1
|
Dong X, Chen Q, Du H, Qiu L. 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Suppresses Mesenchymal Cell Proliferation and Migration Through miR-214-3p in Cleft Palate. Cleft Palate Craniofac J 2024:10556656241286314. [PMID: 39314083 DOI: 10.1177/10556656241286314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
OBJECTIVE The aetiology of CL/P is complicated, with both genetic and environmental factors. This study aimed to investigate the association between TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) exposure and changes in the expression of miR-214-3p in the context of cleft palate. DESIGN In this study, we established a fetal mouse cleft palate model using TCDD and differentially expressed miRNAs were analysed by microarray analysis and verified by qRT-PCR. Finally, we demonstrated the effects of TCDD and microRNAs on the proliferation and migration of mesenchymal cells by using CCK8, EDU, Transwell, and wound-healing assays. RESULTS Our findings revealed significant upregulation of miRNAs such as miR-214-3p, miR-296-5p, and miR-33-5p in the TCDD intervention group, while miRNAs like miR-92a-3p, miR-126a-3p, and miR-411-5p were significantly downregulated. Notably, qRT-PCR testing confirmed a significant difference in miR-214-3P expression. Further investigations involved the overexpression of miR-214-3p, reducing cell proliferation and migration in primary mouse embryonic palatal mesenchymal (MEPM) cells. CONCLUSIONS These results are consistent with the finding that TCDD suppresses palatal mesenchymal cell proliferation and migration through miR-214-3p. In conclusion, miR-214-3p probably plays a role in TCDD-induced cleft palates in mice.
Collapse
Affiliation(s)
- Xiaobo Dong
- Department of Burn and Plastic Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Centre for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing 404000, P.R. China
| | - Qiang Chen
- Department of Burn and Plastic Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Centre for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing 404000, P.R. China
- Department of Paediatrics Surgery, Chongqing University Three Gorges Hospital, Chongqing 404000 P.R. China
| | - Haojuan Du
- Chongqing Key Laboratory of Pediatrics, Chongqing 404000, P.R. China
| | - Lin Qiu
- Department of Burn and Plastic Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Centre for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing 404000, P.R. China
| |
Collapse
|
2
|
Xu J, Liu S, Fu H, Shao M, Chen M, Huang Z. Heterogeneity of Wnt1-Cre-marked and Pax2-Cre-marked first branchial arch cranial neural crest cells in mice. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2024; 42:435-443. [PMID: 39049630 PMCID: PMC11338490 DOI: 10.7518/hxkq.2024.2023374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/28/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES This study aimed to explore the heterogeneity and gene ontology of Wnt1-Cre-marked and Pax2-Cre-marked first branchial arch cranial neural crest cells (CNCs) in mice. METHODS The embryos of Wnt1-Cre;R26RmTmG and Pax2-Cre;R26RmTmG at embryonic day (E)8.0-E9.25 were collected for histological observation. We performed immunostaining to compare green fluorescent protein (GFP)-positive CNCs in Pax2-Cre;R26RAi9 and Wnt1-Cre;R26RAi9 mice at E15.5. Single-cell RNA sequencing (scRNA-seq) was used to analyze the first branchial arch GFP-positive CNCs from Wnt1-Cre;R26RmTmG and Pax2-cre;R26RmTmGmice at E10.5. Real time fluorescence quantitative polymerase chain reaction (q-PCR) was performed to validate the differential genes. RESULTS Wnt1-Cre-marked and Pax2-Cre-marked CNCs migrated from the neural plateto first and second branchial arches and to the first branchial arch, respectively, at E8.0. Although Wnt1-Cre-marked and Pax2-Cre-marked CNCs were found mostly in cranial-facial tissues, the former had higher expression in palate and tongue. The results of scRNA-seq showed that Pax2-Cre-marked CNCs specifically contributed to osteoblast differentiation and ossification, while Wnt1-Cre-marked CNCs participated in limb development, cell migration, and ossification. The q-PCR data also confirmed the results of gene ontology analysis. CONCLUSIONS Pax2-Cre mice are perfect experimental animal models for research on first branchial arch CNCs and derivatives in osteoblast differentiation and ossification.
Collapse
Affiliation(s)
- Jue Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Shuang Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Honggao Fu
- College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Meiying Shao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Meiling Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Zhen Huang
- College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| |
Collapse
|
3
|
Feiner N, Yang W, Bunikis I, While GM, Uller T. Adaptive introgression reveals the genetic basis of a sexually selected syndrome in wall lizards. SCIENCE ADVANCES 2024; 10:eadk9315. [PMID: 38569035 PMCID: PMC10990284 DOI: 10.1126/sciadv.adk9315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The joint expression of particular colors, morphologies, and behaviors is a common feature of adaptation, but the genetic basis for such "phenotypic syndromes" remains poorly understood. Here, we identified a complex genetic architecture associated with a sexually selected syndrome in common wall lizards, by capitalizing on the adaptive introgression of coloration and morphology into a distantly related lineage. Consistent with the hypothesis that the evolution of phenotypic syndromes in vertebrates is facilitated by developmental linkage through neural crest cells, most of the genes associated with the syndrome are involved in neural crest cell regulation. A major locus was a ~400-kb region, characterized by standing structural genetic variation and previously implied in the evolutionary innovation of coloration and beak size in birds. We conclude that features of the developmental and genetic architecture contribute to maintaining trait integration, facilitating the extensive and rapid introgressive spread of suites of sexually selected characters.
Collapse
Affiliation(s)
| | - Weizhao Yang
- Department of Biology, Lund University, Lund, Sweden
| | - Ignas Bunikis
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Geoffrey M. While
- School of Natural Sciences, University of Tasmania, Sandy Bay, Tasmania, Australia
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Venger K, Elbracht M, Carlens J, Deutz P, Zeppernick F, Lassay L, Kratz C, Zenker M, Kim J, Stewart DR, Wieland I, Schultz KAP, Schwerk N, Kurth I, Kontny U. Unusual phenotypes in patients with a pathogenic germline variant in DICER1. Fam Cancer 2023; 22:475-480. [PMID: 34331184 PMCID: PMC9743360 DOI: 10.1007/s10689-021-00271-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 07/20/2021] [Indexed: 02/02/2023]
Abstract
Pathogenic germline DICER1 variants are associated with pleuropulmonary blastoma, multinodular goiter, embryonal rhabdomyosarcoma and other tumour types, while mosaic missense DICER1 variants in the RNase IIIb domain are linked to cause GLOW (global developmental delay, lung cysts, overgrowth, and Wilms' tumor) syndrome. Here, we report four families with germline DICER1 pathogenic variants in which one member in each family had a more complex phenotype, including skeletal findings, facial dysmorphism and developmental abnormalities. The developmental features occur with a variable expressivity and incomplete penetrance as also described for the neoplastic and dysplastic lesions associated with DICER1 variants. Whole exome sequencing (WES) was performed on all four cases and revealed no further pathogenic or likely pathogenic dominant, homozygous or compound heterozygous variants in three of them. Notably, a frameshift variant in ARID1B was detected in one patient explaining part of her phenotype. This series of patients shows that pathogenic DICER1 variants may be associated with a broader phenotypic spectrum than initially assumed, including predisposition to different tumours, skeletal findings, dysmorphism and developmental abnormalities, but genetic work up in syndromic patients should be comprehensive in order not to miss additional underlying /modifying causes.
