1
|
Yu A, Su H, Yu P, Cai S, Mu S, Yu J, Lu Q, Miao Y, Li A. Mucin-producing urothelial-type adenocarcinoma of the prostate with a gene mutation characteristic of intestinal adenocarcinoma: case report and literature review. Front Med (Lausanne) 2025; 11:1494952. [PMID: 39902031 PMCID: PMC11789685 DOI: 10.3389/fmed.2024.1494952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/31/2024] [Indexed: 02/05/2025] Open
Abstract
We report an elderly male with mucin-producing urothelial-type adenocarcinoma of the prostate (MPUAP) and oligometastatic lung involvement, initially diagnosed as benign prostatic hyperplasia and treated with transurethral plasma resection of the prostate (TURP). Postoperative pathology indicated mucinous adenocarcinoma, with immunohistochemistry positive for CK7, CK20, and CDX-2. Next-generation sequencing (NGS) identified genetic alterations similar to those found in intestinal adenocarcinoma. After ruling out gastrointestinal and bladder tumors, MPUAP was confirmed. Ablation therapy was performed for the lung metastasis, followed by radical prostate chemoradiotherapy. Post chemoradiotherapy, the patient received XELOX + Bevacizumab regmien but switched to capecitabine monotherapy due to adverse effects. At a 12-month follow-up post-radiotherapy, no prostate recurrence was observed, though previous lung nodule ablation suggested recurrence. By reviewing historical cases, we discussed the role and significance of radical resection and TURP in MPUAP. NGS is recommended for patients with MPUAP, and regarding chemotherapy, treatment options for colorectal cancer are worth considering.
Collapse
Affiliation(s)
- Ao Yu
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
- School of Graduate, China Medical University, Shenyang, China
| | - Hongbo Su
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Peiling Yu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Siqi Cai
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Shuaixian Mu
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Jinhui Yu
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Qianting Lu
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Yuan Miao
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Ailin Li
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Zelenova E, Belysheva T, Sofronov D, Semenova V, Radjabova G, Vishnevskaya Y, Kletskaya I, Sharapova E, Karasev I, Romanov D, Denieva M, Petrochenko N, Valiev T, Nasedkina T. Cutaneous Metastasis of Rectal Cancer as a Diagnostic Challenge: A Clinical Case and Literature Review. Diagnostics (Basel) 2024; 14:2420. [PMID: 39518386 PMCID: PMC11545733 DOI: 10.3390/diagnostics14212420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Metastatic colorectal cancer remains a fatal disease, with a 5-year survival rate lower than 15%. The most common metastatic sites are the lungs and the liver, while skin metastases are very rare and often indicate a poor prognosis with a lower survival rate. Methods. Herein, we present the clinical case of a 62-year-old female patient with rectal cancer metastases to the skin of the anogenital and abdominal regions, diagnosed 2 years after completion of treatment of the underlying disease. Results: Histological examination of the skin lesions revealed adenocarcinoma, and expression of the same immunohistochemical markers was also found in the primary tumor and in the cutaneous metastases. However, next-generation sequencing demonstrated differences in the mutational profiles of the primary tumor and metastasis to the skin. Somatic mutations in the APC, TP53, and PTPN11 genes were revealed in primary rectal adenocarcinoma, but another pathogenic TP53 mutation and a frameshift variant in the DYNC1I1 gene were found in cutaneous metastases. The patient underwent several courses of FOLFOX6 chemotherapy in combination with bevacizumab, but the treatment was unsuccessful. An analysis of 50 clinical cases from the literature concerning various manifestations of cutaneous metastases of rectal cancer showed a median survival of 8.5 months from the time of detection of the skin lesions. Conclusions: In this regard, careful skin examination of patients with rectal cancer and timely detection of cutaneous metastases are essential steps in the follow-up of patients who have undergone treatment of the primary tumor.
Collapse
Affiliation(s)
- Ekaterina Zelenova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (E.Z.); (T.B.); (D.S.); (V.S.); (Y.V.); (E.S.); (I.K.); (N.P.); (T.V.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana Belysheva
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (E.Z.); (T.B.); (D.S.); (V.S.); (Y.V.); (E.S.); (I.K.); (N.P.); (T.V.)
| | - Denis Sofronov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (E.Z.); (T.B.); (D.S.); (V.S.); (Y.V.); (E.S.); (I.K.); (N.P.); (T.V.)
| | - Vera Semenova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (E.Z.); (T.B.); (D.S.); (V.S.); (Y.V.); (E.S.); (I.K.); (N.P.); (T.V.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Galimat Radjabova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, 119048 Moscow, Russia;
| | - Yana Vishnevskaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (E.Z.); (T.B.); (D.S.); (V.S.); (Y.V.); (E.S.); (I.K.); (N.P.); (T.V.)
| | - Irina Kletskaya
- Russian Children’s Clinical Hospital, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 119571 Moscow, Russia;
| | - Elena Sharapova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (E.Z.); (T.B.); (D.S.); (V.S.); (Y.V.); (E.S.); (I.K.); (N.P.); (T.V.)
| | - Ivan Karasev
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (E.Z.); (T.B.); (D.S.); (V.S.); (Y.V.); (E.S.); (I.K.); (N.P.); (T.V.)
| | - Denis Romanov
- Center of Innovative Medical Technologies, 119991 Moscow, Russia;
| | - Malika Denieva
- Department of Polyclinic Therapy, Chechen State University, 364061 Grozny, Russia;
| | - Nikolay Petrochenko
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (E.Z.); (T.B.); (D.S.); (V.S.); (Y.V.); (E.S.); (I.K.); (N.P.); (T.V.)
| | - Timur Valiev
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (E.Z.); (T.B.); (D.S.); (V.S.); (Y.V.); (E.S.); (I.K.); (N.P.); (T.V.)
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, 119048 Moscow, Russia;
| | - Tatiana Nasedkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
3
|
Saliba M, Smithgall MC, Saqi A, Crapanzano JP, Sung S. Case of lung fine needle aspiration showing mucinous cells and extracellular mucin. Diagn Cytopathol 2024; 52:546-552. [PMID: 38409908 DOI: 10.1002/dc.25294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/28/2024]
Abstract
Mucinous neoplasm with extracellular mucin can be challenging to interpret on fine needle aspiration and core biopsies. Determining the biologic origin of the mucin/mucinous cells, that is, benign/incidental versus neoplasm, invasive versus in situ, and primary versus metastatic tumors, requires a thorough multidisciplinary evaluation. The work up of these lesions includes morphologic analysis with ancillary immunohistochemical and/or molecular studies and correlation with clinical and imaging studies. This review outlines a practical approach to the diagnosis of mucinous lesions in the lung with comprehensive review of literature.
Collapse
Affiliation(s)
- Maelle Saliba
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Marie C Smithgall
- Division of Molecular Pathology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NewYork, USA
| | - Anjali Saqi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - John P Crapanzano
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Simon Sung
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
4
|
Chan WY, Chua W, Wilkinson K, Epitakaduwa C, Mandaliya H, Descallar J, Roberts TL, Becker TM, Ng W, Lee CS, Lim SHS. The Prognostic and Predictive Utility of CDX2 in Colorectal Cancer. Int J Mol Sci 2024; 25:8673. [PMID: 39201360 PMCID: PMC11354371 DOI: 10.3390/ijms25168673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
Caudal type homeobox transcription factor 2 (CDX2) is a gastrointestinal cancer biomarker that regulates epithelial development and differentiation. Absence or low levels of CDX2 have been associated with poor prognosis and proposed as a chemotherapy response predictor. Tumour tissue samples from 668 patients with stage I-IV colorectal cancer were stained for CDX2 and stratified into two subgroups according to expression levels. Statistical tests were used to evaluate CDX2's relationship with survival and chemotherapy response. Of 646 samples successfully stained, 51 (7.9%) had low CDX2 levels, and 595 (92.1%) had high levels. Low CDX2 staining was associated with poor differentiation and the presence of lymphovascular or perineural invasion and was more common in colon and right-sided tumours. Overall survival (p < 0.001) and disease-free survival (p = 0.009) were reduced in patients with low CDX2 expression. Multivariable analysis validated CDX2 as an independent poor prognostic factor after excluding confounding variables. There was no statistically significant improvement in survival with adjuvant chemotherapy in stage II colon cancer (p = 0.11). In the rectal cohort, there was no relationship between CDX2 levels and therapy response. While confirming the prognostic utility of CDX2 in colorectal cancer, our study highlights that larger studies are required to confirm its utility as a predictive chemotherapy biomarker, especially in left-sided and rectal cancers.
Collapse
Affiliation(s)
- Wei Yen Chan
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW 2170, Australia; (W.Y.C.); (W.C.); (K.W.)
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia; (T.L.R.); (T.M.B.); (C.S.L.)
| | - Wei Chua
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW 2170, Australia; (W.Y.C.); (W.C.); (K.W.)
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia; (T.L.R.); (T.M.B.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
| | - Kate Wilkinson
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW 2170, Australia; (W.Y.C.); (W.C.); (K.W.)
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia; (T.L.R.); (T.M.B.); (C.S.L.)
| | - Chandika Epitakaduwa
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
| | - Hiren Mandaliya
- Macarthur Cancer Therapy Centre, Campbelltown Hospital, Campbelltown, NSW 2560, Australia;
| | - Joseph Descallar
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
- Faculty of Medicine, South Western Sydney Clinical School, The University of New South Wales, Liverpool, NSW 2170, Australia
| | - Tara Laurine Roberts
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia; (T.L.R.); (T.M.B.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
| | - Therese Maria Becker
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia; (T.L.R.); (T.M.B.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
- Faculty of Medicine, South Western Sydney Clinical School, The University of New South Wales, Liverpool, NSW 2170, Australia
| | - Weng Ng
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW 2170, Australia; (W.Y.C.); (W.C.); (K.W.)
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia; (T.L.R.); (T.M.B.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
| | - Cheok Soon Lee
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia; (T.L.R.); (T.M.B.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Faculty of Medicine, South Western Sydney Clinical School, The University of New South Wales, Liverpool, NSW 2170, Australia
| | - Stephanie Hui-Su Lim
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia; (T.L.R.); (T.M.B.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
- Macarthur Cancer Therapy Centre, Campbelltown Hospital, Campbelltown, NSW 2560, Australia;
| |
Collapse
|
5
|
Wipplinger M, Mink S, Bublitz M, Gassner C. Regulation of the Lewis Blood Group Antigen Expression: A Literature Review Supplemented with Computational Analysis. Transfus Med Hemother 2024; 51:225-236. [PMID: 39135855 PMCID: PMC11318966 DOI: 10.1159/000538863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/11/2024] [Indexed: 08/15/2024] Open
Abstract
Background The Lewis (Le) blood group system, unlike most other blood groups, is not defined by antigens produced internally to the erythrocytes and their precursors but rather by glycan antigens adsorbed on to the erythrocyte membrane from the plasma. These oligosaccharides are synthesized by the two fucosyltransferases FUT2 and FUT3 mainly in epithelial cells of the digestive tract and transferred to the plasma. At their place of synthesis, some Lewis blood group carbohydrate antigen variants also seem to be involved in various gastrointestinal malignancies. However, relatively little is known about the transcriptional regulation of FUT2 and FUT3. Summary To address this question, we screened existing literature and additionally used in silico prediction tools to identify novel candidate regulators for FUT2 and FUT3 and combine these findings with already known data on their regulation. With this approach, we were able to describe a variety of transcription factors, RNA binding proteins and microRNAs, which increase FUT2 and FUT3 transcription and translation upon interaction. Key Messages Understanding the regulation of FUT2 and FUT3 is crucial to fully understand the blood group system Lewis (ISBT 007 LE) phenotypes, to shed light on the role of the different Lewis antigens in various pathologies, and to identify potential new diagnostic targets for these diseases.
Collapse
Affiliation(s)
- Martin Wipplinger
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Sylvia Mink
- Central Medical Laboratories, Feldkirch, Austria
- Medical-Scientific Faculty, Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Maike Bublitz
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Christoph Gassner
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| |
Collapse
|
6
|
Ilie-Petrov AC, Cristian DA, Grama FA, Chitul A, Blajin A, Popa A, Mandi DM, Welt L, Bara MA, Vrîncianu R, Ardeleanu CM. Evaluation of the Immunohistochemical Scoring System of CDX2 Expression as a Prognostic Biomarker in Colon Cancer. Diagnostics (Basel) 2024; 14:1023. [PMID: 38786321 PMCID: PMC11119288 DOI: 10.3390/diagnostics14101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Encoded by the CDX2 homeobox gene, the CDX2 protein assumes the role of a pivotal transcription factor localized within the nucleus of intestinal epithelial cells, orchestrating the delicate equilibrium of intestinal physiology while intricately guiding the precise development and differentiation of epithelial tissue. Emerging research has unveiled that positive immunohistochemical expression of this protein shows that the CDX2 gene exerts a potent suppressive impact on tumor advancement in colorectal cancer, impeding the proliferation and distant dissemination of tumor cells, while the inhibition or suppression of CDX2 frequently correlates with aggressive behavior in colorectal cancer. In this study, we conducted an immunohistochemical assessment of CDX2 expression on a cohort of 43 intraoperatively obtained tumor specimens from patients diagnosed with colon cancer at Colțea Clinical Hospital in Bucharest, between April 2019 and December 2023. Additionally, we shed light on the morphological diversity within colon tumors, uncovering varying differentiation grades within the same tumor, reflecting the variations in CDX2 expression as well as the genetic complexity underlying these tumors. Based on the findings, we developed an innovative immunohistochemical scoring system that addresses the heterogeneous nature of colon tumors. Comprehensive statistical analysis of CDX2 immunohistochemical expression unveiled significant correlations with known histopathological parameters such as tumor differentiation grades (p-value = 0.011) and tumor budding score (p-value = 0.002), providing intriguing insights into the complex involvement of the CDX2 gene in orchestrating tumor progression through modulation of differentiation processes, and highlighting its role in metastatic predisposition. The compelling correlation identified between CDX2 expression and conventional histopathological parameters emphasizes the prognostic significance of the CDX2 biomarker in colon cancer. Moreover, our novel immunohistochemical scoring system reveals a distinct subset of colon tumors exhibiting reserved prognostic outcomes, distinguished by their "mosaic" CDX2 expression pattern.
Collapse
Affiliation(s)
- Andreea-Corina Ilie-Petrov
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-C.I.-P.); (D.-A.C.); (D.-M.M.); (C.M.A.)
- Clinical General Surgery Department, Colțea Clinical Hospital, 030171 Bucharest, Romania; (A.B.); (A.P.)
| | - Daniel-Alin Cristian
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-C.I.-P.); (D.-A.C.); (D.-M.M.); (C.M.A.)
- Clinical General Surgery Department, Colțea Clinical Hospital, 030171 Bucharest, Romania; (A.B.); (A.P.)
| | - Florin Andrei Grama
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-C.I.-P.); (D.-A.C.); (D.-M.M.); (C.M.A.)
- Clinical General Surgery Department, Colțea Clinical Hospital, 030171 Bucharest, Romania; (A.B.); (A.P.)
| | - Andrei Chitul
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-C.I.-P.); (D.-A.C.); (D.-M.M.); (C.M.A.)
- Clinical General Surgery Department, Colțea Clinical Hospital, 030171 Bucharest, Romania; (A.B.); (A.P.)
| | - Angela Blajin
- Clinical General Surgery Department, Colțea Clinical Hospital, 030171 Bucharest, Romania; (A.B.); (A.P.)
| | - Andrei Popa
- Clinical General Surgery Department, Colțea Clinical Hospital, 030171 Bucharest, Romania; (A.B.); (A.P.)
| | - Draga-Maria Mandi
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-C.I.-P.); (D.-A.C.); (D.-M.M.); (C.M.A.)
- Clinical General Surgery Department, Colțea Clinical Hospital, 030171 Bucharest, Romania; (A.B.); (A.P.)
| | - Luminița Welt
- Pathology Department, Colțea Clinical Hospital, 030171 Bucharest, Romania; (L.W.); (M.A.B.)
| | - Marina Alina Bara
- Pathology Department, Colțea Clinical Hospital, 030171 Bucharest, Romania; (L.W.); (M.A.B.)
| | - Rareș Vrîncianu
- Medical Oncology Department, Colțea Clinical Hospital, 030171 Bucharest, Romania;
| | - Carmen Maria Ardeleanu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-C.I.-P.); (D.-A.C.); (D.-M.M.); (C.M.A.)
- Pathology Department, OncoTeam Diagnostic Laboratory, 010719 Bucharest, Romania
| |
Collapse
|
7
|
Fidya, Choijookhuu N, Ikenoue M, Yano K, Yamaguma Y, Shirouzu S, Kai K, Ishizuka T, Hishikawa Y. Protective role of estrogen through G-protein coupled receptor 30 in a colitis mouse model. Histochem Cell Biol 2024; 161:81-93. [PMID: 37821557 DOI: 10.1007/s00418-023-02235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 10/13/2023]
Abstract
Estrogen and its receptors are involved in the pathogenesis of gastrointestinal diseases such as colitis. However, the role of the membrane estrogen receptor G-protein-coupled receptor 30 (GPR30) in colitis is poorly understood. We therefore investigated the effect of estrogen in dextran sulfate sodium (DSS)-induced colitis. Male C57BL/6 mice were administered 1.5% DSS for 5 days and treated with 17β-estradiol (E2), GPR30 agonist (G1), or GPR30 antagonist (G15) for 8 days. Inflammation grade was evaluated by disease activity index (DAI) and histomorphological score. Colon tissues were immunohistochemically analyzed and revealed high expression of membrane GPR30, histone 3 lysine 36 dimethylation, and lysine 79 trimethylation in normal mouse colon epithelial cells but significantly decreased expression in DSS-treated mice, whereas the expression was partially preserved after treatment with E2 or G1. Colon shortening and DAI were significantly lower in E2- and G1-treated mice compared to DSS-treated mice. Caudal type homeobox 2 (CDX2) expression and cell proliferation differed in normal colon epithelial cells but overlapped in those of DSS-treated mice. Administration of E2 and G1 reduced CDX2 expression and cell proliferation. Altered expression of claudin-2 and occludin were observed in the colonic epithelium of DSS-treated mice, and these changes were significantly lower in the colon of E2- and G1-treated mice. These results indicate that estrogen regulates histone modification, cell proliferation, and CDX2 expression through GPR30, which affects intestinal epithelial barrier function. We conclude that estrogen protects against intestinal epithelial damage through GPR30 by enhancing intestinal epithelial barrier function in DSS-induced colitis in mice.
Collapse
Affiliation(s)
- Fidya
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
- Department of Oral Biology, Faculty of Dentistry, Universitas Brawijaya, Malang, Jawa Timur, Indonesia
| | - Narantsog Choijookhuu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Makoto Ikenoue
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
- Department of Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Koichi Yano
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
- Department of Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Yu Yamaguma
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Shinichiro Shirouzu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Kengo Kai
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
- Department of Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Takumi Ishizuka
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| |
Collapse
|
8
|
Aiderus A, Barker N, Tergaonkar V. Serrated colorectal cancer: preclinical models and molecular pathways. Trends Cancer 2024; 10:76-91. [PMID: 37880007 DOI: 10.1016/j.trecan.2023.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
Serrated lesions are histologically heterogeneous, and detection can be challenging as these lesions have subtle features that may be missed by endoscopy. Furthermore, while approximately 30% of colorectal cancers (CRCs) arise from serrated lesions, only 8-10% of invasive serrated CRCs exhibit serrated morphology at presentation, suggesting potential loss of apparent characteristics with increased malignancy. Thus, understanding the genetic basis driving serrated CRC initiation and progression is critical to improve diagnosis and identify therapeutic biomarkers and targets to guide disease management. This review discusses the preclinical models of serrated CRCs reported to date and how these systems have been used to provide mechanistic insights into tumor initiation, progression, and novel treatment targets.
Collapse
Affiliation(s)
- Aziz Aiderus
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore.
| | - Nick Barker
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 2 Medical Drive, MD9, Singapore 117593, Republic of Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 8 Medical Drive, MD7, Singapore 117596, Republic of Singapore
| |
Collapse
|
9
|
Chen H, Zhai C, Xu X, Wang H, Han W, Shen J. Multilevel Heterogeneity of Colorectal Cancer Liver Metastasis. Cancers (Basel) 2023; 16:59. [PMID: 38201487 PMCID: PMC10778489 DOI: 10.3390/cancers16010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Colorectal cancer liver metastasis (CRLM) is a highly heterogeneous disease. Therapies that target both primary foci and liver metastasis are severely lacking. Therefore, understanding the features of metastatic tumor cells in the liver is valuable for the overall control of CRLM patients. In this review, we summarize the heterogeneity exhibited in CRLM from five aspects (gene, transcriptome, protein, metabolism, and immunity). In addition to genetic heterogeneity, the other four aspects exhibit significant heterogeneity. Compared to primary CRC, the dysregulation of epithelial-mesenchymal transition (EMT)-related proteins, the enhanced metabolic activity, and the increased infiltration of immunosuppressive cells are detected in CRLM. Preclinical evidence shows that targeting the EMT process or enhancing cellular metabolism may represent a novel approach to increasing the therapeutic efficacy of CRLM.
Collapse
Affiliation(s)
| | | | | | | | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (H.C.); (C.Z.); (X.X.); (H.W.)
| | - Jiaying Shen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (H.C.); (C.Z.); (X.X.); (H.W.)
| |
Collapse
|
10
|
Badia-Ramentol J, Gimeno-Valiente F, Duréndez E, Martínez-Ciarpaglini C, Linares J, Iglesias M, Cervantes A, Calon A, Tarazona N. The prognostic potential of CDX2 in colorectal cancer: Harmonizing biology and clinical practice. Cancer Treat Rev 2023; 121:102643. [PMID: 37871463 DOI: 10.1016/j.ctrv.2023.102643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Adjuvant chemotherapy following surgical intervention remains the primary treatment option for patients with localized colorectal cancer (CRC). However, a significant proportion of patients will have an unfavorable outcome after current forms of chemotherapy. While reflecting the increasing complexity of CRC, the clinical application of molecular biomarkers provides information that can be utilized to guide therapeutic strategies. Among these, caudal-related homeobox transcription factor 2 (CDX2) emerges as a biomarker of both prognosis and relapse after therapy. CDX2 is a key transcription factor that controls intestinal fate. Although rarely mutated in CRC, loss of CDX2 expression has been reported mostly in right-sided, microsatellite-unstable tumors and is associated with aggressive carcinomas. The pathological assessment of CDX2 by immunohistochemistry can thus identify patients with high-risk CRC, but the evaluation of CDX2 expression remains challenging in a substantial proportion of patients. In this review, we discuss the roles of CDX2 in homeostasis and CRC and the alterations that lead to protein expression loss. Furthermore, we review the clinical significance of CDX2 assessment, with a particular focus on its current use as a biomarker for pathological evaluation and clinical decision-making. Finally, we attempt to clarify the molecular implications of CDX2 deficiency, ultimately providing insights for a more precise evaluation of CDX2 protein expression.
Collapse
Affiliation(s)
- Jordi Badia-Ramentol
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Francisco Gimeno-Valiente
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London, UK
| | - Elena Duréndez
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, CIBERONC, Spain
| | | | - Jenniffer Linares
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Mar Iglesias
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Department of Pathology, Hospital del Mar, Barcelona, CIBERONC, Spain
| | - Andrés Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, CIBERONC, Spain
| | - Alexandre Calon
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain.
| | - Noelia Tarazona
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, CIBERONC, Spain.
| |
Collapse
|
11
|
Fatemi MY, Lu Y, Sharma C, Feng E, Azher ZL, Diallo AB, Srinivasan G, Rosner GM, Pointer KB, Christensen BC, Salas LA, Tsongalis GJ, Palisoul SM, Perreard L, Kolling FW, Vaickus LJ, Levy JJ. Feasibility of Inferring Spatial Transcriptomics from Single-Cell Histological Patterns for Studying Colon Cancer Tumor Heterogeneity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.09.23296701. [PMID: 37873186 PMCID: PMC10593064 DOI: 10.1101/2023.10.09.23296701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background Spatial transcriptomics involves studying the spatial organization of gene expression within tissues, offering insights into the molecular diversity of tumors. While spatial gene expression is commonly amalgamated from 1-10 cells across 50-micron spots, recent methods have demonstrated the capability to disaggregate this information at subspot resolution by leveraging both expression and histological patterns. However, elucidating such information from histology alone presents a significant challenge but if solved can better permit spatial molecular analysis at cellular resolution for instances where Visium data is not available, reducing study costs. This study explores integrating single-cell histological and transcriptomic data to infer spatial mRNA expression patterns in whole slide images collected from a cohort of stage pT3 colorectal cancer patients. A cell graph neural network algorithm was developed to align histological information extracted from detected cells with single cell RNA patterns through optimal transport methods, facilitating the analysis of cellular groupings and gene relationships. This approach leveraged spot-level expression as an intermediary to co-map histological and transcriptomic information at the single-cell level. Results Our study demonstrated that single-cell transcriptional heterogeneity within a spot could be predicted from histological markers extracted from cells detected within a spot. Furthermore, our model exhibited proficiency in delineating overarching gene expression patterns across whole-slide images. This approach compared favorably to traditional patch-based computer vision methods as well as other methods which did not incorporate single cell expression during the model fitting procedures. Topological nuances of single-cell expression within a Visium spot were preserved using the developed methodology. Conclusion This innovative approach augments the resolution of spatial molecular assays utilizing histology as a sole input through synergistic co-mapping of histological and transcriptomic datasets at the single-cell level, anchored by spatial transcriptomics. While initial results are promising, they warrant rigorous validation. This includes collaborating with pathologists for precise spatial identification of distinct cell types and utilizing sophisticated assays, such as Xenium, to attain deeper subcellular insights.
Collapse
|
12
|
Mattiolo P, Gkountakos A, Centonze G, Bevere M, Piccoli P, Ammendola S, Pedrazzani C, Landoni L, Cingarlini S, Milella M, Milione M, Luchini C, Scarpa A, Simbolo M. Transcriptome analysis of primary sporadic neuroendocrine tumours of the intestine identified three different molecular subgroups. Pathol Res Pract 2023; 248:154674. [PMID: 37454491 DOI: 10.1016/j.prp.2023.154674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Intestinal neuroendocrine tumours (I-NETs) represent a non-negligible entity among intestinal neoplasms, with metastatic spreading usually present at the time of diagnosis. In this context, effective molecular actionable targets are still lacking. Through transcriptome analysis, we aim at refining the molecular taxonomy of I-NETs, also providing insights towards the identification of new therapeutic vulnerabilities. MATERIALS AND METHODS A retrospective series of 38 primary sporadic, surgically-resected I-NETs were assessed for transcriptome profiling of 20,815 genes. RESULTS Transcriptome analysis detected 643 highly expressed genes. Unsupervised hierarchical clustering, differential expression analysis and gene set enriched analysis identified three different tumour clusters (CL): CL-A, CL-B, CL-C. CL-A showed the overexpression of ARGFX, BIRC8, NANOS2, and SSTR4 genes. Its most characterizing signatures were those related to cell-junctions, and activation of mTOR and WNT pathway. CL-A was also enriched in T CD8 + lymphocytes. CL-B showed the overexpression of PCSK1, QPCT, ST18, and TPH1 genes. Its most characterizing signatures were those related to adipogenesis, neuroendocrine metabolism, and splice site machinery-related processes. CL-B was also enriched in T CD4 + lymphocytes. CL-C showed the overexpression of ALB, ANG, ARG1, and HP genes. Its most characterizing signatures were complement/coagulation and xenobiotic metabolism. CL-C was also enriched in M1/2 macrophages. These CL-based differences may have therapeutic implications in refining the management of I-NET patients. At last, we described a specific gene-set for differentiating I-NET from pancreatic NET. DISCUSSION Our data represent an additional step for refining the molecular taxonomy of I-NET, identifying novel transcriptome subgroups with different biology and therapeutic opportunities.
Collapse
Affiliation(s)
- Paola Mattiolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Anastasios Gkountakos
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Giovanni Centonze
- Pathology Unit 1, