%CI = [1.20, 3.47], p < 0.005) and P-Akt expression (SMD = 3.53, 95% CI = [0.97, 6.10], p < 0.05). Butyrate also decreased IL-β levels in the brain (SMD = -2.02, 95% CI = [-3.22, -0.81], p < 0.005), TNF-α levels (SMD = -0.86, 95% CI = [-1.60, -0.12], p < 0.05), and peripheral vascular IL-1β levels (SMD = -2.10, 95%CI = [-3.59, -0.61], p < 0.05). In addition, butyrate reduced cerebral infarct volume (MD = -11.29, 95%CI = [-17.03, -5.54], p < 0.05), mNSS score (MD = -2.86, 95%CI = [-4.12, -1.60], p < 0.005), foot fault score (MD = -7.59, 95%CI = [-9.83, -5, 35], p < 0.005), and Morris water maze time (SMD = -2.49, 95%CI = [-4.42, -0.55], p < 0.05). Conclusion The results of this study indicate that butyrate has a protective effect on cerebral ischaemic stroke in animal models, and the mechanism is related to reducing inflammation and inhibiting apoptosis. It provides an evidence-based basis for the future clinical development of butyrate in the treatment of ischaemic stroke. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, CRD42023482844.
Collapse
Affiliation(s)
- Shichang Yan
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qipei Ji
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jilin Ding
- Department of Rehabilitation, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Zhixiang Liu
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Wei
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huaqiang Li
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luojie Li
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Defu Liao
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziyan He
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuangchun Ai
- Department of Rehabilitation, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| |
Collapse
|
25
|
Zhang H, Zha X, Zhang B, Zheng Y, Elsabagh M, Wang H, Wang M. Gut microbiota contributes to bisphenol A-induced maternal intestinal and placental apoptosis, oxidative stress, and fetal growth restriction in pregnant ewe model by regulating gut-placental axis. MICROBIOME 2024; 12:28. [PMID: 38365714 PMCID: PMC10874076 DOI: 10.1186/s40168-024-01749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/02/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Bisphenol A (BPA) is an environmental contaminant with endocrine-disrupting properties that induce fetal growth restriction (FGR). Previous studies on pregnant ewes revealed that BPA exposure causes placental apoptosis and oxidative stress (OS) and decreases placental efficiency, consequently leading to FGR. Nonetheless, the response of gut microbiota to BPA exposure and its role in aggravating BPA-mediated apoptosis, autophagy, mitochondrial dysfunction, endoplasmic reticulum stress (ERS), and OS of the maternal placenta and intestine are unclear in an ovine model of gestation. RESULTS Two pregnant ewe groups (n = 8/group) were given either a subcutaneous (sc) injection of corn oil (CON group) or BPA (5 mg/kg/day) dissolved in corn oil (BPA group) once daily, from day 40 to day 110 of gestation. The maternal colonic digesta and the ileum and placental tissue samples were collected to measure the biomarkers of autophagy, apoptosis, mitochondrial dysfunction, ERS, and OS. To investigate the link between gut microbiota and the BPA-induced FGR in pregnant ewes, gut microbiota transplantation (GMT) was conducted in two pregnant mice groups (n = 10/group) from day 0 to day 18 of gestation after removing their intestinal microbiota by antibiotics. The results indicated that BPA aggravates apoptosis, ERS and autophagy, mitochondrial function injury of the placenta and ileum, and gut microbiota dysbiosis in pregnant ewes. GMT indicated that BPA-induced ERS, autophagy, and apoptosis in the ileum and placenta are attributed to gut microbiota dysbiosis resulting from BPA exposure. CONCLUSIONS Our findings indicate the underlying role of gut microbiota dysbiosis and gut-placental axis behind the BPA-mediated maternal intestinal and placental apoptosis, OS, and FGR. The findings further provide novel insights into modulating the balance of gut microbiota through medication or probiotics, functioning via the gut-placental axis, to alleviate gut-derived placental impairment or FGR. Video Abstract.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China.
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, 51240, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi, 832000, P. R. China.
| |
Collapse
|
26
|
Abdulkhakov S, Markelova M, Safina D, Siniagina M, Khusnutdinova D, Abdulkhakov R, Grigoryeva T. Butyric Acid Supplementation Reduces Changes in the Taxonomic and Functional Composition of Gut Microbiota Caused by H. pylori Eradication Therapy. Microorganisms 2024; 12:319. [PMID: 38399723 PMCID: PMC10892928 DOI: 10.3390/microorganisms12020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
H. pylori eradication therapy leads to significant changes in the gut microbiome, including influence on the gut microbiome's functional potential. Probiotics are one of the most studied potential methods for reducing the microbiota-related consequences of antibiotics. However, the beneficial effects of probiotics are still under discussion. In addition, there are some concerns about the safety of probiotics, emphasizing the need for research of other therapeutic interventions. The aim of our study was to evaluate the influence of butyric acid+inulin supplements on gut microbiota changes (the gut microbiota composition, abundance of metabolic pathways, and gut resistome) caused by H. pylori eradication therapy. MATERIALS AND METHODS Twenty two H. pylori-positive patients, aged 19 to 64 years, were enrolled in the study and randomized into two treatment groups, as follows: (1) ECAB-14 (n = 11), with esomeprazole 20 mg, clarithromycin 500 mg, amoxicillin 1000 mg, and bismuthate tripotassium dicitrate 240 mg, twice daily, per os, for 14 days, and (2), ECAB-Z-14 (n = 11), with esomeprazole 20 mg, clarithromycin 500 mg, amoxicillin 1000 mg, and bismuthate tripotassium dicitrate 240 mg, twice daily, along with butyric acid+inulin (Zacofalk), two tablets daily, each containing 250 mg of butyric acid, and 250 mg of inulin, per os, for 14 days. Fecal samples were collected from each subject prior to eradication therapy (time point I), after the end of eradication therapy (time point II), and a month after the end of eradication therapy (time point III). The total DNA from the fecal samples was isolated for whole genome sequencing using the Illumina NextSeq 500 platform. Qualitative and quantitative changes in gut microbiota were assessed, including alpha and beta diversity, functional potential and antibiotic resistance gene profiling. RESULTS Gut microbiota alpha diversity significantly decreased compared with the baseline immediately after eradication therapy in both treatment groups (ECAB-14 and ECAB-Z-14). This diversity reached its baseline in the ECAB-Z-14 treatment group a month after the end of eradication therapy. However, in the ECAB-14 treatment arm, a reduction in the Shannon index was observed up to a month after the end of H. pylori eradication therapy. Fewer alterations in the gut microbiota functional potential were observed in the ECAB-Z-14 treatment group. The abundance of genes responsible for the metabolic pathway associated with butyrate production decreased only in the ECAB-14 treatment group. The prevalence of antibiotic-resistant genes in the gut microbiota increased significantly in both treatment groups by the end of treatment. However, more severe alterations were noted in the ECAB-14 treatment group. CONCLUSIONS H. pylori eradication therapy leads to taxonomic changes, a reduction in the alpha diversity index, and alterations in the functional potential of the gut microbiota and gut resistome. Taking butyric acid+inulin supplements during H. pylori eradication therapy could help maintain the gut microbiota in its initial state and facilitate its recovery after H. pylori eradication.
Collapse
Affiliation(s)
- Sayar Abdulkhakov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (M.M.); (D.S.); (M.S.); (D.K.); (T.G.)
