1
|
Karakoese Z, Le-Trilling VTK, Schuhenn J, Francois S, Lu M, Liu J, Trilling M, Hoffmann D, Dittmer U, Sutter K. Targeted mutations in IFNα2 improve its antiviral activity against various viruses. mBio 2023; 14:e0235723. [PMID: 37874130 PMCID: PMC10746204 DOI: 10.1128/mbio.02357-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE The potency of interferon (IFN)α to restrict viruses was already discovered in 1957. However, until today, only IFNα2 out of the 12 distinct human IFNα subtypes has been therapeutically used against chronic viral infections. There is convincing evidence that other IFNα subtypes are far more efficient than IFNα2 against many viruses. In order to identify critical antiviral residues within the IFNα subtype sequence, we designed hybrid molecules based on the IFNα2 backbone with individual sequence motifs from the more potent subtypes IFNα6 and IFNα14. In different antiviral assays with HIV or HBV, residues binding to IFNAR1 as well as combinations of residues in the IFNAR1 binding region, the putative tunable anchor, and residues outside these regions were identified to be crucial for the antiviral activity of IFNα. Thus, we designed artificial IFNα molecules, based on the clinically approved IFNα2 backbone, but with highly improved antiviral activity against several viruses.
Collapse
Affiliation(s)
- Zehra Karakoese
- University Hospital Essen, University of Duisburg-Essen, Institute for Virology, Essen, Germany
- University Hospital Essen, University of Duisburg-Essen, Institute for Translational HIV Research, Essen, Germany
| | | | - Jonas Schuhenn
- University Hospital Essen, University of Duisburg-Essen, Institute for Virology, Essen, Germany
| | - Sandra Francois
- University Hospital Essen, University of Duisburg-Essen, Institute for Virology, Essen, Germany
| | - Mengji Lu
- University Hospital Essen, University of Duisburg-Essen, Institute for Virology, Essen, Germany
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mirko Trilling
- University Hospital Essen, University of Duisburg-Essen, Institute for Virology, Essen, Germany
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Daniel Hoffmann
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
- Research Group Bioinformatics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- University Hospital Essen, University of Duisburg-Essen, Institute for Virology, Essen, Germany
- University Hospital Essen, University of Duisburg-Essen, Institute for Translational HIV Research, Essen, Germany
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Kathrin Sutter
- University Hospital Essen, University of Duisburg-Essen, Institute for Virology, Essen, Germany
- University Hospital Essen, University of Duisburg-Essen, Institute for Translational HIV Research, Essen, Germany
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Bandi S, Singh SM, Shah DD, Upadhyay V, Mallela KM. 2D NMR Analysis of the Effect of Asparagine Deamidation Versus Methionine Oxidation on the Structure, Stability, Aggregation, and Function of a Therapeutic Protein. Mol Pharm 2019; 16:4621-4635. [DOI: 10.1021/acs.molpharmaceut.9b00719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Swati Bandi
- Department of Pharmaceutical Sciences & Center for Pharmaceutical Biotechnology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Surinder M. Singh
- Department of Pharmaceutical Sciences & Center for Pharmaceutical Biotechnology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Dinen D. Shah
- Department of Pharmaceutical Sciences & Center for Pharmaceutical Biotechnology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Vaibhav Upadhyay
- Department of Pharmaceutical Sciences & Center for Pharmaceutical Biotechnology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Krishna M.G. Mallela
- Department of Pharmaceutical Sciences & Center for Pharmaceutical Biotechnology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
3
|
Talebi S, Saeedinia A, Zeinoddini M, Ahmadpour F, Sadeghizadeh M. Evaluation of a single amino acid substitution at position 79 of human IFN-α2b in interferon-receptor assembly and activity. Prep Biochem Biotechnol 2019; 49:735-743. [PMID: 31135267 DOI: 10.1080/10826068.2019.1566143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Type I interferons (IFNs) are homologous cytokines that bind to a cell surface receptor and establish signaling pathways that motivate immune responses. The purpose of the current study is to assess the activity of a novel-engineered IFN-α2b. The crystallographic structure of IFN-α2b and its receptors was acquired from Protein Data Bank. Various amino acid substitutions were designed based on structural properties and other biological characteristics of residues to find the most effective amino acid on IFN affinity to advanced activities. The IFN-α2b mutants and receptors have been modeled and the interactions between two proteins have been studied as in silico by protein-protein docking for both mutants and native forms. The proper nucleic acid sequence IFN-α2 (T79Q) has been prepared based on the selected mutant. The modified IFN gene was cloned in pcDNA 3.1(-) and introduced to Chinese Hamster Ovary (CHO) cell line. Antiviral and antiproliferative assays of native and IFN-α2 (T79Q) proteins were performed in vitro. The results showed two-fold increasing in IFN-α2 (T79Q) activity (antiviral and antiproliferative activity) in comparison to native IFN-α2b. This engineered IFN-α2b may have significant novel therapeutic applications and in silico studies can be an influential method for practical research function and structure of these molecules.
