1
|
Ahmed T, Shanthi N, Mahato AK. Amorolfine hydrochloride loaded solid lipid nanoparticles: Preparation, characterization and ex vivo nail permeation study to treat onychomycosis. ANNALES PHARMACEUTIQUES FRANÇAISES 2025; 83:493-504. [PMID: 39667555 DOI: 10.1016/j.pharma.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Onychomycosis is a disease of the nail plate caused by fungi, leading to the progressive defacing of the nail. The infection requires a longer period of treatment orally and topically. The treatment with the topical route is difficult due to the low availability of drugs across the infected nail. This failure in topical treatment is the drawback of the conventional drug delivery system (DDS), particularly drug penetration issues across the nail plate. The solid lipid nanoparticle (SLN) approach was used to overcome such issues. The drug amorolfine hydrochloride (AOF) was incorporated into SLN by using the micro-emulsion cold dilution method. Monostrearin and stearic acid were used as solid lipids in the formulation of drug-loaded SLNs. The nanoparticle formulation was optimized by varying the type of solid lipids and bile salts. Sodium taurocholate (STC) and sodium tauroglycholate (STG) are the bile salts used as biosurfactants in the formulation. The SLNs prepared with stearic acid and STG demonstrated higher drug encapsulation efficiency (71.73%) and drug loading efficiency (13.03%) than monostearin. Bile salts have affected the particle size range and STG was found to produce smaller size particles with stearic acid (406nm) than STC. Process parameter homogenization speed was also optimized and 403 relative centrifugal force (RCF) was optimal to produce smaller-size particles (406nm). The drug permeation through the nail plate and anti-fungal studies were also performed for AOF-SLNs loaded cream and marketed cream (Amfocin). The SLNs have improved the permeation (1.63-fold) and anti-fungal activity (2.50-fold) of AOF. Transmission electron microscopy (TEM) images revealed a spherical shape of SLNs with no aggregation. The physical stability was performed and SLNs have higher stability at refrigeration storage. The SLNs were incorporated in cream for the final application for onychomycosis. The analytical method of high-performance liquid chromatography (HPLC) was used for the quantification of AOF in the formulations.
Collapse
Affiliation(s)
- Tasleem Ahmed
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, 248161 Dehradun, India.
| | - Nithya Shanthi
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, 248161 Dehradun, India.
| | - Arun Kumar Mahato
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, 248161 Dehradun, India
| |
Collapse
|
2
|
Sarhan FA, Soliman ME, Hamza MY, El-Gogary RI. Revolutionizing treatment for topical fungal infections: evaluating penetration-enhancer-containing vesicles as a fluconazole delivery system: Ex-vivo and in-vivo dermal testing. Pharm Dev Technol 2024; 29:814-823. [PMID: 39161985 DOI: 10.1080/10837450.2024.2394573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Fungal infections pose a significant challenge in numerous developing nations and worldwide, necessitating urgent solutions. Oral administration of antifungal medications often leads to severe adverse reactions. Hence, employing topical delivery systems is preferred to ensure efficient dermal delivery of antifungal agents while minimizing side effects. Furthermore, the incorporation of penetration enhancers into nanocarriers loaded with antifungal agents has demonstrated enhanced efficacy in combating mycotic infections. Consequently, ultra-deformable penetration enhancer-containing vesicles (PEVs) were developed to explore this promising approach. In this study, Labrasol® and Transcutol® were used as penetration enhancers in formulating ultra-deformable PEVs containing the antifungal agent Fluconazole (FCZ). The PEVs underwent comprehensive characterization, including measurements of particle size (PS), charge, and entrapment efficiency (EE%). The results revealed that the size of tested PEVs ranged from 100 to 762 nm. All particles exhibited a negative charge, with a minimum zeta potential (ZP) of -38.26 mV, and an intermediate entrapment efficiency (EE%) that reached approximately 40%w/w. Ex-vivo studies demonstrated the ability of PEVs to deliver FCZ to the dermis while minimizing transdermal delivery. The selected formula was tested in-vivo using candidiasis-induced rat model and showed a superiority in its antifungal effect against Candida Albicans compared to the drug control. Stability studies were executed for the selected formula, and revealed good stability shown by the insignificant change in the PS, ZP& EE% over a six-month period.