- Department of Outpatient Therapy and General Medical Practice, Kazan State Medical University, 420012 Kazan, Russia
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (M.M.); (D.S.); (M.S.); (D.K.); (T.G.)
| | - Dilyara Safina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (M.M.); (D.S.); (M.S.); (D.K.); (T.G.)
| | - Maria Siniagina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (M.M.); (D.S.); (M.S.); (D.K.); (T.G.)
| | - Dilyara Khusnutdinova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (M.M.); (D.S.); (M.S.); (D.K.); (T.G.)
| | - Rustam Abdulkhakov
- Department of Hospital Therapy, Kazan State Medical University, 420012 Kazan, Russia;
| | - Tatiana Grigoryeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (M.M.); (D.S.); (M.S.); (D.K.); (T.G.)
| |
Collapse
|
27
|
Dang DX, Choi SY, Choi YJ, Lee JH, Castex M, Chevaux E, Saornil D, de Laguna FB, Jimenez G, Kim IH. Probiotic, Paraprobiotic, and Hydrolyzed Yeast Mixture Supplementation Has Comparable Effects to Zinc Oxide in Improving Growth Performance and Ameliorating Post-weaning Diarrhea in Weaned Piglets. Probiotics Antimicrob Proteins 2024; 16:249-258. [PMID: 36630002 DOI: 10.1007/s12602-022-10008-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 01/12/2023]
Abstract
A total of 150 21-day-old weaned piglets [(Yorkshire × Landrace) × Duroc] were randomly assigned to 3 groups (CON, TRT1, TRT2) to evaluate the effects of dietary supplementation of probiotic, paraprobiotic, and hydrolyzed yeast mixture (PPY) on growth performance, nutrient digestibility, fecal bacterial counts, fecal calprotectin contents, and diarrhea rate in a 42-day experiment (phase 1: days 1-14; phase 2: days 15-42). There were 10 replicate pens per treatment with 5 pigs per pen (three gilts and two barrows). Pigs in CON were only provided with a basal diet. Pigs in TRT1 were provided with a basal diet + 3000 mg/kg zinc oxide during phase 1 and a basal diet during phase 2. Pigs in TRT2 were provided with a basal diet + 200 mg/kg probiotic (Saccharomyces cerevisiae boulardii) + 800 mg/kg paraprobiotic (inactivated yeast strains of Saccharomyces cerevisiae and Cyberlindnera jadinii) + 10 g/kg hydrolyzed yeast mixture during phase 1, and a basal diet + 100 mg/kg probiotic + 400 mg/kg paraprobiotic mixture during phase 2. Pigs in TRT1 and TRT2 were significantly heavier at day 14 and 42 than CON pigs. Growth rate during days 1-14, 15-42, and 1-42 and feed efficiency during days 1-14 were similarly affected by treatment while feed efficiency was significantly higher for TRT2 pigs between 15-42 and 1-42 days. Moreover, nitrogen and energy digestibility in both TRT1 and TRT2 were higher than that in CON. During experimental periods, diarrhea rate in TRT1 and TRT2 was lower than that in CON. Therefore, we demonstrated that PPY supplementation had comparable effects as ZnO in improving growth performance and nutrient digestibility as well as ameliorating post-weaning diarrhea in weaned piglets.
Collapse
Affiliation(s)
- De Xin Dang
- Department of Animal Resource & Science, Dankook University, Cheonan, South Korea
| | - Si Yeong Choi
- Department of Animal Resource & Science, Dankook University, Cheonan, South Korea
- Lallemand SAS, 19 Rue de Briquetiers, 31702, Blagnac, France
| | - Young Jae Choi
- Bioanalysis and Pharmacokinetics Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Jong Hwa Lee
- Bioanalysis and Pharmacokinetics Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Mathieu Castex
- Lallemand SAS, 19 Rue de Briquetiers, 31702, Blagnac, France
| | - Eric Chevaux
- Lallemand SAS, 19 Rue de Briquetiers, 31702, Blagnac, France
| | - David Saornil
- Lallemand SAS, 19 Rue de Briquetiers, 31702, Blagnac, France
| | | | | | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, South Korea.
| |
Collapse
|
28
|
Li W, Lan T, Ding Q, Ren Z, Tang Z, Tang Q, Peng X, Xu Y, Sun Z. Effect of Low Protein Diets Supplemented with Sodium Butyrate, Medium-Chain Fatty Acids, or n-3 Polyunsaturated Fatty Acids on the Growth Performance, Immune Function, and Microbiome of Weaned Piglets. Int J Mol Sci 2023; 24:17592. [PMID: 38139420 PMCID: PMC10743886 DOI: 10.3390/ijms242417592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to investigate the effects of low-protein (LP) diets supplemented with sodium butyrate (SB), medium-chain fatty acids (MCT), or n-3 polyunsaturated fatty acids (n-3 PUFA) on the growth performance, immune function, and the microbiome of weaned piglets. A total of 120 healthy weaned piglets ((Landrace × Large White × Duroc); 7.93 ± 0.7 kg initial body weight), were randomly divided into five groups. Each group consisted of six replications with four piglets per replication. Dietary treatments included control diet (CON); LP diet (LP); LP + 0.2% SB diet (LP + SB); LP + 0.2% MCT diet (LP + MCT); and LP + PUFA diet (LP + PUFA). The experimental period lasted for 4 weeks. Compared with the CON diet, LP, LP + SB, LP + MCT, and LP + PUFA diets decreased the final weight and average daily gain (ADG) of piglets (p < 0.05). There were lower (p < 0.05) concentrations of IL-8 and higher (p < 0.05) Glutathione peroxidase (GSH-Px) activity in the plasma of piglets fed with LP + SB, LP + MCT, and LP + PUFA diets than those fed with the LP diet. The piglets in the LP + SB and LP + PUFA groups had lower IKK-alpha (IKKa) mRNA expression in the colonic mucosa compared with those in the CON and LP groups (p < 0.05). The mRNA expression of TLR4 in the colonic mucosa of piglets in the LP + SB, LP + MCT, and LP + PUFA groups was decreased when compared with the CON and LP groups (p < 0.05). The LP + MCT diets increased the gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2) in the colonic mucosa of piglets compared with CON, LP, and LP + SB diets (p < 0.05). The abundance of Erysipelotrichaceae in the colonic microbiome of piglets in the LP group was higher than that in the other four groups (p < 0.05). Collectively, this study showed that LP diets supplemented with SB, MCT, or n-3 PUFA reduced plasma inflammatory factor levels, increased plasma GSH-Px activity, and declined mRNA expression of TLR4 and IKKa in the colonic epithelium, whereas it reduced the abundance of Erysipelotrichaceae in the colon of piglets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhihong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (W.L.)
| |
Collapse
|
29
|
Xue D, Cheng Y, Pang T, Kuai Y, An Y, Wu K, Li Y, Lai M, Wang B, Wang S. Sodium butyrate alleviates deoxynivalenol-induced porcine intestinal barrier disruption by promoting mitochondrial homeostasis via PCK2 signaling. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132013. [PMID: 37467604 DOI: 10.1016/j.jhazmat.2023.132013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Deoxynivalenol (DON) is one of the most plentiful trichothecenes occurring in food and feed, which brings severe health hazards to both animals and humans. This study aims to investigate whether sodium butyrate (NaB) can protect the porcine intestinal barrier from DON exposure through promoting mitochondrial homeostasis. In a 4-week feeding experiment, 28 male piglets were allocated according to a 2 by 2 factorial arrangement of treatments with the main factors including supplementation of DON (< 0.8 vs. 4.0 mg/kg) and NaB (0.0 vs. 2 g/kg) in a corn/soybean-based diet. Dietary NaB supplementation mitigated the damaged mitochondrial morphology within the jejunal mucosa and the disrupted gut epithelial tight junctions irritated by DON. In IPEC-J2 cells, we found efficient recovery of the intestinal epithelial barrier occurred following NaB administration. This intestinal barrier reparation was facilitated by NaB-induced PCK2-mediated glyceroneogenesis and restoration of mitochondrial structure and function. In conclusion, we elucidated a mechanism of PCK2-mediated improvement of mitochondrial function by NaB to repair porcine intestinal barrier disruption during chronic DON exposure. Our findings highlight the promise of NaB for use in protecting against DON-induced gut epithelial tight junction disruption in piglets.
