1
|
Pfleger T, Ortmayr K, Steiner K, Zaher R, Seiser S, Elbe-Bürger A, Heiss E, Klang V. Radical scavenging effect of skin delivery systems using Korean red ginseng extract and assessment of their biocompatibility with human primary dermal fibroblasts and HaCaT keratinocytes. Int J Pharm 2025; 674:125477. [PMID: 40097056 DOI: 10.1016/j.ijpharm.2025.125477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
Korean red ginseng (KRG) extract is proposed for cosmetic use, but no data on biological effects of KRG-loaded vehicles exist. The study aimed to optimize new multi- and monophase vehicles for KRG extract delivery, assess their biocompatibility and evaluate their radical scavenging effect in vitro. Storage stability of oil-in-water nanoemulsions (NEs) and hydroalcoholic gels (2 % w/w KRG) was assessed over twelve weeks using dynamic light scattering, rheology and pH measurements. Release profiles of ginsenosides Rb1 (more hydrophilic) and Rg1 (moderately lipophilic) through a cellulose membrane were also investigated employing Franz diffusion cells. Antioxidant potential and biocompatibility were assessed via 2,2-diphenyl-1-picrylhydrazyl (DPPH) and cell viability assays. Vehicles remained stable over twelve weeks at 8 °C (NEs Dh stable, gel viscosity + 3.5 %). Diffusion studies showed higher release of Rg1 vs. Rb1 (7.10 vs. 1.39 µg/cm-2 after 28 h). KRG-formulations demonstrated good biocompatibility with primary human dermal fibroblasts and HaCaT keratinocytes (72-94 % viability). Radical scavenging capacity of KRG extract did not differ between pure and incorporated form and was lower than that of a Hypericum extract or ascorbic acid. Results render KRG-formulations a potentially promising alternative to conventional antioxidants used in daily products.
Collapse
Affiliation(s)
- Tanja Pfleger
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Karin Ortmayr
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmacognosy, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Katja Steiner
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Rawan Zaher
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Saskia Seiser
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Adelheid Elbe-Bürger
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Elke Heiss
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmacognosy, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Victoria Klang
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
2
|
Oh JM, Yoon H, Joo JY, Im WT, Chun S. Therapeutic potential of ginseng leaf extract in inhibiting mast cell-mediated allergic inflammation and atopic dermatitis-like skin inflammation in DNCB-treated mice. Front Pharmacol 2024; 15:1403285. [PMID: 38841363 PMCID: PMC11150533 DOI: 10.3389/fphar.2024.1403285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Ginseng leaves are known to contain high concentrations of bioactive compounds, such as ginsenosides, and have potential as a treatment for various conditions, including fungal infections, cancer, obesity, oxidative stress, and age-related diseases. This study assessed the impact of ginseng leaf extract (GLE) on mast cell-mediated allergic inflammation and atopic dermatitis (AD) in DNCB-treated mice. GLE reduced skin thickness and lymph node nodules and suppressed the expression and secretion of histamine and pro-inflammatory cytokines. It also significantly lowered the production of inflammatory response mediators including ROS, leukotriene C4 (LTC4), prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). GLE inhibited the phosphorylation of MAPKs (ERK, P38, JNK) and the activation of NF-κB, which are both linked to inflammatory cytokine expression. We demonstrated that GLE's inhibitory effect on mast cell-mediated allergic inflammation is due to the blockade of the NF-κB and inflammasome pathways. Our findings suggest that GLE can be an effective therapeutic agent for mast-cell mediated and allergic inflammatory conditions.
Collapse
Affiliation(s)
- Jung-Mi Oh
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do, Republic of Korea
| | - HyunHo Yoon
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Wan-Taek Im
- Department of Biological Sciences, Hankyong National University, Anseong, Gyeonggi-do, Republic of Korea
| | - Sungkun Chun
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do, Republic of Korea
| |
Collapse
|
3
|
Zhao L, Zhang T, Zhang K. Pharmacological effects of ginseng and ginsenosides on intestinal inflammation and the immune system. Front Immunol 2024; 15:1353614. [PMID: 38698858 PMCID: PMC11064651 DOI: 10.3389/fimmu.2024.1353614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Intestinal inflammatory imbalance and immune dysfunction may lead to a spectrum of intestinal diseases, such as inflammatory bowel disease (IBD) and gastrointestinal tumors. As the king of herbs, ginseng has exerted a wide range of pharmacological effects in various diseases. Especially, it has been shown that ginseng and ginsenosides have strong immunomodulatory and anti-inflammatory abilities in intestinal system. In this review, we summarized how ginseng and various extracts influence intestinal inflammation and immune function, including regulating the immune balance, modulating the expression of inflammatory mediators and cytokines, promoting intestinal mucosal wound healing, preventing colitis-associated colorectal cancer, recovering gut microbiota and metabolism imbalance, alleviating antibiotic-induced diarrhea, and relieving the symptoms of irritable bowel syndrome. In addition, the specific experimental methods and key control mechanisms are also briefly described.
Collapse
Affiliation(s)
| | | | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Lee KS, Lee S, Wang H, Lee G, Kim S, Ryu YH, Chang NH, Kang YW. Analysis of Skin Regeneration and Barrier-Improvement Efficacy of Polydeoxyribonucleotide Isolated from Panax Ginseng (C.A. Mey.) Adventitious Root. Molecules 2023; 28:7240. [PMID: 37959659 PMCID: PMC10649580 DOI: 10.3390/molecules28217240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Polydeoxyribonucleotide (PDRN) has the ability to regenerate skin cells and improve the skin barrier and wound healing. This study investigated the possibility of replacing animal-derived PDRN with plant-derived PDRN. To test this, the adventitious roots of Korean ginseng (Panax ginseng C.A. Meyer), which is commonly used to treat various diseases, were suspension-cultivated through tissue culture; subsequently, PDRN was purified using microfluidization, an ultra-high-pressure physical grinding method. The results showed that purified Panax PDRN was effective in healing skin wounds and enhancing the skin barrier. Panax PDRN promoted the proliferation of keratinocytes and fibroblasts by increasing the expression of fibronectin, filaggrin, Ki-67, Bcl-2, inhibin beta A, and Cyclin D1. It also acted as an agonist of the adenosine A2A receptor and induced the phosphorylation of focal adhesion kinase, adenosine triphosphate-dependent tyrosine kinase, and mitogen-activated protein kinase. This activated signal transduction, thereby regenerating skin cells and strengthening the barrier. These results were not only observed in skin cells but also in an artificial skin model (KeraSkinTM). The use of plant-derived PDRN instead of animal-derived PDRN can promote animal welfare and environmental sustainability. Furthermore, Panax PDRN can potentially be a new plant-derived PDRN (PhytoPDRN) that may be utilized in the treatment of various skin diseases.
Collapse
Affiliation(s)
- Kwang-Soo Lee
- Bio Convergence Material Division, Biosolution Co., Ltd., Seoul 06746, Republic of Korea; (K.-S.L.); (S.L.); (Y.-H.R.)
| | - Soyeon Lee
- Bio Convergence Material Division, Biosolution Co., Ltd., Seoul 06746, Republic of Korea; (K.-S.L.); (S.L.); (Y.-H.R.)
| | - Hyesoo Wang
- Bio Convergence Material Division, Biosolution Co., Ltd., Seoul 06746, Republic of Korea; (K.-S.L.); (S.L.); (Y.-H.R.)
| | - Geonhee Lee
- Non-Clinical R&D Center, Biosolution Co., Ltd., Seoul 06746, Republic of Korea; (G.L.); (S.K.)
| | - Seolyeong Kim
- Non-Clinical R&D Center, Biosolution Co., Ltd., Seoul 06746, Republic of Korea; (G.L.); (S.K.)
| | - Yang-Hwan Ryu
- Bio Convergence Material Division, Biosolution Co., Ltd., Seoul 06746, Republic of Korea; (K.-S.L.); (S.L.); (Y.-H.R.)
- Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | | | - Yong-Won Kang
- Bio Convergence Material Division, Biosolution Co., Ltd., Seoul 06746, Republic of Korea; (K.-S.L.); (S.L.); (Y.-H.R.)
| |
Collapse
|
5
|
Yang J, Zhang L, Peng X, Zhang S, Sun S, Ding Q, Ding C, Liu W. Polymer-Based Wound Dressings Loaded with Ginsenoside Rg3. Molecules 2023; 28:5066. [PMID: 37446725 DOI: 10.3390/molecules28135066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The skin, the largest organ in the human body, mainly plays a protective role. Once damaged, it can lead to acute or chronic wounds. Wound healing involves a series of complex physiological processes that require ideal wound dressings to promote it. The current wound dressings have characteristics such as high porosity and moderate water vapor permeability, but they are limited in antibacterial properties and cannot protect wounds from microbial infections, which can delay wound healing. In addition, several dressings contain antibiotics, which may have bad impacts on patients. Natural active substances have good biocompatibility; for example, ginsenoside Rg3 has anti-inflammatory, antibacterial, antioxidant, and other biological activities, which can effectively promote wound healing. Some researchers have developed various polymer wound dressings loaded with ginsenoside Rg3 that have good biocompatibility and can effectively promote wound healing and reduce scar formation. This article will focus on the application and mechanism of ginsenoside Rg3-loaded dressings in wounds.
Collapse
Affiliation(s)
- Jiali Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Lifeng Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiaojuan Peng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China
| |
Collapse
|
6
|
Klang V, Schweiger EM, Strohmaier S, Walter VI, Dekic Z, Tahir A. Dermal Delivery of Korean Red Ginseng Extract: Impact on Storage Stability of Different Carrier Systems and Evaluation of Rg1 and Rb1 Skin Permeation Ex Vivo. Pharmaceutics 2022; 15:pharmaceutics15010056. [PMID: 36678685 PMCID: PMC9864683 DOI: 10.3390/pharmaceutics15010056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The root extract of Panax ginseng C.A. Meyer (Korean red ginseng/KRG extract) is a traditional Asian remedy introduced to dermal products for its antioxidative potential. However, little is known about technological aspects or skin penetration of main ginsenosides. Thus, stable oil-in-water nanoemulsions (NEs) and hydrogels for dermal delivery of KRG extract were developed and characterised using light scattering methods, analysis of flow properties and pH measurements. In addition, Rg1 and Rb1 contents were monitored by UHPLC/MS. Different surfactants (phosphatidylcholine, monoacylphosphatidylcholine and polysorbate 80) and polymers (polyacrylic acid and hydroxyethylcellulose) were tested and compared for their compatibility with KRG extract. The results showed that incorporation of KRG extract led to a significantly reduced formulation pH in hydroxyethylcellulose gels (-22%), NEs (-15%) and carbomer gels (-4-5%). The dynamic viscosity was in the range of 24-28 Pas at 10 s-1 for carbomer gels. The highest storage stability and skin permeation were observed for a hydroalcoholic gel with carbomer 50,000 and TRIS buffer (each of 1% w/w), containing ethanol (20% w/w) and KRG extract (2% w/w). Ex vivo diffusion cell studies confirmed skin permeation of the moderately lipophilic Rg1, but not the more hydrophilic Rb1 with a larger molecular weight.