Collapse
Affiliation(s)
- Samira Talebi
- a Malek Ashtar University of Technology , Tehran , Iran.,b Trauma Research Centre, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | | | | | - Fathollah Ahmadpour
- b Trauma Research Centre, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Majid Sadeghizadeh
- c Department of Genetics, School of Biological Sciences, Tarbiat Modares University , Tehran , Iran
| |
Collapse
|
4
|
Chen C, Zhu X, Xu W, Yang F, Zhang G, Wu L, Zheng Y, Gao Z, Xie C, Peng L. IFNA2 p.Ala120Thr impairs the inhibitory activity of Interferon-α2 against the hepatitis B virus through altering its binding to the receptor. Antiviral Res 2017; 147:11-18. [PMID: 28958921 DOI: 10.1016/j.antiviral.2017.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/03/2017] [Accepted: 09/22/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Our previous study found that a rare genetic mutation IFNA2p.Ala120Thr affects the structure of IFN-α2 and contributes to increased host susceptibility to CHB. However, the way in which the single amino acid residue mutation affects IFN-α2 activity is unclear. The purpose of this research was to investigate the effects and mechanisms of IFNA2p.Ala120Thr on IFN-α2 activity. METHODS Plasmid transfection of BL-21 was used to construct both wild type IFNA2 (wt) and p.Ala120Thr IFNA2 (mut) proteins. The HepG2-NTCP model was established using a lentiviral vector (LV003). Anti-HBV activity of wt and mut were tested on HepG2-NTCP infected cells with HBV, through the detection of HBsAg and HBcAg using immunohistochemistry and by detecting HBV DNA with RT PCR. IF and Co-IP were performed in order to investigate the binding of the IFNA2 protein and its receptor. The changes in IFNAR density and signal molecule phosphorylation were measured with western blotting. We used qPCR to further explore anti-HBV protein expression including APOBEC3, MxA, OAS1, and PKR. RESULTS Cell model experiments confirmed that IFNA2p.Ala120Thr impairs anti-HBV activity of IFN-α2. Co-IP tests indicated that the binding of mut-IFNα to IFNR was weaker in the mut-treated group. IFNR density on the cells surface increased after treatment with wt-IFN-α2. Obvious differences in the STAT phosphorylation profiles were seen between the mut-treated and wt-treated groups. The expression of four main kinds of anti-HBV proteins induced by mut was higher in the HepG2-NTCP cells. Thus, IFNA2p.Ala120Thr affects anti-HBV activity of IFN-α2. CONCLUSION IFNA2p.Ala120Thr impairs the anti-HBV ability of IFN-a2, mainly by reducing its binding to the IFN receptor. Mut IFN-a2 has a very weak binding, barely inducing STAT phosphorylation, and induces the expression of only a low level of related anti-HBV ISG. This is quite different from the effects of wt IFN-a2, implying that modifying the key structural position of IFNa may lead to the modulation of targeted gene expression.
Collapse
Affiliation(s)
- Chuming Chen
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Xiang Zhu
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenxiong Xu
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fangji Yang
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Genglin Zhang
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lina Wu
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongyuan Zheng
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chan Xie
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
5
|
Purification and biological characterization of soluble, recombinant mouse IFNβ expressed in insect cells. Protein Expr Purif 2013; 94:7-14. [PMID: 24211771 DOI: 10.1016/j.pep.2013.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/20/2022]
Abstract
Interferon β (IFNβ) is a member of the type I interferon family of cytokines widely recognised for their anti-viral, anti-proliferative and immunomodulatory properties. Recombinant, biologically active forms of this cytokine are used clinically for the treatment of multiple sclerosis and in laboratories to study the role of this cytokine in health and disease. Established methods for expression of IFNβ utilise either bacterial systems from which the insoluble recombinant proteins must be refolded, or mammalian expression systems in which large volumes of cell culture are required for recovery of acceptable yields. Utilising the baculovirus expression system and Trichoplusia ni (Cabbage Looper) BTI-TN-5B1-4 cell line, we report a reproducible method for production and purification of milligram/litre quantities of biologically active murine IFNβ. Due to the design of our construct and the eukaryotic nature of insect cells, the resulting soluble protein is secreted allowing purification of the Histidine-tagged natively-folded protein from the culture supernatant. The IFNβ purification method described is a two-step process employing immobilised metal-ion affinity chromatography (IMAC) and reverse-phase high performance liquid chromatography (RP-HPLC) that results in production of significantly more purified IFNβ than any other reported eukaryotic-based expression system. Recombinant murine IFNβ produced by this method was natively folded and demonstrated hallmark type I interferon biological effects including antiviral and anti-proliferative activities, and induced genes characteristic of IFNβ activity in vivo. Recombinant IFNβ also had specific activity levels exceeding that of the commercially available equivalent. Together, our findings provide a method for production of highly pure, biologically active murine IFNβ.
