1
|
Zhao P, Zhang Y, Sun Z, Cheng B, Meng L, Muhammad T, Yao Y, Abbas MM, Zhan X, Zhang F, Liang Y. A novel F-box gene, SlSE2.2, is responsible for the stigma exsertion degree in tomato (Solanum lycopersicum). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112521. [PMID: 40262703 DOI: 10.1016/j.plantsci.2025.112521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 04/16/2025] [Accepted: 04/19/2025] [Indexed: 04/24/2025]
Abstract
Tomato stigma exsertion is an important trait in positional sterility genotypes, which can eliminate the need for manual emasculation and promote hybrid production. In this study, we discovered a new tomato accession, J59, with a stably inherited stigma exsertion trait. To explore the regulatory genes of the stigma exsertion trait, J59 and inserted stigma genotypes M82 were crossed to obtain mapping populations. Through three years mapping, a quantitative trait locus (QTL) associated with the stigma exsertion trait was narrowed down to a 52.635 kb interval on chromosome 2, Solyc02g087270 was identified as the candidate gene responsible for this trait, named SlSE2.2. This gene encoded an F-box protein of the FBA subfamily. Sequences analysis revealed that an 11 bp deletion occurred in the first exon of SlSE2.2 in J59, resulting in premature termination of translation. Subcellular localization revealed that SlSE2.2 is located to the nucleus. Knockout of SlSE2.2 increased anther and style lengths, which reduced the values of anther length minus pistil length, changing the relative length of anthers and pistils, called stigma exsertion degree, whereas, overexpression of SlSE2.2 showed the opposite phenotype. Hormone levels analysis revealed that SlSE2.2 negatively modulated IAA, ETH, and JA levels and positively modulated ABA content. Transcriptomic analysis showed that SlSE2.2 affected the expression of SlIAA19, SlIAA36, SlETR6, SlJAZ, and SlSnRK2 related to the hormone signal transduction. This study identified the important role of a new gene, SlSE2.2, which provided a helpful insight to explore the regulatory mechanisms of stigma exsertion degree in tomato.
Collapse
Affiliation(s)
- Pan Zhao
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Yanhong Zhang
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Zhengliang Sun
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Baohui Cheng
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Liangzhe Meng
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Tayeb Muhammad
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Yuhe Yao
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Muhammad Mehran Abbas
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Xiangqiang Zhan
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China
| | - Fei Zhang
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| |
Collapse
|
2
|
Kong J, Jiang F, Shaw RK, Bi Y, Yin X, Pan Y, Gong X, Zong H, Ijaz B, Fan X. Combined Genome-Wide Association Study and Linkage Analysis for Mining Candidate Genes for the Kernel Row Number in Maize ( Zea mays L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:3308. [PMID: 39683101 DOI: 10.3390/plants13233308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Kernel row number (KRN) is one of the key traits that significantly affect maize yield and productivity. Therefore, investigating the candidate genes and their functions in regulating KRN provides a theoretical basis and practical direction for genetic improvement in maize breeding, which is vital for increasing maize yield and understanding domestication. In this study, three recombinant inbred line (RIL) populations were developed using the parental lines AN20, YML1218, CM395, and Ye107, resulting in a multiparent population comprising a total of 490 F9 RILs. Phenotypic evaluation of the RILs for KRN was performed in three distinct environments. The heritability estimates of the RILs ranged from 81.40% to 84.16%. Genotyping-by-sequencing (GBS) of RILs identified 569,529 high-quality single nucleotide polymorphisms (SNPs). Combined genome-wide association study (GWAS) and linkage analyses revealed 120 SNPs and 22 quantitative trait loci (QTLs) which were significantly associated with KRN in maize. Furthermore, two novel candidate genes, Zm00001d042733 and Zm00001d042735, regulating KRN in maize were identified, which were located in close proximity to the significant SNP3-178,487,003 and overlapping the interval of QTL qKRN3-1. Zm00001d042733 encodes ubiquitin carboxyl-terminal hydrolase and Zm00001d042735 encodes the Arabidopsis Tóxicos en Levadura family of proteins. This study identified novel candidate loci and established a theoretical foundation for further functional validation of candidate genes. These findings deepen our comprehension of the genetic mechanisms that underpin KRN and offer potential applications of KRN-related strategies in developing maize varieties with higher yield.
Collapse
Affiliation(s)
- Jiao Kong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Fuyan Jiang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Ranjan K Shaw
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Yaqi Bi
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Xingfu Yin
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Yanhui Pan
- Institute of Resource Plants, Yunnan University, Kunming 650500, China
| | - Xiaodong Gong
- Institute of Resource Plants, Yunnan University, Kunming 650500, China
| | - Haiyang Zong
- Institute of Resource Plants, Yunnan University, Kunming 650500, China
| | - Babar Ijaz
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| |
Collapse
|
3
|
Boucher JJ, Ireland HS, Wang R, David KM, Schaffer RJ. The genetic control of herkogamy. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23315. [PMID: 38687848 DOI: 10.1071/fp23315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
Herkogamy is the spatial separation of anthers and stigmas within complete flowers, and is a key floral trait that promotes outcrossing in many angiosperms. The degree of separation between pollen-producing anthers and receptive stigmas has been shown to influence rates of self-pollination amongst plants, with a reduction in herkogamy increasing rates of successful selfing in self-compatible species. Self-pollination is becoming a critical issue in horticultural crops grown in environments where biotic pollinators are limited, absent, or difficult to utilise. In these cases, poor pollination results in reduced yield and misshapen fruit. Whilst there is a growing body of work elucidating the genetic basis of floral organ development, the genetic and environmental control points regulating herkogamy are poorly understood. A better understanding of the developmental and regulatory pathways involved in establishing varying degrees of herkogamy is needed to provide insights into the production of flowers more adept at selfing to produce consistent, high-quality fruit. This review presents our current understanding of herkogamy from a genetics and hormonal perspective.