Collapse
Affiliation(s)
- Victoria Klang
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1427755403
| | - Eva-Maria Schweiger
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Simone Strohmaier
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Verena Ina Walter
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Zorana Dekic
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Ammar Tahir
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
7
|
Agampodi VA, Katavic P, Collet C, Collet T. Antibacterial and Anti-inflammatory Activity of Extracts and Major Constituents Derived from Stachytarpheta indica Linn. Leaves and Their Potential Implications for Wound Healing. Appl Biochem Biotechnol 2022; 194:6213-6254. [PMID: 35904675 DOI: 10.1007/s12010-021-03635-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/19/2021] [Indexed: 11/02/2022]
Abstract
Wounds of various types continue to have a severe socioeconomic impact on the cost of health care. Globally, there has been increased interest surrounding the identification of bioactive compounds that promote or modulate the wound healing process. Stachytarpheta indica Linn. is traditionally used to heal wounds and relieve inflammation; however, the theorised pharmacological properties have not yet been scientifically validated. In this study, dried and ground plant leaves were extracted with water and methanol, which were then subjected to various analyses. The antimicrobial activity of the plant extracts and isolated compounds was determined using well diffusion assays, while the minimum inhibitory concentrations were determined with a colorimetric assay. Morphological changes of human keratinocytes in response to plant extracts were observed with differential interference contrast microscope imaging. Cell viability, proliferation, and migratory effects post-treatment with the plant extracts were also evaluated via colorimetric cytotoxicity assays and a real-time cell analyser protocol. Anti-inflammatory effects of plant extracts and isolated compounds were evaluated by flow cytometry and cyclooxygenase and lipoxygenase enzyme inhibition assays. Three active compounds, i.e. ipolamiide, verbascoside and iso-verbascoside, were isolated from S. indica leaves. Verbascoside demonstrated broad-range antibacterial activity and imposed strong inhibition at 9.77 μg/mL against Staphylococci spp. S. indica extracts (0.1-0.2 mg/mL) were shown to improve human keratinocyte proliferation up to 60% and induce morphological changes by producing cytoplasmic projections at concentrations higher than 0.4 mg/mL. Plant extracts (6.25-100 μg/mL) and individual compounds (3.125-50 μg/mL) elicited strong anti-inflammatory effects by suppressing the expression of interleukin-8 and inhibiting cyclooxygenase-1 and 5-lipoxygenase enzymes. Collectively, these results indicate that plant extracts and isolated compounds derived from S. indica have the potential to inhibit bacterial growth, promote tissue regeneration and reduce inflammation, hence, potentially providing the basis for a novel therapeutic for the treatment of wounds.
Collapse
Affiliation(s)
- Vajira Asela Agampodi
- Innovative Medicines Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia.
| | - Peter Katavic
- Innovative Medicines Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Christopher Collet
- Innovative Medicines Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Trudi Collet
- Innovative Medicines Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
| |
Collapse
|
8
|
Korean Red Ginseng Ameliorates Allergic Asthma through Reduction of Lung Inflammation and Oxidation. Antioxidants (Basel) 2022; 11:antiox11081422. [PMID: 35892624 PMCID: PMC9331112 DOI: 10.3390/antiox11081422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Six-year-old red ginseng, which is processed from the whole ginseng root via steaming and drying, has been shown to have preventive effects such as antioxidative, anti-inflammatory, and immunomodulatory. In this study, we evaluated the therapeutic effects of Korean red ginseng (KRG) against ovalbumin (OVA)-induced allergic asthma and the underlying mechanisms involved. We injected 20 µg of OVA on days 0 and 14, and mice were challenged with aerosolized OVA via a nebulizer for 1 h on days 21, 22, and 23. KRG was administered at 100 and 300 mg/kg from days 18 to 23. The KRG-treated mice showed significant reductions in their airway hyperresponsiveness, production of reactive oxygen species (ROS), and the number of inflammatory cells compared with the OVA-treated mice. The levels of type 2 cytokines in the bronchoalveolar lavage fluid and expression of OVA-specific immunoglobulin E in the serum, which were elevated in the OVA group, were reduced in the KRG-treated groups. The pro-inflammatory factors, inducible nitric oxide synthase and nuclear factor kappa-light-chain-enhancer of activated B cells, were downregulated by the KRG administration in a dose-dependent manner. KRG effectively suppressed the inflammatory response by inhibiting ROS production. Our results suggest that KRG may have the potential to alleviate asthma.
Collapse
|
9
|
Shandilya UK, Lamers K, Zheng Y, Moran N, Karrow NA. Ginsenoside Rb1 selectively improved keratinocyte functions in vitro without affecting tissue regeneration in zebrafish larvae tail regrowth. In Vitro Cell Dev Biol Anim 2022; 58:269-277. [PMID: 35501555 DOI: 10.1007/s11626-022-00664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/25/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Umesh K Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Kristen Lamers
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Yashi Zheng
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nicole Moran
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Niel A Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
10
|
Korean red ginseng extract exploits NF-κB to promote wound repair and protein expression in keratinocytes. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Lee K, Yang H, Kim JY, Choi W, Seong GJ, Kim CY, Lee JM, Bae HW. Effect of red ginseng on visual function and vision-related quality of life in patients with glaucoma. J Ginseng Res 2021; 45:676-682. [PMID: 34764722 PMCID: PMC8569317 DOI: 10.1016/j.jgr.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/29/2021] [Accepted: 03/12/2021] [Indexed: 11/29/2022] Open
Abstract
Background Red ginseng has been found to improve ocular perfusion and dry eye syndrome in glaucomatous eyes; however, its effects on visual function and vision-related quality of life have not been investigated. This study sought to evaluate the effects of red ginseng on visual function and vision-related quality of life in glaucoma patients using contrast sensitivity and a questionnaire. Methods Participants were randomly assigned to two groups in this prospective, randomized, double-blind study: in one group, red ginseng was taken first, followed by a placebo, and in the other, placebo was taken first, followed by red ginseng. We measured and compared changes in contrast sensitivity and vision-related quality of life between the two groups. Contrast sensitivity was measured using OPTEC® 6500P, and vision-related quality of life was evaluated using the 25-item National Eye Institute Visual Function Questionnaire. One-way and two-way repeated measure analyses of variance were used for the comparison. Relationships between respective changes in dry eye syndrome and contrast sensitivity were also analyzed. Results Daytime contrast sensitivity and ocular pain improved after the administration of red ginseng. Nighttime contrast sensitivity was improved in early or moderate glaucoma. Improved contrast sensitivity was not associated with improvement in dry eye syndrome. Conclusion Red ginseng could improve contrast sensitivity and ocular pain in patients with glaucoma. The mechanism underlying improvement in contrast sensitivity appears to be associated with enhanced retinal perfusion or retinal ganglion cell function, but not dry eye syndrome.
Collapse
Affiliation(s)
- Kwanghyun Lee
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Ophthalmology, National Health Insurance Service Ilsan Hospital, Goyang, Gyeonggi-do, Republic of Korea
| | - Heon Yang
- Kong Eye Clinic, Seoul, Republic of Korea
| | - Joo Yeon Kim
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wungrak Choi
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gong Je Seong
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chan Yun Kim
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Mo Lee
- Siloam Eye Hospital, Seoul, Republic of Korea
| | - Hyoung Won Bae
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Xu X, Sun G, Liu J, Zhou J, Li J, Sun Z, Li X, Chen H, Zhao D, Jiang R, Sun L. Akt activation-dependent protective effect of wild ginseng adventitious root protein against UVA-induced NIH-3T3 cell damage. Wound Repair Regen 2021; 29:1006-1016. [PMID: 34448508 DOI: 10.1111/wrr.12962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/14/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022]
Abstract
Prolonged skin exposure to ultraviolet radiation can lead to development of several acute and chronic diseases, with UVA exposure considered a primary cause of dermal photodamage. We prepared a wild ginseng adventitious root extract (ARE) that could alleviate UVA irradiation-induced NIH-3T3 cell viability decline. After employing a series of purification methods to isolate main active components of ARE, adventitious root protein mixture (ARP) was identified then tested for protective effects against UVA irradiation-induced NIH-3T3 cell damage. The results showed that ARP treatment significantly reduced UVA-induced cell viability decline and confirmed that the active constituent of ARP was the protein, since proteolytic hydrolysis and heat treatment each eliminated ARP protective activity. Moreover, ARP treatment markedly inhibited UVA-induced apoptosis, cell cycle arrest and DNA fragmentation, while also significantly reversing UVA effects (elevated Bax levels, reduced Bcl-2 expression) by reducing Bax levels and increasing Bcl-2 expression. Mechanistically, ARP promoted Akt phosphorylation regardless of UVA exposure, thus confirming ARP resistance to inactivation by UVA light. Notably, in the presence of Akt inhibitor SC0227, ARP could no longer counteract UVA-induced cell viability decline and DNA fragmentation. Additionally, our results demonstrated that ARP treatment protected UVA-irradiated NIH-3T3 cells by preventing UVA-induced reduction of collagen-I expression. Taken together, these results suggest that ARP treatment of NIH-3T3 cells effectively mitigated UVA-induced cell viability decline by activating intracellular Akt to reduce UVA-induced DNA damage, leading to reduced rates of apoptosis and cell cycle arrest after UVA exposure and restoring collagen expression to normal levels.