Collapse
|
6
|
Vázquez N, Schmeisser H, Dolan MA, Bekisz J, Zoon KC, Wahl SM. Structural variants of IFNα preferentially promote antiviral functions. Blood 2011; 118:2567-77. [PMID: 21757613 PMCID: PMC3167361 DOI: 10.1182/blood-2010-12-325027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 06/25/2011] [Indexed: 12/22/2022] Open
Abstract
IFNα, a cytokine with multiple functions in innate and adaptive immunity and a potent inhibitor of HIV, exerts antiviral activity, in part, by enhancing apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3 (APOBEC3) family members. Although IFNα therapy is associated with reduced viral burden, this cytokine also mediates immune dysfunction and toxicities. Through detailed mapping of IFNα receptor binding sites, we generated IFNα hybrids and mutants and determined that structural changes in the C-helix alter the ability of IFN to limit retroviral activity. Selective IFNα constructs differentially block HIV replication and their directional magnitude of inhibition correlates with APOBEC3 levels. Importantly, certain mutants exhibited reduced toxicity as reflected by induced indoleamine 2,3-dioxygenase (IDO), suggesting discreet and shared intracellular signaling pathways. Defining IFN structure and function relative to APOBEC and other antiviral genes may enable design of novel IFN-related molecules preserving beneficial antiviral roles while minimizing negative effects.
Collapse
Affiliation(s)
- Nancy Vázquez
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Schmeisser H, Mejido J, Balinsky CA, Morrow AN, Clark CR, Zhao T, Zoon KC. Identification of alpha interferon-induced genes associated with antiviral activity in Daudi cells and characterization of IFIT3 as a novel antiviral gene. J Virol 2010; 84:10671-80. [PMID: 20686046 PMCID: PMC2950578 DOI: 10.1128/jvi.00818-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 07/22/2010] [Indexed: 01/01/2023] Open
Abstract
A novel assay was developed for Daudi cells in which the antiviral (AV) and antiproliferative (AP) activities of interferon (IFN) can be measured simultaneously. Using this novel assay, conditions allowing IFN AV protection but no growth inhibition were identified and selected. Daudi cells were treated under these conditions, and gene expression microarray analyses were performed. The results of the analysis identified 25 genes associated with IFN-α AV activity. Upregulation of 23 IFN-induced genes was confirmed by using reverse transcription-PCR. Of 25 gene products, 17 were detected by Western blotting at 24 h. Of the 25 genes, 10 have not been previously linked to AV activity of IFN-α. The most upregulated gene was IFIT3 (for IFN-induced protein with tetratricopeptide repeats 3). The results from antibody neutralizing experiments suggested an association of the identified genes with IFN-α AV activity. This association was strengthened by results from IFIT3-small interfering RNA transfection experiments showing decreased expression of IFIT3 and a reduction in the AV activity induced by IFN-α. Overexpression of IFIT3 resulted in a decrease of virus titer. Transcription of AV genes after the treatment of cells with higher concentrations of IFN having an AP effect on Daudi cells suggested pleiotropic functions of identified gene products.
Collapse
Affiliation(s)
- H. Schmeisser
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892
| | - J. Mejido
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892
| | - C. A. Balinsky
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892
| | - A. N. Morrow
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892
| | - C. R. Clark
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892
| | - T. Zhao
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892
| | - K. C. Zoon
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
8
|
Akabayov SR, Biron Z, Lamken P, Piehler J, Anglister J. NMR mapping of the IFNAR1-EC binding site on IFNalpha2 reveals allosteric changes in the IFNAR2-EC binding site. Biochemistry 2010; 49:687-95. [PMID: 20047337 DOI: 10.1021/bi901313x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All type I interferons (IFNs) bind to a common cell-surface receptor consisting of two subunits. IFNs initiate intracellular signal transduction cascades by simultaneous interaction with the extracellular domains of its receptor subunits, IFNAR1 and IFNAR2. In this study, we mapped the surface of IFNalpha2 interacting with the extracellular domain of IFNAR1 (IFNAR1-EC) by following changes in or the disappearance of the (1)H-(15)N TROSY-HSQC cross peaks of IFNalpha2 caused by the binding of the extracellular domain of IFNAR1 (IFNAR1-EC) to the binary complex of IFNalpha2 with IFNAR2-EC. The NMR study of the 89 kDa complex was conducted at pH 8 and 308 K using an 800 MHz spectrometer. IFNAR1 binding affected a total of 47 of 165 IFNalpha2 residues contained in two large patches on the face of the protein opposing the binding site for IFNAR2 and in a third patch located on the face containing the IFNAR2 binding site. The first two patches form the IFNAR1 binding site, and one of these matches the IFNAR1 binding site previously identified by site-directed mutagenesis. The third patch partially matches the IFNalpha2 binding site for IFNAR2-EC, indicating allosteric communication between the binding sites for the two receptor subunits.