Collapse
Affiliation(s)
- Jacques-Joseph Boucher
- The New Zealand Institute for Plant and Food Research Ltd, 55 Old Mill Road, Motueka 7198, New Zealand; and School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Hilary S Ireland
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland 1142, New Zealand
| | - Ruiling Wang
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland 1142, New Zealand
| | - Karine M David
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Robert J Schaffer
- The New Zealand Institute for Plant and Food Research Ltd, 55 Old Mill Road, Motueka 7198, New Zealand; and School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
4
|
Ding B, Li J, Gurung V, Lin Q, Sun X, Yuan YW. The leaf polarity factors SGS3 and YABBYs regulate style elongation through auxin signaling in Mimulus lewisii. THE NEW PHYTOLOGIST 2021; 232:2191-2206. [PMID: 34449905 DOI: 10.1111/nph.17702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Style length is a major determinant of breeding strategies in flowering plants and can vary dramatically between and within species. However, little is known about the genetic and developmental control of style elongation. We characterized the role of two classes of leaf adaxial-abaxial polarity factors, SUPPRESSOR OF GENE SILENCING3 (SGS3) and the YABBY family transcription factors, in the regulation of style elongation in Mimulus lewisii. We also examined the spatiotemporal patterns of auxin response during style development. Loss of SGS3 function led to reduced style length via limiting cell division, and downregulation of YABBY genes by RNA interference resulted in shorter styles by decreasing both cell division and cell elongation. We discovered an auxin response minimum between the stigma and ovary during the early stages of pistil development that marks style differentiation. Subsequent redistribution of auxin response to this region was correlated with style elongation. Auxin response was substantially altered when both SGS3 and YABBY functions were disrupted. We suggest that auxin signaling plays a central role in style elongation and that the way in which auxin signaling controls the different cell division and elongation patterns underpinning natural style length variation is a major question for future research.
Collapse
Affiliation(s)
- Baoqing Ding
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Jingjian Li
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Vandana Gurung
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Qiaoshan Lin
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Xuemei Sun
- Qinghai Key Laboratory of Genetics and Physiology of Vegetables, Qinghai University, Xining, 810008, China
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
5
|
Riccini A, Picarella ME, De Angelis F, Mazzucato A. Bulk RNA-Seq analysis to dissect the regulation of stigma position in tomato. PLANT MOLECULAR BIOLOGY 2021; 105:263-285. [PMID: 33104942 DOI: 10.1007/s11103-020-01086-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Transcriptomic analysis of tomato genotypes contrasting for stigma position suggests that stigma insertion occurred by the disruption of a process that finds a parallel in Arabidopsis gynoecium development. Domestication of cultivated tomato (Solanum lycopersicum L.) included the transition from allogamy to autogamy that occurred through the loss of self-incompatibilty and the retraction of the stigma within the antheridial cone. Although the inserted stigma is an established phenotype in modern tomatoes, an exserted stigma is still present in several landraces or vintage varieties. Moreover, exsertion of the stigma is a frequent response to high temperature stress and, being a cause of reduced fertility, a trait of increasing importance. Few QTLs for stigma position have been described and only one of the underlying genes identified. To gain insights on genes involved in stigma position in tomato, a bulk RNA sequencing (RNA-Seq) approach was adopted, using two groups of contrasting genotypes. Phenotypic analysis confirmed the extent and the stability of stigma position in the selected genotypes, whereas they were highly heterogeneous for other reproductive and productive traits. The RNA-Seq analysis yielded 801 differentially expressed genes (DEGs), 566 up-regulated and 235 down-regulated in the genotypes with exserted stigma. Validation by quantitative PCR indicated a high reliability of the RNA-Seq data. Up-regulated DEGs were enriched for genes involved in the cell wall metabolism, lipid transport, auxin response and flavonoid biosynthesis. Down-regulated DEGs were enriched for genes involved in translation. Validation of selected genes on pistil tissue of the 26 single genotypes revealed that differences between bulks could both be due to a general trend of the bulk or to the behaviour of single genotypes. Novel candidate genes potentially involved in the control of stigma position in tomato are discussed.
Collapse
Affiliation(s)
- A Riccini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S.C. de Lellis snc, 01100, Viterbo, Italy
| | - M E Picarella
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S.C. de Lellis snc, 01100, Viterbo, Italy
| | - F De Angelis
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S.C. de Lellis snc, 01100, Viterbo, Italy
| | - A Mazzucato
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S.C. de Lellis snc, 01100, Viterbo, Italy.
| |
Collapse
|
6
|
van der Knaap E, Østergaard L. Shaping a fruit: Developmental pathways that impact growth patterns. Semin Cell Dev Biol 2017; 79:27-36. [PMID: 29092788 DOI: 10.1016/j.semcdb.2017.10.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/20/2017] [Accepted: 10/26/2017] [Indexed: 12/27/2022]
Abstract
Angiosperms produce seeds as their progeny enclosed in maternally-derived structures called fruits. Evolutionarily, fruits have contributed enormously to the success of the Angiosperms phylum by providing protection and nutrition to the developing seeds, while ensuring the efficient dispersal upon maturity. Fruits vary massively in both size and shape and certain species have been targeted for domestication due to their nutritional value and delicious taste. Among the vast array of 3D fruit shapes that exist in nature, the mechanism by which growth is oriented and coordinated to generate this diversity of forms is unclear. In this review, we discuss the latest results in identifying components that control fruit morphology and their effect on isotropic and anisotropic growth. Moreover, we will compare the current knowledge on the mechanisms that control fruit growth, size and shape between the domesticated Solanaceae species, tomato and members of the large family of Brassicaceae.