Collapse
Affiliation(s)
- Xiaohao Xu
- Research Centre of Traditional Chinese Medicine, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China.,Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Guang Sun
- Research Centre of Traditional Chinese Medicine, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jianzeng Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jingyuan Zhou
- Jilin Technology Innovation Centre for Chinese Medicine Biotechnology, College of Biology and Chemistry, Beihua University, Jilin, Jilin, China
| | - Jing Li
- Jilin Technology Innovation Centre for Chinese Medicine Biotechnology, College of Biology and Chemistry, Beihua University, Jilin, Jilin, China
| | - Zhuo Sun
- Jilin Technology Innovation Centre for Chinese Medicine Biotechnology, College of Biology and Chemistry, Beihua University, Jilin, Jilin, China
| | - Xiangzhu Li
- Tonghua Herbal Biotechnology Co., Ltd, Tonghua, Jilin, China
| | - Hong Chen
- Tonghua Herbal Biotechnology Co., Ltd, Tonghua, Jilin, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Rui Jiang
- Research Centre of Traditional Chinese Medicine, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China.,Jilin Technology Innovation Centre for Chinese Medicine Biotechnology, College of Biology and Chemistry, Beihua University, Jilin, Jilin, China
| | - Liwei Sun
- Research Centre of Traditional Chinese Medicine, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
13
|
You L, Cho JY. The regulatory role of Korean ginseng in skin cells. J Ginseng Res 2021; 45:363-370. [PMID: 34025129 PMCID: PMC8134839 DOI: 10.1016/j.jgr.2020.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/16/2020] [Accepted: 08/26/2020] [Indexed: 01/07/2023] Open
Abstract
As the largest organ in our body, the skin acts as a barrier against external stress and damages. There are various cell types of skin, such as keratinocytes, melanocytes, fibroblasts, and skin stem cells. Korean ginseng, which is one of the biggest distributions of ginseng worldwide, is processed into different products, such as functional food, cosmetics, and medical supplies. This review aims to introduce the functional role of Korean ginseng on different dermal cell types, including the impact of Korean ginseng in anti-photodamaging, anti-inflammatory, anti-oxidative, anti-melanogenic, and wound healing activities, etc. We propose that this information could form the basis of future research of ginseng-derived components in skin health.
Collapse
Affiliation(s)
- Long You
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
14
|
Effectiveness and Safety of Panax ginseng Extract on Hepatic Dysfunction: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2689565. [PMID: 32724321 PMCID: PMC7381953 DOI: 10.1155/2020/2689565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
Background The purpose of this study was to evaluate the efficacy and safety of Panax ginseng extract (GS-KG9) in the treatment of hepatic dysfunction. Methods A randomized, double-blind, placebo-controlled clinical trial was conducted from December 2017 to January 2019. The trial included 60 subjects between the ages of 19 and 70 who had higher alanine transaminase (ALT) levels than the normal upper limit. The subjects were randomly divided into two groups: GS-KG9 (n = 30) and placebo (n = 30). The former was administered three GS-KG9 capsules (3 g/day) and the latter three placebo capsules (3 g/day) twice each day orally after meals in the morning and evening for 12 weeks. The primary goal was to observe the changes in ALT and gamma-glutamyl transferase (GGT) levels. The safety of the treatment was assessed and adverse events (AEs) were recorded. Results Out of 60 subjects, nine were excluded from the efficacy analysis because they met the exclusion criteria. Therefore, a total of 51 subjects were evaluated for the effectiveness of the treatment (26 in the GS-KG9 group and 25 in the placebo group). After 12 weeks of treatment, the ALT levels were significantly reduced in the GS-KG9 group compared to the placebo group (p=0.009). The GGT level of the GS-KG9 group was significantly lower than that of the placebo group (p=0.036). Mild AEs, such as diarrhea, occurred during the study. There were no significant differences between the two groups. Conclusion The results of this trial suggest that GS-KG9 might be an effective and safe option for mild hepatic dysfunction. This trial is registered with KCT0004080.
Collapse
|
15
|
Lee J, Park J, Lee YY, Lee Y. Comparative transcriptome analysis of the protective effects of Korean Red Ginseng against the influence of bisphenol A in the liver and uterus of ovariectomized mice. J Ginseng Res 2020; 44:519-526. [PMID: 32372874 PMCID: PMC7195581 DOI: 10.1016/j.jgr.2020.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/30/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
Background Bisphenol A (BPA), known as an endocrine disruptor, is widely used in the world. BPA is reported to cause inflammation-related diseases. Korean Red Ginseng (KRG) has been used safely in human for a long time for the treatment of diverse diseases. KRG has been reported of its mitigating effect on menopausal symptoms and suppress adipose inflammation. Here, we investigate the protective effect of orally administered KRG on the impacts of BPA in the liver and uterus of menopausal mice model. Methods The transcriptome analysis for the effects of BPA on mice liver was evaluated by Gene Expression Omnibus (GEO) database–based data (GSE26728). In vivo assay to evaluate the protective effect of KRG on BPA impact in ovariectomized (OVX) mice were designed and analyzed by RNA sequencing. Results We first demonstrated that BPA induced 12 kinds of gene set in the liver of normal mice. The administration of BPA and KRG did not change body, liver, and uterine weight in OVX mice. KRG downregulated BPA-induced inflammatory response and chemotaxis-related gene expression. Several gene set enrichment analysis (GSEA)–derived inflammatory response genes increased by BPA were inhibited by KRG in OVX mice. Conclusion Our data suggest that BPA has commonly influenced inflammatory response effects on both normal and OVX mice. KRG protects against BPA impact of inflammatory response and chemotaxis in OVX mouse models. Our comparative analysis will provide new insight into the efficacy of KRG on endocrine disrupting chemicals and OVX mouse.
Collapse
Affiliation(s)
- Jeonggeun Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjin-gu, Seoul, Republic of Korea
| | - Joonwoo Park
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjin-gu, Seoul, Republic of Korea
| | - Yong Yook Lee
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjin-gu, Seoul, Republic of Korea
| |
Collapse
|
16
|
Ziaei R, Ghavami A, Ghaedi E, Hadi A, Javadian P, Clark CC. The efficacy of ginseng supplementation on plasma lipid concentration in adults: A systematic review and meta-analysis. Complement Ther Med 2020; 48:102239. [DOI: 10.1016/j.ctim.2019.102239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022] Open
|
17
|
Namgoong S, Lee H, Han S, Lee H, Jeong S, Dhong E. Effect of Panax ginseng extract on the activity of diabetic fibroblasts in vitro. Int Wound J 2019; 16:737-745. [PMID: 30734491 PMCID: PMC7948945 DOI: 10.1111/iwj.13091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/10/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022] Open
Abstract
Numerous studies have demonstrated the various medicinal properties of Panax ginseng, including angiogenic, immuno-stimulating, antimicrobial, and anti-inflammatory activities, which can be helpful in chronic wound healing. However, a direct role for P. ginseng in chronic wound healing has not been demonstrated. The present study was designed to evaluate the effects of P. ginseng extract on diabetic fibroblasts in vitro. Human diabetic fibroblasts were cultured in the presence of Ginsenoside Rb1 (G-Rb1), the active component in P. ginseng (10 ng/mL), and untreated diabetic fibroblasts were used as controls. Cell proliferation, collagen synthesis, the production of various growth factors (basic fibroblast growth factor [bFGF]; vascular endothelial growth factor [VEGF]; and transforming growth factor-β1 [TGF-β1]), and the synthesis of matrix metalloproteinase 1 (MMP-1) and tissue inhibitor of metalloproteinases 1 (TIMP-1) were compared using enzyme-linked immunosorbent assay and immunofluorescence staining. Compared with the control group, G-Rb1-treated fibroblasts showed significantly (P < 0.05) higher levels of cell proliferation, collagen synthesis, VEGF, TGF-β1, and TIMP-1. However, no significant differences in bFGF and MMP-1 levels were observed between the two groups. These results suggest that P. ginseng treatment may stimulate the wound-healing activity of diabetic fibroblasts in vitro.
Collapse
Affiliation(s)
- Sik Namgoong
- Department of Plastic SurgeryKorea University College of MedicineSeoulKorea
| | - Hyunsu Lee
- Department of Plastic SurgeryKorea University College of MedicineSeoulKorea
| | - Seung‐Kyu Han
- Department of Plastic SurgeryKorea University College of MedicineSeoulKorea
| | - Hyup‐Woo Lee
- Department of Laboratory MedicineKangwon National University College of MedicineChuncheonKorea
| | - Seong‐Ho Jeong
- Department of Plastic SurgeryKorea University College of MedicineSeoulKorea
| | - Eun‐Sang Dhong
- Department of Plastic SurgeryKorea University College of MedicineSeoulKorea
| |
Collapse
|
18
|
Mahmoudian-sani MR, Sheikhshabani S, Mirfakhar FS, Asgharzade S. A review on medicinal plants used for treating ototoxicity and acoustic trauma induced hearing loss. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000218311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Patra JK, Das G, Lee S, Kang SS, Shin HS. Selected commercial plants: A review of extraction and isolation of bioactive compounds and their pharmacological market value. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Ginsenoside Rf inhibits cyclooxygenase-2 induction via peroxisome proliferator-activated receptor gamma in A549 cells. J Ginseng Res 2018; 43:319-325. [PMID: 30976170 PMCID: PMC6437553 DOI: 10.1016/j.jgr.2018.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
Background Ginsenoside Rf is a ginseng saponin found only in Panax ginseng that affects lipid metabolism. It also has neuroprotective and antiinflammatory properties. We previously showed that Korean Red Ginseng (KRG) inhibited the expression of cyclooxygenase-2 (COX-2) by hypoxia via peroxisome proliferator–activated receptor gamma (PPARγ). The aim of the current study was to evaluate the possibility of ginsenoside Rf as an active ingredient of KRG in the inhibition of hypoxia-induced COX-2 via PPARγ. Methods The effects of ginsenoside Rf on the upregulation of COX-2 by hypoxia and its antimigration effects were evaluated in A549 cells. Docking of ginsenoside Rf was performed with the PPARγ structure using Surflex-Dock in Sybyl-X 2.1.1. Results PPARγ protein levels and peroxisome proliferator response element promoter activities were promoted by ginsenoside Rf. Inhibition of COX-2 expression by ginsenoside Rf was blocked by the PPARγ-specific inhibitor, T0070907. The PPARγ inhibitor also blocked the ability of ginsenoside Rf to suppress cell migration under hypoxia. The docking simulation results indicate that ginsenoside Rf binds to the active site of PPARγ. Conclusions Our results demonstrate that ginsenoside Rf inhibits hypoxia induced-COX-2 expression and cellular migration, which are dependent on PPARγ activation. These results suggest that ginsenoside Rf has an antiinflammatory effect under hypoxic conditions. Moreover, docking analysis of ginsenoside Rf into the active site of PPARγ suggests that the compound binds to PPARγ in a position similar to that of known agonists.
