1
|
Ranjbar M, Hashemi Rad P, Rajaei Litkohi H, Solaimani M. Epirubicin/folic acid and meropenem loaded on graphene oxide-gelatin can be used as a novel candidate for anti-cancer and antibacterial drug development. Int J Pharm 2024; 666:124846. [PMID: 39424083 DOI: 10.1016/j.ijpharm.2024.124846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Resistance to meropenem and epirubicin poses a significant global threat, particularly in developing nations with constrained health resources. To overcome this problem, nanotechnology provides several promising solutions, including drug delivery systems that can improve the effectiveness of drugs. The objectives of this work is to characterize the anticancer mechanism of Graphene Oxide (GO) coated with Gelatin (Gel) and conjugated with the anticancer drug Epirubicin (EPi), along with functionalization with Folic Acid in SK-OV3 cancer cell lines for the first time. Furthermore, meropenem was loaded onto Graphene Oxide-Gelatin (GO-Gel) to improve its efficacy. The nanocomposites were characterized using FT-IR, XRD, FESEM and EDX. The viability of the ovarian cancer cell lines (SKOV3) and normal ovarian cell lines (HUVEC) after treatment with GO-Gel, Graphene Oxide-Gelatin-Folic acid (GO-Gel-FA), free Epi and Graphene Oxide-Gelatin-Folic acid/ Epirubicin (GO-Gel-FA/Epi) nanocomposite, was studied by the MTT assay. Expression of the TNFα, Bax, Bcl-2, and NF-κB in the GO-Gel-FA/Epi nanocomposite treated cells, were investigated by qRT-PCR. Disc diffusion assay was utilized to assess the antimicrobial activity of free mer and GO-Gel-Mer nanocomposite against two gram-positive bacteria and two gram-negative bacteria. Results demonstrated that The GO-Gel-FA/Epi nanocomposite showed greater cytotoxic effects on SKOV3cells than normal HUVEC cells. The expression of the Bax was upregulated, while the expression of the Bcl-2, TNFα and NF-κB was reduced in GO-Gel-FA/Epi nanocomposite-treated cells. The Graphene Oxide-Gelatin-Meropenem (GO-Gel-Mer) nanocomposite showed a controlled release within 45 h. GO-Gel-Mer nanocomposite showed much more activity against bacteria in comparison to free Mer. GO-Gel-FA/Epi nanocomposite possesses strong anti-proliferative properties against SK-OV3 cancer cells and indicated promising inhibitory candidate for anticancer therapy. The novel synthesized GO-Gel-Mer nanocomposite can be used as an effective antimicrobial nanomaterial against a range of microbial pathogens, including gram-negative and gram-positive bacteria.
Collapse
Affiliation(s)
- Mojtaba Ranjbar
- Department of Microbial Biotechnology, College of Biotechnology, Amol University of Special Modern Technologies, Amol 46158-63111, Iran.