Collapse
Affiliation(s)
- Dongfang Xue
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yating Cheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tiantian Pang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yunyi Kuai
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yu An
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kuntan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuqing Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mengyu Lai
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bihan Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China.
| |
Collapse
|
30
|
Matheus VA, Oliveira RB, Maschio DA, Tada SFS, Soares GM, Mousovich-Neto F, Costa RG, Mori MA, Barbosa HCL, Collares-Buzato CB. Butyrate restores the fat/lean mass ratio balance and energy metabolism and reinforces the tight junction-mediated intestinal epithelial barrier in prediabetic mice independently of its anti-inflammatory and epigenetic actions. J Nutr Biochem 2023; 120:109409. [PMID: 37364792 DOI: 10.1016/j.jnutbio.2023.109409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/24/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Tissue/cellular actions of butyrate on energy metabolism and intestinal barrier in normal metabolic conditions or prediabetes are still unclear. In this work, we investigated the beneficial effect of dietary supplementation with sodium butyrate on energy metabolism, body mass composition, and intestinal epithelial barrier mediated by tight junction (TJ) in chow diet-fed normal and high-fat diet (HF)-fed prediabetic mice, considering the well-known butyrate action as an epigenetic and inflammatory regulator. Butyrate significantly reduced the fat/lean mass ratio, slightly ameliorated dyslipidemia, restored oral glucose tolerance, and increased basal energy expenditure in prediabetic HF-fed mice but had no effect on control animals. Such effects were observed in the absence of significant alterations in the hypothalamic expression of orexigenic and anorexigenic genes and motor activity. Also, butyrate suppressed the whitening effect of HF on brown adipose tissue but did not affect cell bioenergetics in immortalized UCP1-positive adipocytes in vitro. Butyrate reinforced the intestinal epithelial barrier in HF-fed mice and in Caco-2 monolayers, which involved higher trafficking of TJ proteins to the cell-cell contact region of the intestinal epithelia, without affecting TJ gene expression or the acetylation level of histones H3 and H4 in vivo. All metabolic and intestinal effects of butyrate in prediabetic mice occurred in the absence of detectable changes in systemic or local inflammation, or alterations in endotoxemia markers. Butyrate has no effect on chow diet-fed mice but, in the context of HF-induced prediabetes, it prevents metabolic and intestinal dysfunctions independently of its anti-inflammatory and epigenetic actions.
Collapse
Affiliation(s)
- Valquiria A Matheus
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Ricardo B Oliveira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Daniela A Maschio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Obesity and Comorbidities Research Center, Institute of Biology, UNICAMP, Campinas, Brazil
| | - Susely F S Tada
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriela M Soares
- Obesity and Comorbidities Research Center, Institute of Biology, UNICAMP, Campinas, Brazil
| | - Felippe Mousovich-Neto
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Raul G Costa
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Obesity and Comorbidities Research Center, Institute of Biology, UNICAMP, Campinas, Brazil
| | - Helena C L Barbosa
- Obesity and Comorbidities Research Center, Institute of Biology, UNICAMP, Campinas, Brazil
| | - Carla B Collares-Buzato
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
31
|
Deng C, Zhai Y, Yang X, Chen Z, Li Q, Hao R. Effects of grape seed procyanidins on antioxidant function, barrier function, microbial community, and metabolites of cecum in geese. Poult Sci 2023; 102:102878. [PMID: 37413950 PMCID: PMC10466299 DOI: 10.1016/j.psj.2023.102878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023] Open
Abstract
The gut is the first line of defense for body health and is essential to the overall health of geese. Grape seed procyanidins (GSPs) are proverbial for their antioxidant, anti-inflammatory, and microflora-regulating capabilities. This study aimed to inquire into the influences of dietary GSPs on the intestinal antioxidant function, barrier function, microflora, and metabolites of geese based on 16S rRNA sequencing and metabolomics. In total, 240 twenty-one-day-old Sichuan white geese were randomly divided into 4 groups, each of which was supplied with 1 of 4 diets: basal diet or a basal diet supplemented with 50, 100, or 150 mg/kg GSPs. Diets supplemented with GSPs at different concentrations significantly increased the total antioxidant capacity and superoxide dismutase activity in cecal mucosa (P < 0.001). Dietary supplementation with 50 or 100 mg/kg GSPs significantly increased catalase activity (P < 0.001). The serum diamine oxidase, D-lactic acid, and endotoxin concentrations were decreased by GSP supplementation in the goose diet. Dietary GSP supplementation increased microbial richness and diversity, enhanced the relative abundance of Firmicutes, and decreased that of Bacteroidetes in the cecum. Diets supplemented with 50 or 100 mg/kg GSPs enriched Eubacterium coprostanoligenes and Faecalibacterium. Dietary GSPs substantially raised the acetic and propionic acid concentrations in the cecum. The butyric acid concentration increased when the GSP dosage was 50 or 100 mg/kg. Additionally, dietary GSPs increased the levels of metabolites that belong to lipids and lipid-like molecules or organic acids and derivatives. Dietary GSP supplementation at 100 or 150 mg/kg reduced the levels of spermine (a source of cytotoxic metabolites) and N-acetylputrescine, which promotes in-vivo inflammation. In conclusion, dietary supplementation with GSPs was beneficial to gut health in geese. Dietary GSPs improved antioxidant activity; protected intestinal barrier integrity; increased the abundance and diversity of cecal microflora; promoted the proliferation of some beneficial bacteria; increased the production of acetic, propionic, and butyric acids in the cecum; and downregulated metabolites associated with cytotoxicity and inflammation. These results offer a strategy for promoting intestinal health in farmed geese.
Collapse
Affiliation(s)
- Chao Deng
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China
| | - Yan Zhai
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China
| | - Xu Yang
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China
| | - Zhexiu Chen
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China
| | - Qinghong Li
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China
| | - Ruirong Hao
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; Key Laboratory of Farm Animal Genetic Resources Exploration and Breeding of Shanxi Province, Taigu 030800, China.