Collapse
|
21
|
Oh J, Yoon HJ, Jang JH, Kim DH, Surh YJ. The standardized Korean Red Ginseng extract and its ingredient ginsenoside Rg3 inhibit manifestation of breast cancer stem cell-like properties through modulation of self-renewal signaling. J Ginseng Res 2018; 43:421-430. [PMID: 31308814 PMCID: PMC6606826 DOI: 10.1016/j.jgr.2018.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/30/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023] Open
Abstract
Background The ginsenoside Rg3, one of active components of red ginseng, has chemopreventive and anticancer potential. Cancer stem cells retain self-renewal properties which account for cancer recurrence and resistance to anticancer therapy. In our present study, we investigated whether the standardized Korean Red Ginseng extract (RGE) and Rg3 could modulate the manifestation of breast cancer stem cell–like features through regulation of self-renewal activity. Methods The effects of RGE and Rg3 on the proportion of CD44high/CD24low cells, as representative characteristics of stem-like breast cancer cells, were determined by flow cytometry. The mammosphere formation assay was performed to assess self-renewal capacities of breast cancer cells. Aldehyde dehydrogenase activity of MCF-7 mammospheres was measured by the ALDEFLUOR assay. The expression levels of Sox-2, Bmi-1, and P-Akt and the nuclear localization of hypoxia inducible factor-1α in MCF-7 mammospheres were verified by immunoblot analysis. Results Both RGE and Rg3 decreased the viability of breast cancer cells and significantly reduced the populations of CD44high/CD24low in MDA-MB-231 cells. RGE and Rg3 treatment attenuated the expression of Sox-2 and Bmi-1 by inhibiting the nuclear localization of hypoxia inducible factor-1α in MCF-7 mammospheres. Suppression of the manifestation of breast cancer stem cell–like properties by Rg3 was mediated through the blockade of Akt-mediated self-renewal signaling. Conclusion This study suggests that Rg3 has a therapeutic potential targeting breast cancer stem cells.
Collapse
Affiliation(s)
- Jisun Oh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyo-Jin Yoon
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Hoon Jang
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Do-Hee Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
22
|
Li X, Yao F, Fan H, Li K, Sun L, Liu Y. Intraconversion of Polar Ginsenosides, Their Transformation into Less-Polar Ginsenosides, and Ginsenoside Acetylation in Ginseng Flowers upon Baking and Steaming. Molecules 2018; 23:E759. [PMID: 29587462 PMCID: PMC6017459 DOI: 10.3390/molecules23040759] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 01/31/2023] Open
Abstract
Heating is a traditional method used in ginseng root processing, however, there aren't reports on differences resulting from baking and steaming. Moreover, ginseng flowers, with 5.06 times more total saponins than ginseng root, are not fully taken advantage of for their ginsenosides. Transformation mechanisms of ginsenosides in ginseng flowers upon baking and steaming were thus explored. HPLC using authentic standards of 20 ginsenosides and UPLC-QTOF-MS/MS were used to quantify and identify ginsenosides, respectively, in ginseng flowers baked or steamed at different temperatures and durations. Results show that baking and steaming caused a 3.2-fold increase in ginsenoside species existed in unheated ginseng flowers (20/64 ginsenosides) and transformation of a certain amount of polar ginsenosides into numerous less polar ginsenosides. Among the 20 ginsenosides with standards, polar ginsenosides were abundant in ginseng flowers baked or steamed at lower temperatures, whereas less polar ginsenosides occurred and were enriched at higher temperatures. Furthermore, the two types of heating treatments could generate mostly similar ginsenosides, but steaming was much efficient than baking in transforming polar- into less polar ginsenosides, with steaming at 120 °C being comparably equivalent to baking at 150 °C. Moreover, both the two heating methods triggered ginsenoside acetylation and thus caused formation of 16 acetylginsenosides. Finally, a new transformation mechanism concerning acetyl-ginsenosides formation was proposed.
Collapse
Affiliation(s)
- Xiang Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| | - Fan Yao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
- Beijing Beilin Advanced Eco-environmental Protection Technology Institute Co. Ltd., Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| | - Hang Fan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
- Beijing Beilin Advanced Eco-environmental Protection Technology Institute Co. Ltd., Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| | - Ke Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| | - Liwei Sun
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| | - Yujun Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| |
Collapse
|
23
|
Blocking TGF-β type 1 receptor partially reversed skin tissue damage in experimentally induced atopic dermatitis in mice. Cytokine 2018; 106:45-53. [PMID: 29549723 DOI: 10.1016/j.cyto.2018.02.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/01/2018] [Accepted: 02/26/2018] [Indexed: 01/08/2023]
Abstract
Animals with impaired transforming growth factor (TGF)-β1 signaling developed spontaneous lethal autoimmune inflammationand autoimmune diseases. Moreover, evidence for modified TGF-β signaling in atopic dermatitis (AD) exists. Therefore, the goal of this study was to determine whether SB-431542, a potent and selective inhibitor of the TGF-β type 1 receptor (TGF-βR1), could attenuate such a severe reaction in mice. In addition, the molecular underpinnings the possible protective effects were also investigated. Repeated epicutaneous application of DNCB was performed on the ear and shaved dorsal skin of miceto induce AD-like symptoms and skin lesions. SB-431542 (1 mg/kg) was given by intra-peritoneal injection three times weekly for 3 weeks to assess the anti-pruritic effects. Serum levels of TGF-β1, TGF-βR1, latency-associated peptide (LAP), tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 were assessed by ELISA. Moreover, the gene expression of TNF-α, IL-1β and IL-6 were determined. Apoptotic pathway was evaluated by measuring the activity of caspase-3 and by staining skin sections with anti-caspase-3 antibodies. We found that SB-431542 alleviated DNCB-induced AD-like symptoms as quantified by skin lesion,dermatitisscore, ear thickness and scratching behavior. In parallel, SB-431542 blocked DNCB-induced elevation in serum levels of TNF-α, TGF-β1, TGF-βR1, LAP, IL-1β, IL-6 and IgE. The collective results indicate that SB-431542 partially suppresses DNCB-induced AD in micevia reduction of TGF-β1 signaling pathway associated with inhibition of inflammation and apoptosis.
Collapse
|
24
|
Eom SJ, Hwang JE, Kim HS, Kim KT, Paik HD. Anti-inflammatory and cytotoxic effects of ginseng extract bioconverted by Leuconostoc mesenteroides
KCCM 12010P isolated from kimchi. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13713] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Su Jin Eom
- Department of Food Science and Biotechnology of Animal Resources; Konkuk University; Seoul 05029 Korea
| | - Ji Eun Hwang
- Department of Food Science and Biotechnology of Animal Resources; Konkuk University; Seoul 05029 Korea
| | - Hyun Suk Kim
- Department of Food Science and Biotechnology of Animal Resources; Konkuk University; Seoul 05029 Korea
| | - Kee-Tae Kim
- Department of Food Science and Biotechnology of Animal Resources; Konkuk University; Seoul 05029 Korea
- Bio/Molecular Informatics Center; Konkuk University; Seoul 05029 Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources; Konkuk University; Seoul 05029 Korea
- Bio/Molecular Informatics Center; Konkuk University; Seoul 05029 Korea
| |
Collapse
|
25
|
Yang Y, Ren C, Zhang Y, Wu X. Ginseng: An Nonnegligible Natural Remedy for Healthy Aging. Aging Dis 2017; 8:708-720. [PMID: 29344412 PMCID: PMC5758347 DOI: 10.14336/ad.2017.0707] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 07/07/2017] [Indexed: 12/13/2022] Open
Abstract
Aging is an irreversible physiological process that affects all humans. Numerous theories have been proposed to regarding the process from a Western medicine perspective; however, ancient Chinese medicine practices and theories have increasingly gained attention, particularly ginseng, a grass that has been studied for the anti-aging properties of its active constituents. This review seeks to analyze current data on ginseng and its anti-aging properties. The plant species, characteristics, and active ingredients will be introduced. The main part of this review is focused on ginseng and its active components with regards to their effects on prolonging lifespan, the regulation of multiple organ systems including cardiovascular, nervous, immune, and skin, as well as the anti-oxidant and anti-inflammatory properties. The molecular mechanisms of these properties elucidated via various studies are summarized as further evidence of the anti-aging effects of ginseng.
Collapse
Affiliation(s)
- Yong Yang
- Department of Herbal Formula Science, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Changhong Ren
- Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing, 100053, China
| | - Yuan Zhang
- Department of Herbal Formula Science, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - XiaoDan Wu
- Department of Herbal Formula Science, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
26
|
Characterization of the changes in eicosanoid profiles of activated macrophages treated with 20(S)-ginsenoside Rg3. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1065-1066:14-19. [PMID: 28938131 DOI: 10.1016/j.jchromb.2017.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/18/2017] [Accepted: 09/01/2017] [Indexed: 12/30/2022]
Abstract
In this study, we used ultra-performance liquid chromatography coupled with tandem mass spectrometry to assess the levels of eicosanoids from RAW264.7 macrophages treated with lipopolysaccharides (LPS) and 20(S)-ginsenoside Rg3 (Rg3). The production of nitric oxide (NO) and the secretion of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were increased in inflammatory macrophages treated with LPS. Rg3 treatment, however, decreased the levels of NO, TNF-α, and IL-6 in activated macrophages. Eicosanoids, known as major metabolites correlated with inflammation, have pro- or anti-inflammatory activities. For a detailed characterization of the eicosanoids altered by treatment with LPS and Rg3, the eicosanoids were profiled by multiple reaction monitoring. A total of 69 macrophage eicosanoids were analyzed and the profiling dataset was statistically analyzed. Principal component and hierarchical cluster analyses differentiated control cells from cells treated with LPS, Rg3, or LPS+Rg3 for 12 or 24h. Furthermore, 18 differentially regulated eicosanoids were found between macrophages treated with LPS for 24h and those treated with LPS+Rg3 for 24h (fold change>2, p value<0.05). These results indicate that Rg3 alters eicosanoid metabolism in activated macrophages treated with LPS. Furthermore, we also identified several eicosanoids correlated with the anti-inflammatory activity of Rg3.
Collapse
|
27
|
Lee Y, Kim SN, Hong YD, Park BC, Na Y. Panax ginseng extract antagonizes the effect of DKK‑1-induced catagen-like changes of hair follicles. Int J Mol Med 2017; 40:1194-1200. [PMID: 28849028 PMCID: PMC5593495 DOI: 10.3892/ijmm.2017.3107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
It is well known that Panax ginseng (PG) has various pharmacological effects such as anti-aging and anti-inflammation. In a previous study, the authors identified that PG extract induced hair growth by means of a mechanism similar to that of minoxidil. In the present study, the inhibitory effect of PG extract on Dickkopf-1 (DKK-1)-induced catagen-like changes in hair follicles (HFs) was investigated in addition to the underlying mechanism of action. The effects of PG extract on cell proliferation, anti-apoptotic effect, and hair growth were observed using cultured outer root sheath (ORS) keratinocytes and human HFs with or without DKK-1 treatment. The PG extract significantly stimulated proliferation and inhibited apoptosis, respectively, in ORS keratinocytes. PG extract treatment affected the expression of apoptosis-related genes Bcl-2 and Bax. DKK-1 inhibited hair growth, and PG extract dramatically reversed the effect of DKK-1 on ex vivo human hair organ culture. PG extract antagonizes DKK-1-induced catagen-like changes, in part, through the regulation of apoptosis-related gene expression in HFs. These findings suggested that PG extract may reduce hair loss despite the presence of DKK-1, a strong catagen inducer via apoptosis.