Collapse
Affiliation(s)
- Kateryna Venger
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Julia Carlens
- Clinic for Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Peter Deutz
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Felix Zeppernick
- Department of Gynecology and Obstetrics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Obstetrics and Gynecology, University Hospital Giessen, Giessen, Germany
| | - Lisa Lassay
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Christian Kratz
- Clinic for Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Jung Kim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Douglas R Stewart
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Ilse Wieland
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Kris Ann P Schultz
- International PPB/DICER1 Registry, Minneapolis, MN, USA
- Cancer and Blood Disorders, Children's Minnesota, Minneapolis, MN, USA
| | - Nicolaus Schwerk
- Clinic for Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
5
|
Iwaya C, Suzuki A, Iwata J. MicroRNAs and Gene Regulatory Networks Related to Cleft Lip and Palate. Int J Mol Sci 2023; 24:3552. [PMID: 36834963 PMCID: PMC9958963 DOI: 10.3390/ijms24043552] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Cleft lip and palate is one of the most common congenital birth defects and has a complex etiology. Either genetic or environmental factors, or both, are involved at various degrees, and the type and severity of clefts vary. One of the longstanding questions is how environmental factors lead to craniofacial developmental anomalies. Recent studies highlight non-coding RNAs as potential epigenetic regulators in cleft lip and palate. In this review, we will discuss microRNAs, a type of small non-coding RNAs that can simultaneously regulate expression of many downstream target genes, as a causative mechanism of cleft lip and palate in humans and mice.
Collapse
Affiliation(s)
- Chihiro Iwaya
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
6
|
Mukhopadhyay P, Smolenkova I, Seelan RS, Pisano MM, Greene RM. Spatiotemporal Expression and Functional Analysis of miRNA-22 in the Developing Secondary Palate. Cleft Palate Craniofac J 2023; 60:27-38. [PMID: 34730446 DOI: 10.1177/10556656211054004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Normal development of the embryonic orofacial region requires precise spatiotemporal coordination between numerous genes. MicroRNAs represent small, single-stranded, non-coding molecules that regulate gene expression. This study examines the role of microRNA-22 (miR-22) in murine orofacial ontogeny. METHODS Spatiotemporal and differential expression of miR-22 (mmu-miR-22-3p) within the developing secondary palate was determined by in situ hybridization and quantitative real-time PCR, respectively. Bioinformatic approaches were used to predict potential mRNA targets of miR-22 and analyze their association with cellular functions indispensable for normal orofacial ontogeny. An in vitro palate organ culture system was used to assess the role of miR-22 in secondary palate development. RESULTS There was a progressive increase in miR-22 expression from GD12.5 to GD14.5 in palatal processes. On GD12.5 and GD13.5, miR-22 was expressed in the future oral, nasal, and medial edge epithelia. On GD14.5, miR-22 expression was observed in the residual midline epithelial seam (MES), the nasal epithelium and the mesenchyme, but not in the oral epithelium. Inhibition of miR-22 activity in palate organ cultures resulted in failure of MES removal. Bioinformatic analyses revealed potential mRNA targets of miR-22 that may play significant roles in regulating apoptosis, migration, and/or convergence/extrusion, developmental processes that modulate MES removal during palatogenesis. CONCLUSIONS Results from the current study suggest a key role for miR-22 in the removal of the MES during palatogenesis and that miR-22 may represent a potential contributor to the etiology of cleft palate.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, 5170University of Louisville, Louisville, KY 40202
| | - Irina Smolenkova
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, 5170University of Louisville, Louisville, KY 40202
| | - Ratnam S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, 5170University of Louisville, Louisville, KY 40202
| | - M Michele Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, 5170University of Louisville, Louisville, KY 40202
| | - Robert M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, School of Dentistry, 5170University of Louisville, Louisville, KY 40202
| |
Collapse
|
7
|
Yoshioka H, Suzuki A, Iwaya C, Iwata J. Suppression of microRNA 124-3p and microRNA 340-5p ameliorates retinoic acid-induced cleft palate in mice. Development 2022; 149:275062. [PMID: 35420127 PMCID: PMC9148563 DOI: 10.1242/dev.200476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/25/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The etiology of cleft lip with or without cleft palate (CL/P), a common congenital birth defect, is complex, with genetic and epigenetic, as well as environmental, contributing factors. Recent studies suggest that fetal development is affected by maternal conditions through microRNAs (miRNAs), a group of short noncoding RNAs. Here, we show that miR-129-5p and miR-340-5p suppress cell proliferation in both primary mouse embryonic palatal mesenchymal cells and O9-1 cells, a neural crest cell line, through the regulation of Sox5 and Trp53 by miR-129-5p, and the regulation of Chd7, Fign and Tgfbr1 by miR-340-5p. Notably, miR-340-5p, but not miR-129-5p, was upregulated following all-trans retinoic acid (atRA; tretinoin) administration, and a miR-340-5p inhibitor rescued the cleft palate (CP) phenotype in 47% of atRA-induced CP mice. We have previously reported that a miR-124-3p inhibitor can also partially rescue the CP phenotype in atRA-induced CP mouse model. In this study, we found that a cocktail of miR-124-3p and miR-340-5p inhibitors rescued atRA-induced CP with almost complete penetrance. Taken together, our results suggest that normalization of pathological miRNA expression can be a preventive intervention for CP.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Chihiro Iwaya
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
8
|
Seelan RS, Pisano MM, Greene RM. MicroRNAs as epigenetic regulators of orofacial development. Differentiation 2022; 124:1-16. [DOI: 10.1016/j.diff.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 11/03/2022]
|
9
|
The effects of altered BMP4 signaling in first branchial-arch-derived murine embryonic orofacial tissues. Int J Oral Sci 2021; 13:40. [PMID: 34845186 PMCID: PMC8630201 DOI: 10.1038/s41368-021-00142-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 11/27/2022] Open
Abstract
The first branchial arch (BA1), which is derived from cranial neural crest (CNC) cells, gives rise to various orofacial tissues. Cre mice are widely used for the determination of CNC and exploration of gene functions in orofacial development. However, there is a lack of Cre mice specifically marked BA1's cells. Pax2-Cre allele was previously generated and has been widely used in the field of inner ear development. Here, by compounding Pax2-Cre and R26R-mTmG mice, we found a specific expression pattern of Pax2+ cells that marked BA1's mesenchymal cells and the BA1-derivatives. Compared to Pax2-Cre; R26R-mTmG allele, GFP+ cells were abundantly found both in BA1 and second branchial arch in Wnt1-Cre;R26R-mTmG mice. As BMP4 signaling is required for orofacial development, we over-activated Bmp4 by using Pax2-Cre; pMes-BMP4 strain. Interestingly, our results showed bilateral hyperplasia between the upper and lower teeth. We also compare the phenotypes of Wnt1-Cre; pMes-BMP4 and Pax2-Cre; pMes-BMP4 strains and found severe deformation of molar buds, palate, and maxilla-mandibular bony structures in Wnt1-Cre; pMes-BMP4 mice; however, the morphology of these orofacial organs were comparable between controls and Pax2-Cre; pMes-BMP4 mice except for bilateral hyperplastic tissues. We further explore the properties of the hyperplastic tissue and found it is not derived from Runx2+ cells but expresses Msx1, and probably caused by abnormal cell proliferation and altered expression pattern of p-Smad1/5/8. In sum, our findings suggest altering BMP4 signaling in BA1-specific cell lineage may lead to unique phenotypes in orofacial regions, further hinting that Pax2-Cre mice could be a new model for genetic manipulation of BA1-derived organogenesis in the orofacial region.
