1
|
Dobani S, Kirsty Pourshahidi L, Ternan NG, McDougall GJ, Pereira-Caro G, Bresciani L, Mena P, Almutairi TM, Crozier A, Tuohy KM, Del Rio D, Gill CIR. A review on the effects of flavan-3-ols, their metabolites, and their dietary sources on gut barrier integrity. Food Funct 2025; 16:815-830. [PMID: 39807528 DOI: 10.1039/d4fo04721d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Impairment of gut barrier integrity is associated with the pathogenesis of gastrointestinal diseases, including inflammatory bowel disease, colorectal cancer, and coeliac disease. While many aspects of diet have been linked to improved barrier function, (poly)phenols, a broad group of bioactive phytochemicals, are of potential interest. The (poly)phenolic sub-class, flavan-3-ols, have been investigated in some detail owing to their abundance in commonly consumed foods, including grapes, tea, apples, cocoa, berries, and nuts. This review summarises studies on the effects of flavan-3-ols, their microbiome-mediated metabolites, and food sources of these compounds, on gut barrier structure. Extensive evidence demonstrates that flavan-3-ol rich foods, individual flavan-3-ols (e.g., (epi)catechin, epi(gallo)catechin-3-O-gallate, and pro(antho)cyanidins), and their related microbiota-mediated metabolites, could be effective in protecting and restoring the integrity of the gut barrier. In this context, various endpoints are assessed, including transepithelial electrical resistance of the epithelial layer and expression of tight junction proteins and mucins, in ex vivo, in vitro, and animal models. The differences in bioactivity reported for barrier integrity are structure-function dependent, related to the (poly)phenolic source or the tested compound, as well as their dose, exposure time, and presence or absence of a stressor in the experimental system. Overall, these results suggest that flavan-3-ols and related compounds could help to maintain, protect, and restore gut barrier integrity, indicating that they might contribute to the beneficial properties associated with the intake of their dietary sources. However, rigorous and robustly designed human intervention studies are needed to confirm these experimental observations.
Collapse
Affiliation(s)
- Sara Dobani
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| | - L Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| | - Nigel G Ternan
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| | - Gordon J McDougall
- Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee, UK
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality, IFAPA-Alameda Del Obispo, Córdoba, Spain
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
- Microbiome Research Hub, Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Alan Crozier
- Department of Chemistry, King Saud University Riyadh, Saudi Arabia
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Kieran M Tuohy
- School of Food Science & Nutrition, University of Leeds, Leeds, UK
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
- Microbiome Research Hub, Department of Food and Drug, University of Parma, Parma, Italy
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| |
Collapse
|
2
|
Doifode T, Maziero MP, Quevedo J, Barichello T. Biomarkers Unveiling the Interplay of Mind, Nervous System, and Immunity. Methods Mol Biol 2025; 2868:73-90. [PMID: 39546226 DOI: 10.1007/978-1-0716-4200-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The field of psychoneuroimmunology has significantly expanded in the last few decades and so has our understanding of the bidirectional communications between the immune and central nervous systems (CNS). There is a preponderance of evidence supporting the fact that immunological pathways and neuroinflammation are involved in the pathophysiology of multiple neurological and mental health conditions. In this chapter, we have explored various neuroimmunological biomarkers involved in these pathways, responsible for developing and perpetuating different neuropsychiatric disorders. This chapter will examine inflammatory biomarkers and those associated with intestinal homeostasis, blood-brain barrier (BBB) permeability, glial cells, and neuronal injury. A range of tests has been developed to evaluate these markers, and we will also explore the existing methods currently employed for these techniques. Further studies of these inflammatory and neurological markers are needed to support their utility as biomarkers for diagnosis and prognosis and to inform treatment strategies for various neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tejaswini Doifode
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Maria Paula Maziero
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Joao Quevedo
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Tatiana Barichello
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
3
|
Xue X, Zhao Z, Zhao LB, Gao YH, Xu WH, Cai WM, Chen SH, Li TJ, Nie TY, Rui D, Ma Y, Qian XS, Lin JL, Liu L. Gut microbiota changes in healthy individuals, obstructive sleep apnea patients, and patients treated using continuous positive airway pressure: a whole-genome metagenomic analysis. Sleep Breath 2024; 29:11. [PMID: 39589660 DOI: 10.1007/s11325-024-03185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE This study investigated variations in gut microbiota among severe obstructive sleep apnea (OSA) patients and changes in gut microbiota after continuous positive airway pressure (CPAP) treatment. METHOD From November 2020 to August 2021, laboratory-based polysomnography (PSG) was used to measure sleep parameters in healthy controls, severe OSA patients, and severe OSA patients treated with CPAP for three months. A fully automated biochemical analyzer was used to evaluate routine blood tests and biochemical indicators. Whole-genome metagenomic analysis was used to determine the microbial composition of gut samples from all participants. The relationships between gut microbiota and hypertension were examined using correlation analysis. RESULT The relative abundances of Bacteroides, Firmicutes, and Parabacteroides were significantly lower at the species level. Enterobacterales and Turicibacter were significantly higher in participants with severe OSA than healthy controls. Negative correlations were identified between Bacteroides coprocola and systolic blood pressure (SBP) (r = - 0.710, P = 0.003) and diastolic blood pressure (DBP) (r = - 0.615, P = 0.015). Conversely, a positive correlation was found between Escherichia coli and SBP (r = 0.568, P = 0.027). CONCLUSION The metabolic pathways and gut microbiota differed significantly between the control group and individuals with severe OSA. Additionally, CPAP therapy substantially changed the metabolic pathways and gut microbial composition among patients diagnosed with severe OSA. Correlation analysis further revealed a strong association between Escherichia coli, Bacteroides coprocola, and blood pressure levels.
Collapse
Affiliation(s)
- Xin Xue
- Department of Pulmonary and Critical Care Medicine of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zhe Zhao
- Department of Vasculocardiology, Second Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Li-Bo Zhao
- Department of Vasculocardiology, Second Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Ying-Hui Gao
- Department of Sleep Medicine, Peking University International Hospital, Beijing, 102206, China
| | - Wei-Hao Xu
- Department of Geriatrics, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Wei-Meng Cai
- Department of Pulmonary and Critical Care Medicine, Second Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Shao-Hua Chen
- Department of Pulmonary and Critical Care Medicine, Second Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Tian-Jiao Li
- Medical College, Yan' an University, Yan'an, China
| | - Ting-Yu Nie
- Medical College, Yan' an University, Yan'an, China
| | - Dong Rui
- Department of Pulmonary and Critical Care Medicine, Second Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Yao Ma
- Department of Pulmonary and Critical Care Medicine, Second Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Xiao-Shun Qian
- Department of Pulmonary and Critical Care Medicine of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jun-Ling Lin
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China.
| | - Lin Liu
- Department of Pulmonary and Critical Care Medicine of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
4
|
Mahran A, Hosni AM, Farag NG, Elkhawaga AA, Mageed AAA. Role of Claudin- 3 as a biomarker of gut-skin axis integrity in patients with psoriasis. Arch Dermatol Res 2024; 316:476. [PMID: 39023797 DOI: 10.1007/s00403-024-03071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 07/20/2024]
Abstract
Increased intestinal permeability and gut dysbiosis are important factors in the pathophysiology of psoriasis and its associated conditions. Claudin-3 is a protein that is found in tight junctions and may be used to assess the integrity of the gut barrier. The aim of this study was to investigate serum concentration of Claudin- 3 (CLDN3) in patients with psoriasis. Exploring its possible relations with patients' demographic, clinical and laboratory findings was another objective. Fifty psoriatic patients and thirty-five age- and sex-matched healthy volunteers served as the study's control group in this case-control, hospital-based research. The amount of serum CLDN3 was determined by means of an enzyme-linked immunosorbent test (ELISA). Concentration of serum CLDN3 was found to be significantly higher in patients with psoriasis. (p = 0.002). There was no statistically significant correlation between CLDN3 and patient's clinical & laboratory variables. We demonstrated that gut permeability is dysfunctional in patients with psoriasis as indicated by reduction of serum CLDN3. Further investigations are needed to determine whether modulation of gut barrier may represent a new therapeutic approach for psoriasis.
Collapse
Affiliation(s)
- Ayman Mahran
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amal Mohammed Hosni
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Nesma G Farag
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amal A Elkhawaga
- Department of Medical Microbiology and immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed A Abdel Mageed
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Liu J, MacNaughtan J, Kerbert AJC, Portlock T, Martínez Gonzalez J, Jin Y, Clasen F, Habtesion A, Ji H, Jin Q, Phillips A, De Chiara F, Ingavle G, Jimenez C, Zaccherini G, Husi K, Rodriguez Gandia MA, Cordero P, Soeda J, McConaghy L, Oben J, Church K, Li JV, Wu H, Jalan A, Gines P, Solà E, Eaton S, Morgan C, Kowalski M, Green D, Gander A, Edwards LA, Cox IJ, Cortez-Pinto H, Avery T, Wiest R, Durand F, Caraceni P, Elosua R, Vila J, Pavesi M, Arroyo V, Davies N, Mookerjee RP, Vargas V, Sandeman S, Mehta G, Shoaie S, Marchesi J, Albillos A, Andreola F, Jalan R. Clinical, experimental and pathophysiological effects of Yaq-001: a non-absorbable, gut-restricted adsorbent in models and patients with cirrhosis. Gut 2024; 73:1183-1198. [PMID: 38621924 DOI: 10.1136/gutjnl-2023-330699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 03/17/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVE Targeting bacterial translocation in cirrhosis is limited to antibiotics with risk of antimicrobial resistance. This study explored the therapeutic potential of a non-absorbable, gut-restricted, engineered carbon bead adsorbent, Yaq-001 in models of cirrhosis and acute-on-chronic liver failure (ACLF) and, its safety and tolerability in a clinical trial in cirrhosis. DESIGN Performance of Yaq-001 was evaluated in vitro. Two-rat models of cirrhosis and ACLF, (4 weeks, bile duct ligation with or without lipopolysaccharide), receiving Yaq-001 for 2 weeks; and two-mouse models of cirrhosis (6-week and 12-week carbon tetrachloride (CCl4)) receiving Yaq-001 for 6 weeks were studied. Organ and immune function, gut permeability, transcriptomics, microbiome composition and metabolomics were analysed. The effect of faecal water on gut permeability from animal models was evaluated on intestinal organoids. A multicentre, double-blind, randomised, placebo-controlled clinical trial in 28 patients with cirrhosis, administered 4 gr/day Yaq-001 for 3 months was performed. RESULTS Yaq-001 exhibited rapid adsorption kinetics for endotoxin. In vivo, Yaq-001 reduced liver injury, progression of fibrosis, portal hypertension, renal dysfunction and mortality of ACLF animals significantly. Significant impact on severity of endotoxaemia, hyperammonaemia, liver cell death, systemic inflammation and organ transcriptomics with variable modulation of inflammation, cell death and senescence in the liver, kidneys, brain and colon was observed. Yaq-001 reduced gut permeability in the organoids and impacted positively on the microbiome composition and metabolism. Yaq-001 regulated as a device met its primary endpoint of safety and tolerability in the clinical trial. CONCLUSIONS This study provides strong preclinical rationale and safety in patients with cirrhosis to allow clinical translation. TRIAL REGISTRATION NUMBER NCT03202498.