Collapse
Affiliation(s)
- Fatma A Sarhan
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
- Department of Pharmaceutics (Physical Properties), Egyptian Drug Authority (EDA) Formerly Known as National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Mahmoud E Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Departement of Pharmaceutics, Egypt-Japan University of Science and Technology (EJUST), Alexandria, Egypt
| | - Manal Yassin Hamza
- Department of Pharmaceutics (Physical Properties), Egyptian Drug Authority (EDA) Formerly Known as National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Izadi A, Paknia F, Roostaee M, Mousavi SAA, Barani M. Advancements in nanoparticle-based therapies for multidrug-resistant candidiasis infections: a comprehensive review. NANOTECHNOLOGY 2024; 35:332001. [PMID: 38749415 DOI: 10.1088/1361-6528/ad4bed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Candida auris, a rapidly emerging multidrug-resistant fungal pathogen, poses a global health threat, with cases reported in over 47 countries. Conventional detection methods struggle, and the increasing resistance ofC. auristo antifungal agents has limited treatment options. Nanoparticle-based therapies, utilizing materials like silver, carbon, zinc oxide, titanium dioxide, polymer, and gold, show promise in effectively treating cutaneous candidiasis. This review explores recent advancements in nanoparticle-based therapies, emphasizing their potential to revolutionize antifungal therapy, particularly in combatingC. aurisinfections. The discussion delves into mechanisms of action, combinations of nanomaterials, and their application against multidrug-resistant fungal pathogens, offering exciting prospects for improved clinical outcomes and reduced mortality rates. The aim is to inspire further research, ushering in a new era in the fight against multidrug-resistant fungal infections, paving the way for more effective and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Alireza Izadi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Paknia
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Seyed Amin Ayatollahi Mousavi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmood Barani
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75168, Iran
| |
Collapse
|
4
|
Periferakis AT, Periferakis A, Periferakis K, Caruntu A, Badarau IA, Savulescu-Fiedler I, Scheau C, Caruntu C. Antimicrobial Properties of Capsaicin: Available Data and Future Research Perspectives. Nutrients 2023; 15:4097. [PMID: 37836381 PMCID: PMC10574431 DOI: 10.3390/nu15194097] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Capsaicin is a phytochemical derived from plants of the genus Capsicum and subject of intensive phytochemical research due to its numerous physiological and therapeutical effects, including its important antimicrobial properties. Depending on the concentration and the strain of the bacterium, capsaicin can exert either bacteriostatic or even bactericidal effects against a wide range of both Gram-positive and Gram-negative bacteria, while in certain cases it can reduce their pathogenicity by a variety of mechanisms such as mitigating the release of toxins or inhibiting biofilm formation. Likewise, capsaicin has been shown to be effective against fungal pathogens, particularly Candida spp., where it once again interferes with biofilm formation. The parasites Toxoplasma gondi and Trypanosoma cruzi have been found to be susceptible to the action of this compound too while there are also viruses whose invasiveness is significantly dampened by it. Among the most encouraging findings are the prospects for future development, especially using new formulations and drug delivery mechanisms. Finally, the influence of capsaicin in somatostatin and substance P secretion and action, offers an interesting array of possibilities given that these physiologically secreted compounds modulate inflammation and immune response to a significant extent.
Collapse
Affiliation(s)
- Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
5
|
Sousa F, Nascimento C, Ferreira D, Reis S, Costa P. Reviving the interest in the versatile drug nystatin: A multitude of strategies to increase its potential as an effective and safe antifungal agent. Adv Drug Deliv Rev 2023; 199:114969. [PMID: 37348678 DOI: 10.1016/j.addr.2023.114969] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Nystatin is an antifungal molecule with a remarkable yet squandered versatility. In this review, its mechanism of action is explored, along with its extensive action spectrum and toxicity. A multitude of methodologies to tackle the drug's physical and chemical hurdles are outlined along with some proven-effective strategies to increase its activity and/or decrease its toxicity. A separate detailed section focused on micro and nanotechnology solutions addresses new drug delivery systems made of polymeric, metallic or lipid materials. Although the topical route depicts greater representativeness amongst these formulations, the intravenous, dental, oral, vaginal and inhalation routes are also mentioned. The unsuccessful previous attempts at developing parenteral formulations of nystatin or even the withdrawal of a nystatin-loaded multilamellar liposome should not divert research away from this drug. In fact, the interest in nystatin ought to be reawakened with the ongoing clinical trials on the promising nystatin-like genetically engineered derivate BSG005.
Collapse
Affiliation(s)
- Filipa Sousa
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Cecília Nascimento
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
| | - Domingos Ferreira
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
| | - Paulo Costa
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
Zaki RM, Aldawsari MF, Alossaimi MA, Alzaid SF, Devanathadesikan Seshadri V, Almurshedi AS, Aldosari BN, Yusif RM, Sayed OM. Brain Targeting of Quetiapine Fumarate via Intranasal Delivery of Loaded Lipospheres: Fabrication, In-Vitro Evaluation, Optimization, and In-Vivo Assessment. Pharmaceuticals (Basel) 2022; 15:ph15091083. [PMID: 36145303 PMCID: PMC9501298 DOI: 10.3390/ph15091083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
A liposphere system for intranasal delivery of quetiapine fumarate (QTF) was created to assess the potential for enhanced drug delivery. We investigated the effects of particle size, entrapment effectiveness, poly dispersibility index, and pluronic incorporation percentage on these variables. The optimal formula was examined using a TEM, and investigations into DSC, XRD, and FTIR were made. Optimized liposphere formulation in vitro dissolution investigation with a mean diameter of 294.4 ± 18.2 nm revealed about 80% drug release in 6 h. The intranasal injection of QTF-loaded lipospheres showed a shorter Tmax compared to that of intranasal and oral suspension, per the findings of an in vivo tissue distribution investigation in Wistar mice. Lipospheres were able to achieve higher drug transport efficiency (DTE %) and direct nose-to-brain drug transfer (DTP %). A potentially effective method for delivering QTF to specific brain regions is the liposphere system.