Collapse
|
10
|
Yoshioka H, Li A, Suzuki A, Ramakrishnan SS, Zhao Z, Iwata J. Identification of microRNAs and gene regulatory networks in cleft lip common in humans and mice. Hum Mol Genet 2021; 30:1881-1893. [PMID: 34104955 PMCID: PMC8444451 DOI: 10.1093/hmg/ddab151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
The etiology of cleft lip with/without cleft palate (CL/P), one of the most frequent craniofacial birth defects worldwide, is complicated by contributions of both genetic and environmental factors. Understanding the etiology of these conditions is essential for developing preventive strategies. This study thus aims to identify regulatory networks of microRNAs (miRNAs), transcriptional factors (TFs) and non-TF genes associated with cleft lip (CL) that are conserved in humans and mice. Notably, we found that miR-27b, miR-133b, miR-205, miR-376b and miR-376c were involved in the regulation of CL-associated gene expression in both humans and mice. Among the candidate miRNAs, the overexpression of miR-27b, miR-133b and miR-205, but not miR-376b and miR-376c, significantly inhibited cell proliferation through suppression of CL-associated genes (miR-27b suppressed PAX9 and RARA; miR-133b suppressed FGFR1, PAX7, and SUMO1; and miR-205 suppressed PAX9 and RARA) in cultured human and mouse lip mesenchymal cells. Taken together, our results suggest that elevated expression of miR-27b, miR-133b and miR-205 may play a crucial role in CL through the suppression of genes associated with CL.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Aimin Li
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Sai Shankar Ramakrishnan
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
11
|
Conservation of Zebrafish MicroRNA-145 and Its Role during Neural Crest Cell Development. Genes (Basel) 2021; 12:genes12071023. [PMID: 34209401 PMCID: PMC8306979 DOI: 10.3390/genes12071023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
The neural crest is a multipotent cell population that develops from the dorsal neural fold of vertebrate embryos in order to migrate extensively and differentiate into a variety of tissues. A number of gene regulatory networks coordinating neural crest cell specification and differentiation have been extensively studied to date. Although several publications suggest a common role for microRNA-145 (miR-145) in molecular reprogramming for cell cycle regulation and/or cellular differentiation, little is known about its role during in vivo cranial neural crest development. By modifying miR-145 levels in zebrafish embryos, abnormal craniofacial development and aberrant pigmentation phenotypes were detected. By whole-mount in situ hybridization, changes in expression patterns of col2a1a and Sry-related HMG box (Sox) transcription factors sox9a and sox9b were observed in overexpressed miR-145 embryos. In agreement, zebrafish sox9b expression was downregulated by miR-145 overexpression. In silico and in vivo analysis of the sox9b 3′UTR revealed a conserved potential miR-145 binding site likely involved in its post-transcriptional regulation. Based on these findings, we speculate that miR-145 participates in the gene regulatory network governing zebrafish chondrocyte differentiation by controlling sox9b expression.
Collapse
|
12
|
Individual and joint effects of genetic polymorphisms in microRNA-machinery genes on congenital heart disease susceptibility. Cardiol Young 2021; 31:965-968. [PMID: 33423710 DOI: 10.1017/s1047951120004874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Single-nucleotide polymorphisms in miRNA-machinery genes may alter the biogenesis of miRNAs affecting disease susceptibility. In this case-control study, we aimed to evaluate the impact of three single-nucleotide polymorphisms (DICER rs1057035, DROSHA rs10719, and XPO5 rs11077) and their combined effect in a genetic risk score model on congenital heart disease (CHD) risk. A total of 639 participants was recruited, including 125 patients with CHD (65 males; age 9.2 ± 10 years) and 514 healthy controls (289 males; age 15.8 ± 18 years). Genotyping of polymorphisms in miRNA-machinery genes was performed using a TaqMan®SNP genotyping assay. A genetic risk score was calculated by summing the number of risk alleles of selected single-nucleotide polymorphisms. There was a significantly increased risk of CHD in patients with XPO5 rs11077 CC genotype as compared to AC heterozygote and AA homozygote patients (ORadjusted = 1.7; 95% CI: 1.1-2.8; p = 0.018). A clear tendency to significance was also found for DROSHA rs10719 AA genotype and CHD risk for both codominant and recessive models (ORadjusted = 1.8; 95% CI: 0.91-3.8; p = 0.09 and ORadjusted = 1.9; 95% CI: 0.92-4; p = 0.08, respectively). The resulting genetic risk score predicted a 1.73 risk for CHD per risk allele (95% CI: 1.2-2.5; p = 0.002). Subjects in the top tertile of genetic risk score were estimated to have more than three-fold increased risk of CHD compared with those in the bottom tertile (ORadjusted = 3.52; 95% CI: 1.4-9; p = 0.009). Our findings show that the genetic variants in miRNA-machinery genes might participate in the development of CHD.
Collapse
|
13
|
Yoshioka H, Ramakrishnan SS, Suzuki A, Iwata J. Phenytoin Inhibits Cell Proliferation through microRNA-196a-5p in Mouse Lip Mesenchymal Cells. Int J Mol Sci 2021; 22:1746. [PMID: 33572377 PMCID: PMC7916186 DOI: 10.3390/ijms22041746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 01/22/2023] Open
Abstract
Cleft lip (CL) is one of the most common birth defects. It is caused by either genetic mutations or environmental factors. Recent studies suggest that environmental factors influence the expression of noncoding RNAs [e.g., microRNA (miRNA)], which can regulate the expression of genes crucial for cellular functions. In this study, we examined which miRNAs are associated with CL. Among 10 candidate miRNAs (miR-98-3p, miR-101a-3p, miR-101b-3p, miR-141-3p, miR-144-3p, miR-181a-5p, miR-196a-5p, miR-196b-5p, miR-200a-3p, and miR-710) identified through our bioinformatic analysis of CL-associated genes, overexpression of miR-181a-5p, miR-196a-5p, miR-196b-5p, and miR-710 inhibited cell proliferation through suppression of genes associated with CL in cultured mouse embryonic lip mesenchymal cells (MELM cells) and O9-1 cells, a mouse cranial neural crest cell line. In addition, we found that phenytoin, an inducer of CL, decreased cell proliferation through miR-196a-5p induction. Notably, treatment with a specific inhibitor for miR-196a-5p restored cell proliferation through normalization of expression of CL-associated genes in the cells treated with phenytoin. Taken together, our results suggest that phenytoin induces CL through miR-196a-5p induction, which suppresses the expression of CL-associated genes.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.Y.); (S.S.R.); (A.S.)