Collapse
Affiliation(s)
- Jinxia Liu
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jane MacNaughtan
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
| | - Annarein J C Kerbert
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
| | - Theo Portlock
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Javier Martínez Gonzalez
- Hospital Ramón y Cajal, IRYCIS, CIBEREHD, Universidad de Alcalá, Madrid, Spain
- Liver Unit, Hospital Vall d'Hebron, Universitat Autónoma, CIBERehd, Barcelona, Spain
| | - Yi Jin
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Frederick Clasen
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Abeba Habtesion
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
| | - Huoyan Ji
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Qin Jin
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Alexandra Phillips
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
| | - Francesco De Chiara
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
| | - Ganesh Ingavle
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton, UK
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Pune, India
| | - Cesar Jimenez
- Liver Unit, Hospital Vall d'Hebron, Universitat Autónoma, CIBERehd, Barcelona, Spain
| | - Giacomo Zaccherini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Unit of Semeiotics, Liver and Alcohol-related Diseases, University of Bologna Hospital of Bologna Sant'Orsola-Malpighi Polyclinic, Bologna, Italy
| | - Katherine Husi
- Department of Gastroenterology, Inselspital University Hospital Bern, Bern, Switzerland
| | | | - Paul Cordero
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Pune, India
| | - Junpei Soeda
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
| | - Lynda McConaghy
- Yaqrit Discovery Limited. The Elms Courtyard, Bromesberrow, Ledbury, UK
| | - Jude Oben
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
| | - Karen Church
- Yaqrit Discovery Limited. The Elms Courtyard, Bromesberrow, Ledbury, UK
| | - Jia V Li
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Haifeng Wu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | | | - Pere Gines
- Liver Unit, Hospital Clinic of Barcelona, IDIBAPS, Faculty of Medicine and Health sciences, University of Barcelona, Barcelona, Spain
| | - Elsa Solà
- Liver Unit, Hospital Clinic of Barcelona, IDIBAPS, Faculty of Medicine and Health sciences, University of Barcelona, Barcelona, Spain
| | - Simon Eaton
- Institute of Child Health, University College London, London, UK
| | - Carrie Morgan
- Yaqrit Discovery Limited. The Elms Courtyard, Bromesberrow, Ledbury, UK
| | - Michal Kowalski
- Yaqrit Discovery Limited. The Elms Courtyard, Bromesberrow, Ledbury, UK
| | - Daniel Green
- Yaqrit Discovery Limited. The Elms Courtyard, Bromesberrow, Ledbury, UK
| | - Amir Gander
- Tissue Access for Patient Benefit, University College London, London, UK
| | - Lindsey A Edwards
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, Guy's Tower, Guy's Hospital, King's College London, London, UK
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - I Jane Cox
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Helena Cortez-Pinto
- Clínica Universitária de Gastrenterologia, Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Reiner Wiest
- UVCM Gastroenterology, University Bern, Bern, Switzerland
| | - Francois Durand
- Hepatology and Liver Intensive Care, Hospital Beaujon, Clichy, University paris Cité, Paris, France
| | - Paolo Caraceni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Unit of Semeiotics, Liver and Alcohol Related Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | | | - Marco Pavesi
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain
| | - Vicente Arroyo
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain
| | - Nathan Davies
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
| | - Rajeshwar P Mookerjee
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
| | - Victor Vargas
- Liver Unit, Hospital Vall d'Hebron, Universitat Autónoma, CIBERehd, Barcelona, Spain
| | - Susan Sandeman
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton, UK
| | - Gautam Mehta
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Julian Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, St Mary's Hospital, Imperial College London, London, UK
| | - Agustín Albillos
- Department of Gastroenterology and Hepatology, Hospital Universitario Ramon y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Fausto Andreola
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
| | - Rajiv Jalan
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain
| |
Collapse
|
6
|
Lawson CM, Jones C, Herman M, Kim C, Mannino E, Omer E, Venegas C. Does Ileus Represent the Forgotten End Organ Failure in Critical Illness? Curr Gastroenterol Rep 2024; 26:166-171. [PMID: 38558135 DOI: 10.1007/s11894-023-00910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 04/04/2024]
Abstract
PURPOSE OF REVIEW This review evaluates the current literature on ileus, impaired gastrointestinal transit (IGT), and acute gastrointestinal injury (AGI) and its impact on multiple organ dysfunction syndrome. RECENT FINDINGS Ileus is often under recognized in critically ill patients and is associated with significant morbidity and is potentially a marker of disease severity as seen in other organs like kidneys (ATN).
Collapse
Affiliation(s)
- Christy M Lawson
- Department of Trauma Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| | - Chris Jones
- Department of Internal Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Michael Herman
- Department of Gastroenterology, Borland Groover Clinic, Fleming Island, FL, USA
| | - Cecilia Kim
- Department of Trauma Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Elizabeth Mannino
- Department of Trauma Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Endashaw Omer
- Department of Gastroenterology, University of Louisville, Louisville, KY, USA
| | - Carlas Venegas
- Department of Neurology, Mayo Clinc, Jacksonville, FL, USA
| |
Collapse
|
7
|
Ní Chonnacháin C, Feeney EL, Gollogly C, Shields DC, Loscher CE, Cotter PD, Noronha N, Stack R, Doherty GA, Gibney ER. The effects of dairy on the gut microbiome and symptoms in gastrointestinal disease cohorts: a systematic review. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2024; 5:e5. [PMID: 39290657 PMCID: PMC11406376 DOI: 10.1017/gmb.2024.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/13/2024] [Accepted: 04/10/2024] [Indexed: 09/19/2024]
Abstract
Bovine dairy foods provide several essential nutrients. Fermented bovine dairy foods contain additional compounds, increasing their potential to benefit gastrointestinal health. This review explores the effects of dairy consumption on the gut microbiome and symptoms in gastrointestinal disease cohorts. Human subjects with common gastrointestinal diseases (functional gastrointestinal disorders and inflammatory bowel disease) or associated symptoms, and equivalent animal models were included. A systematic literature search was performed using PubMed, Embase and Web of Science. The search yielded 3014 studies in total, with 26 meeting inclusion criteria, including 15 human studies (1550 participants) and 11 animal studies (627 subjects). All test foods were fermented bovine dairy products, primarily fermented milk and yogurt. Six studies reported increases in gastrointestinal bacterial alpha diversity, with nine studies reporting increases in relative Lactobacillus and Bifidobacterium abundance. Six studies reported increases in beneficial short-chain fatty acids, while three reported decreases. Gastrointestinal symptoms, specifically gut comfort and defecation frequency, improved in 14 human studies. Five animal studies demonstrated reduced colonic damage and improved healing. This review shows fermented bovine dairy consumption may improve gut microbial characteristics and gastrointestinal symptoms in gastrointestinal disease cohorts. Further human intervention studies are needed, expanding test foods and capturing non-self-reported gastrointestinal measures.
Collapse
Affiliation(s)
- Clíona Ní Chonnacháin
- Food for Health Ireland, University College Dublin, Dublin, Ireland
- Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Emma L Feeney
- Food for Health Ireland, University College Dublin, Dublin, Ireland
- Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Clare Gollogly
- Food for Health Ireland, University College Dublin, Dublin, Ireland
- Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Denis C Shields
- Food for Health Ireland, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Christine E Loscher
- Food for Health Ireland, University College Dublin, Dublin, Ireland
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Paul D Cotter
- Food for Health Ireland, University College Dublin, Dublin, Ireland
- Department of Food Biosciences, Teagasc Food Research Centre, APC Microbiome Ireland and VistaMilk, Dublin, Ireland
| | - Nessa Noronha
- Food for Health Ireland, University College Dublin, Dublin, Ireland
- Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Roisin Stack
- Food for Health Ireland, University College Dublin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Centre for Colorectal Disease, St Vincent's University Hospital, Dublin, Ireland
| | - Glen A Doherty
- Food for Health Ireland, University College Dublin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Centre for Colorectal Disease, St Vincent's University Hospital, Dublin, Ireland
| | - Eileen R Gibney
- Food for Health Ireland, University College Dublin, Dublin, Ireland
- Institute of Food and Health, University College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Roca Rubio MF, Folkesson M, Kremp C, Evertsson N, Repsilber D, Eriksson U, Ganda Mall J, Kadi F, Brummer RJ, König J. Associations between various markers of intestinal barrier and immune function after a high-intensity exercise challenge. Physiol Rep 2024; 12:e16087. [PMID: 38783385 PMCID: PMC11116166 DOI: 10.14814/phy2.16087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Strenuous exercise can result in disruption of intestinal barrier function and occurrence of gastrointestinal symptoms. The aim of this exploratory study was to elucidate systemic effects of increased intestinal permeability after high-intensity exercise. Forty-one endurance-trained subjects performed a 60-min treadmill run at 80% VO2max. Small intestinal permeability was measured as urinary excretion ratio of lactulose/rhamnose (L/R). Blood, saliva and feces were analyzed for gut barrier and immune-related biomarkers. The exercise challenge increased several markers of intestinal barrier disruption, immune function and oxidative stress. We found a negative correlation between L/R ratio and uric acid (r = -0.480), as well as a positive correlation between the L/R ratio and fecal chromogranin A in male participants (r = 0.555). No significant correlations were found between any of the markers and gastrointestinal symptoms, however, perceived exertion correlated with the combination of IL-6, IL-10 and salivary cortisol (r = 0.492). The lack of correlation between intestinal permeability and gastrointestinal symptoms could be due to minor symptoms experienced in lab settings compared to real-life competitions. The correlation between L/R ratio and uric acid might imply a barrier-protective effect of uric acid, and inflammatory processes due to strenuous exercise seem to play an important role regarding physical exhaustion.
Collapse
Affiliation(s)
- Maria Fernanda Roca Rubio
- Nutrition‐Gut‐Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Mattias Folkesson
- Division of Sports Sciences, School of Health Sciences, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Carolin Kremp
- Nutrition‐Gut‐Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Niklas Evertsson
- Nutrition‐Gut‐Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Dirk Repsilber
- Nutrition‐Gut‐Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Ulrika Eriksson
- Man‐Technology‐Environment (MTM) Research Centre, School of Science and TechnologyÖrebro UniversityÖrebroSweden
| | - John‐Peter Ganda Mall
- Nutrition‐Gut‐Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Fawzi Kadi
- Division of Sports Sciences, School of Health Sciences, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Robert J. Brummer
- Nutrition‐Gut‐Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Julia König
- Nutrition‐Gut‐Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| |
Collapse
|
9
|
Hendriks S, van Leeuwen BL, De Haan JJ. ASO Author Reflections: Loss of Intestinal Integrity During Oncological Surgery and Postoperative Complications: A Complex Relationship. Ann Surg Oncol 2024; 31:2326-2327. [PMID: 38253947 PMCID: PMC10908632 DOI: 10.1245/s10434-024-14980-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Affiliation(s)
- Sharon Hendriks
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Barbara L van Leeuwen
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jacco J De Haan
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Pal S, Morgan X, Dar HY, Gacasan CA, Patil S, Stoica A, Hu YJ, Weitzmann MN, Jones RM, Pacifici R. Gender-affirming hormone therapy preserves skeletal maturation in young mice via the gut microbiome. J Clin Invest 2024; 134:e175410. [PMID: 38530358 PMCID: PMC11093603 DOI: 10.1172/jci175410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/20/2024] [Indexed: 03/27/2024] Open
Abstract
Gender-affirming hormone therapy (GAHT) is often prescribed to transgender (TG) adolescents to alleviate gender dysphoria, but the effect of GAHT on the growing skeleton is unclear. We found GAHT to improve trabecular bone structure via increased bone formation in young male mice and not to affect trabecular structure in female mice. GAHT modified gut microbiome composition in both male and female mice. However, fecal microbiota transfers (FMTs) revealed that GAHT-shaped gut microbiome was a communicable regulator of bone structure and turnover in male, but not in female mice. Mediation analysis identified 2 species of Bacteroides as significant contributors to the skeletal effects of GAHT in male mice, with Bacteroides supplementation phenocopying the effects of GAHT on bone. Bacteroides have the capacity to expand Treg populations in the gut. Accordingly, GAHT expanded intestinal Tregs and stimulated their migration to the bone marrow (BM) in male but not in female mice. Attesting to the functional relevance of Tregs, pharmacological blockade of Treg expansion prevented GAHT-induced bone anabolism. In summary, in male mice GAHT stimulated bone formation and improved trabecular structure by promoting Treg expansion via a microbiome-mediated effect, while in female mice, GAHT neither improved nor impaired trabecular structure.
Collapse
Affiliation(s)
- Subhashis Pal
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Xochitl Morgan
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Hamid Y. Dar
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Camilo Anthony Gacasan
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics and
| | - Sanchiti Patil
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Andreea Stoica
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA
| | - M. Neale Weitzmann
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Atlanta VA Healthcare System, Atlanta, Georgia, USA
| | - Rheinallt M. Jones
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics and
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Liu Q, Wang Z, Sun S, Nemes J, Brenner LA, Hoisington A, Skotak M, LaValle CR, Ge Y, Carr W, Haghighi F. Association of Blast Exposure in Military Breaching with Intestinal Permeability Blood Biomarkers Associated with Leaky Gut. Int J Mol Sci 2024; 25:3549. [PMID: 38542520 PMCID: PMC10971443 DOI: 10.3390/ijms25063549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Injuries and subclinical effects from exposure to blasts are of significant concern in military operational settings, including tactical training, and are associated with self-reported concussion-like symptomology and physiological changes such as increased intestinal permeability (IP), which was investigated in this study. Time-series gene expression and IP biomarker data were generated from "breachers" exposed to controlled, low-level explosive blast during training. Samples from 30 male participants at pre-, post-, and follow-up blast exposure the next day were assayed via RNA-seq and ELISA. A battery of symptom data was also collected at each of these time points that acutely showed elevated symptom reporting related to headache, concentration, dizziness, and taking longer to think, dissipating ~16 h following blast exposure. Evidence for bacterial translocation into circulation following blast exposure was detected by significant stepwise increase in microbial diversity (measured via alpha-diversity p = 0.049). Alterations in levels of IP protein biomarkers (i.e., Zonulin, LBP, Claudin-3, I-FABP) assessed in a subset of these participants (n = 23) further evidenced blast exposure associates with IP. The observed symptom profile was consistent with mild traumatic brain injury and was further associated with changes in bacterial translocation and intestinal permeability, suggesting that IP may be linked to a decrease in cognitive functioning. These preliminary findings show for the first time within real-world military operational settings that exposures to blast can contribute to IP.
Collapse
Affiliation(s)
- Qingkun Liu
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (Q.L.); (Z.W.); (S.S.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Zhaoyu Wang
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (Q.L.); (Z.W.); (S.S.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Shengnan Sun
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (Q.L.); (Z.W.); (S.S.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Jeffrey Nemes
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (C.R.L.); (W.C.)
| | - Lisa A. Brenner
- Rocky Mountain Mental Illness, Research, Education and Clinical Care, Department of Veterans Affairs, Aurora, CO 80045, USA; (L.A.B.); (A.H.)
- Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Andrew Hoisington
- Rocky Mountain Mental Illness, Research, Education and Clinical Care, Department of Veterans Affairs, Aurora, CO 80045, USA; (L.A.B.); (A.H.)
- Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433, USA
| | - Maciej Skotak
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (C.R.L.); (W.C.)
| | - Christina R. LaValle
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (C.R.L.); (W.C.)
| | - Yongchao Ge
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Walter Carr
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (C.R.L.); (W.C.)
| | - Fatemeh Haghighi
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (Q.L.); (Z.W.); (S.S.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
12
|
Wang B, Liu S, Lin L, Xu W, Gong Z, Xiao W. The protective effect of L-theanine on the intestinal barrier in heat-stressed organisms. Food Funct 2024; 15:3036-3049. [PMID: 38414417 DOI: 10.1039/d3fo04459a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Heat stress caused by heatwaves, extreme temperatures, and other weather can damage the intestinal barrier of organisms. L-Theanine (LTA) attenuates heat stress-induced oxidative stress, inflammatory responses, and impaired immune function, but its protective effect on the intestinal barrier of heat-stressed organisms is unclear. In this study, low (100 mg kg-1 d-1), medium (200 mg kg-1 d-1), and high (400 mg kg-1 d-1) dosages of LTA were used in the gavage of C57BL/6J male mice that were experimented on for 50 d. These mice were subjected to heat stress for 2 h d-1 at 40 ± 1 °C and 60 ± 5% RH in the last 7 d. LTA attenuated the heat stress-induced decreases in body mass and feed intake, and the destruction of intestinal villi and crypt depth; reduced the serum levels of FITC-dextran and D-LA, as well as the DAO activity; and upregulated the colonic tissues of Occludin, Claudin-1, and ZO-1 mRNA and occludin protein expression. The number of goblet cells in the colon tissue of heat-stressed organisms increased in the presence of LTA, and the expression levels of Muc2, Muc4 mRNA, and Muc2 protein were upregulated. LTA increased the abundance of Bifidobacterium and Turicibacter, and decreased the abundance of Enterorhabdus and Desulfovibrio in the intestinal tract of heat-stressed organisms and restored gut microbiota homeostasis. LTA promoted the secretion of IL-4, IL-10, and sIgA and inhibited the secretion of TNF-α and IFN-γ in the colon of heat-stressed organisms. The expressions of Hsf1, Hsp70, Hsph1, TLR4, P38 MAPK, p-P65 NF-κB, MLCK mRNA, and proteins were downregulated by LTA in the colon of heat-stressed organisms. These results suggest that LTA protects the intestinal barrier in heat-stressed organisms by modulating multiple molecular pathways. Therefore, this study provides evidence on how tea-containing LTA treatments could be used to prevent and relieve intestinal problems related to heat stress.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Sha Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Ling Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Wei Xu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Zhihua Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
13
|
Wang K, Ruiz-González A, Räisänen SE, Ouellet V, Boucher A, Rico DE, Niu M. Dietary supplementation of vitamin D 3 and calcium partially recover the compromised time budget and circadian rhythm of lying behavior in lactating cows under heat stress. J Dairy Sci 2024; 107:1707-1718. [PMID: 37863290 DOI: 10.3168/jds.2023-23589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/28/2023] [Indexed: 10/22/2023]
Abstract
Heat stress (HS) impedes cattle behavior and performance and is an animal comfort and welfare issue. The objective of this study was to characterize the time budget and circadian rhythm of lying behavior in dairy cows during HS and to assess the effect of dietary supplementation of vitamin D3 and Ca. Twelve multiparous Holstein cows (42.2 ± 5.6 kg milk/d; 83 ± 27 d in milk) housed in tiestalls were used in a split-plot design with the concentration of dietary vitamin E and Se as main plots (LESe: 11.1 IU/kg and 0.55 mg/kg, and HESe: 223 IU/kg and 1.8 mg/kg, respectively). Within each plot cows were randomly assigned to (1) HS with low concentrations of vitamin D3 and Ca (HS, 1,012 IU/kg and 0.73%, respectively), (2) HS with high concentrations of vitamin D3 and Ca (HS+D3/Ca; 3,764 IU/kg and 0.97%, respectively), or (3) thermoneutral pair-fed (TNPF) with low concentrations of vitamin D3 and Ca (1,012 IU/kg and 0.73%, respectively) in a Latin square design with 14-d periods and 7-d washouts. Lying behavior was measured with HOBO Loggers in 15-min intervals. Overall, cows in HS spent less time lying per day relative to TNPF from d 7 to 14. Daily lying time was positively correlated with milk yield, energy-corrected milk yield, and feed efficiency, and was negatively correlated with rectal temperature, respiratory rate, fecal calprotectin, tumor necrosis factor-α, and C-reactive protein. A treatment by time interaction was observed for lying behavior: the time spent lying was lesser for cows in HS than in TNPF in the early morning (0000-0600 h) and in the night (1800-2400 h). The circadian rhythm of lying behavior was characterized by fitting a cosine function of time into linear mixed model. Daily rhythmicity of lying was detected for cows in TNPF and HS+D3/Ca, whereas only a tendency in HS cows was observed. Cows in TNPF had the highest mesor (the average level of diurnal fluctuations; 34.2 min/h) and amplitude (the distance between the peak and mesor; 17.9 min/h). Both the mesor and amplitude were higher in HS+D3/Ca relative to HS (26.6 vs. 25.2 min/h and 3.91 min/h vs. 2.18 min/h, respectively). The acrophase (time of the peak) of lying time in TNPF, HS, and HS+D3/Ca were 0028, 0152, and 0054 h, respectively. Lastly, a continuous increase in daily lying time in TNPF was observed during the first 4 d of the experimental period in which DMI was gradually restricted, suggesting that intake restrictions may shift feeding behavior and introduce biases in the behavior of animals. In conclusion, lying behavior was compromised in dairy cows under HS, characterizing reduced daily lying time and disrupted circadian rhythms, and the compromised lying behavior can be partially restored by supplementation of vitamin D3 and Ca. Further research may be required for a more suitable model to study behavior of cows under HS.
Collapse
Affiliation(s)
- K Wang
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - A Ruiz-González
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), Deschambault, QC, G0A 1S0, Canada; Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - S E Räisänen
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - V Ouellet
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - A Boucher
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - D E Rico
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), Deschambault, QC, G0A 1S0, Canada.
| | - M Niu
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich 8092, Switzerland.
| |
Collapse
|
14
|
Duan R, von Ehrlich-Treuenstätt VH, Kakoschke SC, Schardey J, Wirth U, Albertsmeier M, Renz BW, Andrassy J, Bazhin AV, Hodin RA, Werner J, Ilmer M, Kühn F. Effect of Surgery on Postoperative Levels of the Gut Homeostasis-Regulating Enzyme Intestinal Alkaline Phosphatase. J Am Coll Surg 2024; 238:70-80. [PMID: 37870235 DOI: 10.1097/xcs.0000000000000879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
BACKGROUND Intestinal homeostasis is a crucial factor for complication-free short- and long-term postoperative recovery. The brush border enzyme intestinal alkaline phosphatase (IAP) is an important regulator of gut barrier function and intestinal homeostasis and prevents endotoxemia by detoxifying lipopolysaccharides (LPSs). As IAP is predominantly secreted by enterocytes in the duodenum, we hypothesized that pancreaticoduodenectomy (PD) leads to a significantly stronger decrease in IAP than other major abdominal surgery. STUDY DESIGN Pre- and postoperative blood, stool, and intestinal samples were collected from patients undergoing PD, as well as other major surgical procedures without duodenectomy. The samples were analyzed using enzyme histochemistry, the para -nitrophenyl phosphate method for IAP, and the limulus amebocyte lysate assay for LPS. RESULTS Overall, 88 patients were prospectively enrolled in the study. Fecal IAP activity negatively correlated with serum LPS (r = -0.3603, p = 0.0006). PD led to a significant decline in IAP compared to preoperative baseline levels (p < 0.0001). The decline in IAP correlated with the length of proximal small intestinal resection (r = 0.4271, p = 0.0034). Compared to controls, PD was associated with a much more pronounced reduction in IAP-also after adjusting for surgical trauma (operative time, blood loss; r = 0.4598, p = 0.0086). Simultaneously, PD triggered a clearly more prominent increase in serum LPS compared to controls (p = 0.0001). Increased postoperative LPS was associated with an elongated hospitalization (r = 0.7534, p = 0.0062) and more prominent in pancreatic cancer (p = 0.0009). CONCLUSIONS Based upon the functional roles for IAP, supplementation with exogenous IAP might be a new treatment option to improve short- and long-term outcome after PD.
Collapse
Affiliation(s)
- Ruifeng Duan
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
| | - Viktor H von Ehrlich-Treuenstätt
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
| | - Sara C Kakoschke
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
| | - Josefine Schardey
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
| | - Ulrich Wirth
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
| | - Markus Albertsmeier
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
| | - Bernhard W Renz
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
| | - Joachim Andrassy
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
| | - Alexandr V Bazhin
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
| | - Richard A Hodin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA (Hodin)
| | - Jens Werner
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
| | - Matthias Ilmer
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
| | - Florian Kühn
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
| |
Collapse
|
15
|
Molotla-Torres DE, Guzmán-Mejía F, Godínez-Victoria M, Drago-Serrano ME. Role of Stress on Driving the Intestinal Paracellular Permeability. Curr Issues Mol Biol 2023; 45:9284-9305. [PMID: 37998758 PMCID: PMC10670774 DOI: 10.3390/cimb45110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
The gut epithelium is a polarized monolayer that exhibits apical and basolateral membrane surfaces. Monolayer cell components are joined side by side via protein complexes known as tight junction proteins (TJPs), expressed at the most apical extreme of the basolateral membrane. The gut epithelium is a physical barrier that determinates intestinal permeability, referred to as the measurement of the transit of molecules from the intestinal lumen to the bloodstream or, conversely, from the blood to the gut lumen. TJPs play a role in the control of intestinal permeability that can be disrupted by stress through signal pathways triggered by the ligation of receptors with stress hormones like glucocorticoids. Preclinical studies conducted under in vitro and/or in vivo conditions have addressed underlying mechanisms that account for the impact of stress on gut permeability. These mechanisms may provide insights for novel therapeutic interventions in diseases in which stress is a risk factor, like irritable bowel syndrome. The focus of this study was to review, in an integrative context, the neuroendocrine effects of stress, with special emphasis on TJPs along with intestinal permeability.
Collapse
Affiliation(s)
- Daniel Efrain Molotla-Torres
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Calzada del Hueso No. 1100, Ciudad de México CP 04960, Mexico;
| | - Fabiola Guzmán-Mejía
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, Ciudad de México CP 04960, Mexico
| | - Marycarmen Godínez-Victoria
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Ciudad de México CP 11340, Mexico;
| | - Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, Ciudad de México CP 04960, Mexico
| |
Collapse
|
16
|
La Torre D, Van Oudenhove L, Vanuytsel T, Verbeke K. Psychosocial stress-induced intestinal permeability in healthy humans: What is the evidence? Neurobiol Stress 2023; 27:100579. [PMID: 37842017 PMCID: PMC10569989 DOI: 10.1016/j.ynstr.2023.100579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023] Open
Abstract
An impaired intestinal barrier function can be detrimental to the host as it may allow the translocation of luminal antigens and toxins into the subepithelial tissue and bloodstream. In turn, this may cause local and systemic immune responses and lead to the development of pathologies. In vitro and animal studies strongly suggest that psychosocial stress is one of the factors that can increase intestinal permeability via mast-cell dependent mechanisms. Remarkably, studies have not been able to yield unequivocal evidence that such relation between stress and intestinal permeability also exists in (healthy) humans. In the current Review, we discuss the mechanisms that are involved in stress-induced intestinal permeability changes and postulate factors that influence these alterations and that may explain the translational difficulties from in vitro and animal to human studies. As human research differs highly from animal research in the extent to which stress can be applied and intestinal permeability can be measured, it remains difficult to draw conclusions about the presence of a relation between stress and intestinal permeability in (healthy) humans. Future studies should bear in mind these difficulties, and more research into in vivo methods to assess intestinal permeability are warranted.
Collapse
Affiliation(s)
- Danique La Torre
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Lukas Van Oudenhove
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Cognitive and Affective Neuroscience Lab, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Tim Vanuytsel
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Division of Gastroenterology and Hepatology, Leuven University Hospital, Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Sciascia QL, Metges CC. Review: Methods and biomarkers to investigate intestinal function and health in pigs. Animal 2023; 17 Suppl 3:100860. [PMID: 37316380 DOI: 10.1016/j.animal.2023.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
Society is becoming increasingly critical of animal husbandry due to its environmental impact and issues involving animal health and welfare including scientific experiments conducted on farm animals. This opens up two new fields of scientific research, the development of non- or minimally invasive (1) methods and techniques using faeces, urine, breath or saliva sampling to replace existing invasive models, and (2) biomarkers reflecting a disease or malfunction of an organ that may predict the future outcome of a pig's health, performance or sustainability. To date, there is a paucity of non- or minimally invasive methods and biomarkers investigating gastrointestinal function and health in pigs. This review describes recent literature pertaining to parameters that assess gastrointestinal functionality and health, tools currently used to investigate them, and the development or the potential to develop new non- and minimally invasive methods and/or biomarkers in pigs. Methods described within this review are those that characterise gastrointestinal mass such as the citrulline generation test, intestinal protein synthesis rate, first pass splanchnic nutrient uptake and techniques describing intestinal proliferation, barrier function and transit rate, and microbial composition and metabolism. An important consideration is gut health, and several molecules with the potential to act as biomarkers of compromised gut health in pigs are reported. Many of these methods to investigate gut functionality and health are considered 'gold standards' but are invasive. Thus, in pigs, there is a need to develop and validate non-invasive methods and biomarkers that meet the principles of the 3 R guidelines, which aim to reduce and refine animal experimentation and replace animals where possible.