Collapse
Affiliation(s)
- Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef P.O. Box 62514, Egypt
- Correspondence:
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Manal A. Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Shaikah F. Alzaid
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Vidya Devanathadesikan Seshadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Alanood S. Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Basmah Nasser Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Rehab Mohammad Yusif
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 41411, Saudi Arabia
| | - Ossama M. Sayed
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia 41612, Egypt
| |
Collapse
|
7
|
Rarokar NR, Menghani SS, Kerzare DR, Khedekar PB, Bharne AP, Alamri AS, Alsanie WF, Alhomrani M, Sreeharsha N, Asdaq SMB. Preparation of Terbinafin-Encapsulated Solid Lipid Nanoparticles Containing Antifungal Carbopol® Hydrogel with Improved Efficacy: In Vitro, Ex Vivo and In Vivo Study. Pharmaceutics 2022; 14:pharmaceutics14071393. [PMID: 35890289 PMCID: PMC9320640 DOI: 10.3390/pharmaceutics14071393] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
The present research was aimed to develop a terbinafin hydrochloride (TH)-encapsulated solid lipid nanoparticles (SLNs) hydrogel for improved antifungal efficacy. TH-loaded SLNs were obtained from glyceryl monostearate (lipid) and Pluronic® F68 (surfactant) employing high-pressure homogenization. The ratio of drug with respect to lipid was optimized, considering factors such as desired particle size and highest percent encapsulation efficiency. Lyophilized SLNs were then incorporated in the hydrogel prepared from 0.2–1.0% w/v carbopol 934P and further evaluated for rheological parameters. The z-average, zeta potential and polydispersity index were found to be 241.3 nm, −15.2 mV and 0.415, respectively. The SLNs show a higher entrapment efficiency of about 98.36%, with 2.12 to 6.3602% drug loading. SEM images, XRD and the results of the DSC, FTIR show successful preparation of SLNs after freeze drying. The TH-loaded SLNs hydrogel showed sustained drug release (95.47 ± 1.45%) over a period of 24 h. The results reported in this study show a significant effect on the zone of inhibition than the marketed formulation and pure drug in Candida albicans cultures, with better physical stability at cooler temperatures. It helped to enhance skin deposition inthe ex vivostudy and improved, in vitro and in vivo, the antifungal activity.
Collapse
Affiliation(s)
- Nilesh R. Rarokar
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Sciences, Mahatma Jyotiba Fuley Shaikshanik Parisar, Rashtrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur 440033, India; (N.R.R.); (P.B.K.); (A.P.B.)
| | - Sunil S. Menghani
- Department of Pharmaceutical Chemistry, Krupanidhi College of Pharmacy, Bangalore 560035, India
- Correspondence: (S.S.M.); or (S.M.B.A.)
| | - Deweshri R. Kerzare
- Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur 440037, India;
| | - Pramod B. Khedekar
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Sciences, Mahatma Jyotiba Fuley Shaikshanik Parisar, Rashtrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur 440033, India; (N.R.R.); (P.B.K.); (A.P.B.)
| | - Ashish P. Bharne
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Sciences, Mahatma Jyotiba Fuley Shaikshanik Parisar, Rashtrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur 440033, India; (N.R.R.); (P.B.K.); (A.P.B.)
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.S.A.); (W.F.A.); (M.A.)
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.S.A.); (W.F.A.); (M.A.)
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.S.A.); (W.F.A.); (M.A.)
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
- Correspondence: (S.S.M.); or (S.M.B.A.)
| |
Collapse
|
8
|
Stefanov SR, Andonova VY. Lipid Nanoparticulate Drug Delivery Systems: Recent Advances in the Treatment of Skin Disorders. Pharmaceuticals (Basel) 2021; 14:1083. [PMID: 34832865 PMCID: PMC8619682 DOI: 10.3390/ph14111083] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
The multifunctional role of the human skin is well known. It acts as a sensory and immune organ that protects the human body from harmful environmental impacts such as chemical, mechanical, and physical threats, reduces UV radiation effects, prevents moisture loss, and helps thermoregulation. In this regard, skin disorders related to skin integrity require adequate treatment. Lipid nanoparticles (LN) are recognized as promising drug delivery systems (DDS) in treating skin disorders. Solid lipid nanoparticles (SLN) together with nanostructured lipid carriers (NLC) exhibit excellent tolerability as these are produced from physiological and biodegradable lipids. Moreover, LN applied to the skin can improve stability, drug targeting, occlusion, penetration enhancement, and increased skin hydration compared with other drug nanocarriers. Furthermore, the features of LN can be enhanced by inclusion in suitable bases such as creams, ointments, gels (i.e., hydrogel, emulgel, bigel), lotions, etc. This review focuses on recent developments in lipid nanoparticle systems and their application to treating skin diseases. We point out and consider the reasons for their creation, pay attention to their advantages and disadvantages, list the main production techniques for obtaining them, and examine the place assigned to them in solving the problems caused by skin disorders.