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Sai Shankar Ramakrishnan
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.Y.); (S.S.R.); (A.S.)
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.Y.); (S.S.R.); (A.S.)
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.Y.); (S.S.R.); (A.S.)
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
14
|
Iwata J. Gene-Environment Interplay and MicroRNAs in Cleft Lip and Cleft Palate. ORAL SCIENCE INTERNATIONAL 2021; 18:3-13. [PMID: 36855534 PMCID: PMC9969970 DOI: 10.1002/osi2.1072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cleft lip (CL) with/without cleft palate (CP) (hereafter CL/P) is the second most common congenital birth defect, affecting 7.94 to 9.92 children per 10,000 live births worldwide, followed by Down syndrome. An increasing number of genes have been identified as affecting susceptibility and/or as causative genes for CL/P in mouse genetic and chemically-induced CL and CP studies, as well as in human genome-wide association studies and linkage analysis. While marked progress has been made in the identification of genetic and environmental risk factors for CL/P, the interplays between these factors are not yet fully understood. This review aims to summarize our current knowledge of CL and CP from genetically engineered mouse models and environmental factors that have been studied in mice. Understanding the regulatory mechanism(s) of craniofacial development may not only advance our understanding of craniofacial developmental biology, but could also provide approaches for the prevention of birth defects and for tissue engineering in craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, 77054 USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, 77054 USA.,Pediatric Research Center, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, 77030 USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, 77030 USA
| |
Collapse
|
15
|
Choi S, Lee JS, Bassim CW, Kushner H, Carr AG, Gardner PJ, Harney LA, Schultz KAP, Stewart DR. Dental abnormalities in individuals with pathogenic germline variation in DICER1. Am J Med Genet A 2019; 179:1820-1825. [PMID: 31313479 DOI: 10.1002/ajmg.a.61292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 06/20/2019] [Accepted: 06/23/2019] [Indexed: 12/13/2022]
Abstract
Pathogenic germline variation in the microRNA processing gene DICER1 gives rise to an autosomal dominant, tumor-predisposition disorder. Conditional deletion of Dicer1 in murine dental epithelium shows that it controls tooth patterning, size, number, and shape. The human dental phenotype of people with germline pathogenic variation in DICER1 is unknown. DICER1-carriers (n = 57) and family controls (n = 55) were evaluated at the NIH Clinical Center dental clinic as part of a comprehensive medical evaluation. Digital panoramic radiographs, bite-wing radiographs, and oral photographs were collected. A single observer, blind to DICER1 status, reviewed the dental records and determined the presence or absence of 11 dental characteristics as described in the clinic notes, radiographs, or oral photographs. Subjective phenotypes were reviewed on radiographs by two examiners (blind to DICER1 status) for the presence or absence of the dental characteristics to reduce inconsistencies. By simple association, bulbous crown, periodontitis, and taurodontism were all significant (p < .05). Logistic regression with chi-square maximum likelihood estimates showed that bulbous crown and periodontitis remained significant. Recognition of these phenotypes may aid identification of individuals and families at risk for DICER1-associated neoplasms. These findings may also guide dental care for individuals with germline DICER1 pathogenic variation.
Collapse
Affiliation(s)
- Sooji Choi
- Office of the Clinical Director, National Institute of Dental and Craniofacial Research, Bethesda, Maryland
| | - Janice S Lee
- Office of the Clinical Director, National Institute of Dental and Craniofacial Research, Bethesda, Maryland
| | - Carol W Bassim
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Harvey Kushner
- BioMedical Computer Research Institute, Philadelphia, Pennsylvania
| | | | - Pamela J Gardner
- Office of the Clinical Director, National Institute of Dental and Craniofacial Research, Bethesda, Maryland
| | | | - Kris Ann P Schultz
- International Pleuropulmonary Blastoma/DICER1 Registry, Children's Minnesota, Minneapolis, Minnesota.,International Ovarian and Testicular Stromal Tumor Registry, Children's Minnesota, Minneapolis, Minnesota.,Cancer and Blood Disorders, Children's Minnesota, Minneapolis, Minnesota
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH Rockville, Maryland
| |
Collapse
|
16
|
Mukhopadhyay P, Smolenkova I, Warner D, Pisano MM, Greene RM. Spatio-Temporal Expression and Functional Analysis of miR-206 in Developing Orofacial Tissue. Microrna 2019; 8:43-60. [PMID: 30068287 DOI: 10.2174/2211536607666180801094528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/28/2018] [Accepted: 07/27/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Development of the mammalian palate is dependent on precise, spatiotemporal expression of a panoply of genes. MicroRNAs (miRNAs), the largest family of noncoding RNAs, function as crucial modulators of cell and tissue differentiation, regulating expression of key downstream genes. OBSERVATIONS Our laboratory has previously identified several developmentally regulated miRNAs, including miR-206, during critical stages of palatal morphogenesis. The current study reports spatiotemporal distribution of miR-206 during development of the murine secondary palate (gestational days 12.5-14.5). RESULT AND CONCLUSION Potential cellular functions and downstream gene targets of miR-206 were investigated using functional assays and expression profiling, respectively. Functional analyses highlighted potential roles of miR-206 in governing TGFß- and Wnt signaling in mesenchymal cells of the developing secondary palate. In addition, altered expression of miR-206 within developing palatal tissue of TGFß3-/- fetuses reinforced the premise that crosstalk between this miRNA and TGFß3 is crucial for secondary palate development.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, United States
| | - Irina Smolenkova
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, United States
| | - Dennis Warner
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, United States
| | - Michele M Pisano
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, United States
| | - Robert M Greene
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, United States
| |
Collapse
|
17
|
Schoen C, Glennon JC, Abghari S, Bloemen M, Aschrafi A, Carels CEL, Von den Hoff JW. Differential microRNA expression in cultured palatal fibroblasts from infants with cleft palate and controls. Eur J Orthod 2018; 40:90-96. [PMID: 28486694 DOI: 10.1093/ejo/cjx034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background The role of microRNAs (miRNAs) in animal models of palatogenesis has been shown, but only limited research has been carried out in humans. To date, no miRNA expression study on tissues or cells from cleft palate patients has been published. We compared miRNA expression in palatal fibroblasts from cleft palate patients and age-matched controls. Material and Methods Cultured palatal fibroblasts from 10 non-syndromic cleft lip and palate patients (nsCLP; mean age: 18 ± 2 months), 5 non-syndromic cleft palate only patients (nsCPO; mean age: 17 ± 2 months), and 10 controls (mean age: 24 ± 5 months) were analysed with next-generation small RNA sequencing. All subjects are from Western European descent. Sequence reads were bioinformatically processed and the differentially expressed miRNAs were technically validated using quantitative reverse-transcription polymerase chain reaction (RT-qPCR). Results Using RNA sequencing, three miRNAs (hsa-miR-93-5p, hsa-miR-18a-5p, and hsa-miR-92a-3p) were up-regulated and six (hsa-miR-29c-5p, hsa-miR-549a, hsa-miR-3182, hsa-miR-181a-5p, hsa-miR-451a, and hsa-miR-92b-5p) were down-regulated in nsCPO fibroblasts. One miRNA (hsa-miR-505-3p) was down-regulated in nsCLP fibroblasts. Of these, hsa-miR-505-3p, hsa-miR-92a, hsa-miR-181a, and hsa-miR-451a were also differentially expressed using RT-PCR with a higher fold change than in RNAseq. Limitations The small sample size may limit the value of the data. In addition, interpretation of the data is complicated by the fact that biopsy samples are taken after birth, while the origin of the cleft lies in the embryonic period. This, together with possible effects of the culture medium, implies that only cell-autonomous genetic and epigenetic differences might be detected. Conclusions For the first time, we have shown that several miRNAs appear to be dysregulated in palatal fibroblasts from patients with nsCLP and nsCPO. Furthermore, large-scale genomic and expression studies are needed to validate these findings.