Collapse
Affiliation(s)
- Sabine Ruth Akabayov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
9
|
Pan M, Kalie E, Scaglione BJ, Raveche ES, Schreiber G, Langer JA. Mutation of the IFNAR-1 receptor binding site of human IFN-alpha2 generates type I IFN competitive antagonists. Biochemistry 2008; 47:12018-27. [PMID: 18937499 DOI: 10.1021/bi801588g] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Type I interferons (IFNs) are multifunctional cytokines that activate cellular responses by binding a common receptor consisting of two subunits, IFNAR-1 and IFNAR-2. Although the binding of IFNs to IFNAR-2 is well characterized, the binding to the lower affinity IFNAR-1 remains less well understood. Previous reports identified a region of human IFN-alpha2 on the B and C helices ("site 1A": N65, L80, Y85, Y89) that plays a key role in binding IFNAR-1 and contributes strongly to differential activation by various type I IFNs. The current studies demonstrate that residues on the D helix are also involved in IFNAR-1 binding. In particular, residue 120 (Arg in IFN-alpha2; Lys in IFN-alpha2/alpha1) appears to be a "hot-spot" residue: substitution by alanine significantly decreased biological activity, and the charge-reversal mutation of residue 120 to Glu caused drastic loss of antiviral and antiproliferative activity for both IFN-alpha2 and IFN-alpha2/alpha1. Mutations in residues of helix D maintained their affinity for IFNAR-2 but had decreased affinity for IFNAR-1. Single-site or multiple-site mutants in the IFNAR-1 binding site that had little or no detectable in vitro biological activity were capable of blocking in vitro antiviral and antiproliferative activity of native IFN-alpha2; i.e., they are type I IFN antagonists. These prototype IFN antagonists can be developed further for possible therapeutic use in systemic lupus erythematosus, and analogous molecules can be designed for use in animal models.
Collapse
Affiliation(s)
- Manjing Pan
- Department of Molecular Genetics, Microbiology, and Immunology, UMDNJRobert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
10
|
Schmeisser H, Gorshkova I, Brown PH, Kontsek P, Schuck P, Zoon KC. Two interferons alpha influence each other during their interaction with the extracellular domain of human type interferon receptor subunit 2. Biochemistry 2007; 46:14638-49. [PMID: 18027911 DOI: 10.1021/bi7012036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction between two human interferons alpha (IFN-alphas) and the extracellular (EC) domain of human type I IFN receptor subunit 2 (IFNAR2) was analyzed. Previous experiments using Daudi cells showed that IFN-alpha21b and some IFN-alpha hybrids (made from IFN-alpha2c and 21b) competed poorly for the IFN-alpha2b binding site. This study examined the causes of the poor competition between these IFN-alphas. IFN-alpha2c and the IFN hybrid CM3 {IFN-alpha21b(1-75)(81-95)/IFN-alpha2c(76-80) (96-166), Y86K} were selected for this study based on their cell binding and biological properties. Competitive binding ELISA, native electrophoresis followed by Western blot, electrospray ionization mass spectrometry (ESI-MS), surface plasmon resonance biosensor (SPR) analysis, as well as neutralization of antiproliferative activities on Daudi cells in the presence of soluble IFNAR2-EC show evidence that each of the described IFN-alpha subtypes affected the binding of the other IFN-alpha to IFNAR2-EC by affecting the stability of the complex, i.e., dissociation of the complex. Moreover, native electrophoresis with different IFNAR2-EC mutants showed that IFN-alpha2c and CM3 utilize different amino acids in the binding domain of IFNAR2-EC. In addition to that, analytical ultracentrifugation (AUC) revealed differences in the oligomeric state of the two studied interferons. Our results demonstrated that two individual IFN-alphas interact differentially with IFNAR2-EC and influence each other during this interaction. This study contributes to the understanding of the mutual interaction between multiple IFN-alpha subtypes during the competition for binding to the receptor.