Collapse
Affiliation(s)
- Yonghee Lee
- Amorepacific R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Su Na Kim
- Amorepacific R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Yong Deog Hong
- Amorepacific R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Byung Cheol Park
- Department of Dermatology, Dankook Medical College, Cheonan, Chungcheongnam-do 31116, Republic of Korea
| | - Yongjoo Na
- Amorepacific R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| |
Collapse
|
28
|
Lee YK, Choi KH, Kwak HS, Chang YH. The preventive effects of nanopowdered red ginseng on collagen-induced arthritic mice. Int J Food Sci Nutr 2017; 69:308-317. [PMID: 28770639 DOI: 10.1080/09637486.2017.1358359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study was carried out to investigate the efficiency of red ginseng nanopowder in preventing collagen-induced arthritis (CIA) in mice. The mice were divided into five groups: normal group (no immunisation), control (CIA), powdered red ginseng (PRG), nanopowdered red ginseng (NRG) and methotrexate (MTX). Administering MTX, PRG and NRG to arthritic mice significantly decreased spleen indexes, clinical and histological scores compared to control group. Serum analysis of NRG and MTX groups showed a reduction in the cytokines such as the levels of tumour necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin 1β (IL-1β) in comparison to PRG group. The levels of immunoglobulin M (IgM) and immunoglobulin G1 (IgG1) in the NRG group were significantly lower than those of the PRG group. In summary, the present study indicated that NRG can be effective in preventing type II collagen-induced rheumatoid arthritis in mice.
Collapse
Affiliation(s)
- Yun-Kyung Lee
- a Department of Food and Nutrition , Kyung Hee University , Seoul , Republic of Korea
| | - Kyung-Hoon Choi
- b Department of Food Science and Technology , Sejong University , Seoul , Republic of Korea
| | - Hae-Soo Kwak
- b Department of Food Science and Technology , Sejong University , Seoul , Republic of Korea
| | - Yoon Hyuk Chang
- a Department of Food and Nutrition , Kyung Hee University , Seoul , Republic of Korea
| |
Collapse
|
29
|
Wang L, Zhao Y, Yang Y, Hu Y, Zou X, Yu B, Qi J. Allergens in red ginseng extract induce the release of mediators associated with anaphylactoid reactions. J Transl Med 2017; 15:148. [PMID: 28659175 PMCID: PMC5490175 DOI: 10.1186/s12967-017-1249-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 06/21/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Anaphylactoid reactions induced by preparations containing red ginseng have been reported. The aim of this study is to evaluate the allergenicity and screen potential allergens in red ginseng extract thoroughly. METHODS Red ginseng extract (RGE) and different fractions of RGE were prepared and evaluated by measuring the degranulation and viability of rat basophilic leukemia 2H3 (RBL-2H3) cells. Potential allergens were screened by RBL-2H3 cell extraction and allergenicity verified in RBL-2H3 cells, mouse peritoneal mast cells, Laboratory of Allergic Disease 2 (LAD2) human mast cells and mice, respectively. RESULTS 80% ethanol extract of red ginseng extract induced mast cell degranulation with less cytotoxicity, but 40% ethanol extract could not. Ginsenoside Rd and 20(S)-Rg3 could induce a significant increase in β-hexosaminidase release, histamine release and translocation of phosphatidylserine in RBL-2H3 cells. Ginsenoside Rd and 20(S)-Rg3 also increased β-hexosaminidase release and the intracellular Ca2+ concentration in mouse peritoneal mast cells and LAD2 cells. In addition, histamine levels in serum of mice were elevated dose-dependently. CONCLUSIONS Ginsenoside Rd and 20(S)-Rg3 are potential allergens that induce the release of mediators associated with anaphylactoid reactions. Our study could guide optimization of methods associated with Rd/20(S)-Rg3-containing preparations and establishment of quality standards for safe application of Traditional Chinese Medicines.
Collapse
Affiliation(s)
- Lu Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China
| | - Yazheng Zhao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China
| | - Ye Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiaohan Zou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China. .,Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China.
| | - Jin Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China. .,Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
30
|
Korean Red Ginseng extract and ginsenoside Rg3 have anti-pruritic effects on chloroquine-induced itch by inhibition of MrgprA3/TRPA1-mediated pathway. J Ginseng Res 2017; 42:470-475. [PMID: 30337807 PMCID: PMC6187082 DOI: 10.1016/j.jgr.2017.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/12/2017] [Indexed: 01/04/2023] Open
Abstract
Background It was previously found that Korean Red Ginseng water extract (KRGE) inhibits the histamine-induced itch signaling pathway in peripheral sensory neurons. Thus, in the present study, we investigated whether KRGE inhibited another distinctive itch pathway induced by chloroquine (CQ); a representative histamine-independent pathway mediated by MrgprA3 and TRPA1. Methods Intracellular calcium changes were measured by the calcium imaging technique in the HEK293T cells transfected with both MrgprA3 and TRPA1 ("MrgprA3/TRPA1"), and in primary culture of mouse dorsal root ganglia (DRGs). Mouse scratching behavior tests were performed to verify proposed antipruritic effects of KRGE and ginsenoside Rg3. Results CQ-induced Ca2+ influx was strongly inhibited by KRGE (10 μg/mL) in MrgprA3/TRPA1, and notably ginsenoside Rg3 dose-dependently suppressed CQ-induced Ca2+ influx in MrgprA3/TRPA1. Moreover, both KRGE (10 μg/mL) and Rg3 (100 μM) suppressed CQ-induced Ca2+ influx in primary culture of mouse DRGs, indicating that the inhibitory effect of KRGE was functional in peripheral sensory neurons. In vivo tests revealed that not only KRGE (100 mg) suppressed CQ-induced scratching in mice [bouts of scratching: 274.0 ± 51.47 (control) vs. 104.7 ± 17.39 (KRGE)], but also Rg3 (1.5 mg) oral administration significantly reduced CQ-induced scratching as well [bouts of scratching: 216.8 ± 33.73 (control) vs. 115.7 ± 20.94 (Rg3)]. Conclusion The present study verified that KRGE and Rg3 have a strong antipruritic effect against CQ-induced itch. Thus, KRGE is as a promising antipruritic agent that blocks both histamine-dependent and -independent itch at peripheral sensory neuronal levels.
Collapse
|
31
|
Ahuja A, Kim JH, Kim JH, Yi YS, Cho JY. Functional role of ginseng-derived compounds in cancer. J Ginseng Res 2017; 42:248-254. [PMID: 29983605 PMCID: PMC6026353 DOI: 10.1016/j.jgr.2017.04.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/18/2017] [Indexed: 12/19/2022] Open
Abstract
Ginseng is a natural product best known for its curative properties in diverse physiological processes such as cancer, neurodegenerative disorders, hypertension, and maintenance of hemostasis in the immune system. In previous decades, there have been some promising studies into the pharmacology and chemistry of ginseng components and the relationship between their structure and function. The emerging use of modified ginseng and development of new compounds from ginseng for clinical studies have been topics of study for many researchers. The present review deals with the anticancer, anti-inflammatory, antioxidant, and chemopreventive effects, and recent advances in microRNA technology related to red ginseng. The review also summarizes the current knowledge on the effect of ginsenosides in the treatment of cancer.
Collapse
Affiliation(s)
- Akash Ahuja
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Hoon Kim
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
32
|
Biswas T, Mathur AK, Mathur A. A literature update elucidating production of Panax ginsenosides with a special focus on strategies enriching the anti-neoplastic minor ginsenosides in ginseng preparations. Appl Microbiol Biotechnol 2017; 101:4009-4032. [PMID: 28411325 DOI: 10.1007/s00253-017-8279-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
Ginseng, an oriental gift to the world of healthcare and preventive medicine, is among the top ten medicinal herbs globally. The constitutive triterpene saponins, ginsenosides, or panaxosides are attributed to ginseng's miraculous efficacy towards anti-aging, rejuvenating, and immune-potentiating benefits. The major ginsenosides such as Rb1, Rb2, Rc, Rd., Re, and Rg1, formed after extensive glycosylations of the aglycone "dammaranediol," dominate the chemical profile of this genus in vivo and in vitro. Elicitations have successfully led to appreciable enhancements in the production of these major ginsenosides. However, current research on ginseng biotechnology has been focusing on the enrichment or production of the minor ginsenosides (the less glycosylated precursors of the major ginsenosides) in ginseng preparations, which are either absent or are produced in very low amounts in nature or via cell cultures. The minor ginsenosides under current scientific scrutiny include diol ginsenosides such as Rg3, Rh2, compound K, and triol ginsenosides Rg2 and Rh1, which are being touted as the next "anti-neoplastic pharmacophores," with better bioavailability and potency as compared to the major ginsenosides. This review aims at describing the strategies for ginsenoside production with special attention towards production of the minor ginsenosides from the major ginsenosides via microbial biotransformation, elicitations, and from heterologous expression systems.
Collapse
Affiliation(s)
- Tanya Biswas
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants; Council of Scientific & Industrial Research, PO- CIMAP, Lucknow, 226015, India
| | - A K Mathur
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants; Council of Scientific & Industrial Research, PO- CIMAP, Lucknow, 226015, India
| | - Archana Mathur
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants; Council of Scientific & Industrial Research, PO- CIMAP, Lucknow, 226015, India.
| |
Collapse
|
33
|
Lee S, Rhee DK. Effects of ginseng on stress-related depression, anxiety, and the hypothalamic-pituitary-adrenal axis. J Ginseng Res 2017; 41:589-594. [PMID: 29021708 PMCID: PMC5628357 DOI: 10.1016/j.jgr.2017.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/12/2016] [Accepted: 01/18/2017] [Indexed: 12/18/2022] Open
Abstract
Ginseng effectively regulates the immune response and the hormonal changes due to stress, thus maintaining homeostasis. In addition to suppressing the occurrence of psychological diseases such as anxiety and depression, ginseng also prevents stress-associated physiological diseases. Recent findings have revealed that ginseng is involved in adjusting the hypothalamic-pituitary-adrenal axis and controlling hormones, thus producing beneficial effects on the heart and brain, and in cases of bone diseases, as well as alleviating erectile dysfunction. Recent studies have highlighted the potential use of ginseng in the prevention and treatment of chronic inflammatory diseases such as diabetes, rheumatoid arthritis, and allergic asthma. However, the mechanism underlying the effects of ginseng on these stress-related diseases has not been completely established. In this review, we focus on the disease pathways caused by stress in order to determine how ginseng acts to improve health. Central to our discussion is how this effective and stable therapeutic agent alleviates the anxiety and depression caused by stress and ameliorates inflammatory diseases.