| |
Collapse
|
32
|
Yang N, Lan T, Han Y, Zhao H, Wang C, Xu Z, Chen Z, Tao M, Li H, Song Y, Ma X. Tributyrin alleviates gut microbiota dysbiosis to repair intestinal damage in antibiotic-treated mice. PLoS One 2023; 18:e0289364. [PMID: 37523400 PMCID: PMC10389721 DOI: 10.1371/journal.pone.0289364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023] Open
Abstract
Tributyrin (TB) is a butyric acid precursor and has a key role in anti-inflammatory and intestinal barrier repair effects by slowly releasing butyric acid. However, its roles in gut microbiota disorder caused by antibiotics remain unclear. Herein, we established an intestinal microbiota disorder model using ceftriaxone sodium via gavage to investigate the effects of different TB doses for restoring gut microbiota and intestinal injury. First, we divided C57BL/6 male mice into two groups: control (NC, n = 8) and experimental (ABx, n = 24) groups, receiving gavage with 0.2 mL normal saline and 400 mg/mL ceftriaxone sodium solution for 7 d (twice a day and the intermediate interval was 6 h), respectively. Then, mice in the ABx group were randomly split into three groups: model (M, 0.2 mL normal saline), low TB group (TL, 0.3 g/kg BW), and high TB group (TH, 3 g/kg BW) for 11 d. We found that TB supplementation alleviated antibiotics-induced weight loss, diarrhea, and intestinal tissue damage. The 16S rRNA sequence analysis showed that TB intervention increased the α diversity of intestinal flora, increased potential short-chain fatty acids (SCFAs)-producing bacteria (such as Muribaculaceae and Bifidobacterium), and inhibited the relative abundance of potentially pathogenic bacteria (such as Bacteroidetes and Enterococcus) compared to the M group. TB supplementation reversed the reduction in SCFAs production in antibiotic-treated mice. Additionally, TB downregulated the levels of serum LPS and zonulin, TNF-α, IL-6, IL-1β and NLRP3 inflammasome-related factors in intestinal tissue and upregulated tight junction proteins (such as ZO-1 and Occludin) and MUC2. Overall, the adjustment ability of low-dose TB to the above indexes was stronger than high-dose TB. In conclusion, TB can restore the dysbiosis of gut microbiota, increase SCFAs, suppress inflammation, and ameliorate antibiotic-induced intestinal damage, indicating that TB might be a potential gut microbiota modulator.
Collapse
Affiliation(s)
- Ning Yang
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Tongtong Lan
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Yisa Han
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Haifeng Zhao
- Qingdao Institute of Food and Drug Control, Key Laboratory of Quality Research and Evaluation of Marine Traditional Chinese Medicine, State Medical Products Administration, Qingdao, China
| | - Chuhui Wang
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Zhen Xu
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Zhao Chen
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Meng Tao
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Hui Li
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Yang Song
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Xuezhen Ma
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
33
|
Diether NE, Hulshof TG, Willing BP, van Kempen TATG. A blend of medium-chain fatty acids, butyrate, organic acids, and a phenolic compound accelerates microbial maturation in newly weaned piglets. PLoS One 2023; 18:e0289214. [PMID: 37506070 PMCID: PMC10381057 DOI: 10.1371/journal.pone.0289214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Inclusion of additive blends is a common dietary strategy to manage post-weaning diarrhea and performance in piglets. However, there is limited mechanistic data on how these additives improve outcomes during this period. To evaluate the effects of Presan FX (MCOA) on the intestinal microbiota and metabolome, diets with or without 0.2% MCOA were compared. Pigs fed MCOA showed improved whole-body metabolism 7 days post-weaning, with decreased (P < 0.05) creatine, creatinine and β-hydroxybutyrate. Alterations in bile-associated metabolites and cholic acid were also observed at the same time-point (P < 0.05), suggesting MCOA increased bile acid production and secretion. Increased cholic acid was accompanied by increased tryptophan metabolites including indole-3-propionic acid (IPA) in systemic circulation (P = 0.004). An accompanying tendency toward increased Lactobacillus sp. in the small intestine was observed (P = 0.05). Many lactobacilli have bile acid tolerance mechanisms and contribute to production of IPA, suggesting increased bile acid production resulted in increased abundance of lactobacilli capable of tryptophan fermentation. Tryptophan metabolism is associated with the mature pig microbiota and many tryptophan metabolites such as IPA are considered beneficial to gut barrier function. In conclusion, MCOA may help maintain tissue metabolism and aid in microbiota re-assembly through bile acid production and secretion.
Collapse
Affiliation(s)
- Natalie E Diether
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | - Benjamin P Willing
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
34
|
Ahmad Sophien AN, Jusop AS, Tye GJ, Tan YF, Wan Kamarul Zaman WS, Nordin F. Intestinal stem cells and gut microbiota therapeutics: hype or hope? Front Med (Lausanne) 2023; 10:1195374. [PMID: 37547615 PMCID: PMC10400779 DOI: 10.3389/fmed.2023.1195374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
The vital role of the intestines as the main site for the digestion and absorption of nutrients for the body continues subconsciously throughout one's lifetime, but underneath all the complex processes lie the intestinal stem cells and the gut microbiota that work together to maintain the intestinal epithelium. Intestinal stem cells (ISC) are multipotent stem cells from which all intestinal epithelial cells originate, and the gut microbiota refers to the abundant collection of various microorganisms that reside in the gastrointestinal tract. Both reside in the intestines and have many mechanisms and pathways in place with the ultimate goal of co-managing human gastrointestinal tract homeostasis. Based on the abundance of research that is focused on either of these two topics, this suggests that there are many methods by which both players affect one another. Therefore, this review aims to address the relationship between ISC and the gut microbiota in the context of regenerative medicine. Understanding the principles behind both aspects is therefore essential in further studies in the field of regenerative medicine by making use of the underlying designed mechanisms.
Collapse
Affiliation(s)
- Ahmad Naqiuddin Ahmad Sophien
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amirah Syamimi Jusop
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Yuen-Fen Tan
- PPUKM-MAKNA Cancer Center, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
- M. Kandiah Faculty of Medicine and Health Sciences (MK FMHS), Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
35
|
Zong Q, Li K, Qu H, Hu P, Xu C, Wang H, Wu S, Wang S, Liu HY, Cai D, Bao W. Sodium Butyrate Ameliorates Deoxynivalenol-Induced Oxidative Stress and Inflammation in the Porcine Liver via NR4A2-Mediated Histone Acetylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37384814 DOI: 10.1021/acs.jafc.3c02499] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Mycotoxin-induced liver injury is often accompanied by oxidative stress (OS) and inflammation. This research aimed to explore the potential mechanism of sodium butyrate (NaBu) in modulating hepatic anti-oxidation and anti-inflammation pathways in deoxynivalenol (DON)-exposed piglets. The results show that DON induced liver injury, increased mononuclear cell infiltration, and decreased serum total protein and albumin concentrations. Transcriptomic analysis revealed that reactive oxygen species (ROS) and TNF-α pathways were highly activated upon DON exposure. This is associated with disturbed antioxidant enzymes and increased inflammatory cytokines secretion. Importantly, NaBu effectively reversed the alterations caused by DON. Mechanistically, the ChIP-seq result revealed that NaBu strongly depressed DON-increased enrichment of histone mark H3K27ac at the genes involved in ROS and TNF-α-mediated pathways. Notably, we demonstrated that nuclear receptor NR4A2 was activated by DON and remarkably recovered with the treatment of NaBu. In addition, the enhanced NR4A2 transcriptional binding enrichments at the promoter regions of OS and inflammatory genes were hindered by NaBu in DON-exposed livers. Consistently, elevated H3K9ac and H3K27ac occupancies were also observed at the NR4A2 binding regions. Taken together, our results indicated that a natural antimycotic additive, NaBu, could mitigate hepatic OS and inflammatory responses, possibly via NR4A2-mediated histone acetylation.