| | - Parisa Hashemi Rad
- Department of Microbial Biotechnology, College of Biotechnology, Amol University of Special Modern Technologies, Amol 46158-63111, Iran
| | - Hajar Rajaei Litkohi
- Department of Nano Biotechnology, College of Biotechnology, Amol University of Special Modern Technologies, Amol 46158-63111, Iran
| | - Maryam Solaimani
- Department of Microbial Biotechnology, College of Biotechnology, Amol University of Special Modern Technologies, Amol 46158-63111, Iran
| |
Collapse
|
2
|
Tian Y, Xu X, Ijaz M, Shen Y, Shahid MS, Ahmed T, Ali HM, Yan C, Gu C, Lu J, Wang Y, Ondrasek G, Li B. Role of hypothetical protein PA1-LRP in antibacterial activity of endolysin from a new Pantoea phage PA1. Front Microbiol 2024; 15:1463192. [PMID: 39507333 PMCID: PMC11538084 DOI: 10.3389/fmicb.2024.1463192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Pantoea ananatis has emerged as a significant plant pathogen affecting various crops worldwide, causing substantial economic losses. Bacteriophages and their endolysins offer promising alternatives for controlling bacterial infections, addressing the growing concerns of antibiotic resistance. Methods This study isolated and characterized the Pantoea phage PA1 and investigated the role of PA1-LRP in directly damaging bacteria and assisting endolysin PA1-Lys in cell lysis, comparing its effect to exogenous transmembrane domains following the identification and analysis of the PA1-Lys and the PA1-LRP based on whole genome analysis of phage PA1. Additionally, this study also explored how hydrophobic region of PA1-LRP (HPP) contributes to bacterial killing when combined with PA1-Lys and examined the stability and lytic spectrum of PA1-Lys under various conditions. Results and discussion Phage PA1 belonging to the Chaseviridae family exhibited a broad host range against P. ananatis strains, with a latent period of 40 minutes and a burst size of 17.17 phages per infected cell. PA1-Lys remained stable at pH 6-10 and temperatures of 20-50°C and showed lytic activity against various Gram-negative bacteria, while PA1-Lys alone could not directly lyse bacteria, its lytic activity was enhanced in the presence of EDTA. Surprisingly, PA1-LRP inhibited bacterial growth when expressed alone. After 24 h of incubation, the OD600 value of pET28a-LRP decreased by 0.164 compared to pET28a. Furthermore, the lytic effect of co-expressed PA1-LRP and PA1-Lys was significantly stronger than each separately. After 24 h of incubation, compared to pET28a-LRP, the OD600 value of pET28a-Lys-LRP decreased by 0.444, while the OD420 value increased by 3.121. Live/dead cell staining, and flow cytometry experiments showed that the fusion expression of PA1-LRP and PA1-Lys resulted in 41.29% cell death, with bacterial morphology changing from rod-shaped to filamentous. Notably, PA1-LRP provided stronger support for endolysin-mediated cell lysis than exogenous transmembrane domains. Additionally, our results demonstrated that the HPP fused with PA1-Lys, led to 40.60% cell death, with bacteria changing from rod-shaped to spherical and exhibiting vacuolation. Taken together, this study provides insights into the lysis mechanisms of Pantoea phages and identifies a novel lysis-related protein, PA1-LRP, which could have potential applications in phage therapy and bacterial disease control.
Collapse
Affiliation(s)
- Ye Tian
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xinyan Xu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ying Shen
- Station for the Plant Protection & Quarantine and Control of Agrochemicals of Zhejiang Province, Hangzhou, China
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat, Oman
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chengqi Yan
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Chunyan Gu
- Institute of Plant Protection and Agricultural Product Quality and Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Jianfei Lu
- Station for the Plant Protection & Quarantine and Control of Agrochemicals of Zhejiang Province, Hangzhou, China
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Academy of Agricultural Sciences, Zhejiang, Hangzhou, China
| | - Gabrijel Ondrasek
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta, Zagreb, Croatia
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Félix-Piña P, Franco Molina MA, García Coronado PL, Prado-Garcia H, Zarate-Triviño DG, Castro-Valenzuela BE, Moreno-Amador KA, Uscanga Palomeque AC, Rodríguez Padilla C. β-D-Glucose-Reduced Silver Nanoparticles Remodel the Tumor Microenvironment in a Murine Model of Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:8432. [PMID: 39126001 PMCID: PMC11312981 DOI: 10.3390/ijms25158432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Breast cancer is the most diagnosed type of cancer worldwide and the second cause of death in women. Triple-negative breast cancer (TNBC) is the most aggressive, and due to the lack of specific targets, it is considered the most challenging subtype to treat and the subtype with the worst prognosis. The present study aims to determine the antitumor effect of beta-D-glucose-reduced silver nanoparticles (AgNPs-G) in a murine model of TNBC, as well as to study its effect on the tumor microenvironment. In an airbag model with 4T1 tumor cell implantation, the administration of AgNPs-G or doxorubicin showed antitumoral activity. Using immunohistochemistry it was demonstrated that treatment with AgNPs-G decreased the expression of PCNA, IDO, and GAL-3 and increased the expression of Caspase-3. In the tumor microenvironment, the treatment increased the percentage of memory T cells and innate effector cells and decreased CD4+ cells and regulatory T cells. There was also an increase in the levels of TNF-α, IFN-γ, and IL-6, while TNF-α was increased in serum. In conclusion, we suggest that AgNPs-G treatment has an antitumor effect that is demonstrated by its ability to remodel the tumor microenvironment in mice with TNBC.