Collapse
Affiliation(s)
- Q L Sciascia
- Research Institute for Farm Animal Biology, Institute of Nutritional Physiology "Oskar Kellner", Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - C C Metges
- Research Institute for Farm Animal Biology, Institute of Nutritional Physiology "Oskar Kellner", Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
18
|
Rath T, Atreya R, Neurath MF. A spotlight on intestinal permeability and inflammatory bowel diseases. Expert Rev Gastroenterol Hepatol 2023; 17:893-902. [PMID: 37606514 DOI: 10.1080/17474124.2023.2242772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/27/2023] [Indexed: 08/23/2023]
Abstract
INTRODUCTION The intestinal barrier is a multi-faced structure lining the surface of the intestinal mucosa of the GI tract. To exert its main functions as a physical and immunological defense barrier, several components of the intestinal barrier act in a concerted and cooperative manner. AREAS COVERED Herein, we first introduce to the basic organization of the intestinal barrier and then summarize different methods to assess barrier function in and ex vivo. Finally, we provide an in-depth overview of the relevance of intestinal barrier dysfunction in inflammatory bowel diseases. EXPERT OPINION In parallel to a more fundamental understanding of the intestinal barrier as a key component for intestinal integrity is the notion that intestinal barrier defects are associated with a variety of diseases such as inflammatory bowel diseases. Recent research has fueled and perpetuated the concept that barrier defects are critical components of disease development, disease behavior, and potentially also an area of therapeutic intervention in IBD patients. Although being far away from standard, new technologies can be used to easily assess barrier healing in IBD and to derive clinical consequences from these findings such as more accurate forecasting of future disease behavior or the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Timo Rath
- Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Raja Atreya
- Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie DZI, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| |
Collapse
|
19
|
Maccioni L, Fu Y, Horsmans Y, Leclercq I, Stärkel P, Kunos G, Gao B. Alcohol-associated bowel disease: new insights into pathogenesis. EGASTROENTEROLOGY 2023; 1:e100013. [PMID: 37662449 PMCID: PMC10472976 DOI: 10.1136/egastro-2023-100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/01/2023] [Indexed: 09/05/2023]
Abstract
Excessive alcohol drinking can cause pathological changes including carcinogenesis in the digestive tract from mouth to large intestine, but the underlying mechanisms are not fully understood. In this review, we discuss the effects of alcohol on small and large intestinal functions, such as leaky gut, dysbiosis and alterations of intestinal epithelium and gut immune dysfunctions, commonly referred to as alcohol-associated bowel disease (ABD). To date, detailed mechanistic insights into ABD are lacking. Accumulating evidence suggests a pathogenic role of ethanol metabolism in dysfunctions of the intestinal tract. Ethanol metabolism generates acetaldehyde and acetate, which could potentially promote functional disruptions of microbial and host components of the intestinal barrier along the gastrointestinal tract. The potential involvement of acetaldehyde and acetate in the pathogenesis of the underlying ABD, including cancer, is discussed. We also highlight some gaps in knowledge existing in the field of ABD. Finally, we discuss future directions in exploring the role of acetaldehyde and acetate generated during chronic alcohol intake in various pathologies affecting different sites of the intestinal tract.
Collapse
Affiliation(s)
- Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Yves Horsmans
- Department of Hepato-Gastroenterology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Isabelle Leclercq
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Peter Stärkel
- Department of Hepato-Gastroenterology, Cliniques universitaires Saint-Luc, Brussels, Belgium
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Ruiz-González A, Suissi W, Baumgard LH, Martel-Kennes Y, Chouinard PY, Gervais R, Rico DE. Increased dietary vitamin D 3 and calcium partially alleviate heat stress symptoms and inflammation in lactating Holstein cows independent of dietary concentrations of vitamin E and selenium. J Dairy Sci 2023; 106:3984-4001. [PMID: 37164847 DOI: 10.3168/jds.2022-22345] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/19/2023] [Indexed: 05/12/2023]
Abstract
Twelve multiparous Holstein cows (42.2 ± 5.6 kg of milk/d; 83 ± 27 d in milk) were used in a split-plot design testing the effects of mineral and vitamin supplementation on the time course of animal performance, metabolism, and inflammation markers during heat stress. The main plot was the average concentrations of dietary vitamin E and Se (adequate: 11.1 IU/kg of vitamin E and 0.55 mg/kg of Se, and high: 223 IU/kg of vitamin E and 1.8 mg/kg of Se, respectively). Within each plot, cows were randomly assigned to (1) heat stress (HS) with adequate concentrations of vitamin D3 and Ca (1,012 IU/kg and 0.73%, respectively), (2) HS with high concentrations of vitamin D3 and Ca (HS+D3/Ca; 3,764 IU/kg and 0.97%, respectively), or (3) pair-feeding (PF) in thermoneutrality with adequate concentrations of vitamin D3 and Ca (1,012 IU/kg and 0.73% Ca) in a Latin square design with 14-d periods and 7-d washouts. The highest rectal temperature was recorded at 1700 h for HS (39.4°C; mean of d 1 to 14), being 1.2 and 0.8°C greater than for PF and HS+D3/Ca, respectively. Respiratory rate and water intake were higher in HS (73 breaths/min and 115 L/d, respectively) relative to PF (28 breaths/min and 76 L/d). Heat stress decreased dry matter intake progressively, reaching a nadir on d 5 to 7 (33% reduction) and was not different between treatments. Milk yield decreased progressively in all treatments, but remained greater in PF relative to HS from d 3 to 14 (10%), whereas HS and HS+D3/Ca were not different. Milk fat, protein, and lactose concentrations and yields were lower in HS relative to PF from d 3 to 14, but not different between HS and HS+D3/Ca. Relative to PF, preprandial insulin concentrations were increased in HS, whereas plasma nonesterified fatty acids were decreased on d 7 and 14. Plasma lipopolysaccharide-binding protein concentrations increased in HS cows on d 7 and 14, respectively, relative to PF, whereas they were reduced in HS + D3/Ca on d 14. Plasma C-reactive protein, tumor necrosis factor-α, and fecal calprotectin were increased in HS relative to both PF and HS+D3/Ca on d 7 and 14. Rectal temperature was positively associated with plasma lipopolysaccharide-binding protein (r = 0.72), tumor necrosis factor-α (r = 0.74), C-reactive protein (r = 0.87), and with milk somatic cells (r = 0.75). Plasma 8-hydroxy-2-deoxyguanosine concentrations presented a 3-way interaction, where 8-hydroxy-2-deoxyguanosine was lower in HS than in PF on d 7 and 14, and lower in HS+D3/Ca relative to HS on d 14 in the adequate vitamin E and Se treatment, but no effects were observed in the high vitamin E and Se group. Plasma superoxide dismutase concentrations increased over time, and were higher in HS relative to PF on d 14, whereas HS+D3/Ca was similar to HS. Heat stress markedly reduced milk production and milk components while increasing markers of leaky gut and inflammation. In contrast, vitamin D3 and Ca supplementation reduced hyperthermia (d 7-14), markers of leaky gut, and inflammation independent of dietary concentrations of vitamin E and Se.
Collapse
Affiliation(s)
- A Ruiz-González
- Département des Sciences Animales, Université Laval, Québec, QC, Canada
| | - W Suissi
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), Deschambault, QC, Canada
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011
| | - Y Martel-Kennes
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), Deschambault, QC, Canada
| | - P Y Chouinard
- Département des Sciences Animales, Université Laval, Québec, QC, Canada
| | - R Gervais
- Département des Sciences Animales, Université Laval, Québec, QC, Canada
| | - D E Rico
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), Deschambault, QC, Canada.
| |
Collapse
|
21
|
Liu R, Armstrong E, Constable S, Buchanan LB, Mohammadi A, Galiwango RM, Huibner S, Perry MC, Prodger JL, Coburn B, Kaul R. Soluble E-cadherin: A marker of genital epithelial disruption. Am J Reprod Immunol 2023; 89:e13674. [PMID: 36593681 DOI: 10.1111/aji.13674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
PROBLEM The genital epithelial barrier is a crucial first line of defence against HIV, and epithelial disruption may enhance HIV susceptibility. Assessment of genital epithelial integrity requires biopsies, but their collection is not practical in many research settings. A validated biomarker of genital epithelial barrier integrity would therefore be useful. The purpose of this study was to evaluate soluble E-cadherin (sE-cad) as a marker of genital epithelial disruption. METHOD OF STUDY Using in vitro models of endocervical and foreskin epithelial cells, we assessed changes in sE-cad, IL-6, IL-1β, and IL-1α levels following mechanical disruption. We also assessed changes in sE-cad levels in vivo in cervicovaginal secretions after epithelial disruption by endocervical cytobrush sampling in Canadian women, and assessed the relationship between levels of sE-cad in coronal sulcus swabs to membrane-bound E-cadherin in the overlying foreskin tissue in Ugandan men. RESULTS sE-cad levels immediately increased after in vitro epithelial physical disruption with the degree of elevation dependent on the extent of disruption, as did levels of IL-1β and IL-1α; this was followed by a delayed increase in IL-6 levels. In vivo results confirmed that sE-cad levels in cervicovaginal secretions were elevated 6 h after cytobrush sampling when compared to baseline. Furthermore, levels of sE-cad in the prepuce were inversely correlated with the amount of membrane-bound E-cadherin of overlying tissue. CONCLUSION Our results validate the use of sE-cad as a marker of epithelial disruption and demonstrate that the processes of physical disruption and inflammation in the genital tract are strongly intertwined.
Collapse
Affiliation(s)
- Rachel Liu
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Eric Armstrong
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shirley Constable
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lane B Buchanan
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Avid Mohammadi
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Sanja Huibner
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Marie C Perry
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jessica L Prodger
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Bryan Coburn
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Wang SS, Xu HY, Li XX, Feng SW. Effect of non-mechanical bowel preparation on postoperative gastrointestinal recovery following surgery on malignant gynecological tumors: A randomized controlled trial. Eur J Oncol Nurs 2023; 64:102320. [DOI: 10.1016/j.ejon.2023.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
|
23
|
Mass spectrometry analysis of gut tissue in acute SIV-infection in rhesus macaques identifies early proteome alterations preceding the interferon inflammatory response. Sci Rep 2023; 13:690. [PMID: 36639424 PMCID: PMC9839751 DOI: 10.1038/s41598-022-27112-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/26/2022] [Indexed: 01/15/2023] Open
Abstract
HIV infection damages the gut mucosa leading to chronic immune activation, increased morbidities and mortality, and antiretroviral therapies, do not completely ameliorate mucosal dysfunction. Understanding early molecular changes in acute infection may identify new biomarkers underlying gut dysfunction. Here we utilized a proteomics approach, coupled with flow cytometry, to characterize early molecular and immunological alterations during acute SIV infection in gut tissue of rhesus macaques. Gut tissue biopsies were obtained at 2 times pre-infection and 4 times post-infection from 6 macaques. The tissue proteome was analyzed by mass spectrometry, and immune cell populations in tissue and blood by flow cytometry. Significant proteome changes (p < 0.05) occurred at 3 days post-infection (dpi) (13.0%), 14 dpi (13.7%), 28 dpi (16.9%) and 63 dpi (14.8%). At 3 dpi, proteome changes included cellular structural activity, barrier integrity, and activation of epithelial to mesenchymal transition (EMT) (FDR < 0.0001) prior to the antiviral response at 14 dpi (IFNa/g pathways, p < 0.001). Novel EMT proteomic biomarkers (keratins 2, 6A and 20, collagen 12A1, desmoplakin) and inflammatory biomarkers (PSMB9, FGL2) were associated with early infection and barrier dysfunction. These findings identify new biomarkers preceding inflammation in SIV infection involved with EMT activation. This warrants further investigation of the role of these biomarkers in chronic infection, mucosal inflammation, and disease pathogenesis of HIV.
Collapse
|
24
|
Huang Y, Lu W, Zeng M, Hu X, Su Z, Liu Y, Liu Z, Yuan J, Li L, Zhang X, Huang L, Hu W, Wang X, Li S, Zhang H. Mapping the early life gut microbiome in neonates with critical congenital heart disease: multiomics insights and implications for host metabolic and immunological health. MICROBIOME 2022; 10:245. [PMID: 36581858 PMCID: PMC9801562 DOI: 10.1186/s40168-022-01437-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/25/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND The early life gut microbiome is crucial in maintaining host metabolic and immune homeostasis. Though neonates with critical congenital heart disease (CCHD) are at substantial risks of malnutrition and immune imbalance, the microbial links to CCHD pathophysiology remain poorly understood. In this study, we aimed to investigate the gut microbiome in neonates with CCHD in association with metabolomic traits. Moreover, we explored the clinical implications of the host-microbe interactions in CCHD. METHODS Deep metagenomic sequencing and metabolomic profiling of paired fecal samples from 45 neonates with CCHD and 50 healthy controls were performed. The characteristics of gut microbiome were investigated in three dimensions (microbial abundance, functionality, and genetic variation). An in-depth analysis of gut virome was conducted to elucidate the ecological interaction between gut viral and bacterial communities. Correlations between multilevel microbial features and fecal metabolites were determined using integrated association analysis. Finally, we conducted a subgroup analysis to examine whether the interactions between gut microbiota and metabolites could mediate inflammatory responses and poor surgical prognosis. RESULTS Gut microbiota dysbiosis was observed in neonates with CCHD, characterized by the depletion of Bifidobacterium and overgrowth of Enterococcus, which was highly correlated with metabolomic perturbations. Genetic variations of Bifidobacterium and Enterococcus orchestrate the metabolomic perturbations in CCHD. A temperate core virome represented by Siphoviridae was identified to be implicated in shaping the gut bacterial composition by modifying microbial adaptation. The overgrowth of Enterococcus was correlated with systemic inflammation and poor surgical prognosis in subgroup analysis. Mediation analysis indicated that the overgrowth of Enterococcus could mediate gut barrier impairment and inflammatory responses in CCHD. CONCLUSIONS We demonstrate for the first time that an aberrant gut microbiome associated with metabolomic perturbations is implicated in immune imbalance and adverse clinical outcomes in neonates with CCHD. Our data support the importance of reconstituting optimal gut microbiome in maintaining host metabolic and immunological homeostasis in CCHD. Video Abstract.