Collapse
Affiliation(s)
- Christian Schoen
- Departments of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeffrey C Glennon
- Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Shaghayegh Abghari
- Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjon Bloemen
- Departments of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Armaz Aschrafi
- Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institute of Health, Bethesda, USA
| | - Carine E L Carels
- Departments of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Oral Health Sciences, KU Leuven, University Hospitals, Belgium.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes W Von den Hoff
- Departments of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Weiner AMJ. MicroRNAs and the neural crest: From induction to differentiation. Mech Dev 2018; 154:98-106. [PMID: 29859253 DOI: 10.1016/j.mod.2018.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/18/2018] [Accepted: 05/28/2018] [Indexed: 01/06/2023]
Abstract
MicroRNAs are small noncoding RNAs that can control gene expression by base pairing to partially complementary mRNAs. Regulation by microRNAs plays essential roles in diverse biological processes such as neural crest formation during embryonic development. The neural crest is a multipotent cell population that develops from the dorsal neural fold of vertebrate embryos in order to migrate extensively and differentiate into a variety of tissues. Gene regulatory networks that coordinate neural crest cell specification and differentiation have been considerably studied so far. Although it is known that microRNAs play important roles in neural crest development, posttranscriptional regulation by microRNAs has not been deeply characterized yet. This review is focused on the microRNAs identified so far in order to regulate gene expression of neural crest cells during vertebrate development.
Collapse
Affiliation(s)
- Andrea M J Weiner
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP Rosario, Argentina.
| |
Collapse
|
19
|
Salivary microRNAs as new molecular markers in cleft lip and palate: a new frontier in molecular medicine. Oncotarget 2018; 9:18929-18938. [PMID: 29721173 PMCID: PMC5922367 DOI: 10.18632/oncotarget.24838] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/28/2018] [Indexed: 12/02/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs of about twenty-two nucleotides that regulate gene expression through post-transcriptional control. The purpose of the present study was to identify and describe the salivary miRNAs in cleft lip and palate (CLP) patients comparing them with a control healthy group. Twelve patients (mean age 11.9 ± 2.42 years; 6M/6F) formed the study group. The control group was created selecting twelve healthy subjects matched for age and sex with study group. We recorded differences in miRNA expression profile between the saliva of CLP patients and the control group. Specifically, miR-141, miR-223, and miR-324-3p were mostly deregulated between the study and control groups. Interestingly, these three miRNAs are the regulators of the following genes correlated to cleft palate and lip development: MTHFR, SATB2, PVRL1. The present study showed that collecting saliva samples is a non-invasive procedure and is well accepted by CLP patients. MiRNAs can be easily isolated and identified. The differences in regulation of miR-141, miR-223 and miR-324-3p between the two groups of salivary samples suggest that these molecules are valid prognostic biomarkers and therapy dynamic response indicators, also for the accuracy and non-invasive sampling and dosing system.
Collapse
|
20
|
Kumari P, Singh SK, Raman R. A novel non-coding RNA within an intron of CDH2 and association of its SNP with non-syndromic cleft lip and palate. Gene 2018. [PMID: 29524576 DOI: 10.1016/j.gene.2018.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Genome-wide linkage analysis and whole genome sequencing in a Van der Woude syndrome (VWS) family revealed that the SNP, rs539075, within intron 2 of the cadherin 2 gene (CDH2) co-segregated with the disease phenotype. RESULTS A study with nonsyndromic cleft lip with or without cleft palate (NSCL ± P) cases (N = 292) and controls (N = 287) established association of this SNP with NSCL ± P as a risk factor. RT-PCR based expression analysis of the SNP-harbouring region of intron 2 of CDH2 in the clefted lip and/or palate tissues of 16 patients revealed that the mutant allele expressed in all those individuals having it (hetero-/homozygous), whereas the wild type allele expressed in <50% of the samples in which it was present. The intronic transcript was also present in the prospective lip and palate region of 13.5 dpc mouse embryo, detected by RNA in situ hybridization and RT-PCR. CONCLUSIONS These results including the in silico, characterization of the ~200 nt-intronic transcript showed that conformationally it fits best with noncoding small RNA, possibly a precursor of miRNA. Its function in the orofacial organogenesis remains to be elucidated which will enable us to define the role of this mutant ncRNA in the clefting of lip and palate.