Collapse
Affiliation(s)
- Pedro Félix-Piña
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (P.F.-P.); (P.L.G.C.); (D.G.Z.-T.); (B.E.C.-V.); (A.C.U.P.); (C.R.P.)
| | - Moisés Armides Franco Molina
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (P.F.-P.); (P.L.G.C.); (D.G.Z.-T.); (B.E.C.-V.); (A.C.U.P.); (C.R.P.)
| | - Paola Leonor García Coronado
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (P.F.-P.); (P.L.G.C.); (D.G.Z.-T.); (B.E.C.-V.); (A.C.U.P.); (C.R.P.)
| | - Heriberto Prado-Garcia
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico;
| | - Diana Ginette Zarate-Triviño
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (P.F.-P.); (P.L.G.C.); (D.G.Z.-T.); (B.E.C.-V.); (A.C.U.P.); (C.R.P.)
| | - Beatriz Elena Castro-Valenzuela
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (P.F.-P.); (P.L.G.C.); (D.G.Z.-T.); (B.E.C.-V.); (A.C.U.P.); (C.R.P.)
| | - Kenia Arisbe Moreno-Amador
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (P.F.-P.); (P.L.G.C.); (D.G.Z.-T.); (B.E.C.-V.); (A.C.U.P.); (C.R.P.)
| | - Ashanti Concepción Uscanga Palomeque
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (P.F.-P.); (P.L.G.C.); (D.G.Z.-T.); (B.E.C.-V.); (A.C.U.P.); (C.R.P.)
| | - Cristina Rodríguez Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (P.F.-P.); (P.L.G.C.); (D.G.Z.-T.); (B.E.C.-V.); (A.C.U.P.); (C.R.P.)
| |
Collapse
|
4
|
Ghorbani Alvanegh A, Esmaeili Gouvarchin Ghaleh H, Mohammad Ganji S. The Growth of A549 Cell Line is Inhibited by Pemetrexed Through Up-regulation of hsa-MiR-320a Expression. Adv Biomed Res 2024; 13:50. [PMID: 39411702 PMCID: PMC11478724 DOI: 10.4103/abr.abr_483_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 10/19/2024] Open
Abstract
Background Lung cancer deaths are increasing worldwide and the most common form of lung cancer treatment is chemotherapy. Pemetrexed (PMX) has been shown to be effective as a second-line treatment for advanced patients. Drugs can alter the expression of MicroRNAs, and MicroRNAs also can either enhance or reduce the drug's effectiveness and this is a two-way relationship. Hsa-MiR-320a is known to play a crucial role in the lung cancer. This study aims to investigate the expression of hsa-MiR-320a in lung cancer cells after treatment with PMX. Materials and Methods A549 cells were cultured and treated with varying concentrations of PMX. Various parameters were measured, including cell viability, reactive oxygen species (ROS) production, lactate dehydrogenase (LDH) release, apoptosis assay, caspase 3 and 7 enzyme activity, and scratch assay. Additionally, gene expression profiles of hsa-MiR-320a, VDAC1, STAT3, BAX, and BCL2 were evaluated. Results PMX reduced the viability and increased apoptosis. After 48 h, ROS production was 3.366-fold higher than in control cells and the LDH release rate was increased by 39%. PMX also up-regulated the expression of hsa-MiR-320a by about 12-fold change. Conclusion Changes in the expression of MicroRNAs occur after chemotherapy, and these changes play a crucial role in regulating the growth of cancer cells. Identifying these MicroRNAs can be helpful in predicting the efficacy of the chemotherapy or introducing it as combination therapy. Our research has been shown that hsa-MiR-320a can serve as a biomarker of PMX efficacy and also has the potential to be used in combination therapy.