Collapse
Affiliation(s)
- Stefan R. Stefanov
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria;
| | | |
Collapse
|
9
|
Design, Preparation, and Characterization of Effective Dermal and Transdermal Lipid Nanoparticles: A Review. COSMETICS 2021. [DOI: 10.3390/cosmetics8020039] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Limited permeability through the stratum corneum (SC) is a major obstacle for numerous skin care products. One promising approach is to use lipid nanoparticles as they not only facilitate penetration across skin but also avoid the drawbacks of conventional skin formulations. This review focuses on solid lipid nanoparticles (SLNs), nanostructured lipid nanocarriers (NLCs), and nanoemulsions (NEs) developed for topical and transdermal delivery of active compounds. A special emphasis in this review is placed on composition, preparation, modifications, structure and characterization, mechanism of penetration, and recent application of these nanoparticles. The presented data demonstrate the potential of these nanoparticles for dermal and transdermal delivery.
Collapse
|
10
|
Nami S, Aghebati-Maleki A, Aghebati-Maleki L. Current applications and prospects of nanoparticles for antifungal drug delivery. EXCLI JOURNAL 2021; 20:562-584. [PMID: 33883983 PMCID: PMC8056051 DOI: 10.17179/excli2020-3068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Currently, the significance of fungi as human pathogens is not medically concealed in the world. Consequently, suitable recognition and treatment of such infections are of great importance and necessitate the need for comprehensive information in this regard. The introduction of new antifungals and their use today, especially in the last two decades, have revolutionized the treatment of fungal infections. On the other hand, increasing drug resistance in the world has overshadowed such developments. The use of NPs results in the treatment of fungal infections and owing to their specific properties, these particles, unlike the pure antibiotics, can exert a greater inhibitory power although with less concentration compared with conventional drugs. Important reasons that have led to the use of antifungal drugs in delivery systems include reduced drug efficacy, limited penetration through tissue, poor aqueous solubility, decreased bioavailability, and poor drug pharmacokinetics. It is therefore hoped that unfavorable properties of antifungal drugs be mitigated via their incorporation into different types of NPs. This review summarizes the different types of NPs as delivery systems of antifungal as well as their advantages over pure drugs.
Collapse
Affiliation(s)
- Sanam Nami
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Smith DM, Keller A. DNA Nanostructures in the Fight Against Infectious Diseases. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000049. [PMID: 33615315 PMCID: PMC7883073 DOI: 10.1002/anbr.202000049] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Throughout history, humanity has been threatened by countless epidemic and pandemic outbreaks of infectious diseases, from the Justinianic Plague to the Spanish flu to COVID-19. While numerous antimicrobial and antiviral drugs have been developed over the last 200 years to face these threats, the globalized and highly connected world of the 21st century demands for an ever-increasing efficiency in the detection and treatment of infectious diseases. Consequently, the rapidly evolving field of nanomedicine has taken up the challenge and developed a plethora of strategies to fight infectious diseases with the help of various nanomaterials such as noble metal nanoparticles, liposomes, nanogels, and virus capsids. DNA nanotechnology represents a comparatively recent addition to the nanomedicine arsenal, which, over the past decade, has made great progress in the area of cancer diagnostics and therapy. However, the past few years have seen also an increasing number of DNA nanotechnology-related studies that particularly focus on the detection and inhibition of microbial and viral pathogens. Herein, a brief overview of this rather young research field is provided, successful concepts as well as potential challenges are identified, and promising directions for future research are highlighted.