Collapse
Affiliation(s)
- Priyanka Kumari
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Subodh Kumar Singh
- G. S. Memorial Plastic Surgery Hospital and Trauma Center, Varanasi 221010, Uttar Pradesh, India
| | - Rajiva Raman
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
21
|
Xu M, Ma L, Lou S, Du Y, Yin X, Zhang C, Fan L, Wang H, Wang Z, Zhang W, Wang L, Pan Y. Genetic variants of microRNA processing genes and risk of non-syndromic orofacial clefts. Oral Dis 2017; 24:422-428. [PMID: 28833944 DOI: 10.1111/odi.12741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE MicroRNA (miRNA) processing genes play important roles in the craniofacial development. The aim of this study was to explore the associations between single nucleotide polymorphisms (SNPs) of miRNA processing genes with the risk of non-syndromic orofacial clefts (NSOC). METHODS We genotyped 12 potentially functional SNPs from seven miRNA processing genes (GEMIN3, DROSHA, DGCR8, GEMIN4, PIWIL1, XPO5, and DICER) in a case-control study of 602 NSOC cases and 605 controls. RESULTS Two SNPs were associated with the susceptibility of CL/P: rs10719 in DROSHA led to an increased risk of cleft lip with or without palate (CL/P) (GA/AA: p = .024, OR = 1.33, 95% CI = [1.04, 1.70]; GG + GA/AA: p = .037, OR = 1.29, 95% CI = [1.02, 1.63]), while rs493760 in DROSHA (CC/TT: p = .049, OR = 0.58, 95% CI = [0.34, 0.99]) could reduce the risk of CL/P. In addition, rs10719 (A)-rs493760 (C) haplotype contributed to a decreased risk of CL/P (OR = 0.77, 95% CI = [0.63, 0.94]), whereas the rs10719 (G)-rs493760 (C) haplotype contributed to the increased risk of cleft palate only (CPO) (OR = 2.70, 95% CI = [1.15, 6.35]). However, there was no difference observed in these SNPs after the Bonferroni correction. CONCLUSION Taken together, our results provided the potential evidence that rs10719 and rs493760 might contribute to the risk of CL/P and suggested potential genetic basis and mechanisms of CL/P. The lack of association between these SNPs and CPO might be due to the limited sample size of CPO subgroup.
Collapse
Affiliation(s)
- M Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - L Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - S Lou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Y Du
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - X Yin
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - C Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - L Fan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - H Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Z Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - W Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - L Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Y Pan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Arayatham S, Tiptanavattana N, Tharasanit T. Effects of vitrification and a Rho-associated coiled-coil containing protein kinase 1 inhibitor on the meiotic and developmental competence of feline oocytes. J Reprod Dev 2017; 63:511-517. [PMID: 28804108 PMCID: PMC5649101 DOI: 10.1262/jrd.2017-004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Oocyte cryopreservation is the technique of choice for the long-term storage of female gametes. However, it induces an irreversible loss of oocyte viability and function. We examined the effects of vitrification and a
Rho-associated coiled-coil containing protein kinase 1 (ROCK1) inhibitor (ROCKi) on the meiotic and developmental competence of feline oocytes. We examined the expression of LIM kinase (LIMK) 1 and 2, with and
without ROCKi treatment. Cumulus oocyte complexes (COCs) were matured in vitro with 0, 10, 20, and 40 µM ROCKi. The oocytes were subsequently assessed for maturation rate and embryo development following
in vitro fertilization. We repeated the COC experiment, but vitrified and warmed the COCs prior to culture. We detected LIMK1 and LIMK2 expression in feline oocytes, which could
be downregulated by ROCKi treatment. The ROCKi at 10 µM affected neither meiotic nor developmental competence (P > 0.05, versus control). However, high concentrations of ROCKi during maturation induced meiotic arrest at
metaphase I. Appropriate concentrations of ROCKi significantly improved the normal fertilization rate of vitrified warmed oocytes (49.4 ± 3.4%) compared with that of the control (42.8 ± 8.6%, P < 0.05). The ROCKi also
significantly improved the embryo cleavage rate (36.1 ± 3.8%) as compared with the non-treated control (27.4 ± 2.5%, P < 0.05). Thus, this study revealed that the main mediators of the ROCK cascade (LIM kinases) are expressed
in feline oocytes. The ROCKi (10 µM) did not compromise the meiotic or developmental competence of feline oocytes. In addition, 10 µM ROCKi improved the cytoplasmic maturation of vitrified–warmed oocytes as indicated by their
fertilization competence.
Collapse
Affiliation(s)
- Saengtawan Arayatham
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Narong Tiptanavattana
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
23
|
Schoen C, Aschrafi A, Thonissen M, Poelmans G, Von den Hoff JW, Carels CEL. MicroRNAs in Palatogenesis and Cleft Palate. Front Physiol 2017; 8:165. [PMID: 28420997 PMCID: PMC5378724 DOI: 10.3389/fphys.2017.00165] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/06/2017] [Indexed: 01/01/2023] Open
Abstract
Palatogenesis requires a precise spatiotemporal regulation of gene expression, which is controlled by an intricate network of transcription factors and their corresponding DNA motifs. Even minor perturbations of this network may cause cleft palate, the most common congenital craniofacial defect in humans. MicroRNAs (miRNAs), a class of small regulatory non-coding RNAs, have elicited strong interest as key regulators of embryological development, and as etiological factors in disease. MiRNAs function as post-transcriptional repressors of gene expression and are therefore able to fine-tune gene regulatory networks. Several miRNAs are already identified to be involved in congenital diseases. Recent evidence from research in zebrafish and mice indicates that miRNAs are key factors in both normal palatogenesis and cleft palate formation. Here, we provide an overview of recently identified molecular mechanisms underlying palatogenesis involving specific miRNAs, and discuss how dysregulation of these miRNAs may result in cleft palate.
Collapse
Affiliation(s)
- Christian Schoen
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical CenterNijmegen, Netherlands
| | - Armaz Aschrafi
- Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of HealthBethesda, MD, USA
| | - Michelle Thonissen
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical CenterNijmegen, Netherlands
| | - Geert Poelmans
- Department of Human Genetics, Radboud University Medical CenterNijmegen, Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegen, Netherlands.,Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud Institute for Molecular Life Sciences, Radboud UniversityNijmegen, Netherlands
| | - Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical CenterNijmegen, Netherlands
| | - Carine E L Carels
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical CenterNijmegen, Netherlands.,Department of Human Genetics, Radboud University Medical CenterNijmegen, Netherlands.,Department of Oral Health Sciences, University Hospitals-KU LeuvenLeuven, Belgium
| |
Collapse
|
24
|
Yu Y, Zuo X, He M, Gao J, Fu Y, Qin C, Meng L, Wang W, Song Y, Cheng Y, Zhou F, Chen G, Zheng X, Wang X, Liang B, Zhu Z, Fu X, Sheng Y, Hao J, Liu Z, Yan H, Mangold E, Ruczinski I, Liu J, Marazita ML, Ludwig KU, Beaty TH, Zhang X, Sun L, Bian Z. Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic heterogeneity. Nat Commun 2017; 8:14364. [PMID: 28232668 PMCID: PMC5333091 DOI: 10.1038/ncomms14364] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 12/20/2016] [Indexed: 01/08/2023] Open
Abstract
Non-syndromic cleft lip with palate (NSCLP) is the most serious sub-phenotype of non-syndromic orofacial clefts (NSOFC), which are the most common craniofacial birth defects in humans. Here we conduct a GWAS of NSCLP with multiple independent replications, totalling 7,404 NSOFC cases and 16,059 controls from several ethnicities, to identify new NSCLP risk loci, and explore the genetic heterogeneity between sub-phenotypes of NSOFC. We identify 41 SNPs within 26 loci that achieve genome-wide significance, 14 of which are novel (RAD54B, TMEM19, KRT18, WNT9B, GSC/DICER1, PTCH1, RPS26, OFCC1/TFAP2A, TAF1B, FGF10, MSX1, LINC00640, FGFR1 and SPRY1). These 26 loci collectively account for 10.94% of the heritability for NSCLP in Chinese population. We find evidence of genetic heterogeneity between the sub-phenotypes of NSOFC and among different populations. This study substantially increases the number of genetic susceptibility loci for NSCLP and provides important insights into the genetic aetiology of this common craniofacial malformation. Non-syndromic cleft lip with palate is a common birth defect of unknown aetiology. Here, the authors discover 14 new genes associated with this condition, and show genetic heterogeneity in this and other non-syndromic orofacial clefting disorders.