Collapse
Affiliation(s)
- Esther van der Knaap
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA, 30602, USA.
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| |
Collapse
|
7
|
Clevenger JP, Van Houten J, Blackwood M, Rodríguez GR, Jikumaru Y, Kamiya Y, Kusano M, Saito K, Visa S, van der Knaap E. Network Analyses Reveal Shifts in Transcript Profiles and Metabolites That Accompany the Expression of SUN and an Elongated Tomato Fruit. PLANT PHYSIOLOGY 2015; 168:1164-78. [PMID: 25941316 PMCID: PMC4741315 DOI: 10.1104/pp.15.00379] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/04/2015] [Indexed: 05/04/2023]
Abstract
SUN controls elongated tomato (Solanum lycopersicum) shape early in fruit development through changes in cell number along the different axes of growth. The gene encodes a member of the IQ domain family characterized by a calmodulin binding motif. To gain insights into the role of SUN in regulating organ shape, we characterized genome-wide transcriptional changes and metabolite and hormone accumulation after pollination and fertilization in wild-type and SUN fruit tissues. Pericarp, seed/placenta, and columella tissues were collected at 4, 7, and 10 d post anthesis. Pairwise comparisons between SUN and the wild type identified 3,154 significant differentially expressed genes that cluster in distinct gene regulatory networks. Gene regulatory networks that were enriched for cell division, calcium/transport, lipid/hormone, cell wall, secondary metabolism, and patterning processes contributed to profound shifts in gene expression in the different fruit tissues as a consequence of high expression of SUN. Promoter motif searches identified putative cis-elements recognized by known transcription factors and motifs related to mitotic-specific activator sequences. Hormone levels did not change dramatically, but some metabolite levels were significantly altered, namely participants in glycolysis and the tricarboxylic acid cycle. Also, hormone and primary metabolite networks shifted in SUN compared with wild-type fruit. Our findings imply that SUN indirectly leads to changes in gene expression, most strongly those involved in cell division, cell wall, and patterning-related processes. When evaluating global coregulation in SUN fruit, the main node represented genes involved in calcium-regulated processes, suggesting that SUN and its calmodulin binding domain impact fruit shape through calcium signaling.
Collapse
Affiliation(s)
- Josh P Clevenger
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691 (J.P.C., J.V.H., G.R.R., E.v.d.K.);Department of Mathematics and Computer Science, The College of Wooster, Wooster, Ohio 44691 (M.B., S.V.);RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.J., Y.K., M.K., K.S.); andDepartment of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Jason Van Houten
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691 (J.P.C., J.V.H., G.R.R., E.v.d.K.);Department of Mathematics and Computer Science, The College of Wooster, Wooster, Ohio 44691 (M.B., S.V.);RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.J., Y.K., M.K., K.S.); andDepartment of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Michelle Blackwood
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691 (J.P.C., J.V.H., G.R.R., E.v.d.K.);Department of Mathematics and Computer Science, The College of Wooster, Wooster, Ohio 44691 (M.B., S.V.);RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.J., Y.K., M.K., K.S.); andDepartment of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Gustavo Rubén Rodríguez
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691 (J.P.C., J.V.H., G.R.R., E.v.d.K.);Department of Mathematics and Computer Science, The College of Wooster, Wooster, Ohio 44691 (M.B., S.V.);RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.J., Y.K., M.K., K.S.); andDepartment of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Yusuke Jikumaru
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691 (J.P.C., J.V.H., G.R.R., E.v.d.K.);Department of Mathematics and Computer Science, The College of Wooster, Wooster, Ohio 44691 (M.B., S.V.);RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.J., Y.K., M.K., K.S.); andDepartment of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Yuji Kamiya
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691 (J.P.C., J.V.H., G.R.R., E.v.d.K.);Department of Mathematics and Computer Science, The College of Wooster, Wooster, Ohio 44691 (M.B., S.V.);RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.J., Y.K., M.K., K.S.); andDepartment of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Miyako Kusano
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691 (J.P.C., J.V.H., G.R.R., E.v.d.K.);Department of Mathematics and Computer Science, The College of Wooster, Wooster, Ohio 44691 (M.B., S.V.);RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.J., Y.K., M.K., K.S.); andDepartment of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Kazuki Saito
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691 (J.P.C., J.V.H., G.R.R., E.v.d.K.);Department of Mathematics and Computer Science, The College of Wooster, Wooster, Ohio 44691 (M.B., S.V.);RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.J., Y.K., M.K., K.S.); andDepartment of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Sofia Visa
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691 (J.P.C., J.V.H., G.R.R., E.v.d.K.);Department of Mathematics and Computer Science, The College of Wooster, Wooster, Ohio 44691 (M.B., S.V.);RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.J., Y.K., M.K., K.S.); andDepartment of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Esther van der Knaap
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691 (J.P.C., J.V.H., G.R.R., E.v.d.K.);Department of Mathematics and Computer Science, The College of Wooster, Wooster, Ohio 44691 (M.B., S.V.);RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.J., Y.K., M.K., K.S.); andDepartment of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| |
Collapse
|
8
|
Ahrazem O, Rubio-Moraga A, Trapero-Mozos A, Climent MFL, Gómez-Cadenas A, Gómez-Gómez L. Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:60-73. [PMID: 25804810 DOI: 10.1016/j.plantsci.2015.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 05/03/2023]