Collapse
Affiliation(s)
- Akbar Ghorbani Alvanegh
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | - Shahla Mohammad Ganji
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
5
|
Thakkar AB, Subramanian R, Thakkar VR, Bhatt SV, Chaki S, Vaidya YH, Patel V, Thakor P. Apoptosis induction capability of silver nanoparticles capped with Acorus calamus L. and Dalbergia sissoo Roxb. Ex DC. against lung carcinoma cells. Heliyon 2024; 10:e24400. [PMID: 38304770 PMCID: PMC10831608 DOI: 10.1016/j.heliyon.2024.e24400] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Silver nanoparticles (AgNPs) were prepared using a one-step reduction of silver nitrate (AgNO3) with sodium borohydride (NaBH4) in the presence of polyvinylpyrrolidone (PVP) as a capping agent. Plant extracts from D. sissoo (DS) and A. calamus L. (AC) leaves were incorporated during the synthesis process. The crystalline nature of the AgNPs was confirmed through X-ray diffraction (XRD), confirming the face-centered cubic structure, with a lattice constant of 4.08 Å and a crystallite size of 18 nm. Field Emission Gun Transmission Electron Microscopy (FEG-TEM) revealed spherical AgNPs (10-20 nm) with evident PVP adsorption, leading to size changes and agglomeration. UV-Vis spectra showed a surface plasmon resonance (SPR) band at 417 nm for AgNPs and a redshift to 420 nm for PVP-coated AgNPs, indicating successful synthesis. Fourier Transform Infrared Spectroscopy (FTIR) identified functional groups and drug-loaded samples exhibited characteristic peaks, confirming effective drug loading. The anti-cancer potential of synthesized NPs was assessed by MTT assay in human adenocarcinoma lung cancer (A549) and lung normal cells (WI-38) cells. IC50 values for all three NPs (AgPVP NPs, DS@AgPVP NPs, and AC@AgPVP NPs) were 41.60 ± 2.35, 14.25 ± 1.85, and 21.75 ± 0.498 μg/ml on A549 cells, and 420.69 ± 2.87, 408.20 ± 3.41, and 391.80 ± 1.55 μg/ml respectively. Furthermore, the NPs generated Reactive Oxygen Species (ROS) and altered the mitochondrial membrane potential (MMP). Differential staining techniques were used to investigate the apoptosis-inducing properties of the three synthesized NPs. The colony formation assay indicated that nanoparticle therapy prevented cancer cell invasion. Finally, Real-Time PCR (RT-PCR) analysis predicted the expression pattern of many apoptosis-related genes (Caspase 3, 9, and 8).
Collapse
Affiliation(s)
- Anjali B. Thakkar
- P. G. Department of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Bakrol-Vadtal Road, Bakrol, Anand, Gujarat, India
- P. G. Department of Applied and Interdisciplinary Sciences (IICISST), Sardar Patel University, Vallabh Vidyanagar, Gujrat, India
| | - R.B. Subramanian
- P. G. Department of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Bakrol-Vadtal Road, Bakrol, Anand, Gujarat, India
| | - Vasudev R. Thakkar
- P. G. Department of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Bakrol-Vadtal Road, Bakrol, Anand, Gujarat, India
| | - Sandip V. Bhatt
- P. G. Department of Applied and Interdisciplinary Sciences (IICISST), Sardar Patel University, Vallabh Vidyanagar, Gujrat, India
| | - Sunil Chaki
- P. G. Department of Applied and Interdisciplinary Sciences (IICISST), Sardar Patel University, Vallabh Vidyanagar, Gujrat, India
- Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujrat, India
| | - Yati H. Vaidya
- Department of Microbiology, Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat, 388120, India
| | - Vikas Patel
- Sophisticated Instrumentation Centre for Applied Research & Testing (SICART), Vallabh Vidyanagar, Anand, Gujarat, 388120, India
| | - Parth Thakor
- Bapubhai Desaibhai Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, Changa, Gujarat, India
| |
Collapse
|
6
|
Devendrapandi G, Padmanaban D, Thanikasalam R, Panneerselvam A, Palraj R, Rajabathar JR, Rajendiran N, Balu R, Oh TH, Ramasundaram S. Direct sunlight induced room temperature synthesis of anticancer and catalytic silver nanoparticles by shrimp shell waste derived chitosan. Int J Biol Macromol 2023; 252:126205. [PMID: 37562471 DOI: 10.1016/j.ijbiomac.2023.126205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/13/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
The use of marine waste derived chitosan (CS) for the synthesis of nanomaterials is considered as one of the effective routes for bio-waste management and recovering functional products. Herein, CS capped silver nanoparticles (Ag NPs-CS) with potential anticancer and dye pollutants adoption properties have been synthesized photochemically under direct sunlight. To obtain, CS, shrimp shell waste was subjected to a serious of standard demineralization, deproteinization and deacetylation processes. The electronic absorption peak (400 nm) denoting surface plasmonic resonance of Ag NPs and infrared peaks relevant to CS (3364 cm-1 of OH/NH2, 2932 cm-1 of CH, and 1647 cm-1 of -CO) exhibited peaks confirmed the formation of CS-Ag NPs. Ag NPs-CS exhibited anticancer activity against Human lung adenocarcinoma cell lines (A549), the maximum cell death noticed at the concentration of 20 μg/mL and 70 μg/mL was 20 and 52 %, respectively. An aqueous Ag NPs-CS (100 μg/mL) was degraded ≥95 % of mixed dye target solution (25 mg/mL) containing equal volume of cationic dye (Methylene blue and Rhodamine B) and anionic dye (methyl orange). Therefore, these findings suggest that the shrimp shell waste derived CS can be used for the synthesis of CS-Ag NPs with potential biomedical and environmental applications.
Collapse
Affiliation(s)
| | | | - Rabi Thanikasalam
- National Center for Ultrafast Process, University of Madras, Chennai, Tamilnadu, India
| | | | - Ragasudha Palraj
- Department of Respiratory Medicine, Government Thoothukudi Medical College Hospital, Thoothukudi, Tamilnadu, India
| | | | - Nagappan Rajendiran
- Department of Polymer Science, University of Madras, Chennai, Tamilnadu, India.
| | - Ranjith Balu
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, Tamilnadu, India.
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | |
Collapse
|
7
|
He P, Dai Q, Wu X. New insight in urological cancer therapy: From epithelial-mesenchymal transition (EMT) to application of nano-biomaterials. ENVIRONMENTAL RESEARCH 2023; 229:115672. [PMID: 36906272 DOI: 10.1016/j.envres.2023.115672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 05/21/2023]
Abstract
A high number of cancer-related deaths (up to 90) are due to metastasis and simple definition of metastasis is new colony formation of tumor cells in a secondary site. In tumor cells, epithelial-mesenchymal transition (EMT) stimulates metastasis and invasion, and it is a common characteristic of malignant tumors. Prostate cancer, bladder cancer and renal cancer are three main types of urological tumors that their malignant and aggressive behaviors are due to abnormal proliferation and metastasis. EMT has been well-documented as a mechanism for promoting invasion of tumor cells and in the current review, a special attention is directed towards understanding role of EMT in malignancy, metastasis and therapy response of urological cancers. The invasion and metastatic characteristics of urological tumors enhance due to EMT induction and this is essential for ensuring survival and ability in developing new colonies in neighboring and distant tissues and organs. When EMT induction occurs, malignant behavior of tumor cells enhances and their tend in developing therapy resistance especially chemoresistance promotes that is one of the underlying reasons for therapy failure and patient death. The lncRNAs, microRNAs, eIF5A2, Notch-4 and hypoxia are among common modulators of EMT mechanism in urological tumors. Moreover, anti-tumor compounds such as metformin can be utilized in suppressing malignancy of urological tumors. Besides, genes and epigenetic factors modulating EMT mechanism can be therapeutically targeted for interfering malignancy of urological tumors. Nanomaterials are new emerging agents in urological cancer therapy that they can improve potential of current therapeutics by their targeted delivery to tumor site. The important hallmarks of urological cancers including growth, invasion and angiogenesis can be suppressed by cargo-loaded nanomaterials. Moreover, nanomaterials can improve chemotherapy potential in urological cancer elimination and by providing phototherapy, they mediate synergistic tumor suppression. The clinical application depends on development of biocompatible nanomaterials.
