1
|
Umakoshi T, Urakami T, Kidoguchi H, Yang K, Verma P, Sato H, Higashi M, Tsukamoto I. Raman Spectroscopic and DFT Study of COA-Cl and Its Analogues. J Phys Chem A 2023; 127:1849-1856. [PMID: 36800899 DOI: 10.1021/acs.jpca.2c08382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
COA-Cl is a newly synthesized adenosine analogue that exhibits various physiological activities. Its angiogenic, neurotropic, and neuroprotective potencies make it promising for the development of medicines. In this study, we show Raman spectroscopic study of COA-Cl to elucidate molecular vibrations and related chemical properties. Density functional theory calculations were combined with the Raman spectroscopic data to understand the details of each vibrational mode. Comparative analysis with adenine, adenosine, and other nucleic acid analogues enabled identification of unique Raman peaks originating from the cyclobutane moiety and chloro group of COA-Cl. This study provides fundamental knowledge and crucial insights for further development of COA-Cl and related chemical species.
Collapse
Affiliation(s)
- Takayuki Umakoshi
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Takumi Urakami
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Haruki Kidoguchi
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keishi Yang
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Prabhat Verma
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.,Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Ikuko Tsukamoto
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa 761-0793, Japan
| |
Collapse
|
2
|
Yan YC, Zhang H, Hu K, Zhou SM, Chen Q, Qu RY, Yang GF. A mini-review on synthesis and antiviral activity of natural product oxetanocin A derivatives. Bioorg Med Chem 2022; 72:116968. [PMID: 36054994 DOI: 10.1016/j.bmc.2022.116968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Oxetanocin A (Oxt-A), a novel oxetanosyl N-glycoside nucleoside, was isolated from Bacillus megaterium in 1986. It carries an oxetane ring on the sugar moiety of the nucleoside scaffold, which contributes to differences in its structure from those of common tetrahydrofuranyl-based nucleosides. In view of the unique 3D-spatial framework, the complete synthesis of Oxt-A has been achieved by multiple research groups. The pharmacological properties of this natural product have also been broadly investigated by pharmacists and chemists since its discovery. Notably, the potential antiviral effect of Oxt-A has captured attention of researchers in the field of antiviral agent development. Furthermore, epidemic outbreaks caused by viruses have been stimulating the preparation and modification of various Oxt-A analogs over the past few decades. However, none of the studies have overviewed the antiviral efficacies of this naturally occurring scaffold yet. Thus, the present review summarizes the synthesis, structural modification, and antiviral activities of Oxt-A and its derivatives. We believe that these comprehensive descriptions will provide a novel perspective for the discovery of antivirus drugs with well-improved performance and pave newer paths for combating sudden public health issues triggered by viruses in the future.
Collapse
Affiliation(s)
- Yao-Chao Yan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Hu Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Kai Hu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Shao-Meng Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Qiong Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
3
|
Sakakibara N, Igarashi J, Takata M, Konishi R, Kato Y, Tsukamoto I. Synthesis and Evaluation of Novel Cyclopropane Nucleoside as Potential Tube Formation Agents. Chem Pharm Bull (Tokyo) 2017; 65:504-510. [DOI: 10.1248/cpb.c17-00056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Norikazu Sakakibara
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University
| | - Junsuke Igarashi
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University
| | - Maki Takata
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University
| | - Ryoji Konishi
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University
| | - Yoshihisa Kato
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University
| | - Ikuko Tsukamoto
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University
| |
Collapse
|