Abstract
Glycosyltransferases play diverse roles in cellular metabolism by modifying the activities of regulatory metabolites. Three stress-regulated UDP-glucosyltransferase-encoding genes have been isolated from the stigmas of saffron, UGT85U1, UGT85U2 and UGT85V1, which belong to the UGT85 family that includes members associated with stress responses and cell cycle regulation. Arabidopsis constitutively expressing UGT85U1 exhibited and increased anchor root development. No differences were observed in the timing of root emergence, in leaf, stem and flower morphology or flowering time. However, salt and oxidative stress tolerance was enhanced in these plants. Levels of glycosylated compounds were measured in these plants and showed changes in the composition of several indole-derivatives. Moreover, auxin levels in the roots were higher compared to wild type. The expression of several key genes related to root development and auxin homeostasis, including CDKB2.1, CDKB2.2, PIN2, 3 and 4; TIR1, SHR, and CYCD6, were differentially regulated with an increase of expression level of SHR, CYCD6, CDKB2.1 and PIN2. The obtained results showed that UGT85U1 takes part in root growth regulation via auxin signal alteration and the modified expression of cell cycle-related genes, resulting in significantly improved survival during oxidative and salt stress treatments.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Fundación Parque Científico y Tecnológico de Albacete, Spain
| | - Angela Rubio-Moraga
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Almudena Trapero-Mozos
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | | | - Aurelio Gómez-Cadenas
- Universitat Jaume I, Department of Agricultural and Environmental Sciences, 12071 Castelló de la Plana, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| |
Collapse
|
9
|
Tedder A, Helling M, Pannell JR, Shimizu-Inatsugi R, Kawagoe T, van Campen J, Sese J, Shimizu KK. Female sterility associated with increased clonal propagation suggests a unique combination of androdioecy and asexual reproduction in populations of Cardamine amara (Brassicaceae). ANNALS OF BOTANY 2015; 115:763-76. [PMID: 25776435 PMCID: PMC4373288 DOI: 10.1093/aob/mcv006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/29/2014] [Accepted: 12/23/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS The coexistence of hermaphrodites and female-sterile individuals, or androdioecy, has been documented in only a handful of plants and animals. This study reports its existence in the plant species Cardamine amara (Brassicaceae), in which female-sterile individuals have shorter pistils than seed-producing hermaphrodites. METHODS Morphological analysis, in situ manual pollination, microsatellite genotyping and differential gene expression analysis using Arabidopsis microarrays were used to delimit variation between female-sterile individuals and hermaphrodites. KEY RESULTS Female sterility in C. amara appears to be caused by disrupted ovule development. It was associated with a 2.4- to 2.9-fold increase in clonal propagation. This made the pollen number of female-sterile genets more than double that of hermaphrodite genets, which fulfils a condition of co-existence predicted by simple androdioecy theories. When female-sterile individuals were observed in wild androdioecious populations, their ramet frequencies ranged from 5 to 54 %; however, their genet frequencies ranged from 11 to 29 %, which is consistent with the theoretically predicted upper limit of 50 %. CONCLUSIONS The results suggest that a combination of sexual reproduction and increased asexual proliferation by female-sterile individuals probably explains the invasion and maintenance of female sterility in otherwise hermaphroditic populations. To our knowledge, this is the first report of the coexistence of female sterility and hermaphrodites in the Brassicaceae.
Collapse
Affiliation(s)
- Andrew Tedder
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Matthias Helling
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - John R Pannell
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Rie Shimizu-Inatsugi
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Tetsuhiro Kawagoe
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Julia van Campen
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Jun Sese
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Kentaro K Shimizu
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| |
Collapse
|
10
|
DePaoli HC, Dornelas MC, Goldman MHS. SCI1 is a component of the auxin-dependent control of cell proliferation in Arabidopsis upper pistil. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:122-130. [PMID: 25443839 DOI: 10.1016/j.plantsci.2014.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 06/04/2023]
Abstract
To characterize the recently described SCI1 (stigma/style cell cycle inhibitor 1) gene relationship with the auxin pathway, we have taken the advantage of the Arabidopsis model system and its available tools. At first, we have analyzed the At1g79200 T-DNA insertion mutants and constructed various transgenic plants. The loss- and gain-of-function plants displayed cell number alterations in upper pistils that were controlled by the amino-terminal domain of the protein. These data also confirmed that this locus holds the functional homolog (AtSCI1) of the Nicotiana tabacum SCI1 gene. Then, we have provided some evidences the auxin synthesis/signaling pathways are required for downstream proper AtSCI1 control of cell number: (a) its expression is downregulated in yuc2yuc6 and npy1 auxin-deficient mutants, (b) triple (yuc2yuc6sci1) and double (npy1sci1) mutants mimicked the auxin-deficient phenotypes, with no synergistic interactions, and (c) the increased upper pistil phenotype in these last mutants, which is a consequence of an increased cell number, was able to be complemented by AtSCI1 overexpression. Taken together, our data strongly suggests SCI1 as a component of the auxin signaling transduction pathway to control cell proliferation/differentiation in stigma/style, representing a molecular effector of this hormone on pistil development.