Collapse
Affiliation(s)
- Yuan Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Wenlong Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Min Zeng
- PICU, Pediatric Cardiac Center, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaoyue Hu
- Department of Neonatology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Zhanhao Su
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Yiwei Liu
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zeye Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Jianhui Yuan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Li Li
- Department of Neonatology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Xiaoling Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Long Huang
- Shanghai Majorbio Bio-Pharm Technology Co, Shanghai, China
| | - Wanjin Hu
- Shanghai Majorbio Bio-Pharm Technology Co, Shanghai, China
| | - Xu Wang
- PICU, Pediatric Cardiac Center, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shoujun Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China.
| | - Hao Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China.
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
25
|
Crosstalk between Resveratrol and Gut Barrier: A Review. Int J Mol Sci 2022; 23:ijms232315279. [PMID: 36499603 PMCID: PMC9739931 DOI: 10.3390/ijms232315279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
The plant-based nutraceuticals are receiving increasing interest in recent time. The high attraction to the phytochemicals is associated with their anti-inflammatory and antioxidant activities, which can lead to reduced risk of the development of cardiovascular and other non-communicable diseases. One of the most disseminated groups of plant bioactives are phenolic compounds. It was recently hypothesized that phenolic compounds can have the ability to improve the functioning of the gut barrier. The available studies showed that one of the polyphenols, resveratrol, has great potential to improve the integrity of the gut barrier. Very promising results have been obtained with in vitro and animal models. Still, more clinical trials must be performed to evaluate the effect of resveratrol on the gut barrier, especially in individuals with increased intestinal permeability. Moreover, the interplay between phenolic compounds, intestinal microbiota and gut barrier should be carefully evaluated in the future. Therefore, this review offers an overview of the current knowledge about the interaction between polyphenols with a special emphasis on resveratrol and the gut barrier, summarizes the available methods to evaluate the intestinal permeability, discusses the current research gaps and proposes the directions for future studies in this research area.
Collapse
|
26
|
Lett MJ, Mehta H, Keogh A, Jaeger T, Jacquet M, Powell K, Meier MA, Fofana I, Melhem H, Vosbeck J, Cathomas G, Heigl A, Heim MH, Burri E, Mertz KD, Niess JH, Kollmar O, Zech CJ, Ivanek R, Duthaler U, Klenerman P, Stroka D, Filipowicz Sinnreich M. Stimulatory MAIT cell antigens reach the circulation and are efficiently metabolised and presented by human liver cells. Gut 2022; 71:2526-2538. [PMID: 35058274 PMCID: PMC9664123 DOI: 10.1136/gutjnl-2021-324478] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 01/08/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Mucosal-associated invariant T (MAIT) cells are the most abundant T cells in human liver. They respond to bacterial metabolites presented by major histocompatibility complex-like molecule MR1. MAIT cells exert regulatory and antimicrobial functions and are implicated in liver fibrogenesis. It is not well understood which liver cells function as antigen (Ag)-presenting cells for MAIT cells, and under which conditions stimulatory Ags reach the circulation. DESIGN We used different types of primary human liver cells in Ag-presentation assays to blood-derived and liver-derived MAIT cells. We assessed MAIT cell stimulatory potential of serum from healthy subjects and patients with portal hypertension undergoing transjugular intrahepatic portosystemic shunt stent, and patients with inflammatory bowel disease (IBD). RESULTS MAIT cells were dispersed throughout healthy human liver and all tested liver cell types stimulated MAIT cells, hepatocytes being most efficient. MAIT cell activation by liver cells occurred in response to bacterial lysate and pure Ag, and was prevented by non-activating MR1 ligands. Serum derived from peripheral and portal blood, and from patients with IBD stimulated MAIT cells in MR1-dependent manner. CONCLUSION Our findings reveal previously unrecognised roles of liver cells in Ag metabolism and activation of MAIT cells, repression of which creates an opportunity to design antifibrotic therapies. The presence of MAIT cell stimulatory Ags in serum rationalises the observed activated MAIT cell phenotype in liver. Increased serum levels of gut-derived MAIT cell stimulatory ligands in patients with impaired intestinal barrier function indicate that intrahepatic Ag-presentation may represent an important step in the development of liver disease.
Collapse
Affiliation(s)
- Martin J Lett
- Department of Biomedicine, Liver Immunology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Hema Mehta
- Peter Medawar Building for Pathogen Research and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Adrian Keogh
- Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Tina Jaeger
- Department of Biomedicine, Liver Immunology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Maxime Jacquet
- Department of Biomedicine, Liver Immunology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Kate Powell
- Peter Medawar Building for Pathogen Research and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marie-Anne Meier
- Department of Biomedicine, Hepatology, University Hospital Basel and University of Basel, Basel, Switzerland,Division of Gastroenterology and Hepatology, Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Isabel Fofana
- Department of Biomedicine, Hepatology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Hassan Melhem
- Department of Biomedicine, Gastroenterology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jürg Vosbeck
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Gieri Cathomas
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Andres Heigl
- Department of Surgery, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Markus H Heim
- Department of Biomedicine, Hepatology, University Hospital Basel and University of Basel, Basel, Switzerland,Division of Gastroenterology and Hepatology, Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Emanuel Burri
- Gastroenterology and Hepatology, University Department of Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Kirsten D Mertz
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Jan Hendrik Niess
- Division of Gastroenterology and Hepatology, Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland,Department of Biomedicine, Gastroenterology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Otto Kollmar
- Division of Visceral Surgery, Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Christoph J Zech
- Radiology and Nuclear Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Robert Ivanek
- Department of Biomedicine, Bioinformatics Core Facility, University Hospital Basel and University of Basel, Basel, Switzerland,DBM Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Urs Duthaler
- Department of Biomedicine, Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Deborah Stroka
- Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Magdalena Filipowicz Sinnreich
- Department of Biomedicine, Liver Immunology, University Hospital Basel and University of Basel, Basel, Switzerland .,Gastroenterology and Hepatology, University Department of Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| |
Collapse
|
27
|
Jenkins B, Calder PC, Marino LV. A scoping review considering potential biomarkers or functional measures of gastrointestinal dysfunction and enteral feeding intolerance in critically ill adults. Clin Nutr ESPEN 2022; 52:331-339. [PMID: 36513473 DOI: 10.1016/j.clnesp.2022.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIM Enteral feeding intolerance (EFI) as a result of gastrointestinal (GI) dysfunction in critically ill adults can lead to suboptimal nutritional delivery, increasing the risk of hospital acquired malnutrition. There are no validated measures of EFI or consensus as to which measures could be used to define EFI. The aim of this scoping review is to explore the validity of biomarkers, physiological or functional measures of GI dysfunction and EFI in critically ill adults characterising their use in routine clinical practice to identify those with GI dysfunction to better guide nutritional support. METHODS Database searches were completed in Ovid MEDLINE, Embase, CINAHL and Web of Science using the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. The search was performed until June 2022. Articles were included if they reported original studies that identify potential biomarkers or functional measures of EFI in critically ill adults. A nine-stage process was completed to extract and complete data synthesis. RESULTS 139 unique articles were identified. Following review of titles and abstracts, 114 of these articles were excluded, three further articles were excluded after full text review and 22 articles met the inclusion criteria. A thematic analysis of the articles included identified three overarching themes of GI dysfunction: (1) Serum biomarkers, (2) Physiological markers, and (3) Functional markers. Within the category of serum biomarkers, a further three sub-categories were identified: (i) enterohormones, (ii) markers of enterocyte function, and iii) cytokines and neurotransmitters. Some associations were seen between EFI and heparin binding protein, intra-abdominal pressure, cholecystokinin and acetylcholine levels but no markers are currently suitable for daily clinical use. CONCLUSIONS Further larger studies are required to characterise the relationships between serum biomarkers, physiological and functional makers of GI dysfunction in critically ill adults. A robust definition of GI dysfunction should be included in any future research.
Collapse
Affiliation(s)
- Bethan Jenkins
- Department of Dietetics/SLT, University Hospital Southampton NHS Foundation Trust, Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK.
| | - Philip C Calder
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK; School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luise V Marino
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK; Paediatric Intensive Care Unit, Southampton Children's Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, UK; School of Health Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
28
|
Hoffmanová I, Sánchez D, Szczepanková A, Hábová V, Tlaskalová-Hogenová H. Serological markers of intestinal barrier impairment do not correlate with duration of diabetes and glycated hemoglobin in adult patients with type 1 and type 2 diabetes mellitus. Physiol Res 2022; 71:357-368. [PMID: 35616045 DOI: 10.33549/physiolres.934874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Growing evidence suggests that diabetes mellitus is associated with impairment of the intestinal barrier. However, it is not clear so far if the impairment of the intestinal barrier is a consequence of prolonged hyperglycemia or the consequence of external factors influencing the gut microbiota and intestinal mucosa integrity. Aim of the study was to perform an estimation of relationship between serological markers of impairment of the intestinal barrier: intestinal fatty acid-binding protein (I-FABP), cytokeratin 18 caspase-cleaved fragment (cCK-18), and soluble CD14 (sCD14) and markers of prolonged hyperglycemia, such as the duration of diabetes mellitus and glycated hemoglobin (HbA1c) via a correlation analysis in patients with diabetes mellitus. In 40 adult patients with type 1 diabetes mellitus and 30 adult patients with type 2 diabetes mellitus the estimation has been performed. Statistically significant positive correlation was found between cCK-18 and HbA1c (r=0.5047, p=0.0275) in patients with type 1 diabetes mellitus with fading insulitis (T1D). In patients with type 1 diabetes mellitus with ongoing insulitis (T1D/INS) and in patients with type 2 diabetes mellitus (T2D), no statistically significant positive correlations were found between serological markers of intestinal barrier impairment (I-FABP, cCK-18, sCD14) and duration of diabetes or levels of HbA1c. Similarly, in cumulative cohort of patients with T1D/INS and patients with T1D we revealed statistically positive correlation only between HbA1c and cCK-18 (r=0.3414, p=0.0311). Surprisingly, we found statistically significant negative correlation between the duration of diabetes mellitus and cCK-18 (r=-0.3050, p=0.0313) only in cumulative group of diabetic patients (T1D, T1D/INS, and T2D). Based on our results, we hypothesize that the actual condition of the intestinal barrier in diabetic patients is much more dependent on variable interactions between host genetic factors, gut microbiota, and environmental factors rather than effects of long-standing hyperglycemia (assessed by duration of diabetes mellitus or HbA1c).
Collapse
Affiliation(s)
- I Hoffmanová
- Department of Internal Medicine, Second Faculty of Medicine, Charles University Prague, and Motol University Hospital, Prague, Czech Republic; Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences., Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
29
|
Xu WX, Zhong QH, Cai Y, Zhan CH, Chen S, Wang H, Lin L, Geng YQ, Hou P, Chen XQ, Zhang JR. Prediction and management of strangulated bowel obstruction: a multi-dimensional model analysis. BMC Gastroenterol 2022; 22:304. [PMID: 35733109 PMCID: PMC9219133 DOI: 10.1186/s12876-022-02363-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Distinguishing strangulated bowel obstruction (StBO) from simple bowel obstruction (SiBO) still poses a challenge for emergency surgeons. We aimed to construct a predictive model that could distinctly discriminate StBO from SiBO based on the degree of bowel ischemia. METHODS The patients diagnosed with intestinal obstruction were enrolled and divided into SiBO group and StBO group. Binary logistic regression was applied to identify independent risk factors, and then predictive models based on radiological and multi-dimensional models were constructed. Receiver operating characteristic (ROC) curves and the area under the curve (AUC) were calculated to assess the accuracy of the predicted models. Via stratification analysis, we validated the multi-dimensional model in the prediction of transmural necrosis both in the training set and validation set. RESULTS Of the 281 patients with SBO, 45 (16.0%) were found to have StBO, while 236(84.0%) with SiBO. The AUC of the radiological model was 0.706 (95%CI, 0.617-0.795). In the multivariate analysis, seven risk factors including pain duration ≤ 3 days (OR = 3.775), rebound tenderness (OR = 5.201), low-to-absent bowel sounds (OR = 5.006), low levels of potassium (OR = 3.696) and sodium (OR = 3.753), high levels of BUN (OR = 4.349), high radiological score (OR = 11.264) were identified. The AUC of the multi-dimensional model was 0.857(95%CI, 0.793-0.920). In the stratification analysis, the proportion of patients with transmural necrosis was significantly greater in the high-risk group (24%) than in the medium-risk group (3%). No transmural necrosis was found in the low-risk group. The AUC of the validation set was 0.910 (95%CI, 0.843-0.976). None of patients in the low-risk and medium-risk score group suffered with StBO. However, all patients with bowel ischemia (12%) and necrosis (24%) were resorted into high-risk score group. CONCLUSION The novel multi-dimensional model offers a useful tool for predicting StBO. Clinical management could be performed according to the multivariate score.