Collapse
Affiliation(s)
- Seungyeop Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Su-Won 16419, Republic of Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Su-Won 16419, Republic of Korea
| |
Collapse
|
34
|
Choi HS, Kim S, Kim MJ, Kim MS, Kim J, Park CW, Seo D, Shin SS, Oh SW. Efficacy and safety of Panax ginseng berry extract on glycemic control: A 12-wk randomized, double-blind, and placebo-controlled clinical trial. J Ginseng Res 2017; 42:90-97. [PMID: 29348727 PMCID: PMC5766700 DOI: 10.1016/j.jgr.2017.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 12/18/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022] Open
Abstract
Background Antihyperglycemic effects of Panax ginseng berry have never been explored in humans. The aims of this study were to assess the efficacy and safety of a 12-wk treatment with ginseng berry extract in participants with a fasting glucose level between 100 mg/dL and 140 mg/dL. Methods This study was a 12-wk, randomized, double-blind, placebo-controlled clinical trial. A total of 72 participants were randomly allocated to two groups of either ginseng berry extract or placebo, and 63 participants completed the study. The parameters related to glucose metabolism were assessed. Results Although the present study failed to show significant antihyperglycemic effects of ginseng berry extract on the parameters related to blood glucose and lipid metabolism in the total study population, it demonstrated that ginseng berry extract could significantly decrease serum concentration of fasting glucose by 3.7% (p = 0.035), postprandial glucose at 60 min during 75 g oral glucose tolerance test by 10.7% (p = 0.006), and the area under the curve for glucose by 7.7% (p = 0.024) in those with fasting glucose level of 110 mg/dL or higher, while the placebo group did not exhibit a statistically significant decrease. Safety profiles were not different between the two groups. Conclusion The present study suggests that ginseng berry extract has the potential to improve glucose metabolism in human, especially in those with fasting glucose level of 110 mg/dL or higher. For a more meaningful benefit, further research in people with higher blood glucose levels is required.
Collapse
Affiliation(s)
- Han Seok Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Gyeonggi, Republic of Korea
| | - Sunmi Kim
- Research and Development Center, Amorepacific Corporation, Yongin, Gyeonggi, Republic of Korea
| | - Min Jung Kim
- Nutrition and Metabolism Research Group, Korea Food Research Institute, Seongnam, Gyeonggi-do, Republic of Korea
| | - Myung-Sunny Kim
- Nutrition and Metabolism Research Group, Korea Food Research Institute, Seongnam, Gyeonggi-do, Republic of Korea
| | - Juewon Kim
- Research and Development Center, Amorepacific Corporation, Yongin, Gyeonggi, Republic of Korea
| | - Chan-Woong Park
- Research and Development Center, Amorepacific Corporation, Yongin, Gyeonggi, Republic of Korea
| | - Daebang Seo
- Research and Development Center, Amorepacific Corporation, Yongin, Gyeonggi, Republic of Korea
| | - Song Seok Shin
- Research and Development Center, Amorepacific Corporation, Yongin, Gyeonggi, Republic of Korea
| | - Sang Woo Oh
- Department of Family Medicine, Dongguk University Ilsan Hospital, Goyang, Gyeonggi, Republic of Korea
| |
Collapse
|
35
|
Anti-Inflammatory Effects of Ginsenoside Rg3 via NF- κB Pathway in A549 Cells and Human Asthmatic Lung Tissue. J Immunol Res 2016; 2016:7521601. [PMID: 28116321 PMCID: PMC5223042 DOI: 10.1155/2016/7521601] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/04/2016] [Accepted: 12/04/2016] [Indexed: 01/20/2023] Open
Abstract
Objective. There is limited information of the anti-inflammatory effects of Rg3 on inflamed lung cells and tissues. Therefore, we confirmed the anti-inflammatory mechanism of ginsenoside Rg3 in inflamed human airway epithelial cells (A549) and tissues whether Rg3 regulates nuclear factor kappa B (NF-κB) activity. Methods. To induce the inflammation, IL-1β (10 ng/ml) was treated to A549 cells for 4 h. The effects of Rg3 on NF-κB activity and COX-2 expression were evaluated by western blotting analysis in both IL-1β-induced inflamed A549 cell and human asthmatic airway epithelial tissues. Using multiplex cytokines assay, the secretion levels of NF-κB-mediated cytokines/chemokines were measured. Result. Rg3 showed the significant inhibition of NF-κB activity thereby reduced COX-2 expression was determined in both IL-1β-induced inflamed A549 cell and human asthmatic airway epithelial tissues. In addition, among NF-κB-mediated cytokines, the secretion levels of IL-4, TNF-α, and eotaxin were significantly decreased by Rg3 in asthma tissues. Even though there was no significant difference, IL-6, IL-9, and IL-13 secretion showed a lower tendency compared to saline-treated human asthmatic airway epithelial tissues. Conclusion. The results from this study demonstrate the potential of Rg3 as an anti-inflammatory agent through regulating NF-κB activity and reducing the secretion of NF-κB-mediated cytokines/chemokines.
Collapse
|
36
|
Gao C, Chen H, Niu C, Hu J, Cao B. Protective effect of Schizandrin B against damage of UVB irradiated skin cells depend on inhibition of inflammatory pathways. Bioengineered 2016; 8:36-44. [PMID: 27689692 DOI: 10.1080/21655979.2016.1227572] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Schizandrin B is extracted from Schisandra chinensis (Turcz.) Baill. This study evaluated the photoprotective effect of Schizandrin B on oxidative stress injury of the skin caused by UVB-irradiation and the molecular mechanism of the photoprotective effect of Schizandrin B, and we firstly found that Schizandrin B could block Cox-2, IL-6 and IL-18 signal pathway to protect damage of skin cells given by UVB-irradiation. In the research, we found that Schizandrin B can attenuate the UVB-induced toxicity on keratinocytes and dermal fibroblasts in human body, and can outstandingly eliminated intracellular ROS produced by UVB-irradiation. These results demonstrate that Schizandrin B can regulate the function of decreasing intracellular SOD's activity and increasing the expression level of MDA in HaCaT cells result from the guidance of UVB, and it markedly reduced the production of inflammatory factors such as Cox-2, IL-6 or IL-18, decreased the expression level of MMP-1, and interdicted degradation process of collagens in UVB-radiated cells. Therefore, skin keratinocytes can be effectively protected from UVB-radiated damage by Schizandrin B, and UVB-irradiation caused inflammatory responses can be inhibited by attenuating process of ROS generating.
Collapse
Affiliation(s)
- Chenguang Gao
- a Logistics University of Chinese People's Armed Police Forces , Tianjin , China
| | - Hong Chen
- a Logistics University of Chinese People's Armed Police Forces , Tianjin , China.,b Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard , Tianjin , China
| | - Cong Niu
- a Logistics University of Chinese People's Armed Police Forces , Tianjin , China
| | - Jie Hu
- a Logistics University of Chinese People's Armed Police Forces , Tianjin , China
| | - Bo Cao
- a Logistics University of Chinese People's Armed Police Forces , Tianjin , China
| |
Collapse
|
37
|
Inhibition of hypoxia-induced cyclooxygenase-2 by Korean Red Ginseng is dependent on peroxisome proliferator-activated receptor gamma. J Ginseng Res 2016; 41:240-246. [PMID: 28701863 PMCID: PMC5489747 DOI: 10.1016/j.jgr.2016.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/19/2016] [Accepted: 04/02/2016] [Indexed: 12/22/2022] Open
Abstract
Background Korean Red Ginseng (KRG) is a traditional herbal medicine made by steaming and drying fresh ginseng. It strengthens the endocrine and immune systems to ameliorate various inflammatory responses. The cyclooxygenase-2 (COX-2)/prostaglandin E2 pathway has important implications for inflammation responses and tumorigenesis. Peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor that regulates not only adipogenesis and lipid homeostasis, but also angiogenesis and inflammatory responses. Methods The effects of the KRG on inhibition of hypoxia-induced COX-2 via PPARγ in A549 cells were determined by luciferase assay, Western blot, and/or quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The antimigration and invasive effects of KRG were evaluated on A549 cells using migration and matrigel invasion assays. Results and conclusion We previously reported that hypoxia-induced COX-2 protein and mRNA levels were suppressed by KRG. This study examines the possibility of PPARγ as a cellular target of KRG for the suppression of hypoxia-induced COX-2. PPARγ protein levels and PPARγ-responsive element (PPRE)-driven reporter activities were increased by KRG. Reduction of hypoxia-induced COX-2 by KRG was abolished by the PPARγ inhibitor GW9662. In addition, the inhibition of PPARγ abolished the effect of KRG on hypoxia-induced cell migration and invasion. Discussion Our results show that KRG inhibition of hypoxia-induced COX-2 expression and cell invasion is dependent on PPARγ activation, supporting the therapeutic potential for suppression of inflammation under hypoxia. Further studies are required to demonstrate whether KRG activates directly PPARγ and to identify the constituents responsible for this activity.
Collapse
|
38
|
Kim H, Jang M, Kim Y, Choi J, Jeon J, Kim J, Hwang YI, Kang JS, Lee WJ. Red ginseng and vitamin C increase immune cell activity and decrease lung inflammation induced by influenza A virus/H1N1 infection. J Pharm Pharmacol 2016; 68:406-20. [DOI: 10.1111/jphp.12529] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/17/2016] [Indexed: 11/27/2022]
Abstract
Abstract
Objectives
Because red ginseng and vitamin C have immunomodulatory function and anti-viral effect, we investigated whether red ginseng and vitamin C synergistically regulate immune cell function and suppress viral infection.
Methods
Red ginseng and vitamin C were treated to human peripheral blood mononuclear cells (PBMCs) or sarcoma-associated herpesvirus (KSHV)-infected BCBL-1, and administrated to Gulo(−/−) mice, which are incapable of synthesizing vitamin C, with or without influenza A virus/H1N1 infection.
Key findings
Red ginseng and vitamin C increased the expression of CD25 and CD69 of PBMCs and natural killer (NK) cells. Co-treatment of them decreased cell viability and lytic gene expression in BCBL-1. In Gulo(−/−) mice, red ginseng and vitamin C increased the expression of NKp46, a natural cytotoxic receptor of NK cells and interferon (IFN)-γ production. Influenza infection decreased the survival rate, and increased inflammation and viral plaque accumulation in the lungs of vitamin C-depleted Gulo(−/−) mice, which were remarkably reduced by red ginseng and vitamin C supplementation.