Collapse
Affiliation(s)
- Yanqin Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xianbo Zuo
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China
| | - Miao He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.,Department of Pediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jinping Gao
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yuchuan Fu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Chuanqi Qin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Liuyan Meng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wenjun Wang
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yaling Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yong Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Fusheng Zhou
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China
| | - Gang Chen
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaodong Zheng
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xinhuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Bo Liang
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhengwei Zhu
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiazhou Fu
- Department of Genetics and Centre for Developmental Biology, College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Yujun Sheng
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jiebing Hao
- The Second Charity Hospital of Henan Province, Jiaozuo, Henan 454000, China
| | - Zhongyin Liu
- Stomatological Hospital of Nanyang, Nanyang, Henan 473013, China
| | - Hansong Yan
- Stomatological Hospital of Xiangyang, Xiangyang, Hubei 441011, China
| | - Elisabeth Mangold
- Institute of Human Genetics, Life and Brain Center, University of Bonn, 53127 Bonn, Germany
| | - Ingo Ruczinski
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Jianjun Liu
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China
| | - Mary L Marazita
- Department of Oral Biology and Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,Clinical and Translational Science, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Kerstin U Ludwig
- Institute of Human Genetics, Life and Brain Center, University of Bonn, 53127 Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, 53127 Bonn, Germany
| | - Terri H Beaty
- Department of Epidemiology, School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Xuejun Zhang
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China.,Department of Dermatology at No. 2 Hospital, Anhui Medical University, Hefei, Anhui 230022, China.,Institute of Dermatology and Department of Dermatology, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Liangdan Sun
- Institute of Dermatology and Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Lab Incubation of Dermatology, Ministry of Science and Technology, Hefei, China.,Key Lab of Dermatology, Ministry of Education, Heifei, China.,Key Lab of Gene Resources Utilization for Severe Inherited Disorders, Anhui 230032, China.,Collaborative Innovation Center of Complex and Severe skin Disease, Anhui Medical University, Hefei, Anhui 230032, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui 230032, China
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| |
Collapse
|
25
|
Radhakrishnan B, Alwin Prem Anand A. Role of miRNA-9 in Brain Development. J Exp Neurosci 2016; 10:101-120. [PMID: 27721656 PMCID: PMC5053108 DOI: 10.4137/jen.s32843] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small regulatory RNAs involved in gene regulation. The regulation is effected by either translational inhibition or transcriptional silencing. In vertebrates, the importance of miRNA in development was discovered from mice and zebrafish dicer knockouts. The miRNA-9 (miR-9) is one of the most highly expressed miRNAs in the early and adult vertebrate brain. It has diverse functions within the developing vertebrate brain. In this article, the role of miR-9 in the developing forebrain (telencephalon and diencephalon), midbrain, hindbrain, and spinal cord of vertebrate species is highlighted. In the forebrain, miR-9 is necessary for the proper development of dorsoventral telencephalon by targeting marker genes expressed in the telencephalon. It regulates proliferation in telencephalon by regulating Foxg1, Pax6, Gsh2, and Meis2 genes. The feedback loop regulation between miR-9 and Nr2e1/Tlx helps in neuronal migration and differentiation. Targeting Foxp1 and Foxp2, and Map1b by miR-9 regulates the radial migration of neurons and axonal development. In the organizers, miR-9 is inversely regulated by hairy1 and Fgf8 to maintain zona limitans interthalamica and midbrain–hindbrain boundary (MHB). It maintains the MHB by inhibiting Fgf signaling genes and is involved in the neurogenesis of the midbrain–hindbrain by regulating Her genes. In the hindbrain, miR-9 modulates progenitor proliferation and differentiation by regulating Her genes and Elav3. In the spinal cord, miR-9 modulates the regulation of Foxp1 and Onecut1 for motor neuron development. In the forebrain, midbrain, and hindbrain, miR-9 is necessary for proper neuronal progenitor maintenance, neurogenesis, and differentiation. In vertebrate brain development, miR-9 is involved in regulating several region-specific genes in a spatiotemporal pattern.
Collapse
Affiliation(s)
| | - A Alwin Prem Anand
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
26
|
Seelan RS, Mukhopadhyay P, Warner DR, Appana SN, Brock GN, Pisano MM, Greene RM. Methylated microRNA genes of the developing murine palate. Microrna 2015; 3:160-73. [PMID: 25642850 DOI: 10.2174/2211536604666150131125805] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 02/07/2023]
Abstract
Environmental factors contribute to the etiology of cleft palate (CP). Environmental factors can also affect gene expression via alterations in DNA methylation suggesting a possible mechanism for the induction of CP. Identification of genes methylated during development of the secondary palate provides the basis for examination of the means by which environmental factors may adversely influence palatal ontogeny. We previously characterized the methylome of the developing murine secondary palate focusing primarily on protein- encoding genes. We now extend this study to include methylated microRNA (miRNA) genes. A total of 42 miRNA genes were found to be stably methylated in developing murine palatal tissue. Twenty eight of these were localized within host genes. Gene methylation was confirmed by pyrosequencing of selected miRNA genes. Integration of methylated miRNA gene and expression datasets identified 62 miRNAs, 69% of which were non-expressed. For a majority of genes (83%), upstream CpG islands (CGIs) were highly methylated suggesting down-regulation of CGI-associated promoters. DAVID and IPA analyses indicated that both expressed and non-expressed miRNAs target identical signaling pathways and biological processes associated with palatogenesis. Furthermore, these analyses also identified novel signaling pathways whose roles in palatogenesis remain to be elucidated. In summary, we identify methylated miRNA genes in the developing murine secondary palate, correlate miRNA gene methylation with expression of their cognate miRNA transcripts, and identify pathways and biological processes potentially mediated by these miRNAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Robert M Greene
- Department of Molecular, Cellular and Craniofacial Biology, Birth Defects Center, ULSD, University of Louisville, 501 S. Preston Street, Suite 350, Louisville, KY 40202, USA
| |
Collapse
|
27
|
Tavares ALP, Artinger KB, Clouthier DE. Regulating Craniofacial Development at the 3' End: MicroRNAs and Their Function in Facial Morphogenesis. Curr Top Dev Biol 2015; 115:335-75. [PMID: 26589932 DOI: 10.1016/bs.ctdb.2015.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Defects in craniofacial development represent a majority of observed human birth defects, occurring at a rate as high as 1:800 live births. These defects often occur due to changes in neural crest cell (NCC) patterning and development and can affect non-NCC-derived structures due to interactions between NCCs and the surrounding cell types. Proper craniofacial development requires an intricate array of gene expression networks that are tightly controlled spatiotemporally by a number of regulatory mechanisms. One of these mechanisms involves the action of microRNAs (miRNAs), a class of noncoding RNAs that repress gene expression by binding to miRNA recognition sequences typically located in the 3' UTR of target mRNAs. Recent evidence illustrates that miRNAs are crucial for vertebrate facial morphogenesis, with changes in miRNA expression leading to facial birth defects, including some in complex human syndromes such as 22q11 (DiGeorge Syndrome). In this review, we highlight the current understanding of miRNA biogenesis, the roles of miRNAs in overall craniofacial development, the impact that loss of miRNAs has on normal development and the requirement for miRNAs in the development of specific craniofacial structures, including teeth. From these studies, it is clear that miRNAs are essential for normal facial development and morphogenesis, and a potential key in establishing new paradigms for repair and regeneration of facial defects.