Collapse
Affiliation(s)
- Hana Schmeisser
- National Institute of Allergy and Infectious Diseases and National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Matsumiya T, Prescott SM, Stafforini DM. IFN-epsilon mediates TNF-alpha-induced STAT1 phosphorylation and induction of retinoic acid-inducible gene-I in human cervical cancer cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:4542-9. [PMID: 17878351 DOI: 10.4049/jimmunol.179.7.4542] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Retinoic acid inducible gene-I (RIG-I) plays important roles during innate immune responses to viral infections and as a transducer of cytokine signaling. The mechanisms of RIG-I up-regulation after cytokine stimulation are incompletely characterized. It was previously reported that IFN-gamma induces the expression of RIG-I in endothelial cells. In this study, we characterized the mechanism of type I IFN-mediated up-regulation of RIG-I in HeLa cells and found that, in addition to type I IFN, TNF-alpha, a cytokine that regulates innate immune responses, induced expression of RIG-I. To investigate whether TNF-alpha- and type I IFN-mediated up-regulations of RIG-I were causally related, we studied the kinetics of these responses. Our results were consistent with a model in which TNF-alpha functioned upstream of type I IFNs. The ability of TNF-alpha to up-regulate RIG-I required protein synthesis, expression of functional type I IFNRs, and STAT1 signaling. We also found that IFN-epsilon was the only IFN isoform expressed constitutively in HeLa cells and that its expression was up-regulated in response to stimulation with TNF-alpha. The mechanism of up-regulation involved stabilization of IFN-epsilon mRNA in the absence of transcriptional activation. Silencing the expression of IFN-epsilon attenuated STAT1 expression and phosphorylation and inhibited RIG-I expression, providing additional support for the participation of IFN-epsilon upstream of STAT1. Our findings support a sequential mechanism whereby TNF-alpha leads to stabilization of IFN-epsilon mRNA, increased IFN-epsilon synthesis, engagement of type I IFNRs, increased STAT1 expression and phosphorylation, and up-regulation of RIG-I expression. These findings have implications for our understanding of the immune responses that follow cytokine stimulation.
Collapse
Affiliation(s)
- Tomoh Matsumiya
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
12
|
Schmeisser H, Kontsek P, Esposito D, Gillette W, Schreiber G, Zoon KC. Binding Characteristics of IFN-alpha Subvariants to IFNAR2-EC and Influence of the 6-Histidine Tag. J Interferon Cytokine Res 2007; 26:866-76. [PMID: 17238829 DOI: 10.1089/jir.2006.26.866] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The expression, purification, detection, and assay of recombinant proteins have been made more convenient and rapid by the use of small affinity tags. To facilitate the purification of interferon-alpha2c (IFN-alpha2c) by metal chelate affinity chromatography, N-terminal 6-histidine tag was introduced via genetic manipulation. Two preparations of IFN material were purified; one contained IFN-alpha2c with the 6-histidine tag, and the other contained IFN-alpha2c without the 6-histidine tag. The antigenic properties of the human IFN-alpha2c subvariant with and without the 6-histidine tag, as well as the effects of the N-terminal 6-histidine tag on IFN-alpha2c interaction with the extracellular domain of human IFN-alpha receptor chain 2 (IFNAR2-EC) were examined. For the purposes of this study, IFNs were characterized by Western blots with anti-IFN monoclonal antibodies (mAb) and bioassays. Immunoblot analyses showed differences between IFN-alpha2c-6-histidine tag and IFN-alpha2a, b, c in their interaction with IFNAR2-EC. We also observed differences between IFN-alpha2c-6-histidine tag and IFN-alpha2a, b, c in bioactivities. This study is the first report that shows that an N-terminal 6-histidine tag on IFN-alpha2c can affect its interaction with receptor and cause a different bioactivity.
Collapse
|
13
|
Jaks E, Gavutis M, Uzé G, Martal J, Piehler J. Differential receptor subunit affinities of type I interferons govern differential signal activation. J Mol Biol 2006; 366:525-39. [PMID: 17174979 DOI: 10.1016/j.jmb.2006.11.053] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2006] [Revised: 11/15/2006] [Accepted: 11/15/2006] [Indexed: 12/17/2022]
Abstract
Type I interferons (IFNs) elicit antiviral, antiproliferative and immunmodulatory responses by binding to a shared cell surface receptor comprising the transmembrane proteins ifnar1 and ifnar2. Activation of differential response patterns by IFNs has been observed, suggesting that members of the family play different roles in innate immunity. The molecular basis for differential signaling has not been identified yet. Here, we have investigated the recognition of various IFNs including several human IFNalpha species, human IFNomega and human IFNbeta as well as ovine IFNtau2 by the receptor subunits in detail. Binding to the extracellular domains of ifnar1 (ifnar1-EC) and ifnar2 (ifnar2-EC) was monitored in real time by reflectance interference and total internal reflection fluorescence spectroscopy. For all IFNs investigated, competitive 1:1 interaction not only with ifnar2-EC but also with ifnar1-EC was shown. Furthermore, ternary complex formation was studied with ifnar1-EC and ifnar2-EC tethered onto solid-supported membranes. These analyses confirmed that the signaling complexes recruited by IFNs have very similar architectures. However, differences in rate and affinity constants over several orders of magnitude were observed for both the interactions with ifnar1-EC and ifnar2-EC. These data were correlated with the potencies of ISGF3 activation, antiviral and anti-proliferative activity on 2fTGH cells. The ISGF3 formation and antiviral activity correlated very well with the binding affinity towards ifnar2. In contrast, the affinity towards ifnar1 played a key role for antiproliferative activity. A striking correlation was observed for relative binding affinities towards ifnar1 and ifnar2 with the differential antiproliferative potency. This correlation was confirmed by systematically engineering IFNalpha2 mutants with very high differential antiproliferative potency.