Conclusions
Administration of red ginseng and vitamin C enhanced the activation of immune cells like T and NK cells, and repressed the progress of viral lytic cycle. It also reduced lung inflammation caused by viral infection, which consequently increased the survival rate.
Collapse
Affiliation(s)
- Hyemin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Mirim Jang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| | - Yejin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| | - Jiyea Choi
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| | - Jane Jeon
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| | - Jihoon Kim
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Young-il Hwang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Seung Kang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Wang Jae Lee
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Kee JY, Jeon YD, Kim DS, Han YH, Park J, Youn DH, Kim SJ, Ahn KS, Um JY, Hong SH. Korean Red Ginseng improves atopic dermatitis-like skin lesions by suppressing expression of proinflammatory cytokines and chemokines in vivo and in vitro. J Ginseng Res 2016; 41:134-143. [PMID: 28413317 PMCID: PMC5386127 DOI: 10.1016/j.jgr.2016.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/29/2016] [Accepted: 02/09/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The prevalence of allergic inflammatory diseases such as atopic dermatitis (AD), asthma, and allergic rhinitis worldwide has increased and complete recovery is difficult. Korean Red Ginseng, which is the heat-processed root of Panax ginseng Meyer, is widely and frequently used as a traditional medicine in East Asia. In this study, we investigated whether Korean Red Ginseng water extract (RGE) regulates the expression of proinflammatory cytokines and chemokines via the mitogen-activated protein kinases (MAPKs)/nuclear factor kappa B (NF-κB) pathway in allergic inflammation. METHODS Compound 48/80-induced anaphylactic shock and 1-fluoro-2,4-dinitrobenzene (DNFB)-induced AD-like skin lesion mice models were used to investigate the antiallergic effects of RGE. Human keratinocytes (HaCaT cells) and human mast cells (HMC-1) were also used to clarify the effects of RGE on the expression of proinflammatory cytokines and chemokines. RESULTS Anaphylactic shock and DNFB-induced AD-like skin lesions were attenuated by RGE administration through reduction of serum immunoglobulin E (IgE) and interleukin (IL)-6 levels in mouse models. RGE also reduced the production of proinflammatory cytokines including IL-1β, IL-6, and IL-8, and expression of chemokines such as IL-8, thymus and activation-regulated chemokine (TARC), and macrophage-derived chemokine (MDC) in HaCaT cells. Additionally, RGE decreased the release of tumor necrosis factor-α (TNF-α), IL-1β, IL-6, and IL-8 as well as expressions of chemokines including macrophage inflammatory protein (MIP)-1α, MIP-1β, regulated on activation, normal T cell expressed and secreted (RANTES), monocyte chemoattractant protein (MCP)-1, and IL-8 in HMC-1 cells. Furthermore, our data demonstrated that these inhibitory effects occurred through blockage of the MAPK and NF-κB pathway. CONCLUSION RGE may be a useful therapeutic agent for the treatment of allergic inflammatory diseases such as AD-like dermatitis.
Collapse
Affiliation(s)
- Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Korea
| | - Yong-Deok Jeon
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Korea.,Department of Oriental Medicine Resources, College of Environmental and Bioresources Sciences, Chonbuk National University, Iksan-si, Jeollabuk-do, Korea
| | - Dae-Seung Kim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Korea
| | - Yo-Han Han
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Korea
| | - Jinbong Park
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Dong-Hyun Youn
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Su-Jin Kim
- Department of Cosmeceutical Science, Daegu Hanny University, Gyeongsan-si, Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jae-Young Um
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Seung-Heon Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Korea
| |
Collapse
|
40
|
Hwang E, Park SY, Yin CS, Kim HT, Kim YM, Yi TH. Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin. J Ginseng Res 2016; 41:69-77. [PMID: 28123324 PMCID: PMC5223080 DOI: 10.1016/j.jgr.2016.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Human skin undergoes distinct changes throughout the aging process, based on both intrinsic and extrinsic factors. In a process called photoaging, UVB irradiation leads to upregulation of matrix metalloproteinase-1, which then causes collagen degradation and premature aging. Mixtures of medicinal plants have traditionally been used as drugs in oriental medicine. Based on the previously reported antioxidant properties of Panax ginseng Meyer and Crataegus pinnatifida, we hypothesized that the mixture of P. ginseng Meyer and C. pinnatifida (GC) would have protective effects against skin aging. METHODS Anti-aging activity was examined both in human dermal fibroblasts under UVB irradiation by using Western blot analysis and in healthy human skin by examining noninvasive measurements. RESULTS In vitro studies showed that GC improved procollagen type I expression and diminished matrix metalloproteinase-1 secretion. Based on noninvasive measurements, skin roughness values, including total roughness (R1), maximum roughness (R2), smoothness depth and average roughness (R3), and global photodamage scores were improved by GC application. Moreover, GC ameliorated the high values of smoothness depth (R4), which means that GC reduced loss of skin moisture. CONCLUSION These results suggest that GC can prevent aging by inhibiting wrinkle formation and increasing moisture in the human skin.
Collapse
Affiliation(s)
- Eunson Hwang
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, Giheung-gu, Yongin-si, Gyeonggi-do, Korea
| | - Sang-Yong Park
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, Giheung-gu, Yongin-si, Gyeonggi-do, Korea
| | - Chang Shik Yin
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Hee-Taek Kim
- College of Oriental Medicine, Semyung University, Jecheon, Chungbuk, Korea
| | - Yong Min Kim
- College of Oriental Medicine, Semyung University, Jecheon, Chungbuk, Korea
| | - Tae Hoo Yi
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, Giheung-gu, Yongin-si, Gyeonggi-do, Korea
| |
Collapse
|
41
|
Oh MJ, Kim HJ, Park EY, Ha NH, Song MG, Choi SH, Chun BG, Kim DH. The effect of Korean Red Ginseng extract on rosiglitazone-induced improvement of glucose regulation in diet-induced obese mice. J Ginseng Res 2016; 41:52-59. [PMID: 28123322 PMCID: PMC5223077 DOI: 10.1016/j.jgr.2015.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/16/2015] [Accepted: 12/30/2015] [Indexed: 01/08/2023] Open
Abstract
Background Korean Red Ginseng extract (KRG, Panax ginseng Meyer) and its constituents have been used for treating diabetes. However, in diet-induced obese mice, it is unclear whether KRG can enhance the glucose-lowering action of rosiglitazone (ROSI), a peroxisome proliferator-activated receptor gamma synthetic activator. Methods Oral glucose tolerance tests (oGTTs) were performed after 4 days of treatment with a vehicle (CON), KRG [500 mg/kg body weight (b.w.)], ROSI (3.75 mg/kg b.w, 7.5 mg/kg b.w, and 15 mg/kg b.w.), or ROSI and KRG (RK) in obese mice on a high-fat diet. Adipose tissue morphology, crown-like structures (CLSs), and inflammation were compared by hematoxylin-eosin staining or quantitative reverse transcription polymerase chain reaction. Results The area under the glucose curve (AUC) was significantly lower in the RK group (15 mg/kg b.w. and 500 mg/kg b.w. for ROSI and KRG, respectively) than in the CON group. There was no significant difference in the AUC between the CON and the other groups. Furthermore, the AUC was significantly lower in the RK group than in the ROSI group. The expression of the Ccl2 gene and the number of CLSs were significantly reduced in the RK group than in the CON group. Conclusion Our results show a potential enhancement of ROSI-induced improvement of glucose regulation by the combined treatment with KRG.
Collapse
Affiliation(s)
- Mi-Jeong Oh
- Department of Pharmacology, Korea University College of Medicine, Seoul, Korea
| | - Hyun-Ju Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, Korea
| | - Eun-Young Park
- Department of Pharmacology, Korea University College of Medicine, Seoul, Korea
| | - Na-Hee Ha
- Department of Pharmacology, Korea University College of Medicine, Seoul, Korea
| | - Mun-Gyu Song
- Department of Pharmacology, Korea University College of Medicine, Seoul, Korea
| | - Sang-Hyun Choi
- Department of Pharmacology, Korea University College of Medicine, Seoul, Korea
| | - Boe-Gwun Chun
- Department of Pharmacology, Korea University College of Medicine, Seoul, Korea
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
42
|
Commiphora gileadensis sap extract induces cell cycle-dependent death in immortalized keratinocytes and human dermoid carcinoma cells. J Herb Med 2015. [DOI: 10.1016/j.hermed.2015.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
43
|
Lee GY, Park KG, Namgoong S, Han SK, Jeong SH, Dhong ES, Kim WK. Effects of Panax ginseng extract on human dermal fibroblast proliferation and collagen synthesis. Int Wound J 2015; 13 Suppl 1:42-6. [PMID: 26507878 DOI: 10.1111/iwj.12530] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 11/29/2022] Open
Abstract
Current studies of Panax ginseng (or Korean ginseng) have demonstrated that it has various biological effects, including angiogenesis, immunostimulation, antimicrobial and anti-inflammatory effects. Therefore, we hypothesised that P. ginseng may also play an important role in wound healing. However, few studies have been conducted on the wound-healing effects of P. ginseng. Thus, the purpose of this in vitro pilot study was to determine the effects of P. ginseng on the activities of fibroblasts, which are key wound-healing cells. Cultured human dermal fibroblasts were treated with one of six concentrations of P. ginseng: 0, 1, 10 and 100 ng/ml and 1 and 10 µg/ml. Cell proliferation was determined 3 days post-treatment using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay, and collagen synthesis was evaluated by the collagen type I carboxy-terminal propeptide method. Cell proliferation levels and collagen synthesis were compared among the groups. The 10 ng/ml to 1 µg/ml P. ginseng treatments significantly increased cell proliferation, and the 1 ng/ml to 1 µg/ml concentrations significantly increased collagen synthesis. The maximum effects for both parameters were observed at 10 ng/ml. P. ginseng stimulated human dermal fibroblast proliferation and collagen synthesis at an optimal concentration of 10 ng/ml.