Collapse
Affiliation(s)
- Henrique Cestari DePaoli
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, Brazil; Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA; PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14049-900, Brazil
| | - Marcelo Carnier Dornelas
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Maria Helena S Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, Brazil.
| |
Collapse
|
11
|
Pires HR, Monfared MM, Shemyakina EA, Fletcher JC. ULTRAPETALA trxG genes interact with KANADI transcription factor genes to regulate Arabidopsis gynoecium patterning. THE PLANT CELL 2014; 26:4345-61. [PMID: 25381352 PMCID: PMC4277222 DOI: 10.1105/tpc.114.131250] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/30/2014] [Accepted: 10/16/2014] [Indexed: 05/13/2023]
Abstract
Organ formation relies upon precise patterns of gene expression that are under tight spatial and temporal regulation. Transcription patterns are specified by several cellular processes during development, including chromatin remodeling, but little is known about how chromatin-remodeling factors contribute to plant organogenesis. We demonstrate that the trithorax group (trxG) gene ULTRAPETALA1 (ULT1) and the GARP transcription factor gene KANADI1 (KAN1) organize the Arabidopsis thaliana gynoecium along two distinct polarity axes. We show that ULT1 activity is required for the kan1 adaxialized polarity defect, indicating that ULT1 and KAN1 act oppositely to regulate the adaxial-abaxial axis. Conversely, ULT1 and KAN1 together establish apical-basal polarity by promoting basal cell fate in the gynoecium, restricting the expression domain of the basic helix-loop-helix transcription factor gene SPATULA. Finally, we show that ult alleles display dose-dependent genetic interactions with kan alleles and that ULT and KAN proteins can associate physically. Our findings identify a dual role for plant trxG factors in organ patterning, with ULT1 and KAN1 acting antagonistically to pattern the adaxial-abaxial polarity axis but jointly to pattern the apical-basal axis. Our data indicate that the ULT proteins function to link chromatin-remodeling factors with DNA binding transcription factors to regulate target gene expression.
Collapse
Affiliation(s)
- Helena R Pires
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service/UC Berkeley, Albany, California 94710Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Mona M Monfared
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service/UC Berkeley, Albany, California 94710Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Elena A Shemyakina
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service/UC Berkeley, Albany, California 94710Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Jennifer C Fletcher
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service/UC Berkeley, Albany, California 94710Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| |
Collapse
|
12
|
Nazemof N, Couroux P, Rampitsch C, Xing T, Robert LS. Proteomic profiling reveals insights into Triticeae stigma development and function. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6069-80. [PMID: 25170101 PMCID: PMC4203142 DOI: 10.1093/jxb/eru350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To our knowledge, this study represents the first high-throughput characterization of a stigma proteome in the Triticeae. A total of 2184 triticale mature stigma proteins were identified using three different gel-based approaches combined with mass spectrometry. The great majority of these proteins are described in a Triticeae stigma for the first time. These results revealed many proteins likely to play important roles in stigma development and pollen-stigma interactions, as well as protection against biotic and abiotic stresses. Quantitative comparison of the triticale stigma transcriptome and proteome showed poor correlation, highlighting the importance of having both types of analysis. This work makes a significant contribution towards the elucidation of the Triticeae stigma proteome and provides novel insights into its role in stigma development and function.
Collapse
Affiliation(s)
- Nazila Nazemof
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, Canada K1A 0C6 Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Philippe Couroux
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, Canada K1A 0C6
| | - Christof Rampitsch
- Agriculture and Agri-Food Canada, Cereal Research Centre, 101 Route 100, Morden, MB, Canada R6M 1Y5
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Laurian S Robert
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, Canada K1A 0C6
| |
Collapse
|
13
|
Martínez-Fernández I, Sanchís S, Marini N, Balanzá V, Ballester P, Navarrete-Gómez M, Oliveira AC, Colombo L, Ferrándiz C. The effect of NGATHA altered activity on auxin signaling pathways within the Arabidopsis gynoecium. FRONTIERS IN PLANT SCIENCE 2014; 5:210. [PMID: 24904608 PMCID: PMC4033193 DOI: 10.3389/fpls.2014.00210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/29/2014] [Indexed: 05/18/2023]
Abstract
The four NGATHA genes (NGA) form a small subfamily within the large family of B3-domain transcription factors of Arabidopsis thaliana. NGA genes act redundantly to direct the development of the apical tissues of the gynoecium, the style, and the stigma. Previous studies indicate that NGA genes could exert this function at least partially by directing the synthesis of auxin at the distal end of the developing gynoecium through the upregulation of two different YUCCA genes, which encode flavin monooxygenases involved in auxin biosynthesis. We have compared three developing pistil transcriptome data sets from wildtype, nga quadruple mutants, and a 35S::NGA3 line. The differentially expressed genes showed a significant enrichment for auxin-related genes, supporting the idea of NGA genes as major regulators of auxin accumulation and distribution within the developing gynoecium. We have introduced reporter lines for several of these differentially expressed genes involved in synthesis, transport and response to auxin in NGA gain- and loss-of-function backgrounds. We present here a detailed map of the response of these reporters to NGA misregulation that could help to clarify the role of NGA in auxin-mediated gynoecium morphogenesis. Our data point to a very reduced auxin synthesis in the developing apical gynoecium of nga mutants, likely responsible for the lack of DR5rev::GFP reporter activity observed in these mutants. In addition, NGA altered activity affects the expression of protein kinases that regulate the cellular localization of auxin efflux regulators, and thus likely impact auxin transport. Finally, protein accumulation in pistils of several ARFs was differentially affected by nga mutations or NGA overexpression, suggesting that these accumulation patterns depend not only on auxin distribution but could be also regulated by transcriptional networks involving NGA factors.