Collapse
Affiliation(s)
- David M. Smith
- DNA Nanodevices UnitDepartment DiagnosticsFraunhofer Institute for Cell Therapy and Immunology IZI04103LeipzigGermany
- Peter Debye Institute for Soft Matter PhysicsFaculty of Physics and Earth SciencesUniversity of Leipzig04103LeipzigGermany
- Institute of Clinical ImmunologyUniversity of Leipzig Medical School04103LeipzigGermany
- Dhirubhai Ambani Institute of Information and Communication TechnologyGandhinagar382 007India
| | - Adrian Keller
- Technical and Macromolecular ChemistryPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| |
Collapse
|
12
|
Nocelli NE, Zulueta Díaz YDLM, Millot M, Colazo ML, Vico RV, Fanani ML. Self-assembled nanostructures of L-ascorbic acid alkyl esters support monomeric amphotericin B. Heliyon 2021; 7:e06056. [PMID: 33553743 PMCID: PMC7848660 DOI: 10.1016/j.heliyon.2021.e06056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/03/2020] [Accepted: 01/19/2021] [Indexed: 12/22/2022] Open
Abstract
Hypothesis Amphotericin B (AmB) is a highly effective antimicrobial, with broad antimycotic and antiparasitic effect. However, AmB poor water-solubilisation and aggregation tendency limits its use for topical applications. We studied the capacity of nanostructures formed by alkyl esters of L-ascorbic acid (ASCn) to solubilise AmB and tested the relationship between the prevalence of the monomeric form of AmB and its effectiveness as antimicrobial agent. Experiments We developed self-assembled nanostructures formed by the commercial compound, palmitoyl ascorbic acid, as well as the shorter chained myristoyl and lauroyl ascorbic acid. AmB loaded ASCn nanostructures were studied by a combination of spectroscopic techniques, together with particle analysis, differential scanning calorimetry, microbiological tests, and Langmuir monolayer visualisation. Findings We found no direct relation between the antimicrobial capacity and the prevalence of the monomeric form of the drug. However, the later was related to chemical stability and colloidal robustness. Nanostructures formed by ASC16 in its anionic state provide an appropriate environment for AmB in its monomeric form, maintaining its antimicrobial capacity. Langmuir film visualisation supports spectrophotometric evidence, indicating that ASC16 allows the in-plane solubilisation of AmB. Coagels formed by ASC16 appear as promising for carrying AmB for dermal delivery.
Collapse
Affiliation(s)
- Natalia E. Nocelli
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Córdoba, Argentina
| | - Yenisleidy de las Mercedes Zulueta Díaz
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Córdoba, Argentina
| | - Marine Millot
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Luz Colazo
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Raquel V. Vico
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC-UNC−CONICET), Córdoba, Argentina
| | - Maria Laura Fanani
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Córdoba, Argentina
- Corresponding author.
| |
Collapse
|
13
|
Riaz A, Hendricks S, Elbrink K, Guy C, Maes L, Ahmed N, Kiekens F, Khan GM. Preparation and Characterization of Nanostructured Lipid Carriers for Improved Topical Drug Delivery: Evaluation in Cutaneous Leishmaniasis and Vaginal Candidiasis Animal Models. AAPS PharmSciTech 2020; 21:185. [PMID: 32632542 DOI: 10.1208/s12249-020-01717-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to develop, characterize and evaluate the amphotericin B-loaded nanostructured lipid carriers (AmB-NLCs) for topical treatment of cutaneous leishmaniasis (CL) and vulvovaginal candidiasis (VVC). AmB-NLCs were characterized for particle size, zeta potential, encapsulation efficiency and surface morphology. Prepared NLCs were also characterized for in vitro drug release, ex vivo skin permeation and deposition before evaluating their in vitro and in vivo efficacy. Cytotoxicity of NLCs was assessed on MRC-5 cells, whereas skin irritation potential was evaluated in vivo using rats. Significant accumulation of drug in to the skin supported the topical application potential of drug-loaded NLCs. Encapsulation of AmB in NLCs resulted in enhanced in vitro potency against promastigotes and intracellular amastigotes of L. major JISH 118 (IC50 ± SEM = 0.02 ± 0.1 μM for both) compared with free drug (IC50 ± SEM = 0.15 ± 0.2 & 0.14 ± 0.0, respectively). Similar improved potency of AmB-NLCs was also observed for other Leishmania and fungal strains compared with drug solution. Topical application of AmB-NLCs on L. major-infected BALB/c mice caused a significant reduction in parasite burden per mg of lesion (65 × 108 ± 13) compared with the control group (> 167.8 × 108 ± 11). Topical AmB-NLCs gel demonstrated superior efficacy in the vaginal C. albicans rat model for VVC as compared with plain AmB gel. Moreover, results of in vitro cytotoxicity assay and in vivo skin irritation test confirmed AmB-NLCs to be non-toxic and safe for topical use. In conclusion, NLCs may have promising potential as carrier for topical treatment of various conditions of skin and mucosa.