Collapse
Affiliation(s)
- Andre L P Tavares
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristin B Artinger
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
28
|
Funato N, Nakamura M, Yanagisawa H. Molecular basis of cleft palates in mice. World J Biol Chem 2015; 6:121-138. [PMID: 26322171 PMCID: PMC4549757 DOI: 10.4331/wjbc.v6.i3.121] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/26/2015] [Accepted: 07/14/2015] [Indexed: 02/05/2023] Open
Abstract
Cleft palate, including complete or incomplete cleft palates, soft palate clefts, and submucosal cleft palates, is the most frequent congenital craniofacial anomaly in humans. Multifactorial conditions, including genetic and environmental factors, induce the formation of cleft palates. The process of palatogenesis is temporospatially regulated by transcription factors, growth factors, extracellular matrix proteins, and membranous molecules; a single ablation of these molecules can result in a cleft palate in vivo. Studies on knockout mice were reviewed in order to identify genetic errors that lead to cleft palates. In this review, we systematically describe these mutant mice and discuss the molecular mechanisms of palatogenesis.
Collapse
|
29
|
Tarang S, Doi SMSR, Gurumurthy CB, Harms D, Quadros R, Rocha-Sanchez SM. Generation of a Retinoblastoma (Rb)1-inducible dominant-negative (DN) mouse model. Front Cell Neurosci 2015; 9:52. [PMID: 25755634 PMCID: PMC4337335 DOI: 10.3389/fncel.2015.00052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 02/03/2015] [Indexed: 11/13/2022] Open
Abstract
Retinoblastoma 1 (Rb1) is an essential gene regulating cellular proliferation, differentiation, and homeostasis. To exert these functions, Rb1 is recruited and physically interacts with a growing variety of signaling pathways. While Rb1 does not appear to be ubiquitously expressed, its expression has been confirmed in a variety of hematopoietic and neuronal-derived cells, including the inner ear hair cells (HCs). Studies in transgenic mice demonstrate that complete germline or conditional Rb1 deletion leads to abnormal cell proliferation, followed by massive apoptosis; making it difficult to fully address Rb1's biochemical activities. To overcome these limitations, we developed a tetracycline-inducible TetO-CB-myc6-Rb1 (CBRb) mouse model to achieve transient and inducible dominant-negative (DN) inhibition of the endogenous RB1 protein. Our strategy involved fusing the Rb1 gene to the lysosomal protease pre-procathepsin B (CB), thus allowing for further routing of the DN-CBRb fusion protein and its interacting complexes for proteolytic degradation. Moreover, reversibility of the system is achieved upon suppression of doxycycline (Dox) administration. Preliminary characterization of DN-CBRb mice bred to a ubiquitous rtTA mouse line demonstrated a significant inhibition of the endogenous RB1 protein in the inner ear and in a number of other organs where RB1 is expressed. Examination of the postnatal (P) DN-CBRb mice inner ear at P10 and P28 showed the presence of supernumerary inner HCs (IHCs) in the lower turns of the cochleae, which corresponds to the described expression domain of the endogenous Rb1 gene. Selective and reversible suppression of gene expression is both an experimental tool for defining function and a potential means to medical therapy. Given the limitations associated with Rb1-null mice lethality, this model provides a valuable resource for understanding RB1 activity, relative contribution to HC regeneration and its potential therapeutic application.
Collapse
Affiliation(s)
- Shikha Tarang
- Department of Oral Biology, Creighton University School of Dentistry Omaha, NE,USA
| | - Songila M S R Doi
- Department of Oral Biology, Creighton University School of Dentistry Omaha, NE,USA
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center Omaha, NE, USA
| | - Donald Harms
- Mouse Genome Engineering Core Facility, Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center Omaha, NE, USA
| | - Rolen Quadros
- Mouse Genome Engineering Core Facility, Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center Omaha, NE, USA
| | | |
Collapse
|
30
|
Warner DR, Mukhopadhyay P, Brock G, Webb CL, Michele Pisano M, Greene RM. MicroRNA expression profiling of the developing murine upper lip. Dev Growth Differ 2014; 56:434-47. [PMID: 24849136 DOI: 10.1111/dgd.12140] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 12/21/2022]
Abstract
Clefts of the lip and palate are thought to be caused by genetic and environmental insults but the role of epigenetic mechanisms underlying this common birth defect are unknown. We analyzed the expression of over 600 microRNAs in the murine medial nasal and maxillary processes isolated on GD10.0-GD11.5 to identify those expressed during development of the upper lip and analyzed spatial expression of a subset. A total of 142 microRNAs were differentially expressed across gestation days 10.0-11.5 in the medial nasal processes, and 66 in the maxillary processes of the first branchial arch with 45 common to both. Of the microRNAs exhibiting the largest percent increase in both facial processes were five members of the Let-7 family. Among those with the greatest decrease in expression from GD10.0 to GD11.5 were members of the microRNA-302/367 family that have been implicated in cellular reprogramming. The distribution of expression of microRNA-199a-3p and Let-7i was determined by in situ hybridization and revealed widespread expression in both medial nasal and maxillary facial process, while that for microRNA-203 was much more limited. MicroRNAs are dynamically expressed in the tissues that form the upper lip and several were identified that target mRNAs known to be important for its development, including those that regulate the two main isoforms of p63 (microRNA-203 and microRNA-302/367 family). Integration of these data with corresponding proteomic datasets will lead to a greater appreciation of epigenetic regulation of lip development and provide a better understanding of potential causes of cleft lip.
Collapse
Affiliation(s)
- Dennis R Warner
- Department of Molecular, Cellular, and Craniofacial Biology, University of Louisville Birth Defects Center, Louisville, Kentucky, USA
| | | | | | | | | | | |
Collapse
|