Collapse
Affiliation(s)
- Qiufang Zong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Huan Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chao Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Haifei Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shenglong Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
36
|
Li X, Zheng P, Cao W, Cao Y, She X, Yang H, Ma K, Wu F, Gao X, Fu Y, Yin J, Wei F, Jiang S, Cui B. Lactobacillus rhamnosus GG ameliorates noise-induced cognitive deficits and systemic inflammation in rats by modulating the gut-brain axis. Front Cell Infect Microbiol 2023; 13:1067367. [PMID: 37180445 PMCID: PMC10169735 DOI: 10.3389/fcimb.2023.1067367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Background Environmental noise exposure is linked to neuroinflammation and imbalance of the gut microbiota. Promoting gut microbiota homeostasis may be a key factor in relieving the deleterious non-auditory effects of noise. This study aimed to investigate the effect of Lactobacillus rhamnosus GG (LGG) intervention on noise-induced cognitive deficits and systemic inflammation in rats. Methods Learning and memory were assessed using the Morris water maze, while 16S rRNA sequencing and gas chromatography-mass spectrometry were used to analyze the gut microbiota and short-chain fatty acid (SCFA) content. Endothelial tight junction proteins and serum inflammatory mediators were assessed to explore the underlying pathological mechanisms. Results The results indicated that Lactobacillus rhamnosus GG intervention ameliorated noise-induced memory deterioration, promoted the proliferation of beneficial bacteria, inhibited the growth of harmful bacteria, improved dysregulation of SCFA-producing bacteria, and regulated SCFA levels. Mechanistically, noise exposure led to a decrease in tight junction proteins in the gut and hippocampus and an increase in serum inflammatory mediators, which were significantly alleviated by Lactobacillus rhamnosus GG intervention. Conclusion Taken together, Lactobacillus rhamnosus GG intervention reduced gut bacterial translocation, restored gut and blood-brain barrier functions, and improved gut bacterial balance in rats exposed to chronic noise, thereby protecting against cognitive deficits and systemic inflammation by modulating the gut-brain axis.
Collapse
Affiliation(s)
- Xiaofang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Pengfang Zheng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Wa Cao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yang Cao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaojun She
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Honglian Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Kefeng Ma
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Fangshan Wu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Xiujie Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yu Fu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Jiayi Yin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Jinan, China
| | - Fei Wei
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Shoufang Jiang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Bo Cui
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Binzhou Medical University, Yantai, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Jinan, China
| |
Collapse
|
37
|
Arapovic L, Huang Y, Manell E, Verbeek E, Keeling L, Sun L, Landberg R, Lundh T, Lindberg JE, Dicksved J. Age Rather Than Supplementation with Oat β-Glucan Influences Development of the Intestinal Microbiota and SCFA Concentrations in Suckling Piglets. Animals (Basel) 2023; 13:ani13081349. [PMID: 37106912 PMCID: PMC10135274 DOI: 10.3390/ani13081349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The effects of early supplementation with oat β-glucan during the suckling period on piglet gut microbiota composition, concentrations of short-chain fatty acids, and gut physiological markers were assessed. Fifty piglets from five litters, balanced for sex and birth weight, were divided within litters into two treatment groups: β-glucan and control. Piglets in the β-glucan group received the supplement three times/week from day 7 of age until weaning. Rectal swab samples were collected from 10 piglets per treatment group (balanced across litters) from week 1 to week 4, and plasma samples were collected at 1, 3, and 4 weeks of age. Additional samples of intestinal tissues and jugular and portal vein plasma were collected from 10 animals at weaning (one per treatment group and litter). The concentrations of short-chain fatty acids in plasma and the microbiota composition in rectal swabs were mainly influenced by piglet age, rather than the supplement. There were significant differences in microbiota composition between litters and several correlations between concentrations of short-chain fatty acids in plasma and specific microbial taxa in rectal swabs. Overall, β-glucan supplementation did not have any clear impact on the gut environment in suckling piglets, whereas a clear age-related pattern emerged.
Collapse
Affiliation(s)
- Lidija Arapovic
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Yi Huang
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
- Department of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Elin Manell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Else Verbeek
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Linda Keeling
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Li Sun
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Torbjörn Lundh
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Jan Erik Lindberg
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| |
Collapse
|
38
|
Li H, Zhang Y, Xie J, Wang C, Yi D, Wu T, Wang L, Zhao D, Hou Y. Dietary Supplementation with Mono-Lactate Glyceride Enhances Intestinal Function of Weaned Piglets. Animals (Basel) 2023; 13:ani13081303. [PMID: 37106866 PMCID: PMC10135088 DOI: 10.3390/ani13081303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Mono-lactate glyceride (LG) is a short-chain fatty acid ester. It has been shown that short-chain fatty acid esters play an important role in maintaining intestinal structure and function. The aim of this study is to investigate the effects of mono-lactate glyceride on growth performance and intestinal morphology and function in weaned piglets. Sixteen 21-day-old weaned piglets of similar weight were distributed arbitrarily to two treatments: The control group (basal diet) and the LG group (basal diet + 0.6% mono-lactate glyceride). The experiment lasted for 21 days. On day 21 of the trial, piglets were weighed, and blood and intestinal samples were collected for further analysis. Results showed that dietary supplementation with 0.6% mono-lactate glyceride decreased (p < 0.05) the diarrhea rate and the contents of malondialdehyde and hydrogen peroxide in the ileum and jejunum and increased (p < 0.05) the expression of intestinal tight junction protein (Occludin) and the activities of superoxide dismutase and catalase in the ileum and colon. In addition, mono-lactate glyceride supplementation could enhance intestinal mucosal growth by increasing (p < 0.05) the mRNA levels of extracellular regulated protein kinases, promote intestinal mucosal water and nutrient transport and lipid metabolism by increasing (p < 0.05) the mRNA levels of b0,+ amino acid transporter, aquaporin 3, aquaporin 10, gap junction protein alpha 1, intestinal fatty acid-binding protein, and lipoprotein lipase, enhance antiviral and immune function by increasing (p < 0.05) the mRNA levels of nuclear factor kappa-B, interferon-β, mucovirus resistance protein II, 2'-5'-oligoadenylate synthetase-like, interferon-γ, C-C motif chemokine ligand 2, and toll-like receptor 4, and enhance antioxidant capacity by increasing (p < 0.05) the mRNA levels of NF-E2-related factor 2 and glutathione S-transferase omega 2 and decreasing (p < 0.05) the mRNA level of NADPH oxidase 2. These results suggested that dietary supplementation with mono-lactate glyceride could decrease the diarrhea rate by improving intestinal antioxidant capacity, intestinal mucosal barrier, intestinal immune defense function, and intestinal mucosal water and nutrient transport. Collectively, dietary supplementation with 0.6% mono-lactate glyceride improved the intestinal function of weaned piglets.
Collapse
Affiliation(s)
- Hanbo Li
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yanyan Zhang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiaqian Xie
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Wang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dan Yi
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Tao Wu
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lei Wang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Di Zhao
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yongqing Hou
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
39
|
Wang L, Wang C, Peng Y, Zhang Y, Liu Y, Liu Y, Yin Y. Research progress on anti-stress nutrition strategies in swine. ANIMAL NUTRITION 2023; 13:342-360. [DOI: 10.1016/j.aninu.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/04/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
|
40
|
Mellors SC, Wilms JN, Welboren AC, Ghaffari MH, Leal LN, Martín-Tereso J, Sauerwein H, Steele MA. Gastrointestinal structure and function of preweaning dairy calves fed a whole milk powder or a milk replacer high in fat. J Dairy Sci 2023; 106:2408-2427. [PMID: 36894427 DOI: 10.3168/jds.2022-22155] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 09/16/2022] [Indexed: 03/09/2023]
Abstract
The composition of milk replacer (MR) for calves greatly differs from that of bovine whole milk, which may affect gastrointestinal development of young calves. In this light, the objective of the current study was to compare gastrointestinal tract structure and function in response to feeding liquid diets having a same macronutrient profile (e.g., fat, lactose, protein) in calves in the first month of life. Eighteen male Holstein calves (46.6 ± 5.12 kg; 1.4 ± 0.50 d of age at arrival; mean ± standard deviation) were housed individually. Upon arrival, calves were blocked based on age and arrival day, and, within a block, calves were randomly assigned to either a whole milk powder (WP; 26% fat, DM basis, n = 9) or a MR high in fat (25% fat, n = 9) fed 3.0 L 3 times daily (9 L total per day) at 135 g/L through teat buckets. On d 21, gut permeability was assessed with indigestible permeability markers [chromium (Cr)-EDTA, lactulose, and d-mannitol]. On d 32 after arrival, calves were slaughtered. The weight of the total forestomach without contents was greater in WP-fed calves. Furthermore, duodenum and ileum weights were similar between treatment groups, but jejunum and total small intestine weights were greater in WP-fed calves. The surface area of the duodenum and ileum did not differ between treatment groups, but the surface area of the proximal jejunum was greater in calves fed WP. Urinary lactulose and Cr-EDTA recoveries were greater in calves fed WP in the first 6 h post marker administration. Tight junction protein gene expression in the proximal jejunum or ileum did not differ between treatments. The free fatty acid and phospholipid fatty acid profiles in the proximal jejunum and ileum differed between treatments and generally reflected the fatty acid profile of each liquid diet. Feeding WP or MR altered gut permeability and fatty acid composition of the gastrointestinal tract and further investigation are needed to understand the biological relevance of the observed differences.
Collapse
Affiliation(s)
- S C Mellors
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2
| | - J N Wilms
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2; Trouw Nutrition R&D, P.O. Box 299, 3800 AG, Amersfoort, the Netherlands.
| | - A C Welboren
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2
| | - M H Ghaffari
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - L N Leal
- Trouw Nutrition R&D, P.O. Box 299, 3800 AG, Amersfoort, the Netherlands
| | - J Martín-Tereso
- Trouw Nutrition R&D, P.O. Box 299, 3800 AG, Amersfoort, the Netherlands
| | - H Sauerwein
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - M A Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2.
| |
Collapse
|
41
|
Effect of Yeast Saccharomyces cerevisiae as a Probiotic on Diet Digestibility, Fermentative Metabolites, and Composition and Functional Potential of the Fecal Microbiota of Dogs Submitted to an Abrupt Dietary Change. Microorganisms 2023; 11:microorganisms11020506. [PMID: 36838473 PMCID: PMC9965016 DOI: 10.3390/microorganisms11020506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
The aim was to evaluate the effects of yeast probiotic on diet digestibility, fermentative metabolites, and fecal microbiota of dogs submitted to dietary change. Sixteen dogs were divided into two groups of eight dogs each: control, without, and with probiotic, receiving 0.12 g/dog/day of live Saccharomyces cerevisiae yeast. The dogs were fed a lower protein and fiber diet for 21 days and then changed to a higher protein and fiber diet until day 49. Yeast supplementation did not statistically influence diet digestibility. The probiotic group had a lower fecal concentration of total biogenic amines (days 21 and 49), ammonia (day 23), and aromatic compounds and a higher fecal concentration of butyrate (p < 0.05). The probiotic group showed a lower dysbiosis index, a higher abundance (p < 0.05) of Bifidobacterium (days 35 and 49) and Turicibacter, and a lower abundance of Lactobacillus and E. coli (p < 0.05). Beta diversity demonstrated a clear differentiation in the gut microbiota between the control and probiotic groups on day 49. The control group showed upregulation in genes related to virulence factors, antibiotic resistance, and osmotic stress. The results indicated that the live yeast evaluated can have beneficial effects on intestinal functionality of dogs.
Collapse
|
42
|
He H, Fan X, Shen H, Gou H, Zhang C, Liu Z, Zhang B, Wuri N, Zhang J, Liao M, Geri L. Butyrate limits the replication of porcine epidemic diarrhea virus in intestine epithelial cells by enhancing GPR43-mediated IFN-III production. Front Microbiol 2023; 14:1091807. [PMID: 36744090 PMCID: PMC9895860 DOI: 10.3389/fmicb.2023.1091807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a threat to the health of newborn piglets and has a significant impact on the swine industry. Short-chain fatty acids (SCFAs) are gut microbial metabolites that regulate intestinal function through different mechanisms to enhance the intestinal barrier and immune function. In this study, we aimed to determine whether butyrate displayed a better effect than other SCFAs on limiting PEDV replication in porcine intestinal epithelial cells. Mechanistically, butyrate treatment activated the interferon (IFN) response and interferon-stimulated gene (ISG) expression. Further experiments showed that inhibition of GPR43 (free fatty acid receptor 2) in intestinal epithelial cells increased virus infection and reduced antiviral effects through IFN λ response. Our findings revealed that butyrate exerts its antiviral effects by inducing GPR43-mediated IFN production in intestinal epithelial cells.
Collapse
Affiliation(s)
- Haiyan He
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China,Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xuelei Fan
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haiyan Shen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Hongchao Gou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Chunhong Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Zhicheng Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China,Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Bin Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China,Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Nile Wuri
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China,Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianfeng Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China,Jianfeng Zhang, ✉
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China,Ming Liao, ✉
| | - Letu Geri
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China,*Correspondence: Letu Geri, ✉
| |
Collapse
|
43
|
Zhang F, Yao W, Ji X, Liu X, Jin E. Ionomics-metabolome association analysis as a new approach to the impact of dietary copper levels in suckling piglets model. Sci Rep 2023; 13:1164. [PMID: 36670179 PMCID: PMC9859785 DOI: 10.1038/s41598-023-28503-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
Ionomics-metabolomics association analysis is a novel method to elucidating the potential mechanisms underlying the effects of dietary copper on the overall health parameters of suckling piglets model. Few studies have elucidated the relationship between the changes of ionic and metabolic homeostasis responses to dietary copper level. The growth performance data was obtained from 180 suckling piglets which access to different copper levels: 6 (low copper diet, LC), 20 (control diet, CON), and 300 (high copper diet, HC) mg·kg-1 copper (based on diet, supplementation from CuSO4), and offered ad libitum from d 14 until weaning at 40 d of age. Dietary high level copper (300 mg·kg-1) increased the ADG and ADFI during d 14 to 28 of piglets. Six elements (Mg, Na, K, P, Cu, and Mn) concentrations significantly changes in hair among the three treatment diets. The significant increased concentrations of Na and K, and decreased concentration of Mg and Mn in 300 mg·kg-1 than 20 mg·kg-1 copper diet was observed. In current study, with the increase in copper level from 20 to 300 mg·kg-1 in diet, the correlation between hair Na, K and Cu, Mn, Zn vanish. Hair Na and K were positively correlated with serum total antioxidant capacity (T-AOC) and negatively correlated with tumor necrosis factor-α (TNF-α). The hair Cu was negatively correlated with serum malondialdehyde (MDA), total bile acid (TBA). The fecal Cu was positively correlated with serum growth hormone (GH). The results suggested that the average daily gain (ADG) in 6 mg·kg-1 copper diet and the average daily feed intake (ADFI) in 20 mg·kg-1 copper diet were decreased than 300 mg·kg-1 copper diet during d 14 to 28 and the ADG was decreased in 6 and 20 mg·kg-1 copper diets in d 29 to 40 of piglets. Dietary 20 mg·kg-1 copper maintain ion homeostasis due to increase the number of positive correlations between macroelements-microelements in hair and serum. Significantly changed Na, K, Mg, Mn and Cu concentrations in hair can reflect the adverse effects of dietary 300 mg·kg-1 copper of suckling piglets. We believe our results may benefit people to gain a better understanding of the ion interactions and metabolic homeostasis of heavy metal elements that are critical to human and animal health.
Collapse
Affiliation(s)
- Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 233100, China. .,Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, 233100, China.
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xu Ji
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Xiaodan Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 233100, China.,Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, 233100, China.,Anhui AnFengT Animal Medicine Industry Co., LTD, Hefei, China
| |
Collapse
|
44
|
Combined Omics Analysis Further Unveils the Specific Role of Butyrate in Promoting Growth in Early-Weaning Animals. Int J Mol Sci 2023; 24:ijms24021787. [PMID: 36675302 PMCID: PMC9864007 DOI: 10.3390/ijms24021787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/08/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Abnormal mutations in the microbial structure of early-weaning mammals are an important cause of enteritis. Based on the multiple known beneficial functions of butyrate, we hypothesized that butyrate would alleviate the imbalance of intestinal homeostasis induced by early weaning in animals. However, the mechanisms of action between butyrate and intestinal microbes are still poorly explored. In this study, we aimed to investigate whether butyrate exerts beneficial effects on the structure of the intestinal flora of weanling rabbits and their intestinal homeostasis, growth and development, and we attempted to elucidate the potential mechanisms of action through a combined omics analysis. We found that dietary butyrate upregulated the transcription of tight junction-related proteins in the epithelial barrier and improved the intestinal microbial structure by suppressing harmful bacteria and promoting beneficial ones. Intestinal and plasma metabolomes were also altered. The bile acid secretion, α-linolenic acid, apoptotic, and prostate cancer pathways responded to the positive dietary butyrate-induced metabolic changes in the weanling rabbits, resulting in the inhibition of inflammation, improved antioxidant capacity, increased rates of cell proliferation and survival, and decreased levels of apoptosis. Additionally, dietary butyrate suppressed the release of pro-inflammatory factors and enhanced positive appetite regulation, which increased the average daily gain of the rabbits. These results demonstrated that dietary butyrate can help maintain the integrity of the intestinal epithelial barrier, improve the structural composition of the intestinal microflora, enhance organismal metabolism, inhibit inflammation, reduce post-weaning anorexia, and promote growth and development in early-weaning rabbits. These positive effects of dietary butyrate were exerted via the modulation of the microbe-gut-brain axis.
Collapse
|
45
|
Zheng Y, Wang G, Li R, Geng H, Lei X, Chen L, Wu S, Yao J, Deng L. Promotion of intestinal epithelial cell apoptosis by enterotoxigenic Escherichia coli via PKA-mediated inhibition of mTORC1 activation. Microbes Infect 2023; 25:105099. [PMID: 36642296 DOI: 10.1016/j.micinf.2023.105099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the main causative pathogen of diarrhea. It causes acute watery diarrhea that leads to rapid dehydration and prostration within hours. ETEC is still an important cause of neonatal and post-weaning diarrhea in pigs. However, the mechanism underlying ETEC-induced diarrhea is not yet clear. In this study, we investigated these mechanisms and found that the mTORC1 pathway plays a role in the host response to ETEC F4 infection. Specifically, we found that ETEC F4 treatment significantly repressed mTORC1 activity as well as cell proliferation, promoted apoptosis and regulated the expression of diarrhea-related genes via the promotion of PKA-mediated phosphorylation of SIN1, which plays a critical role in the assembly of mTORC2. These findings indicate that PKA is a checkpoint for ETEC-induced diarrhea. In terms of potential therapeutic strategies, we found that ZnSO4 dramatically rescued ETEC F4-induced the inhibition of mTORC1 activity and cell viability and the induction of apoptosis and alterations in the expression of diarrhea-related genes. Thus, the present findings demonstrate that ETEC F4 influences mTORC1 activation by inhibiting the assembly of mTORC2 through PKA-mediated phosphorylation of SIN1. Further, supplementation with ZnSO4 is an effective strategy for blocking the effect of ETEC F4 on mTORC1 activation, and it may have potential clinical applications in the treatment of ETEC F4-induced diarrhea.
Collapse
Affiliation(s)
- Yining Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guoyan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rongnuo Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huijun Geng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinjian Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
46
|
Liu H, Zhao J, Zhang W, Nie C. Impacts of sodium butyrate on intestinal mucosal barrier and intestinal microbial community in a weaned piglet model. Front Microbiol 2023; 13:1041885. [PMID: 36713180 PMCID: PMC9879053 DOI: 10.3389/fmicb.2022.1041885] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
Objective Butyrate is thought to enhance intestinal mucosal homeostasis, but the detailed mechanism remains unclear. Therefore, further investigation on the mechanism of butyrate regulation of intestinal mucosal homeostasis was performed. Materials and methods This study used weaned piglets with similar intestinal metabolic function to humans as a research model. The dietary supplemented 0.2% sodium butyrate group (0.2% S) and negative control group (CON) were established to detect the effects of butyrate on growth performance, intestinal tissue morphology, mucosal barrier function, and intestinal microbial community structure in weaned piglets. Results There was an increase in average daily gain (ADG) during three different experimental periods and a reduction in average daily feed intake (ADFI) and feed-to-gain ratio (F:G) during days 1-35 and days 15-35 in 0.2% S compared with CON (P > 0.05). Furthermore, villus height in the ileum and duodenum was increased, and crypt depths in the colon and jejunum were reduced in both groups (P < 0.05). Moreover, the ratio of villus height and crypt depth (V/C) in 0.2% S both in the ileum and jejunum was significantly increased (P < 0.05) compared with CON. The relative mRNA expression of PKC, MUC1, CLDN1, and ITGB1 was upregulated in the ileum of 0.2% S compared with CON (P < 0.05). The digesta samples of 0.2% S, both in the ileum (P < 0.05) and colon, contained greater intestinal bacterial abundance and diversity of probiotics, including Lactobacillus, Streptococcus, Megasphaera, and Blautia, which promoted amino acid metabolism and energy production and conversion in the colon and the synthesis of carbon-containing biomolecules in the ileum. Conclusion In summary, dietary supplementation with 0.2% sodium butyrate was shown to have a tendency to improve the growth performance of weaned piglets and enhance intestinal mucosal barrier function via altering the gut microbiota.