Collapse
Affiliation(s)
- Geum-Young Lee
- Department of Plastic Surgery, Korea University College of Medicine, Seoul, Korea
| | - Kang-Gyun Park
- Department of Plastic Surgery, Korea University College of Medicine, Seoul, Korea
| | - Sik Namgoong
- Department of Plastic Surgery, Korea University College of Medicine, Seoul, Korea
| | - Seung-Kyu Han
- Department of Plastic Surgery, Korea University College of Medicine, Seoul, Korea
| | - Seong-Ho Jeong
- Department of Plastic Surgery, Korea University College of Medicine, Seoul, Korea
| | - Eun-Sang Dhong
- Department of Plastic Surgery, Korea University College of Medicine, Seoul, Korea
| | - Woo-Kyung Kim
- Department of Plastic Surgery, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Kim TS, Lee HS, Chung JW. The Effect of Korean Red Ginseng on Symptoms and Quality of Life in Chronic Tinnitus: A Randomized, Open-Label Pilot Study. J Audiol Otol 2015; 19:85-90. [PMID: 26413574 PMCID: PMC4582451 DOI: 10.7874/jao.2015.19.2.85] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/22/2015] [Accepted: 07/31/2015] [Indexed: 02/04/2023] Open
Abstract
Background and Objectives The major mechanism of inner ear cell damage is the production of reactive oxygen species (ROS). Korean red ginseng (KRG) has an anti-ROS effect; thus we hypothesized that KRG may be of use for the treatment of chronic idiopathic tinnitus. The aim of the study is to investigate clinical outcomes and health-related quality of life (QoL) in chronic tinnitus patients after taking KRG. Subjects and Methods This study was an open-label randomized controlled trial. Sixty-one patients with chronic tinnitus were enrolled and randomized to three groups. The control group was treated for 4 weeks with 160 mg/day Ginkgo biloba extract, and two other groups receiving 1500 mg/day or 3000 mg/day KRG for 4 weeks. Clinical assessments were performed using the tinnitus handicap inventory (THI), Visual Analogue Scale (VAS) and QoL was assessed by Short Form-36 Health Survey (SF-36) questionnaire. Results Fifty-nine patients completed the planned protocol. Significant improvements were observed between initial and post-treatment THI scores in patients receiving 3000 mg/day KRG. There was no statistically significant difference between initial and post-treatment VAS scores in all groups. Treatment with 3000 mg/day KRG for 4 weeks significantly improved role emotional and mental health scores in the SF-36 survey. Conclusions These results suggest that KRG may improve tinnitus symptoms and mental wellbeing in chronic tinnitus patients.
Collapse
Affiliation(s)
- Tae Su Kim
- Department of Otolaryngology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Hwan Seo Lee
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Woo Chung
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Park SY, Shin YK, Kim HT, Kim YM, Lee DG, Hwang E, Cho BG, Yin CS, Kim KY, Yi TH. A single-center, randomized, double-blind, placebo-controlled study on the efficacy and safety of "enzyme-treated red ginseng powder complex (BG11001)" for antiwrinkle and proelasticity in individuals with healthy skin. J Ginseng Res 2015; 40:260-8. [PMID: 27616902 PMCID: PMC5005355 DOI: 10.1016/j.jgr.2015.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 07/03/2015] [Accepted: 08/23/2015] [Indexed: 10/29/2022] Open
Abstract
BACKGROUND During the aging process, skin shows visible changes, characterized by a loss of elasticity and the appearance of wrinkles due to reduced collagen production and decreased elasticity of elastin fibers. Panax ginseng Meyer has been used as a traditional medicine for various diseases due to its wide range of biological activities including skin protective effects. Ginsenosides are the main components responsible for the biological activities of ginseng. However, the protective activities of an enzymatic preparation of red ginseng against human skin aging have not been investigated. METHODS The efficacy of an enzyme-treated powder complex of red ginseng (BG11001) in preventing human skin aging was evaluated by oral administration to 78 randomized individuals. All patients were requested to take three daily capsules containing either 750 mg of BG11001 or a placebo vehicle for 24 wk; at the end of the testing period, skin roughness, elasticity, and skin water content were measured. RESULTS BG11001 significantly reduced the average roughness of eye wrinkles and the Global Photo Damage Score compared with the placebo, although there were no significant differences in arithmetic roughness average between the groups. In addition, gross elasticity and net elasticity values increased, and transepidermal water loss level decreased, indicating improved skin elasticity and moisture content. CONCLUSION In conclusion, enzyme-treated red ginseng extract significantly improved eye wrinkle roughness, skin elasticity, and moisture content. Moreover, enzyme-treated red ginseng extract would be useful substance as a bio-health skin care product.
Collapse
Affiliation(s)
- Sang-Yong Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Yu-Kyong Shin
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Hee-Taek Kim
- College of Oriental Medicine, Semyung University, Jecheon, Korea
| | - Yong Min Kim
- College of Oriental Medicine, Semyung University, Jecheon, Korea
| | - Don-Gil Lee
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Eunson Hwang
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Byung-Goo Cho
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Korea
| | - Chang Shik Yin
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Ki-Young Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Tae Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| |
Collapse
|
46
|
|
47
|
Yang IJ, Lee DU, Shin HM. Anti-inflammatory and antioxidant effects of coumarins isolated fromFoeniculum vulgarein lipopolysaccharide-stimulated macrophages and 12-O-tetradecanoylphorbol-13-acetate-stimulated mice. Immunopharmacol Immunotoxicol 2015; 37:308-17. [DOI: 10.3109/08923973.2015.1038751] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Shin JH, Jun SL, Hwang SY, Ahn SH. Analytical Research to Determine the effects of the Components of ONGABO on the Viability of HepG2 Cancer Cells by Using the Sovereign, Minister, Assistant and Courier Principle (). J Pharmacopuncture 2015; 15:42-51. [PMID: 25780653 PMCID: PMC4331947 DOI: 10.3831/kpi.2012.15.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/10/2012] [Indexed: 11/15/2022] Open
Abstract
Objectives: This study used the basic principle of Oriental medicine, the sovereign, minister, assistant and courier principle (君臣佐使論) to investigate the effects of the component of ONGABO, which is composed of Ginseng Radix (Red Ginseng), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen and Curcumae tuber on the viability of HepG2 cells. Methods: Single and mixed extracts of the component of ONGABO were prepared by lypohilizing powder of Red Ginseng (6-year root from Kanghwa), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen, Curcumae Tuber (from Omniherb Co., Ltd., Korea) at the laboratory of herbal medicine in Woosuk University and were eluted after being macerated with 100% ethanol for three days. The cell viability of HepG2 was determined by using an absorptiometric analysis with PrestoBlue (Invitrogen) reagent after the plate had been incubated for 48 hours. All of the experiments were repeated three times to obtain the average value and standard deviation. The statistical analysis was done and the correlation factor was obtained by using Microsoft Office Excel 2007 and Origin 6.0 software. Results: Although Ginseng Radix (Red Ginseng) and Schisandrae Fructus did not enhance the viability of HepG2 cells, they were shown to provide protection of those cells. On the other hand, Angelica Gigantis Radix decreased the viability of HepG2 cells significantly, Cuscuta Semen and Curcumae Tuber had a small or no effect on the viability of HepG2 cells. Conclusions: In the sovereign, minister, assistant and courier principle (君臣佐使論), Ginseng Radix (Red Ginseng) corresponds to the sovereign component because it provides cell protection effects, Angelica Gigantis Radix corresponds to minister medicinal because it kills cells, Schisandrae Fructus corresponds to the assistant medicinal to help red ginseng having cell protect effects. Cuscuta Semen and Curcumae Tuber correspond to the courier medicinal having no effect in cell viability in HepG2. We hope this study provides motivation for advanced research on the sovereign, minister, assistant and courier principle.
Collapse
Affiliation(s)
- Jeong-Hun Shin
- Department of Bio-nano Chemistry, Wonkwang University, Iksan, Korea
| | | | | | - Seong-Hun Ahn
- Department of Meridian & Acupoint, Wonkwang University College of Oriental Medicine, Iksan, Korea ; Research Center of Traditional Korean Medicine, Wonkwang University, Iksan, Korea
| |
Collapse
|
49
|
Ginseng protects against respiratory syncytial virus by modulating multiple immune cells and inhibiting viral replication. Nutrients 2015; 7:1021-36. [PMID: 25658239 PMCID: PMC4344572 DOI: 10.3390/nu7021021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 01/16/2015] [Accepted: 01/26/2015] [Indexed: 01/23/2023] Open
Abstract
Ginseng has been used in humans for thousands of years but its effects on viral infection have not been well understood. We investigated the effects of red ginseng extract (RGE) on respiratory syncytial virus (RSV) infection using in vitro cell culture and in vivo mouse models. RGE partially protected human epithelial (HEp2) cells from RSV-induced cell death and viral replication. In addition, RGE significantly inhibited the production of RSV-induced pro-inflammatory cytokine (TNF-α) in murine dendritic and macrophage-like cells. More importantly, RGE intranasal pre-treatment prevented loss of mouse body weight after RSV infection. RGE treatment improved lung viral clearance and enhanced the production of interferon (IFN-γ) in bronchoalveolar lavage cells upon RSV infection of mice. Analysis of cellular phenotypes in bronchoalveolar lavage fluids showed that RGE treatment increased the populations of CD8+ T cells and CD11c+ dendritic cells upon RSV infection of mice. Taken together, these results provide evidence that ginseng has protective effects against RSV infection through multiple mechanisms, which include improving cell survival, partial inhibition of viral replication and modulation of cytokine production and types of immune cells migrating into the lung.
Collapse
|
50
|
Kim K. Effect of ginseng and ginsenosides on melanogenesis and their mechanism of action. J Ginseng Res 2014; 39:1-6. [PMID: 25535470 PMCID: PMC4268563 DOI: 10.1016/j.jgr.2014.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/23/2014] [Accepted: 10/31/2014] [Indexed: 11/17/2022] Open
Abstract
Abnormal changes in skin color induce significant cosmetic problems and affect quality of life. There are two groups of abnormal change in skin color; hyperpigmentation and hypopigmentation. Hyperpigmentation, darkening skin color by excessive pigmentation, is a major concern for Asian people with yellow–brown skin. A variety of hypopigmenting agents have been used, but treating the hyperpigmented condition is still challenging and the results are often discouraging. Panax ginseng has been used traditionally in eastern Asia to treat various diseases, due to its immunomodulatory, neuroprotective, antioxidative, and antitumor activities. Recently, several reports have shown that extract, powder, or some constituents of ginseng could inhibit melanogenesis in vivo or in vitro. The underlying mechanisms of antimelanogenic properties in ginseng or its components include the direct inhibition of key enzymes of melanogenesis, inhibition of transcription factors or signaling pathways involved in melanogenesis, decreasing production of inducers of melanogenesis, and enhancing production of antimelanogenic factor. Although there still remain some controversial issues surrounding the antimelanogenic activity of ginseng, especially in its effect on production of proinflammatory cytokines and nitric oxide, these recent findings suggest that ginseng and its constituents might be potential candidates for novel skin whitening agents.
Collapse
Affiliation(s)
- Kwangmi Kim
- College of Pharmacy, Dankook University, Cheonan-si, Chungnam, Korea
| |
Collapse
|