Collapse
Affiliation(s)
- Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
8
|
Naghibi N, Sadeghi A, Movahedinia S, Rahimi Naiini M, Rajizadeh MA, Bahri F, Nazari-Robati M. Ellagic acid ameliorates aging-induced renal oxidative damage through upregulating SIRT1 and NRF2. BMC Complement Med Ther 2023; 23:77. [PMID: 36899375 PMCID: PMC9999491 DOI: 10.1186/s12906-023-03907-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Aging is associated with impaired renal function and structural alterations. Oxidative stress plays a vital role in renal senescence and damage. Sirtuin 1 (SIRT1) is thought to protect cells from oxidative stress through nuclear factor erythroid 2-related factor 2 (NRF2). Ellagic acid (EA), a natural antioxidant, has been demonstrated to have renoprotective roles in vitro and in vivo. This study investigated if SIRT1 and NRF2 mediate the protective effects of EA in aged kidneys. METHODS Male Wistar rats were divided into three groups including young (4 months), old, and old + EA (25 months). Young and old groups received EA solvent, while the old + EA group was treated with EA (30 mg/kg) by gavage for 30 days. Then, the level of renal oxidative stress, SIRT1 and NRF2 expression, kidney function parameters, and histopathological indices were measured. RESULTS Treatment with EA significantly increased the level of antioxidant enzymes and reduced malondialdehyde concentration (P < 0.01). Moreover, EA administration remarkably upregulated mRNA and protein levels of SIRT1 and NRF2 as well as deacetylated NRF2 protein (P < 0.05). Additionally, EA treated rats improved kidney function and histopathological scores (P < 0.05). CONCLUSIONS These findings suggest that ellagic acid exerts protective effects on aged kidneys by activating SIRT1 and NRF2 signaling.
Collapse
Affiliation(s)
- Niloufar Naghibi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Asie Sadeghi
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sajjadeh Movahedinia
- Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdis Rahimi Naiini
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Faegheh Bahri
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdieh Nazari-Robati
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
9
|
The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life (Basel) 2023; 13:life13020466. [PMID: 36836823 PMCID: PMC9965924 DOI: 10.3390/life13020466] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer is a fatal disease with a complex pathophysiology. Lack of specificity and cytotoxicity, as well as the multidrug resistance of traditional cancer chemotherapy, are the most common limitations that often cause treatment failure. Thus, in recent years, significant efforts have concentrated on the development of a modernistic field called nano-oncology, which provides the possibility of using nanoparticles (NPs) with the aim to detect, target, and treat cancer diseases. In comparison with conventional anticancer strategies, NPs provide a targeted approach, preventing undesirable side effects. What is more, nanoparticle-based drug delivery systems have shown good pharmacokinetics and precise targeting, as well as reduced multidrug resistance. It has been documented that, in cancer cells, NPs promote reactive oxygen species (ROS) production, induce cell cycle arrest and apoptosis, activate ER (endoplasmic reticulum) stress, modulate various signaling pathways, etc. Furthermore, their ability to inhibit tumor growth in vivo has also been documented. In this paper, we have reviewed the role of silver NPs (AgNPs) in cancer nanomedicine, discussing numerous mechanisms by which they render anticancer properties under both in vitro and in vivo conditions, as well as their potential in the diagnosis of cancer.
Collapse
|