Collapse
Affiliation(s)
- Amina Riaz
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Sarah Hendricks
- Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Kimberley Elbrink
- Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Pharmaceutical Technology and Biopharmacy, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Caljon Guy
- Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Louis Maes
- Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Filip Kiekens
- Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Pharmaceutical Technology and Biopharmacy, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Gul Majid Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
14
|
Fernandes AV, Pydi CR, Verma R, Jose J, Kumar L. Design, preparation and in vitro characterizations of fluconazole loaded nanostructured lipid carriers. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000318069] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
15
|
Thakur K, Sharma G, Singh B, Katare OP. Topical Drug Delivery of Anti-infectives Employing Lipid-Based Nanocarriers: Dermatokinetics as an Important Tool. Curr Pharm Des 2019; 24:5108-5128. [PMID: 30657036 DOI: 10.2174/1381612825666190118155843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/11/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND The therapeutic approaches for the management of topical infections have always been a difficult approach due to lack of efficacy of conventional topical formulations, high frequency of topical applications and non-patient compliance. The major challenge in the management of topical infections lies in antibiotic resistance which leads to severe complications and hospitalizations resulting in economic burden and high mortality rates. METHODS Topical delivery employing lipid-based carriers has been a promising strategy to overcome the challenges of poor skin permeation and retention along with large doses which need to be administered systemically. The use of lipid-based delivery systems is a promising strategy for the effective topical delivery of antibiotics and overcoming drug-resistant strains in the skin. The major systems include transfersomes, niosomes, ethosomes, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion and nanoemulsion as the most promising drug delivery approaches to treat infectious disorders. The main advantages of these systems include lipid bilayer structure which mimics the cell membrane and can fuse with infectious microbes. The numerous advantages associated with nanocarriers like enhanced efficacy, improvement in bioavailability, controlled drug release and ability to target the desired infectious pathogen have made these carriers successful. CONCLUSION Despite the number of strides taken in the field of topical drug delivery in infectious diseases, it still requires extensive research efforts to have a better perspective of the factors that influence drug permeation along with the mechanism of action with regard to skin penetration and deposition. The final objective of the therapy is to provide a safe and effective therapeutic approach for the management of infectious diseases affecting topical sites leading to enhanced therapeutic efficacy and patient-compliance.
Collapse
Affiliation(s)
- Kanika Thakur
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Bhupindar Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Om Prakash Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| |
Collapse
|
16
|
Lee BC, Pangeni R, Na J, Koo KT, Park JW. Preparation and in vivo evaluation of a highly skin- and nail-permeable efinaconazole topical formulation for enhanced treatment of onychomycosis. Drug Deliv 2019; 26:1167-1177. [PMID: 31738083 PMCID: PMC6882438 DOI: 10.1080/10717544.2019.1687612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/31/2022] Open
Abstract
Onychomycosis is a progressive fungal infection of the nails that involves the deeper nail layer and nail bed. It is important to maintain sufficient drug concentration in the diseased tissues after topical application. In this study, a stable topical delivery system for efinaconazole (EFN) was designed to enhance absorption potential through the skin and nail plate by incorporating ethanol, diethylene glycol monoethyl ether (Transcutol P) and isopropyl myristate, and cyclomethicone into the topical solution as a delivery vehicle, permeation enhancers, and a wetting agent, respectively. In addition, the stability of EFN in the formulation was significantly improved by adding butylated hydroxytoluene, diethylenetriamine pentaacetic acid, and citric acid as an antioxidant, chelating agent, and pH-adjusting agent, respectively, without discoloration. The optimum EFN formulation (EFN-K) showed 1.46-fold greater human skin permeation than that of the reference control (commercial 10% EFN topical solution). Furthermore, after a 24-hour incubation, the amount of infiltrated EFN from EFN-K in the human nail plate was 4.11-fold greater than that of the reference control, resulting in an 89.7% increase in nail flux at 7 days after treatment. EFN-K significantly accelerated structural recovery of the keratin layer in a Trichophyton mentagrophytes-infected guinea pig onychomycosis model, decreasing the mean viable fungal cell count by 54.3% compared to the vehicle-treated group after once-daily treatment for 4 weeks. Thus, the accelerated skin and nail penetration effect of EFN-K is expected to achieve good patient compliance, and improve the complete cure rate of onychomycosis.