Collapse
Affiliation(s)
- Eva Jaks
- Institute of Biochemistry, Johann Wolfgang Goethe-University Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
14
|
Jaitin DA, Roisman LC, Jaks E, Gavutis M, Piehler J, Van der Heyden J, Uze G, Schreiber G. Inquiring into the differential action of interferons (IFNs): an IFN-alpha2 mutant with enhanced affinity to IFNAR1 is functionally similar to IFN-beta. Mol Cell Biol 2006; 26:1888-97. [PMID: 16479007 PMCID: PMC1430259 DOI: 10.1128/mcb.26.5.1888-1897.2006] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alpha and beta interferons (IFN-alpha and IFN-beta) are multifunctional cytokines that exhibit differential activities through a common receptor composed of the subunits IFNAR1 and IFNAR2. Here we combined biophysical and functional studies to explore the mechanism that allows the alpha and beta IFNs to act differentially. For this purpose, we have engineered an IFN-alpha2 triple mutant termed the HEQ mutant that mimics the biological properties of IFN-beta. Compared to wild-type (wt) IFN-alpha2, the HEQ mutant confers a 30-fold higher binding affinity towards IFNAR1, comparable to that measured for IFN-beta, resulting in a much higher stability of the ternary complex as measured on model membranes. The HEQ mutant, like IFN-beta, promotes a differentially higher antiproliferative effect than antiviral activity. Both bring on a down-regulation of the IFNAR2 receptor upon induction, confirming an increased ternary complex stability of the plasma membrane. Oligonucleotide microarray experiments showed similar gene transcription profiles induced by the HEQ mutant and IFN-beta and higher levels of gene induction or repression than those for wt IFN-alpha2. Thus, we show that the differential activities of IFN-beta are directly related to the binding affinity for IFNAR1. Conservation of the residues mutated in the HEQ mutant within IFN-alpha subtypes suggests that IFN-alpha has evolved to bind IFNAR1 weakly, apparently to sustain differential levels of biological activities compared to those induced by IFN-beta.
Collapse
Affiliation(s)
- Diego A Jaitin
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Roisman LC, Jaitin DA, Baker DP, Schreiber G. Mutational analysis of the IFNAR1 binding site on IFNalpha2 reveals the architecture of a weak ligand-receptor binding-site. J Mol Biol 2005; 353:271-81. [PMID: 16171819 DOI: 10.1016/j.jmb.2005.08.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 08/22/2005] [Accepted: 08/22/2005] [Indexed: 10/25/2022]
Abstract
Type I interferons activate cellular responses by forming a ternary complex with two receptor components, IFNAR1 and IFNAR2. While the binding of the IFNAR2 receptor to interferon is of high affinity and well characterized, the binding to IFNAR1 is weak, transient, and poorly understood. Here, we mapped the complete binding region of IFNAR1 on IFNalpha2 by creating a panel of 21 single alanine mutant proteins, and determined their binding affinities. The IFNAR1 binding site on IFNalpha2 maps to the center of the B and C helices, opposite to the binding site for IFNAR2. No hot spots for binding were found in the interface, with individual mutations having an up to fivefold effect on binding. Of the nine residues that affected binding, three adjacent conserved residues, located on the B helix, conferred an increase in the binding affinity to IFNAR1, as well as an increase in the biological activity of the interferon mutant. This suggests that binding of alpha interferons to the IFNAR1 receptor is sub-optimal. A correlation between binding affinity and biological activity was found, albeit not across the whole range of affinities. In WISH cells, but not DAUDI cells, the anti-proliferative activity was markedly affected by fluctuations in the IFNalpha2 affinity towards the IFNAR1 receptor. On the other hand, the antiviral activity of interferons on WISH cells seems to change in accordance to the binding affinity towards IFNAR1 only as long as the binding affinity is not beyond twofold of the wild-type. In accordance, the biological roles of the two interferon-receptor subunits are discussed.