Collapse
Affiliation(s)
- Wei-Xuan Xu
- Fujian Medical University, No.1 Xuefu bei Road, Fuzhou, 350122, Fujian Province, China
| | - Qi-Hong Zhong
- Fujian Medical University, No.1 Xuefu bei Road, Fuzhou, 350122, Fujian Province, China
| | - Yong Cai
- Fujian Medical University, No.1 Xuefu bei Road, Fuzhou, 350122, Fujian Province, China
| | - Can-Hong Zhan
- Fujian Medical University, No.1 Xuefu bei Road, Fuzhou, 350122, Fujian Province, China
| | - Shuai Chen
- Department of General Surgery (Emergency Surgery), Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Hui Wang
- Department of General Surgery (Emergency Surgery), Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Lin Lin
- Department of Radiology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Ying-Qian Geng
- Department of Radiology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Ping Hou
- Fujian Medical University, No.1 Xuefu bei Road, Fuzhou, 350122, Fujian Province, China.,Immunotherapy Institute, Fujian Medical University, No.1 Xuefu bei Road, Fuzhou, 350122, Fujian Province, China
| | - Xian-Qiang Chen
- Fujian Medical University, No.1 Xuefu bei Road, Fuzhou, 350122, Fujian Province, China. .,Department of General Surgery (Emergency Surgery), Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China.
| | - Jun-Rong Zhang
- Fujian Medical University, No.1 Xuefu bei Road, Fuzhou, 350122, Fujian Province, China. .,Department of General Surgery (Emergency Surgery), Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, 350001, Fujian Province, China.
| |
Collapse
|
30
|
The Untapped Potential of Ginsenosides and American Ginseng Berry in Promoting Mental Health via the Gut-Brain Axis. Nutrients 2022; 14:nu14122523. [PMID: 35745252 PMCID: PMC9227060 DOI: 10.3390/nu14122523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the popularity of the ginseng (Panax) root in health research and on the market, the ginseng berry’s potential remains relatively unexplored. Implementing ginseng berry cultivations and designing berry-derived products could improve the accessibility to mental health-promoting nutraceuticals. Indeed, the berry could have a higher concentration of neuroprotective and antidepressant compounds than the root, which has already been the subject of research demonstrating its efficacy in the context of neuroprotection and mental health. In this review, data on the berry’s application in supporting mental health via the gut–brain axis is compiled and discussed.
Collapse
|
31
|
Doney E, Cadoret A, Dion‐Albert L, Lebel M, Menard C. Inflammation-driven brain and gut barrier dysfunction in stress and mood disorders. Eur J Neurosci 2022; 55:2851-2894. [PMID: 33876886 PMCID: PMC9290537 DOI: 10.1111/ejn.15239] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Regulation of emotions is generally associated exclusively with the brain. However, there is evidence that peripheral systems are also involved in mood, stress vulnerability vs. resilience, and emotion-related memory encoding. Prevalence of stress and mood disorders such as major depression, bipolar disorder, and post-traumatic stress disorder is increasing in our modern societies. Unfortunately, 30%-50% of individuals respond poorly to currently available treatments highlighting the need to further investigate emotion-related biology to gain mechanistic insights that could lead to innovative therapies. Here, we provide an overview of inflammation-related mechanisms involved in mood regulation and stress responses discovered using animal models. If clinical studies are available, we discuss translational value of these findings including limitations. Neuroimmune mechanisms of depression and maladaptive stress responses have been receiving increasing attention, and thus, the first part is centered on inflammation and dysregulation of brain and circulating cytokines in stress and mood disorders. Next, recent studies supporting a role for inflammation-driven leakiness of the blood-brain and gut barriers in emotion regulation and mood are highlighted. Stress-induced exacerbated inflammation fragilizes these barriers which become hyperpermeable through loss of integrity and altered biology. At the gut level, this could be associated with dysbiosis, an imbalance in microbial communities, and alteration of the gut-brain axis which is central to production of mood-related neurotransmitter serotonin. Novel therapeutic approaches such as anti-inflammatory drugs, the fast-acting antidepressant ketamine, and probiotics could directly act on the mechanisms described here improving mood disorder-associated symptomatology. Discovery of biomarkers has been a challenging quest in psychiatry, and we end by listing promising targets worth further investigation.
Collapse
Affiliation(s)
- Ellen Doney
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Alice Cadoret
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Laurence Dion‐Albert
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Manon Lebel
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Caroline Menard
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| |
Collapse
|
32
|
Chantler S, Griffiths A, Matu J, Davison G, Holliday A, Jones B. A systematic review: Role of dietary supplements on markers of exercise-associated gut damage and permeability. PLoS One 2022; 17:e0266379. [PMID: 35417467 PMCID: PMC9007357 DOI: 10.1371/journal.pone.0266379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 03/19/2022] [Indexed: 12/12/2022] Open
Abstract
Nutrition strategies and supplements may have a role to play in diminishing exercise associated gastrointestinal cell damage and permeability. The aim of this systematic review was to determine the influence of dietary supplements on markers of exercise-induced gut endothelial cell damage and/or permeability. Five databases were searched through to February 2021. Studies were selected that evaluated indirect markers of gut endothelial cell damage and permeability in response to exercise with and without a specified supplement, including with and without water. Acute and chronic supplementation protocols were included. Twenty-seven studies were included. The studies investigated a wide range of supplements including bovine colostrum, glutamine, probiotics, supplemental carbohydrate and protein, nitrate or nitrate precursors and water across a variety of endurance exercise protocols. The majority of studies using bovine colostrum and glutamine demonstrated a reduction in selected markers of gut cell damage and permeability compared to placebo conditions. Carbohydrate intake before and during exercise and maintaining euhydration may partially mitigate gut damage and permeability but coincide with other performance nutrition strategies. Single strain probiotic strains showed some positive findings, but the results are likely strain, dosage and duration specific. Bovine colostrum, glutamine, carbohydrate supplementation and maintaining euhydration may reduce exercise-associated endothelial damage and improve gut permeability. In spite of a large heterogeneity across the selected studies, appropriate inclusion of different nutrition strategies could mitigate the initial phases of gastrointestinal cell disturbances in athletes associated with exercise. However, research is needed to clarify if this will contribute to improved athlete gastrointestinal and performance outcomes.
Collapse
Affiliation(s)
- Sarah Chantler
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
- Yorkshire Carnegie Rugby Union Club, Leeds, United Kingdom
| | - Alex Griffiths
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - Jamie Matu
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - Glen Davison
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
| | - Adrian Holliday
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ben Jones
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
- School of Science and Technology, University of New England, Armidale, NSW, Australia
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, the University of Cape Town and the Sports Science Institute of South Africa, Cape Town, South Africa
- Leeds Rhinos Rugby League Club, Leeds, United Kingdom
- England Performance Unit, Rugby Football League, Leeds, United Kingdom
| |
Collapse
|
33
|
Kocot AM, Jarocka-Cyrta E, Drabińska N. Overview of the Importance of Biotics in Gut Barrier Integrity. Int J Mol Sci 2022; 23:ijms23052896. [PMID: 35270039 PMCID: PMC8911280 DOI: 10.3390/ijms23052896] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Increased gut permeability is suggested to be involved in the pathogenesis of a growing number of disorders. The altered intestinal barrier and the subsequent translocation of bacteria or bacterial products into the internal milieu of the human body induce the inflammatory state. Gut microbiota maintains intestinal epithelium integrity. Since dysbiosis contributes to increased gut permeability, the interventions that change the gut microbiota and correct dysbiosis are suggested to also restore intestinal barrier function. In this review, the current knowledge on the role of biotics (probiotics, prebiotics, synbiotics and postbiotics) in maintaining the intestinal barrier function is summarized. The potential outcome of the results from in vitro and animal studies is presented, and the need for further well-designed randomized clinical trials is highlighted. Moreover, we indicate the need to understand the mechanisms by which biotics regulate the function of the intestinal barrier. This review is concluded with the future direction and requirement of studies involving biotics and gut barrier.
Collapse
Affiliation(s)
- Aleksandra Maria Kocot
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Elżbieta Jarocka-Cyrta
- Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine, Collegium Medicum University of Warmia and Mazury, Regional Specialized Children’s Hospital, Żołnierska St. 18A, 10-561 Olsztyn, Poland;
| | - Natalia Drabińska
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
- Correspondence:
| |
Collapse
|
34
|
Rha MS, Han JW, Koh JY, Lee HS, Kim JH, Cho K, Kim SI, Kim MS, Lee JG, Park SH, Joo DJ, Park JY, Shin EC. Impaired antibacterial response of liver sinusoidal Vγ9 +Vδ2 + T cells in patients with chronic liver disease. Gut 2022; 71:605-615. [PMID: 33472894 DOI: 10.1136/gutjnl-2020-322182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The liver acts as a frontline barrier against diverse gut-derived pathogens, and the sinusoid is the primary site of liver immune surveillance. However, little is known about liver sinusoidal immune cells in the context of chronic liver disease (CLD). Here, we investigated the antibacterial capacity of liver sinusoidal γδ T cells in patients with various CLDs. DESIGN We analysed the frequency, phenotype and functions of human liver sinusoidal γδ T cells from healthy donors and recipients with CLD, including HBV-related CLD (liver cirrhosis (LC) and/or hepatocellular carcinoma (HCC)), alcoholic LC and LC or HCC of other aetiologies, by flow cytometry and RNA-sequencing using liver perfusates obtained during living donor liver transplantation. We also measured the plasma levels of D-lactate and bacterial endotoxin to evaluate bacterial translocation. RESULTS The frequency of liver sinusoidal Vγ9+Vδ2+ T cells was reduced in patients with CLD. Immunophenotypic and transcriptomic analyses revealed that liver sinusoidal Vγ9+Vδ2+ T cells from patients with CLD were persistently activated and pro-apoptotic. In addition, liver sinusoidal Vγ9+Vδ2+ T cells from patients with CLD showed significantly decreased interferon (IFN)-γ production following stimulation with bacterial metabolites and Escherichia coli. The antibacterial IFN-γ response of liver sinusoidal Vγ9+Vδ2+ T cells significantly correlated with liver function, and inversely correlated with the plasma level of D-lactate in patients with CLD. Repetitive in vitro stimulation with E. coli induced activation, apoptosis and functional impairment of liver sinusoidal Vγ9+Vδ2+ T cells. CONCLUSION Liver sinusoidal Vγ9+Vδ2+ T cells are functionally impaired in patients with CLD. Bacterial translocation and decreasing liver functions are associated with functional impairment of liver sinusoidal Vγ9+Vδ2+ T cells.
Collapse
Affiliation(s)
- Min-Seok Rha
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ji Won Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Division of Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ha Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jong Hoon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyungjoo Cho
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soon Il Kim
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myoung Soo Kim
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Geun Lee
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Dong Jin Joo
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Yong Park
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
35
|
Rusticeanu M, Zimmer V, Lammert F. Visualising and quantifying intestinal permeability -where do we stand. Ann Hepatol 2022; 23:100266. [PMID: 33045414 DOI: 10.1016/j.aohep.2020.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/20/2020] [Accepted: 09/20/2020] [Indexed: 02/04/2023]
Abstract
Intestinal permeability is getting more and more attention in gastrointestinal research. Although well recognized, its exact role in health and disease is yet to be defined. There are many methods of quantifying intestinal permeability, but most of them fail to deliver tangible information about the morphological integrity of the intestinal barrier. In this review we aim to describe imaging options for the assessment of intestinal barrier integrity and their potential relevance for clinical practice. Our focus is on confocal laser endomicroscopy, which is at this time the only method for visualizing not only functional but also morphological aspects of the gut barrier in vivo.
Collapse
Affiliation(s)
- Monica Rusticeanu
- Department of Medicine, Krankenhaus Vilshofen, Krankenhausstrasse 32, 94474 Vislhofen an der Donau, Germany.
| | - Vincent Zimmer
- Department of Medicine, Marienhausklinik St. Josef Kohlhof, Klinikweg 1-5, 66539 Neunkirchen, Germany; Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.
| |
Collapse
|
36
|
Ewing LE, Biju PG, Pathak R, Melnyk S, Hauer-Jensen M, Koturbash I. Methods for induction and assessment of intestinal permeability in rodent models of radiation injury. Methods Cell Biol 2022; 168:235-247. [PMID: 35366985 PMCID: PMC9808921 DOI: 10.1016/bs.mcb.2021.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ionizing radiation (IR) is a significant contributor to the contemporary market of energy production and an important diagnostic and treatment modality. Besides having numerous useful applications, it is also a ubiquitous environmental stressor and a potent genotoxic and epigenotoxic agent, capable of causing substantial damage to organs and tissues of living organisms. The gastrointestinal (GI) tract is highly sensitive to IR. This problem is further compounded by the fact that there is no FDA-approved medication to mitigate acute radiation-induced GI syndrome. Therefore, establishing the animal model for studying IR-induced GI-injury is crucially important to understand the harmful consequences of intestinal radiation damage. Here, we discuss two different animal models of IR-induced acute gastrointestinal syndrome and two separate methods for measuring the magnitude of intestinal radiation damage.
Collapse
Affiliation(s)
- Laura E Ewing
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Prabath G Biju
- Department of Biochemistry, University of Kerala, Trivandrum, India
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Stepan Melnyk
- Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Igor Koturbash
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Center for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
37
|
Howarth C, Banerjee J, Eaton S, Aladangady N. Biomarkers of gut injury in neonates - where are we in predicting necrotising enterocolitis? Front Pediatr 2022; 10:1048322. [PMID: 36518779 PMCID: PMC9742605 DOI: 10.3389/fped.2022.1048322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
Despite advances in neonatal care Necrotising Enterocolitis (NEC) continues to have a significant mortality and morbidity rate, and with increasing survival of those more immature infants the population at risk of NEC is increasing. Ischaemia, reperfusion, and inflammation underpin diseases affecting intestinal blood flow causing gut injury including Necrotising Enterocolitis. There is increasing interest in tissue biomarkers of gut injury in neonates, particularly those representing changes in intestinal wall barrier and permeability, to determine whether these could be useful biomarkers of gut injury. This article reviews current and newly proposed markers of gut injury, the available literature evidence, recent advances and considers how effective they are in clinical practice. We discuss each biomarker in terms of its effectiveness in predicting NEC onset and diagnosis or predicting NEC severity and then those that will aid in surveillance and identifying those infants are greatest risk of developing NEC.
Collapse
Affiliation(s)
- Claire Howarth
- Neonatal Unit, Homerton Healthcare NHS Foundation Trust, London, United Kingdom
| | - Jayanta Banerjee
- Neonatal Unit, Imperial College Healthcare NHS Trust and Imperial College London, London, United Kingdom
| | - Simon Eaton
- University College London Great Ormond Street Institute of Child Health, London, England
| | - Narendra Aladangady
- Neonatal Unit, Homerton Healthcare NHS Foundation Trust, London, United Kingdom.,Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, United Kingdom
| |
Collapse
|
38
|
Alinaghipour A, Salami M, Riahi E, Ashabi G, Soheili M, Nabavizadeh F. Protective effects of nanocurcumin against stress-induced deterioration in the intestine. Stress 2022; 25:337-346. [PMID: 36369802 DOI: 10.1080/10253890.2022.2132142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The therapeutic activities of curcumin have long been investigated in some chronic and inflammatory diseases. This study was designed to investigate the protective effects of nanocurcumin on intestinal barrier function, apoptosis, and oxidative stress in rats exposed to traffic noise. Forty rats were divided into four groups: two traffic noise-exposed groups of animals that received either vehicle (NOISE) or nanocurcumin (NCUR + NOISE) and two control groups that either remained intact (CON) or received nanocurcumin (NCUR). Nanocurcumin injection (15 mg/Kg/ip) and traffic noise exposure were administered daily for two weeks. The relative protein expression of intestinal tight junctions, occludin, and ZO-1 and Bax/Bcl-2 ratio was measured to evaluate barrier integrity and apoptosis in intestinal samples, respectively. Plasma D-lactate concentration was examined as a criterion of intestinal permeability. Corticosterone, superoxide dismutase (SOD) activity, glutathione (GSH), total antioxidant capacity (TAC), and nitrite were measured in serum. The noise exposure increased Bax/Bcl-2 ratio, corticosterone, and oxidative stress in the NOISE animals. Nanocurcumin treatment improved the Bax/Bcl-2 ratio and reduced corticosterone and oxidative stress in the NCUR + NOISE animals. The expression of tight junction proteins was decreased while the concentration of D-lactate was increased in the NOISE animals. Nanocurcumin did not efficiently impact the expression of tight junction proteins and the D-lactate level in the NCUR + NOISE group. Nanocurcumin administration displayed antioxidant and anti-apoptotic roles in the noise-exposed rats, however, it did not affect the intestinal barrier integrity. We concluded that reduced apoptosis in the intestine might be related to the antioxidant activity of nanocurcumin and its modulatory effects on the HPA axis in the nanocurcumin-treated animals.
Collapse
Affiliation(s)
- Azam Alinaghipour
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmail Riahi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soheili
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Hendriks S, Stokmans SC, Plas M, Buurman WA, Spoorenberg SLW, Wynia K, Heineman E, van Leeuwen BL, de Haan JJ. Compromised intestinal integrity in older adults during daily activities: a pilot study. BMC Geriatr 2021; 21:628. [PMID: 34736396 PMCID: PMC8567646 DOI: 10.1186/s12877-021-02573-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Malnutrition is a common and significant problem in older adults. Insight into factors underlying malnutrition is needed to develop strategies that can improve the nutritional status. Compromised intestinal integrity caused by gut wall hypoperfusion due to atherosclerosis of the mesenteric arteries in the aging gastrointestinal tract may adversely affect nutrient uptake. The presence of compromised intestinal integrity in older adults is not known. The aim of this study is to provide a proof-of-concept that intestinal integrity is compromised in older adults during daily activities. METHODS Adults aged ≥75 years living independently without previous gastrointestinal disease or abdominal surgery were asked to complete a standardized walking test and to consume a standardized meal directly afterwards to challenge the mesenteric blood flow. Intestinal fatty acid-binding protein (I-FABP) was measured as a plasma marker of intestinal integrity, in blood samples collected before (baseline) and after the walking test, directly after the meal, and every 15 min thereafter to 75 min postprandially. RESULTS Thirty-four participants (median age 81 years; 56% female) were included. Of the participants, 18% were malnourished (PG-SGA score ≥ 4), and 32% were at risk of malnutrition (PG-SGA score, 2 or 3). An I-FABP increase of ≥50% from baseline was considered a meaningful loss of intestinal integrity and was observed in 12 participants (35%; 8 females; median age 80 years). No significant differences were observed in either baseline characteristics, walking test scores, or calorie/macronutrient intake between the groups with and without a ≥ 50% I-FABP peak. CONCLUSION This study is first to indicate that intestinal integrity is compromised during daily activities in a considerable part of older adults living independently.
Collapse
Affiliation(s)
- Sharon Hendriks
- Department of Surgery, University Medical Center Groningen, 9713, GZ, Groningen, The Netherlands.
| | - Suzanne C Stokmans
- Department of Surgery, University Medical Center Groningen, 9713, GZ, Groningen, The Netherlands
| | - Matthijs Plas
- Department of Surgery, University Medical Center Groningen, 9713, GZ, Groningen, The Netherlands
| | - Wim A Buurman
- MHeNs School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sophie L W Spoorenberg
- Department of Health Sciences, Community and Occupational Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaske Wynia
- Department of Health Sciences, Community and Occupational Medicine, University Medical Center Groningen, Groningen, The Netherlands
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik Heineman
- Department of Surgery, University Medical Center Groningen, 9713, GZ, Groningen, The Netherlands
| | - Barbara L van Leeuwen
- Department of Surgery, University Medical Center Groningen, 9713, GZ, Groningen, The Netherlands
| | - Jacco J de Haan
- Department of Medical Oncology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
40
|
Alizadeh A, Akbari P, Garssen J, Fink-Gremmels J, Braber S. Epithelial integrity, junctional complexes, and biomarkers associated with intestinal functions. Tissue Barriers 2021; 10:1996830. [PMID: 34719339 PMCID: PMC9359365 DOI: 10.1080/21688370.2021.1996830] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An intact intestinal barrier is crucial for immune homeostasis and its impairment activates the immune system and may result in chronic inflammation. The epithelial cells of the intestinal barrier are connected by tight junctions, which form an anastomosing network sealing adjacent epithelial cells. Tight junctions are composed of transmembrane and cytoplasmic scaffolding proteins. Transmembrane tight junction proteins at the apical-lateral membrane of the cell consist of occludin, claudins, junctional adhesion molecules, and tricellulin. Cytoplasmic scaffolding proteins, including zonula occludens, cingulin and afadin, provide a direct link between transmembrane tight junction proteins and the intracellular cytoskeleton. Each individual component of the tight junction network closely interacts with each other to form an efficient intestinal barrier. This review aims to describe the molecular structure of intestinal epithelial tight junction proteins and to characterize their organization and interaction. Moreover, clinically important biomarkers associated with impairment of gastrointestinal integrity are discussed.
Collapse
Affiliation(s)
- Arash Alizadeh
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Peyman Akbari
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Department of Immunology, Danone Nutricia Research, Utrecht, The Netherlands
| | - Johanna Fink-Gremmels
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
41
|
Sauna dehydration as a new physiological challenge model for intestinal barrier function. Sci Rep 2021; 11:15514. [PMID: 34330970 PMCID: PMC8324874 DOI: 10.1038/s41598-021-94814-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
The intestinal barrier plays a crucial role in maintaining gut health, and an increased permeability has been linked to several intestinal and extra-intestinal disorders. There is an increasing demand for interventions aimed at strengthening this barrier and for in vivo challenge models to assess their efficiency. This study investigated the effect of sauna-induced dehydration on intestinal barrier function (clinicaltrials.gov: NCT03620825). Twenty healthy subjects underwent three conditions in random order: (1) Sauna dehydration (loss of 3% body weight), (2) non-steroidal anti-inflammatory drug (NSAID) intake, (3) negative control. Intestinal permeability was assessed by a multi-sugar urinary recovery test, while intestinal damage, bacterial translocation and cytokines were assessed by plasma markers. The sauna dehydration protocol resulted in an increase in gastroduodenal and small intestinal permeability. Presumably, this increase occurred without substantial damage to the enterocytes as plasma intestinal fatty acid-binding protein (I-FABP) and liver fatty acid-binding protein (L-FABP) were not affected. In addition, we observed significant increases in levels of lipopolysaccharide-binding protein (LBP), IL-6 and IL-8, while sCD14, IL-10, IFN-ɣ and TNF-α were not affected. These results suggest that sauna dehydration increased intestinal permeability and could be applied as a new physiological in vivo challenge model for intestinal barrier function.
Collapse
|
42
|
Use of Organ Dysfunction as a Primary Outcome Variable Following Cecal Ligation and Puncture: Recommendations for Future Studies. Shock 2021; 54:168-182. [PMID: 31764625 DOI: 10.1097/shk.0000000000001485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Outcomes variables for research on sepsis have centered on mortality and changes in the host immune response. However, a recent task force (Sepsis-3) revised the definition of sepsis to "life-threatening organ dysfunction caused by a dysregulated host response to infection." This new definition suggests that human studies should focus on organ dysfunction. The appropriate criteria for organ dysfunction in either human sepsis or animal models are, however, poorly delineated, limiting the potential for translation. Further, in many systems, the difference between "dysfunction" and "injury" may not be clear. In this review, we identify criteria for organ dysfunction and/or injury in human sepsis and in rodents subjected to cecal ligation and puncture (CLP), the most commonly used animal model of sepsis. We further examine instances where overlap between human sepsis and CLP is sufficient to identify translational endpoints. Additional verification may demonstrate that these endpoints are applicable to other animals and to other sepsis models, for example, pneumonia. We believe that the use of these proposed measures of organ dysfunction will facilitate mechanistic studies on the pathobiology of sepsis and enhance our ability to develop animal model platforms to evaluate therapeutic approaches to human sepsis.
Collapse
|
43
|
Influence of a High-Impact Multidimensional Rehabilitation Program on the Gut Microbiota of Patients with Multiple Sclerosis. Int J Mol Sci 2021; 22:ijms22137173. [PMID: 34281224 PMCID: PMC8268819 DOI: 10.3390/ijms22137173] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/04/2023] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative inflammatory condition mediated by autoreactive immune processes. Due to its potential to influence host immunity and gut-brain communication, the gut microbiota has been suggested to be involved in the onset and progression of MS. To date, there is no definitive cure for MS, and rehabilitation programs are of the utmost importance, especially in the later stages. However, only a few people generally participate due to poor support, knowledge, and motivation, and no information is available on gut microbiota changes. Herein we evaluated the potential of a brief high-impact multidimensional rehabilitation program (B-HIPE) in a leisure environment to affect the gut microbiota, mitigate MS symptoms and improve quality of life. B-HIPE resulted in modulation of the MS-typical dysbiosis, with reduced levels of pathobionts and the replenishment of beneficial short-chain fatty acid producers. This partial recovery of a eubiotic profile could help counteract the inflammatory tone typically observed in MS, as supported by reduced circulating lipopolysaccharide levels and decreased populations of pro-inflammatory lymphocytes. Improved physical performance and fatigue relief were also found. Our findings pave the way for integrating clinical practice with holistic approaches to mitigate MS symptoms and improve patients’ quality of life.
Collapse
|
44
|
Colucci R, Moretti S. Implication of Human Bacterial Gut Microbiota on Immune-Mediated and Autoimmune Dermatological Diseases and Their Comorbidities: A Narrative Review. Dermatol Ther (Heidelb) 2021; 11:363-384. [PMID: 33507493 PMCID: PMC8018919 DOI: 10.1007/s13555-021-00485-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
During the last decade, the advent of modern sequencing methods (next generation techniques, NGS) has helped describe the composition of the human gut microbiome, enabling us to understand the main characteristics of a healthy gut microbiome and, conversely, the magnitude of its disease-related changes. This new knowledge has revealed that healthy gut microbiota allow the maintenance of several crucial physiological functions, such as the ability to regulate the innate and adaptive immune systems. Increasing evidence has pointed out a condition of dysbiosis in several autoimmune/immune mediated dermatological conditions and specific gut microbial signatures have also been reported to correlate with clinical and prognostic parameters of such diseases. Based on a literature search of relevant published articles, this review debates the current knowledge and the possible pathogenic implications of bacterial gut microbiota composition assessed through NGS techniques in systemic lupus erythematosus, atopic dermatitis, psoriasis, and alopecia areata. Evidence of a potential role of specific gut microbiota signatures in modulating the clinical course of such diseases and their main comorbidities has been also reviewed.
Collapse
Affiliation(s)
- Roberta Colucci
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy.
| | - Silvia Moretti
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
45
|
Yang J, Syed F, Xia Y, Sanyal A, Shah V, Chalasani N, Zheng X, Yu Q, Lou Y, Li W. Blood Biomarkers of Intestinal Epithelium Damage Regenerating Islet-derived Protein 3α and Trefoil Factor 3 Are Persistently Elevated in Patients with Alcoholic Hepatitis. Alcohol Clin Exp Res 2021; 45:720-731. [PMID: 33587293 PMCID: PMC8076084 DOI: 10.1111/acer.14579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/11/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Heavy alcohol consumption disrupts gut epithelial integrity, leading to increased permeability of the gastrointestinal tract and subsequent translocation of microbes. Regenerating islet-derived protein 3α (REG3α) and Trefoil factor 3 (TFF3) are mainly secreted to the gut lumen by Paneth and Goblet cells, respectively, and are functionally linked to gut barrier integrity. Circulating levels of REG3α and TFF3 have been identified as biomarkers for gut damage in several human diseases. We examined whether plasma levels of REG3α and TFF3 were dysregulated and correlated with conventional markers of microbial translocation (MT) and pro-inflammatory mediators in heavy drinkers with and without alcoholic hepatitis (AH). METHODS Cross-sectional and longitudinal studies were performed to monitor plasma levels of REG3α and TFF3 in 79 AH patients, 66 heavy drinkers without liver disease (HDC), and 46 healthy controls (HC) at enrollment and at 6- and 12-month follow-ups. Spearman correlation was used to measure the relationships of REG3α and TFF3 levels with MT, disease severity, inflammation, and effects of abstinence from alcohol. RESULTS At enrollment, AH patients had significantly higher levels of REG3α and TFF3 than HDC and HC. The elevated REG3α levels were positively correlated with the 30-day fatality rate. Plasma levels of REG3α and TFF3 in AH patients differentially correlated with conventional MT markers (sCD14, sCD163, and LBP) and several highly up-regulated inflammatory cytokines/chemokines/growth factors. At follow-ups, although REG3α and TFF3 levels were decreased in AH patients with alcohol abstinence, they did not fully return to baseline levels. CONCLUSIONS Circulating levels of REG3α and TFF3 were highly elevated in AH patients and differentially correlated with AH disease severity, MT, and inflammation, thereby serving as potential biomarkers of MT and gut epithelial damage in AH patients.
Collapse
Affiliation(s)
- Jing Yang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Fahim Syed
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Ying Xia
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Clinical Laboratory, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Arun Sanyal
- Division of Gastroenterology and Hepatology, Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Vijay Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-5175
| | - Xiaoqun Zheng
- Department of Clinical Laboratory, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qigui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
46
|
Bischoff SC, Kaden-Volynets V, Filipe Rosa L, Guseva D, Seethaler B. Regulation of the gut barrier by carbohydrates from diet - Underlying mechanisms and possible clinical implications. Int J Med Microbiol 2021; 311:151499. [PMID: 33864957 DOI: 10.1016/j.ijmm.2021.151499] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 02/09/2023] Open
Abstract
The gut barrier has been recognized as being of relevance in the pathogenesis of multiple different diseases ranging from inflammatory bowel disease, irritable bowel syndrome, inflammatory joint disease, fatty liver disease, and cardiometabolic disorders. The regulation of the gut barrier is, however, poorly understood. Especially, the role of food components such as sugars and complex carbohydrates has been discussed controversially in this respect. More recently, the intestinal microbiota has been proposed as an important regulator of the gut barrier. Whether the microbiota affects the barrier by its own, or whether food components such as carbohydrates mediate their effects through alterations of the microbiota composition or its metabolites, is still not clear. In this review, we will summarize the current knowledge on this topic derived from both animal and human studies and discuss data for possible clinical impact.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Valentina Kaden-Volynets
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany; Acousia Therapeutics GmbH & Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany.
| | - Louisa Filipe Rosa
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Daria Guseva
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Benjamin Seethaler
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
47
|
Power N, Turpin W, Espin-Garcia O, Smith MI, Croitoru K. Serum Zonulin Measured by Commercial Kit Fails to Correlate With Physiologic Measures of Altered Gut Permeability in First Degree Relatives of Crohn's Disease Patients. Front Physiol 2021; 12:645303. [PMID: 33841181 PMCID: PMC8027468 DOI: 10.3389/fphys.2021.645303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/26/2021] [Indexed: 12/22/2022] Open
Abstract
Intestinal epithelial cell tight junctions (TJs) contribute to the integrity of the intestinal barrier allowing for control of the physical barrier between external antigens or bacterial products and the internal environment. Zonula occludens-1 (ZO-1) is a protein that modulates intestinal TJs, and serum levels of ZO-1 has been suggested as a biomarker of disrupted barrier function in humans. Previous studies suggested that increased intestinal permeability was associated with evidence of TJ abnormalities. However, there is limited information on the serological measurement of ZO-1 and its relation to other tests of barrier function in healthy subjects. We investigated the correlation of serum ZO-1, with physiologic measures of intestinal permeability (as the ratio of the fractional excretion of lactulose-mannitol or LMR) in a cohort of 39 healthy FDRs of Crohn's disease (CD) patients. No significant correlation was found between LMR and ZO-1 levels (r2 = 0.004, P < 0.71), or intestinal fatty acid binding proteins (I-FABP) (r2 = 0.004, P < 0.71). In conclusion, our data show that ZO-1 and I-FABP are not a marker of gut permeability as defined by LMR.
Collapse
Affiliation(s)
- Namita Power
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Gastroenterology, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Williams Turpin
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Osvaldo Espin-Garcia
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Michelle I Smith
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Gastroenterology, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | | | - Kenneth Croitoru
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Gastroenterology, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
48
|
Tatucu-Babet OA, Forsyth A, Udy A, Radcliffe J, Benheim D, Calkin C, Ridley EJ, Gantner D, Jois M, Itsiopoulos C, Tierney AC. Use of a sensitive multisugar test for measuring segmental intestinal permeability in critically ill, mechanically ventilated adults: A pilot study. JPEN J Parenter Enteral Nutr 2021; 46:454-461. [PMID: 33760268 DOI: 10.1002/jpen.2110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Increased intestinal permeability (IP) is associated with sepsis in the intensive care unit (ICU). This study aimed to pilot a sensitive multisugar test to measure IP in the nonfasted state. METHODS Critically ill, mechanically ventilated adults were recruited from 2 ICUs in Australia. Measurements were completed within 3 days of admission using a multisugar test measuring gastroduodenal (sucrose recovery), small-bowel (lactulose-rhamnose [L-R] and lactulose-mannitol [L-M] ratios), and whole-gut permeability (sucralose-erythritol ratio) in 24-hour urine samples. Urinary sugar concentrations were compared at baseline and after sugar ingestion, and IP sugar recoveries and ratios were explored in relation to known confounders, including renal function. RESULTS Twenty-one critically ill patients (12 males; median, 57 years) participated. Group median concentrations of all sugars were higher following sugar administration; however, sucrose and mannitol increases were not statistically significant. Within individual patients, sucrose and mannitol concentrations were higher in baseline than after sugar ingestion in 9 (43%) and 4 (19%) patients, respectively. Patients with impaired (n = 9) vs normal (n = 12) renal function had a higher L-R ratio (median, 0.130 vs 0.047; P = .003), lower rhamnose recovery (median, 15% vs 24%; P = .007), and no difference in lactulose recovery. CONCLUSION Small-bowel and whole-gut permeability measurements are possible to complete in the nonfasted state, whereas gastroduodenal permeability could not be measured reliably. For small-bowel IP measurements, the L-R ratio is preferred over the L-M ratio. Alterations in renal function may reduce the reliability of the multisugar IP test, warranting further exploration.
Collapse
Affiliation(s)
- Oana A Tatucu-Babet
- Department of Dietetics, Nutrition and Sport, La Trobe University, Melbourne, Australia.,Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventative Medicine, Monash University, Melbourne, Australia
| | - Adrienne Forsyth
- Department of Dietetics, Nutrition and Sport, La Trobe University, Melbourne, Australia
| | - Andrew Udy
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventative Medicine, Monash University, Melbourne, Australia.,Intensive Care Unit, Alfred Hospital, Melbourne, Victoria, Australia
| | - Jessica Radcliffe
- Department of Dietetics, Nutrition and Sport, La Trobe University, Melbourne, Australia.,Senior Scientist Group Nutrition, Immunity and Metabolism, Department of Nutrition and Gerontology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Potsdam, Germany
| | - Devin Benheim
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
| | | | - Emma J Ridley
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventative Medicine, Monash University, Melbourne, Australia.,Nutrition Department, Alfred Health, Melbourne, Australia
| | - Dashiell Gantner
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventative Medicine, Monash University, Melbourne, Australia.,Intensive Care Unit, Alfred Hospital, Melbourne, Victoria, Australia
| | - Markandeya Jois
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
| | - Catherine Itsiopoulos
- Department of Dietetics, Nutrition and Sport, La Trobe University, Melbourne, Australia.,School of Health and Biomedical Sciences, College of STEM, RMIT University, Melbourne, Australia
| | - Audrey C Tierney
- Department of Dietetics, Nutrition and Sport, La Trobe University, Melbourne, Australia.,School of Allied Health and Health Implementation Science and Technology Centre, Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
49
|
Zhang Y, Shao F, Guan Z, Luo J, Xiao X, Zhou L. Overexpression of miR-99a Alleviates Intestinal Mucosal Barrier Injury in Rats with Severe Acute Pancreatitis. J Interferon Cytokine Res 2021; 41:72-80. [PMID: 33621134 DOI: 10.1089/jir.2020.0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Severe acute pancreatitis (SAP), which is characterized by acute onset and high mortality, is complicated with systemic inflammatory response syndrome. This study investigated the molecular mechanism underlying SAP-induced intestinal mucosal barrier injury. SAP was established in rats by retrograde injection of sodium taurocholate (STC) into biliopancreatic duct. Transfection of miR-99a mimic was conducted 24 h before the SAP establishment. Histological properties of pancreatic and intestinal tissues were observed by hematoxylin-eosin staining. The serum levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, procalcitonin (PCT), endotoxin (ET), and diamine oxidase (DAO) were measured by enzyme-linked immunosorbent assay. The expressions of miR-99a, NADPH oxidase (NOX)4, zonula occludens (ZO)-1, occludin, and claudin-1 in pancreatic and the intestinal tissue were determined by quantitative reverse transcription polymerase chain reaction or Western blot. STC injection damaged pancreatic and intestinal tissues of the rats. During the model construction, the serum levels of IL-1β, TNF-α, PCT, ET, and DAO were increased, whereas miR-99a expression in pancreatic and intestinal tissues of the rats was decreased. miR-99a mimic alleviated SAP-induced histological abnormality of pancreatic and intestinal tissues; moreover, it reversed the serum levels of IL-1β, TNF-α, PCT, ET, and DAO increased by SAP, decreased SAP-increased NOX4 expression and increased the expressions of ZO-1, occludin, and claudin-1 previously decreased by SAP in pancreatic and the intestinal tissues. Thus, overexpressed miR-99a could alleviate intestinal mucosal barrier injury in rats with SAP.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Critical Care Medicine, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Feifei Shao
- Department of Critical Care Medicine, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Zhihui Guan
- Department of Critical Care Medicine, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Jinming Luo
- Department of Critical Care Medicine, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Xiaorong Xiao
- Department of Critical Care Medicine, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Lingmin Zhou
- Department of Critical Care Medicine, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
50
|
Yuan S, Shen J. Bacteroides vulgatus diminishes colonic microbiota dysbiosis ameliorating lumbar bone loss in ovariectomized mice. Bone 2021; 142:115710. [PMID: 33148507 DOI: 10.1016/j.bone.2020.115710] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/29/2022]
Abstract
There is a need to discover additional kinds of intestinal microbiota to supplement the probiotic-treatment of postmenopausal osteoporosis. Increasing evidence has indicated that Bacteroides vulgatus has potential as a probiotic for ameliorating postmenopausal bone loss. In this study, ovariectomized female C57/BL6 mice were treated with B. vulgatus ATCC 8482 gavage to investigate the differences in colonic microbiota composition, inflammation signal pathways, inflammatory cytokines, bone turnover markers, and lumbar vertebrae microstructure compared with the control group. Our results show that B. vulgatus ATCC 8482 diminished microbiota dysbiosis and subsequently down-regulated the colonic lipopolysaccharide/TLR-4/p-NF-κB pathway leading to decreased serum TNF-α. This reduced TNF-α/RANKL expression and induced ALP and Runx-2 expression in the 5th lumbar vertebra, leading to amelioration of bone loss and microstructure destruction in the lumbar vertebra of ovariectomized mice. Taken together, these results indicate that B. vulgatus could be a probiotic for treatment of postmenopausal lumbar osteoporosis.
Collapse
Affiliation(s)
- Sijie Yuan
- Department of Endocrinology and Metabolic diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Jie Shen
- Department of Endocrinology and Metabolic diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|