Collapse
Affiliation(s)
- Byung Chul Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Republic of Korea
| | - Rudra Pangeni
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Jungtae Na
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Republic of Korea
| | - Kyo-Tan Koo
- BioBelief Co., Ltd., Seoul, Republic of Korea
| | - Jin Woo Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| |
Collapse
|
17
|
Lewińska A, Jaromin A, Jezierska J. Role of architecture of N-oxide surfactants in the design of nanoemulsions for Candida skin infection. Colloids Surf B Biointerfaces 2019; 187:110639. [PMID: 31776055 DOI: 10.1016/j.colsurfb.2019.110639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/23/2019] [Accepted: 11/09/2019] [Indexed: 11/29/2022]
Abstract
In this work we present comprehensive research on the formation, stability and structural properties of oil-in-water (o/w) nanoemulsions with the ability for topical administration, penetration of the skin and acting as antifungal agents against C. albicans. The studied nanoemulsions were composed of different ratios of double-head - single-tail surfactants {1-bis{[3-(N,N-dimethylamino)ethyl]amido}alkane-di-N-oxides (Cn-MEDA), N,N-bis[3,3'-(dimethyl-amino)propyl]alkyl-amide di-N-oxides (Cn(DAPANO)2} and single-head - single-tail surfactants {2-(alkanoylamino)-ethyldimethyl-amine-N-oxides (Cn-EDA), and 3-(alkanoylamino) propyldimethylamine-N-oxides, (Cn-PDA)} added to the oil {isooctane IO, isopropyl myristate IPM or glyceryl monocaprylate GM as (O)} and to the water phase (W). The phase behavior of the systems was examined by a titration method. Morphology of the resulting colloids was characterized by scanning and transmission electron microscopy, the particle size and size distributions determined by dynamic light scattering, and kinetic stability by multiple light scattering. While both surfactant types resulted in quite stable nanoemulsions, the systems formed using a single-headed one-tail surfactant were slightly more stable with GM or IPM. The microenvironmental properties of the nanoemulsions were studied by an electron paramagnetic resonance technique to distinguish the molecular dynamics of the different spin probes localized in the particular regions of the surfactant layers, depending on the surfactant structure and the system preparation. Skin permeation studies were performed to monitor transport through the skin, and changes in skin structure were followed using differential scanning calorimetry. Moreover, the activities of curcumin-loaded nanoemulsions stabilized by N-oxide surfactants against Candida albicans fungus were evaluated. To estimate in vitro efficacy, the suitability of an N-oxide nanoemulsion dressing against wound infection with biofilm C. albicans was assessed according to the Antibiofilm Dressing's Activity Measurement. We expect that the nanoemulsion formulations tested in this study will have potential for application as topical delivery systems for pharmaceutically active compounds in skin-related conditions.
Collapse
Affiliation(s)
- Agnieszka Lewińska
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14A, 50-383 Wroclaw, Poland.
| | - Julia Jezierska
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
18
|
Waghule T, Rapalli VK, Singhvi G, Manchanda P, Hans N, Dubey SK, Hasnain MS, Nayak AK. Voriconazole loaded nanostructured lipid carriers based topical delivery system: QbD based designing, characterization, in-vitro and ex-vivo evaluation. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Anti-Irritant and Anti-Inflammatory Effects of DHA Encapsulated in Resveratrol-Based Solid Lipid Nanoparticles in Human Keratinocytes. Nutrients 2019; 11:nu11061400. [PMID: 31234344 PMCID: PMC6627705 DOI: 10.3390/nu11061400] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
We recently found that the dietary long chain omega-3 polyunsaturated fatty acid (LC-ω-3 PUFA), docosahexaenoic acid (DHA), showed enhanced antineoplastic activity against colon cancer cells if encapsulated in resveratrol-based solid lipid nanoparticles (RV-SLNs). In the present study, we investigated whether the DHA enclosed in RV-SLNs (DHA-RV-SLNs) could have the potential of attenuating irritation and inflammation caused by environmental factors at the skin level. To this aim, we used two keratinocyte lines (HaCaT and NCTC 2544 cells) and exposed them to the cytotoxic action of the surfactant, sodium dodecyl sulfate (SDS), as an in vitro model of irritation, or to the pro-inflammatory activity of the cytokine TNF-α. We found that DHA enclosed in RV-SLNs significantly enhanced its ability to contrast the cytotoxic effect of SDS and to inhibit the SDS- and TNF-α-induced production of the inflammatory cytokines IL-1β, IL-6, and 1 MCP-1, in the two keratinocyte cell lines, as well as the NLRP3 inflammasome activation. Moreover, it more efficiently reduced the upsurge of reactive oxygen species (ROS) levels obtained in the presence of a pro-oxidant (H2O2). Overall, our findings suggest the possibility that a sustained dietary supplementation with DHA-RV-SLNs could efficiently protect skin from the pro-irritant and pro-inflammatory activity of environmental attacks.
Collapse
|
20
|
Xanthan gum-based materials for omega-3 PUFA delivery: Preparation, characterization and antineoplastic activity evaluation. Carbohydr Polym 2019; 208:431-440. [DOI: 10.1016/j.carbpol.2019.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/14/2018] [Accepted: 01/01/2019] [Indexed: 12/23/2022]
|
21
|
In Vitro Antioxidant Activity and In Vivo Topical Efficacy of Lipid Nanoparticles Co-Loading Idebenone and Tocopheryl Acetate. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9050845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Idebenone (IDE) is a strong antioxidant that has been proposed for the treatment of skin disorders, including skin ageing. Unfavorable physico-chemical properties make IDE a poor skin permeant where effectiveness could be improved by its loading into suitable delivery systems such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). In this work, we designed novel IDE-loaded NLC containing tocopheryl acetate (VitE) as a liquid component to obtain a synergic effect between IDE and VitE. The resulting NLC showed small particle sizes (24–42 nm), low polydispersity indices (<0.300), good stability, and were assessed for their in vitro antioxidant activity and in vivo topical effects. IDE-loaded SLN and NLC showed a high antioxidant activity in in vitro assays (DPPH and reducing power method) and provided a similar and significant protection from oxidative stress of fibroblast cells, HS-68, exposed to UV light. After a two-week topical treatment of human volunteers with gels containing IDE-loaded SLN or NLC, a similar increase in skin hydration was observed, while IDE NLC reduced skin pigmentation to a greater extent than IDE SLN. These results suggest that co-loading IDE and VitE into NLC could be a promising strategy to obtain topical formulations with improved photo-protection.
Collapse
|
22
|
Solid lipid nanoparticles made of trehalose monooleate for cyclosporin-A topic release. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Omega-3 PUFA Loaded in Resveratrol-Based Solid Lipid Nanoparticles: Physicochemical Properties and Antineoplastic Activities in Human Colorectal Cancer Cells In Vitro. Int J Mol Sci 2018; 19:ijms19020586. [PMID: 29462928 PMCID: PMC5855808 DOI: 10.3390/ijms19020586] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 12/25/2022] Open
Abstract
New strategies are being investigated to ameliorate the efficacy and reduce the toxicity of the drugs currently used in colorectal cancer (CRC), one of the most common malignancies in the Western world. Data have been accumulated demonstrating that the antineoplastic therapies with either conventional or single-targeted drugs could take advantage from a combined treatment with omega-3 polyunsaturated fatty acids (omega-3 PUFA). These nutrients, shown to be safe at the dosage generally used in human trials, are able to modulate molecules involved in colon cancer cell growth and survival. They have also the potential to act against inflammation, which plays a critical role in CRC development, and to increase the anti-cancer immune response. In the present study, omega-3 PUFA were encapsulated in solid lipid nanoparticles (SLN) having a lipid matrix containing resveratrol esterified to stearic acid. Our aim was to increase the efficiency of the incorporation of these fatty acids into the cells and prevent their peroxidation and degradation. The Resveratrol-based SLN were characterized and investigated for their antioxidant activity. It was observed that the encapsulation of omega-3 PUFA into the SLN enhanced significantly their incorporation in human HT-29 CRC cells in vitro, and their growth inhibitory effects in these cancer cells, mainly by reducing cell proliferation.
Collapse
|
24
|
Soliman GM. Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges. Int J Pharm 2017; 523:15-32. [PMID: 28323096 DOI: 10.1016/j.ijpharm.2017.03.019] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/21/2017] [Accepted: 03/11/2017] [Indexed: 11/25/2022]
Abstract
Invasive fungal infections are becoming a major health concern in several groups of patients leading to severe morbidity and mortality. Moreover, cutaneous fungal infections are a major cause of visits to outpatient dermatology clinics. Despite the availability of several effective agents in the antifungal drug arena, their therapeutic outcome is less than optimal due to limitations related to drug physicochemical properties and toxicity. For instance, poor aqueous solubility limits the formulation options and efficacy of several azole antifungal drugs while toxicity limits the benefits of many other drugs. Nanoparticles hold great promise to overcome these limitations due to their ability to enhance drug aqueous solubility, bioavailability and antifungal efficacy. Further, drug incorporation into nanoparticles could greatly reduce its toxicity. Despite these interesting nanoparticle features, there are only few marketed nanoparticle-based antifungal drug formulations. This review sheds light on different classes of nanoparticles used in antifungal drug delivery, such as lipid-based vesicles, polymeric micelles, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions and dendrimers with emphasis on their advantages and limitations. Translation of these nanoformulations from the lab to the clinic could be facilitated by focusing the research on overcoming problems related to nanoparticle stability, drug loading and high cost of production and standardization.
Collapse
Affiliation(s)
- Ghareb M Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| |
Collapse
|
25
|
Souza ACO, Amaral AC. Antifungal Therapy for Systemic Mycosis and the Nanobiotechnology Era: Improving Efficacy, Biodistribution and Toxicity. Front Microbiol 2017; 8:336. [PMID: 28326065 PMCID: PMC5340099 DOI: 10.3389/fmicb.2017.00336] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/17/2017] [Indexed: 01/11/2023] Open
Abstract
Fungal diseases have been emerging as an important public health problem worldwide with the increase in host predisposition factors due to immunological dysregulations, immunosuppressive and/or anticancer therapy. Antifungal therapy for systemic mycosis is limited, most of times expensive and causes important toxic effects. Nanotechnology has become an interesting strategy to improve efficacy of traditional antifungal drugs, which allows lower toxicity, better biodistribution, and drug targeting, with promising results in vitro and in vivo. In this review, we provide a discussion about conventional antifungal and nanoantifungal therapies for systemic mycosis.
Collapse
Affiliation(s)
- Ana C. O. Souza
- Laboratory of Pathogenic Dimorphic Fungi, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
| | - Andre C. Amaral
- Laboratory of Nano and Biotechnology, Institute of Tropical Pathology and Public Health, Federal University of GoiásGoiânia, Brazil
| |
Collapse
|