Collapse
Affiliation(s)
- Laila C Roisman
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | |
Collapse
|
16
|
Grace MJ, Lee S, Bradshaw S, Chapman J, Spond J, Cox S, Delorenzo M, Brassard D, Wylie D, Cannon-Carlson S, Cullen C, Indelicato S, Voloch M, Bordens R. Site of Pegylation and Polyethylene Glycol Molecule Size Attenuate Interferon-α Antiviral and Antiproliferative Activities through the JAK/STAT Signaling Pathway. J Biol Chem 2005; 280:6327-36. [PMID: 15596441 DOI: 10.1074/jbc.m412134200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Therapeutic pegylated interferon-alphas (IFN-alpha) are mixtures of positional isomers that have been monopegylated at specific sites on the core IFN-alpha molecule. The pegylation results in lower in vitro specific activity associated with the core IFN-alpha molecule that is related to the site of pegylation and size of polyethylene glycol (PEG) attached. We prepared purified, homogeneous, positional pegylation isomers of IFN-alpha2b that were monopegylated using 5-30-kDa linear PEG molecules attached at 7 primary reactive amino acid residues: Cys(1), His(34), Lys(31), Lys(83), Lys(121), Lys(131), and Lys(134). The isomers were evaluated for STAT translocation and antiviral and antiproliferative activity. The site of pegylation strongly influenced activity relative to an IFN-alpha2b control. The highest residual activity was observed with the His(34) positional isomers, and the lowest was observed with the Cys(1) positional isomers. The Lys positional isomers demonstrated intermediate activity, with a general order of Lys(134) > Lys(83) approximately Lys(131) approximately Lys(121) > Lys(31). The progressive relationship between decreased activity and increased PEG size suggests that pegylation may interfere with interaction and binding of IFN-alpha to the IFNAR1-IFNAR2 heterodimeric receptor. The higher specific activity associated with the His(34) positional isomer suggests that this site may be favorable for pegylating IFN-alpha2b molecules.
Collapse
Affiliation(s)
- Michael J Grace
- Schering-Plough Research Institute, Biotechnology Development, Bioanalytical and Process Development, Union, New Jersey 07083 and Aventis Pharmaceuticals, Medical Affairs-Oncology, Bridgewater, New Jersey 08807, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
How reliable could economic Hartree–Fock computations be in studying large, folded peptides? A comparative HF and DFT case study on N- and C-protected aspartic acid. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0166-1280(02)00579-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Koo JCP, Chass GA, Perczel A, Farkas Ö, Torday LL, Varro A, Papp JG, Csizmadia IG. Exploration of the Four-Dimensional-Conformational Potential Energy Hypersurface of N-Acetyl-l-aspartic Acid N‘-Methylamide with Its Internally Hydrogen Bonded Side-Chain Orientation. J Phys Chem A 2002. [DOI: 10.1021/jp014514b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joseph C. P. Koo
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada, M5S 3H6, Velocet R & D, 210 Dundas Street West, Suite 810, Toronto, Ontario, Canada M5G 2E8, Department of Organic Chemistry, Eotvos University, H-1117, Budapest, Hungary, Department of Pharmacology and Pharmacotherapy, Szeged University, Dóm tér 12, H-6701, Szeged, Hungary, and Division of Cardiovascular Pharmacology, Hungarian Academy of Sciences and Szeged University, Dóm tér 12, H-6701, Szeged, Hungary
| | - Gregory A. Chass
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada, M5S 3H6, Velocet R & D, 210 Dundas Street West, Suite 810, Toronto, Ontario, Canada M5G 2E8, Department of Organic Chemistry, Eotvos University, H-1117, Budapest, Hungary, Department of Pharmacology and Pharmacotherapy, Szeged University, Dóm tér 12, H-6701, Szeged, Hungary, and Division of Cardiovascular Pharmacology, Hungarian Academy of Sciences and Szeged University, Dóm tér 12, H-6701, Szeged, Hungary
| | - Andras Perczel
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada, M5S 3H6, Velocet R & D, 210 Dundas Street West, Suite 810, Toronto, Ontario, Canada M5G 2E8, Department of Organic Chemistry, Eotvos University, H-1117, Budapest, Hungary, Department of Pharmacology and Pharmacotherapy, Szeged University, Dóm tér 12, H-6701, Szeged, Hungary, and Division of Cardiovascular Pharmacology, Hungarian Academy of Sciences and Szeged University, Dóm tér 12, H-6701, Szeged, Hungary