Collapse
Affiliation(s)
- Irene Martínez-Fernández
- Consejo Superior de Investigaciones Científicas - Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV)Valencia, Spain
| | - Sofía Sanchís
- Consejo Superior de Investigaciones Científicas - Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV)Valencia, Spain
| | - Naciele Marini
- Consejo Superior de Investigaciones Científicas - Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV)Valencia, Spain
- Department of Plant Sciences, Faculdade de Agronomia Eliseu Maciel, Plant Genomics and Breeding Center, Universidade Federal de PelotasPelotas, Brasil
| | - Vicente Balanzá
- Consejo Superior de Investigaciones Científicas - Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV)Valencia, Spain
- Dipartimento di Biologia, Universita degli Studi di MilanoMilano, Italia
| | - Patricia Ballester
- Consejo Superior de Investigaciones Científicas - Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV)Valencia, Spain
| | - Marisa Navarrete-Gómez
- Consejo Superior de Investigaciones Científicas - Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV)Valencia, Spain
| | - Antonio C. Oliveira
- Department of Plant Sciences, Faculdade de Agronomia Eliseu Maciel, Plant Genomics and Breeding Center, Universidade Federal de PelotasPelotas, Brasil
| | - Lucia Colombo
- Dipartimento di Biologia, Universita degli Studi di MilanoMilano, Italia
| | - Cristina Ferrándiz
- Consejo Superior de Investigaciones Científicas - Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV)Valencia, Spain
- *Correspondence: Cristina Ferrándiz, Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Campus de la UPV- Ciudad Politécnica de la Innovación edif 8E, Av. de los Naranjos s/n, 46022 Valencia, Spain e-mail:
| |
Collapse
|
14
|
Carabelli M, Turchi L, Ruzza V, Morelli G, Ruberti I. Homeodomain-Leucine Zipper II family of transcription factors to the limelight: central regulators of plant development. PLANT SIGNALING & BEHAVIOR 2013; 8:25447. [PMID: 23838958 PMCID: PMC4002598 DOI: 10.4161/psb.25447] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 05/20/2023]
Abstract
The Arabidopsis genome encodes 10 Homeodomain-Leucine Zipper (HD-Zip) II transcription factors that can be subdivided into 4 clades (α-δ). All the γ (ARABIDOPSIS THALIANA HOMEOBOX 2 [ATHB2], HOMEOBOX ARABIDOPSIS THALIANA 1 [HAT1], HAT2) and δ (HAT3, ATHB4) genes are regulated by light quality changes (Low Red [R]/Far-Red [FR]) that induce the shade avoidance response in most of the angiosperms. HD-Zip IIγ and HD-Zip IIδ transcription factors function as positive regulators of shade avoidance, and there is evidence that at least ATHB2 is directly positively regulated by the basic Helix-Loop-Helix (bHLH) proteins PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5. Recent evidence demonstrate that, in addition to their function in shade avoidance, HD-Zip IIγ and HD-Zip IIδ proteins play an essential role in plant development from embryogenesis onwards in a white light environment.
Collapse
Affiliation(s)
- Monica Carabelli
- Institute of Molecular Biology and Pathology; National Research Council; Rome, Italy
| | - Luana Turchi
- Institute of Molecular Biology and Pathology; National Research Council; Rome, Italy
| | - Valentino Ruzza
- Institute of Molecular Biology and Pathology; National Research Council; Rome, Italy
| | - Giorgio Morelli
- Food and Nutrition Research Centre; Agricultural Research Council (CRA); Rome, Italy
| | - Ida Ruberti
- Institute of Molecular Biology and Pathology; National Research Council; Rome, Italy
- Correspondence to: Ida Ruberti,
| |
Collapse
|
15
|
Marsch-Martínez N, Ramos-Cruz D, Irepan Reyes-Olalde J, Lozano-Sotomayor P, Zúñiga-Mayo VM, de Folter S. The role of cytokinin during Arabidopsis gynoecia and fruit morphogenesis and patterning. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:222-34. [PMID: 22640521 DOI: 10.1111/j.1365-313x.2012.05062.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cytokinins have many essential roles in embryonic and post-embryonic growth and development, but their role in fruit morphogenesis is currently not really known. Moreover, information about the spatio-temporal localization pattern of cytokinin signaling in gynoecia and fruits is lacking. Therefore, the synthetic reporter line TCS::GFP was used to visualize cytokinin signaling during gynoecium and fruit development. Fluorescence was detected at medial regions of developing gynoecia, and, unexpectedly, at the valve margin in developing fruits, and was severely altered in mutants that lack or ectopically acquire valve margin identity. Comparison to developing gynoecia and fruits in a DR5rev::GFP line showed that the transcriptional responses to cytokinin and auxin are frequently present in complementary patterns. Moreover, cytokinin treatments in early gynoecia produced conspicuous changes, and treatment of valve margin mutant fruits restored this tissue. The results suggest that the phytohormone cytokinin is important in gynoecium and fruit patterning and morphogenesis, playing at least two roles: an early proliferation-inducing role at the medial tissues of the developing gynoecia, and a late role in fruit patterning and morphogenesis at the valve margin of developing fruits.