Collapse
|
47
|
Senchukova MA. Microbiota of the gastrointestinal tract: Friend or foe? World J Gastroenterol 2023; 29:19-42. [PMID: 36683718 PMCID: PMC9850957 DOI: 10.3748/wjg.v29.i1.19] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/05/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The gut microbiota is currently considered an external organ of the human body that provides important mechanisms of metabolic regulation and protection. The gut microbiota encodes over 3 million genes, which is approximately 150 times more than the total number of genes present in the human genome. Changes in the qualitative and quantitative composition of the microbiome lead to disruption in the synthesis of key bacterial metabolites, changes in intestinal barrier function, and inflammation and can cause the development of a wide variety of diseases, such as diabetes, obesity, gastrointestinal disorders, cardiovascular issues, neurological disorders and oncological concerns. In this review, I consider issues related to the role of the microbiome in the regulation of intestinal barrier function, its influence on physiological and pathological processes occurring in the body, and potential new therapeutic strategies aimed at restoring the gut microbiome. Herewith, it is important to understand that the gut microbiota and human body should be considered as a single biological system, where change of one element will inevitably affect its other components. Thus, the study of the impact of the intestinal microbiota on health should be considered only taking into account numerous factors, the role of which has not yet been fully elucidated.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
48
|
da Silva CA, Dias CP, Callegari MA, Romano GDS, Lais de Souza K, Jacob DV, Ulbrich AJ, Goossens T. Phytogenics and encapsulated sodium butyrate can replace antibiotics as growth promoters for lightly weaned piglets. PLoS One 2022; 17:e0279197. [PMID: 36548241 PMCID: PMC9778559 DOI: 10.1371/journal.pone.0279197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
The objective of this study was to evaluate the effect of essential oils plus dry herbs (PHYTO) and encapsulated sodium butyrate (BUT) supplementation compared with enramycin (ENR), as a growth promoter, on the performance, diarrhoea control and intestinal microbiota in lightly weaned piglets. Two hundred weaned piglets, 20 days old, 4.69 ± 0.56 kg, were submitted during the nursery phase (20 to 69 days of age) to four treatments: control (CTR)-without any additive supplementation; ENR (with 8 ppm of enramycin throughout), BUT (with 2000 ppm between 20 to 34 d, 1500 ppm between 34 to 48 d and 1000 ppm between 48 to 69 d), and PHYTO (150 ppm between 20 to 48 d). At 62 days old, forty piglets (10 replicates per treatment) were slaughtered to perform bacterial identification through 16S rRNA (V3-V4) sequencing of the caecal content. During the second phase of the trial (34 to 48 days), the BUT group showed higher DWG (P = 0.023) and BW (P = 0.039) than the CTR group, and all groups that received additives had better FCR than the CTR group (P = 0.001). In the last phase of the trial (48 to 69 days), the ENR group presented a better FCR (P = 0.054) than the CRT and other groups. In the total period (20 to 69 days), ENR and BUT showed better FCR (P = 0.006) than CRT. Diarrhoea incident data showed differences (P<0.05), favouring the BUT treatment compared to the CTR. Only the Megasphaeraceae and Streptococcaceae families showed differences (p<0.05) in relative abundance between CTR and PHYTO and between CTR and BUT, respectively. Differential abundances of the Megasphaera and Streptococcus genera were observed between CTR and PHYTO and CTR and BUT. Phytogenics and encapsulated sodium butyrate are able and effective for modulating the specific caecal microbiota, improving performance and controlling diarrhoea occurrence.
Collapse
Affiliation(s)
- Caio Abércio da Silva
- Animal Sciences Department, Center of Agrarian Sciences, State University of Londrina, Londrina, Paraná, Brazil
- * E-mail:
| | | | | | | | | | | | | | - Tim Goossens
- Nutriad Animal Nutrition Ltda., Campinas, São Paulo, Brazil
| |
Collapse
|
49
|
Ma N, Chen X, Johnston LJ, Ma X. Gut microbiota-stem cell niche crosstalk: A new territory for maintaining intestinal homeostasis. IMETA 2022; 1:e54. [PMID: 38867904 PMCID: PMC10989768 DOI: 10.1002/imt2.54] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 06/14/2024]
Abstract
Intestinal epithelium undergoes rapid cellular turnover, relying on the local niche, to support intestinal stem cells (ISCs) function and self-renewal. Research into the association between ISCs and disease continues to expand at a rapid rate. However, the detailed interaction of ISCs and gut microbes remains to be elucidated. Thus, this review witnessed major advances in the crosstalk between ISCs and gut microbes, delivering key insights into (1) construction of ISC niche and molecular mechanism of how to jointly govern epithelial homeostasis and protect against intestinal diseases with the participation of Wnt, bone morphogenetic protein, and Notch; (2) differentiation fate of ISCs affect the gut microbiota. Meanwhile, the presence of intestinal microbes also regulates ISC function; (3) microbiota regulation on ISCs by Wnt and Notch signals through pattern recognition receptors; (4) how do specific microbiota-related postbiotics influence ISCs to maintain intestinal epithelial regeneration and homeostasis that provide insights into a promising alternative therapeutic method for intestinal diseases. Considering the detailed interaction is still unclear, it is necessary to further explore the regulatory role of gut microbiota on ISCs to utilize microbes to alleviate gut disorders. Furthermore, these major advances collectively drive us ever closer to breakthroughs in regenerative medicine and cancer treatment by microbial transplantation in the clinic.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xiyue Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Lee J. Johnston
- West Central Research & Outreach CenterUniversity of MinnesotaMorrisMinnesotaUSA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
50
|
Zhang H, Zheng Y, Zha X, Ma Y, Liu X, Elsabagh M, Wang H, Wang M. Dietary L-Arginine or N-Carbamylglutamate Alleviates Colonic Barrier Injury, Oxidative Stress, and Inflammation by Modulation of Intestinal Microbiota in Intrauterine Growth-Retarded Suckling Lambs. Antioxidants (Basel) 2022; 11:antiox11112251. [PMID: 36421439 PMCID: PMC9687183 DOI: 10.3390/antiox11112251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Our previous studies have revealed that dietary N-carbamylglutamate (NCG) and L-arginine (Arg) supplementation improves redox status and suppresses apoptosis in the colon of suckling Hu lambs with intrauterine growth retardation (IUGR). However, no studies have reported the function of Arg or NCG in the colonic microbial communities, barrier function, and inflammation in IUGR-suckling lambs. This work aimed to further investigate how dietary Arg or NCG influences the microbiota, barrier function, and inflammation in the colon of IUGR lambs. Forty-eight newborn Hu lambs of 7 d old were assigned to four treatment groups (n = 12 per group; six male, six female) as follows: CON (normal birth weight, 4.25 ± 0.14 kg), IUGR (3.01 ± 0.12 kg), IUGR + Arg (2.99 ± 0.13 kg), and IUGR + NCG (3.03 ± 0.11 kg). A total of 1% Arg or 0.1% NCG was supplemented in a basal diet of milk replacer, respectively. Lambs were fed the milk replacer for 21 d until 28 d after birth. Compared to the non-supplemented IUGR lambs, the transepithelial electrical resistance (TER) was higher, while fluorescein isothiocyanate dextran 4 kDa (FD4) was lower in the colon of the NCG- or Arg-supplemented IUGR lambs (p < 0.05). The IUGR lambs exhibited higher (p < 0.05) colonic interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, reactive oxygen species (ROS), and malondialdehyde (MDA) levels than the CON lambs; the detrimental effects of IUGR on colonic proinflammatory cytokine concentrations and redox status were counteracted by dietary Arg or NCG supplementation. Both IUGR + Arg and IUGR + NCG lambs exhibited an elevated protein and mRNA expression of Occludin, Claudin-1, and zonula occludens-1 (ZO-1) compared to the IUGR lambs (p < 0.05). Additionally, the lipopolysaccharide (LPS) concentration was decreased while the levels of acetate, butyrate, and propionate were increased in IUGR + Arg and IUGR + NCG lambs compared to the IUGR lambs (p < 0.05). The relative abundance of Clostridium, Lactobacillus, and Streptococcus was lower in the colonic mucosa of the IUGR lambs than in the CON lambs (p < 0.05) but was restored upon the dietary supplementation of Arg or NCG to the IUGR lambs (p < 0.05). Both Arg and NCG can alleviate colonic barrier injury, oxidative stress (OS), and inflammation by the modulation of colonic microbiota in IUGR-suckling lambs. This work contributes to improving knowledge about the crosstalk among gut microbiota, immunity, OS, and barrier function and emphasizes the potential of Arg or NCG in health enhancement as feed additives in the early life nutrition of ruminants.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yi Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde 51240, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (H.W.); (M.W.)
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (H.W.); (M.W.)
| |
Collapse
|