| | - Ödon Farkas
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada, M5S 3H6, Velocet R & D, 210 Dundas Street West, Suite 810, Toronto, Ontario, Canada M5G 2E8, Department of Organic Chemistry, Eotvos University, H-1117, Budapest, Hungary, Department of Pharmacology and Pharmacotherapy, Szeged University, Dóm tér 12, H-6701, Szeged, Hungary, and Division of Cardiovascular Pharmacology, Hungarian Academy of Sciences and Szeged University, Dóm tér 12, H-6701, Szeged, Hungary
| | - Ladislaus L. Torday
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada, M5S 3H6, Velocet R & D, 210 Dundas Street West, Suite 810, Toronto, Ontario, Canada M5G 2E8, Department of Organic Chemistry, Eotvos University, H-1117, Budapest, Hungary, Department of Pharmacology and Pharmacotherapy, Szeged University, Dóm tér 12, H-6701, Szeged, Hungary, and Division of Cardiovascular Pharmacology, Hungarian Academy of Sciences and Szeged University, Dóm tér 12, H-6701, Szeged, Hungary
| | - Andras Varro
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada, M5S 3H6, Velocet R & D, 210 Dundas Street West, Suite 810, Toronto, Ontario, Canada M5G 2E8, Department of Organic Chemistry, Eotvos University, H-1117, Budapest, Hungary, Department of Pharmacology and Pharmacotherapy, Szeged University, Dóm tér 12, H-6701, Szeged, Hungary, and Division of Cardiovascular Pharmacology, Hungarian Academy of Sciences and Szeged University, Dóm tér 12, H-6701, Szeged, Hungary
| | - Julius Gy. Papp
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada, M5S 3H6, Velocet R & D, 210 Dundas Street West, Suite 810, Toronto, Ontario, Canada M5G 2E8, Department of Organic Chemistry, Eotvos University, H-1117, Budapest, Hungary, Department of Pharmacology and Pharmacotherapy, Szeged University, Dóm tér 12, H-6701, Szeged, Hungary, and Division of Cardiovascular Pharmacology, Hungarian Academy of Sciences and Szeged University, Dóm tér 12, H-6701, Szeged, Hungary
| | - Imre G. Csizmadia
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada, M5S 3H6, Velocet R & D, 210 Dundas Street West, Suite 810, Toronto, Ontario, Canada M5G 2E8, Department of Organic Chemistry, Eotvos University, H-1117, Budapest, Hungary, Department of Pharmacology and Pharmacotherapy, Szeged University, Dóm tér 12, H-6701, Szeged, Hungary, and Division of Cardiovascular Pharmacology, Hungarian Academy of Sciences and Szeged University, Dóm tér 12, H-6701, Szeged, Hungary
| |
Collapse
|
19
|
Schmeisser H, Hu R, Kontsek P, Bekisz J, Zoon K. Amino acid substitutions in loop BC and helix C affect antigenic properties of helix D in hybrid IFN-alpha21a/alpha2c molecules. J Interferon Cytokine Res 2002; 22:463-72. [PMID: 12034029 DOI: 10.1089/10799900252952253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We compared the antigenic properties of human interferon-alpha2c (IFN-alpha2c), IFN-alpha21a, hybrids IFN-alpha21a/alpha2c, and their mutants, using a panel of 27 anti-IFN-alpha1, anti-IFN-alpha2, and anti-IFN-alpha8/1/8 monoclonal antibodies (mAb). After immunoanalysis by ELISA, we found parental IFN-alpha2c and IFN-alpha21a to be antigenically distinct. Lack of reactivity of anti-IFN-alpha1 mAb with IFN-alpha21a indicated an antigenic distinction between subtypes alpha1 and alpha21a. The antigenic properties of hybrid IFNs consisting of the N-terminal portion (1-75) of IFN-alpha21a and the C-terminal portion (76-166) of IFN-alpha2c were analyzed with mAb recognizing defined regions of IFN-alpha2c, IFN-alpha1, and IFN-alpha8/1/8. We found that extending the sequence of IFN-alpha21a up to position 95 in hybrid molecule decreased the immunoreactivity of mAb specific for the antigenic structure formed by residues --112-132-- (helix D) of IFN-alpha2c. Inserting the sequence 76-81 (loop BC) of IFN-alpha2c into the sequence of 1-95 of IFN-alpha21a restored the reactivity of anti-IFN-alpha2c mAb. Some amino acid substitutions at positions 86 and 90 (helix C) of hybrid IFN-alpha21a/alpha2c also affected the immunoreactivity of C-terminal-specific mAb, which recognize helix D, but did not influence the structure of C-terminus of IFN (aa 151-165). Changes in the structure of constructs affected not only their antiproliferative activity but also their antiviral activity on human cells.
Collapse
Affiliation(s)
- Hana Schmeisser
- Division of Therapeutic Proteins, Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD 20892, USA.
| | | | | | | | | |
Collapse
|