Collapse
Affiliation(s)
- Nayelli Marsch-Martínez
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, Guanajuato, Mexico.
| | | | | | | | | | | |
Collapse
|
16
|
Trapero A, Ahrazem O, Rubio-Moraga A, Jimeno ML, Gómez MD, Gómez-Gómez L. Characterization of a glucosyltransferase enzyme involved in the formation of kaempferol and quercetin sophorosides in Crocus sativus. PLANT PHYSIOLOGY 2012; 159:1335-54. [PMID: 22649274 PMCID: PMC3425182 DOI: 10.1104/pp.112.198069] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/29/2012] [Indexed: 05/17/2023]
Abstract
UGT707B1 is a new glucosyltransferase isolated from saffron (Crocus sativus) that localizes to the cytoplasm and the nucleus of stigma and tepal cells. UGT707B1 transcripts were detected in the stigma tissue of all the Crocus species analyzed, but expression analysis of UGT707B1 in tepals revealed its absence in certain species. The analysis of the glucosylated flavonoids present in Crocus tepals reveals the presence of two major flavonoid compounds in saffron: kaempferol-3-O-β-D-glucopyranosyl-(1-2)-β-D-glucopyranoside and quercetin-3-O-β-D-glucopyranosyl-(1-2)-β-D-glucopyranoside, both of which were absent from the tepals of those Crocus species that did not express UGT707B1. Transgenic Arabidopsis (Arabidopsis thaliana) plants constitutively expressing UGT707B1 under the control of the cauliflower mosaic virus 35S promoter have been constructed and their phenotype analyzed. The transgenic lines displayed a number of changes that resembled those described previously in lines where flavonoid levels had been altered. The plants showed hyponastic leaves, a reduced number of trichomes, thicker stems, and flowering delay. Levels of flavonoids measured in extracts of the transgenic plants showed changes in the composition of flavonols when compared with wild-type plants. The major differences were observed in the extracts from stems and flowers, with an increase in 3-sophoroside flavonol glucosides. Furthermore, a new compound not detected in ecotype Columbia wild-type plants was detected in all the tissues and identified as kaempferol-3-O-sophoroside-7-O-rhamnoside. These data reveal the involvement of UGT707B1 in the biosynthesis of flavonol-3-O-sophorosides and how significant changes in flavonoid homeostasis can be caused by the overproduction of a flavonoid-conjugating enzyme.
Collapse
|
17
|
Reymond MC, Brunoud G, Chauvet A, Martínez-Garcia JF, Martin-Magniette ML, Monéger F, Scutt CP. A light-regulated genetic module was recruited to carpel development in Arabidopsis following a structural change to SPATULA. THE PLANT CELL 2012; 24:2812-25. [PMID: 22851763 PMCID: PMC3426116 DOI: 10.1105/tpc.112.097915] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A key innovation of flowering plants is the female reproductive organ, the carpel. Here, we show that a mechanism that regulates carpel margin development in the model flowering plant Arabidopsis thaliana was recruited from light-regulated processes. This recruitment followed the loss from the basic helix-loop-helix transcription factor SPATULA (SPT) of a domain previously responsible for its negative regulation by phytochrome. We propose that the loss of this domain was a prerequisite for the light-independent expression in female reproductive tissues of a genetic module that also promotes shade avoidance responses in vegetative organs. Striking evidence for this proposition is provided by the restoration of wild-type carpel development to spt mutants by low red/far-red light ratios, simulating vegetation shade, which we show to occur via phytochrome B, PHYTOCHROME INTERACTING FACTOR4 (PIF4), and PIF5. Our data illustrate the potential of modular evolutionary events to generate rapid morphological change and thereby provide a molecular basis for neo-Darwinian theories that describe this nongradualist phenomenon. Furthermore, the effects shown here of light quality perception on carpel development lead us to speculate on the potential role of light-regulated mechanisms in plant organs that, like the carpel, form within the shade of surrounding tissues.
Collapse
Affiliation(s)
- Mathieu C. Reymond
- Laboratoire de Reproduction et Développement des Plantes (Unité Mixte de Recherche 5667, Centre National de la Recherche Scientifique–Institut National de la Recherche Agronomique–Université de Lyon), Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
| | - Géraldine Brunoud
- Laboratoire de Reproduction et Développement des Plantes (Unité Mixte de Recherche 5667, Centre National de la Recherche Scientifique–Institut National de la Recherche Agronomique–Université de Lyon), Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
| | - Aurélie Chauvet
- Laboratoire de Reproduction et Développement des Plantes (Unité Mixte de Recherche 5667, Centre National de la Recherche Scientifique–Institut National de la Recherche Agronomique–Université de Lyon), Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
| | - Jaime F. Martínez-Garcia
- Institució Catalana de Recerca i Estudis Avançats and Center for Research in Agricultural Genomics (Consejo Superior de Investigaciones Cientificas–Institut de Recerca i Tecnologia Agroalimentàries–Universitat Autònoma de Barcelona–Universitat de Barcelona), 08139-Bellaterra, Barcelona, Spain
| | - Marie-Laure Martin-Magniette
- Unité de Recherche en Génomique Végétale (Unité Mixte de Recherche 1165, Institut National de la Recherche Agronomique–Université Evry Val d'Essonne), 91057 Evry cedex, France
- Mathématiques et Informatique Appliquées (Unité Mixte de Recherche 518, Institut National de la Recherche Agronomique–AgroParisTech), 75005 Paris, France
| | - Françoise Monéger
- Laboratoire de Reproduction et Développement des Plantes (Unité Mixte de Recherche 5667, Centre National de la Recherche Scientifique–Institut National de la Recherche Agronomique–Université de Lyon), Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
| | - Charles P. Scutt
- Laboratoire de Reproduction et Développement des Plantes (Unité Mixte de Recherche 5667, Centre National de la Recherche Scientifique–Institut National de la Recherche Agronomique–Université de Lyon), Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
- Address correspondence to
| |
Collapse
|
18
|
Girin T, Paicu T, Stephenson P, Fuentes S, Körner E, O’Brien M, Sorefan K, Wood TA, Balanzá V, Ferrándiz C, Smyth DR, Østergaard L. INDEHISCENT and SPATULA interact to specify carpel and valve margin tissue and thus promote seed dispersal in Arabidopsis. THE PLANT CELL 2011; 23:3641-53. [PMID: 21990939 PMCID: PMC3229140 DOI: 10.1105/tpc.111.090944] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 09/16/2011] [Accepted: 09/23/2011] [Indexed: 05/18/2023]
Abstract
Structural organization of organs in multicellular organisms occurs through intricate patterning mechanisms that often involve complex interactions between transcription factors in regulatory networks. For example, INDEHISCENT (IND), a basic helix-loop-helix (bHLH) transcription factor, specifies formation of the narrow stripes of valve margin tissue, where Arabidopsis thaliana fruits open on maturity. Another bHLH transcription factor, SPATULA (SPT), is required for reproductive tissue development from carpel margins in the Arabidopsis gynoecium before fertilization. Previous studies have therefore assigned the function of SPT to early gynoecium stages and IND to later fruit stages of reproductive development. Here we report that these two transcription factors interact genetically and via protein-protein contact to mediate both gynoecium development and fruit opening. We show that IND directly and positively regulates the expression of SPT, and that spt mutants have partial defects in valve margin formation. Careful analysis of ind mutant gynoecia revealed slight defects in apical tissue formation, and combining mutations in IND and SPT dramatically enhanced both single-mutant phenotypes. Our data show that SPT and IND at least partially mediate their joint functions in gynoecium and fruit development by controlling auxin distribution and suggest that this occurs through cooperative binding to regulatory sequences in downstream target genes.
Collapse
Affiliation(s)
- Thomas Girin
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Teodora Paicu
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Pauline Stephenson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Sara Fuentes
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Evelyn Körner
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Martin O’Brien
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Karim Sorefan
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Thomas A. Wood
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Vicente Balanzá
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - David R. Smyth
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
- Address correspondence to
| |
Collapse
|
19
|
Krizek BA. Auxin regulation of Arabidopsis flower development involves members of the AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) family. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3311-9. [PMID: 21511900 DOI: 10.1093/jxb/err127] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Auxin is an important regulator of many aspects of plant growth and development. During reproductive development, auxin specifies the site of flower initiation and subsequently regulates organ growth and patterning as well as later events that determine reproductive success. Underlying auxin action in plant tissues is its uneven distribution, resulting in groups of cells with high auxin levels (auxin maxima) or graded distributions of the hormone (auxin gradients). Dynamic auxin distribution within the periphery of the inflorescence meristems specifies the site of floral meristem initiation, while auxin maxima present at the tips of developing floral organ primordia probably mediate organ growth and patterning. The molecular means by which auxin accumulation patterns are converted into developmental outputs in flowers is not well understood. Members of the AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) transcription factor family are important developmental regulators in both roots and shoots. In roots, the expression of two AIL/PLT genes is regulated by auxin and these genes feed back to regulate auxin distribution. Here, several aspects of flower development involving both auxin and AIL/PLT activity are described, and evidence linking AIL/PLT function with auxin distribution in reproductive tissues is presented.
Collapse
Affiliation(s)
- Beth A Krizek
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
20
|
Foreman J, White JN, Graham IA, Halliday KJ, Josse EM. Shedding light on flower development: phytochrome B regulates gynoecium formation in association with the transcription factor SPATULA. PLANT SIGNALING & BEHAVIOR 2011; 6:471-6. [PMID: 21364315 PMCID: PMC3142372 DOI: 10.4161/psb.6.4.14496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 12/13/2010] [Indexed: 05/08/2023]
Abstract
Accurate development of the gynoecium, the female reproductive organ, is necessary to achieve efficient fertilization. In Arabidopsis, the correct patterning of the apical-basal axis of the gynoecium requires the establishment of a morphogenic gradient of auxin. This allows the production of specialized tissues, whose roles consist of attracting pollen, allowing pollen tube growth and protecting the ovules within the ovaries. Mutations in the bHLH transcription factor SPATULA (SPT) are known to impair the development of the apical tissues of the gynoecium. Here, we show that the spt phenotype is rescued by the removal of phytochrome B, and discuss how light signaling may control flower development.
Collapse
Affiliation(s)
- Julia Foreman
- Institute of Molecular Plant Sciences; School of Biological Sciences; University of Edinburgh; Edinburgh, Scotland, UK
| | - James N White
- Institute of Molecular Plant Sciences; School of Biological Sciences; University of Edinburgh; Edinburgh, Scotland, UK
| | - Ian A Graham
- Centre for Novel Agricultural Products; Department of Biology; University of York; York, UK
| | - Karen J Halliday
- Institute of Molecular Plant Sciences; School of Biological Sciences; University of Edinburgh; Edinburgh, Scotland, UK
| | - Eve-Marie Josse
- Institute of Molecular Plant Sciences; School of Biological Sciences; University of Edinburgh; Edinburgh, Scotland, UK
| |
Collapse
|
21
|
Ferrándiz C, Fourquin C, Prunet N, Scutt CP, Sundberg E, Trehin C, Vialette-Guiraud AC. Carpel Development. ADVANCES IN BOTANICAL RESEARCH 2010. [PMID: 0 DOI: 10.1016/b978-0-12-380868-4.00001-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
|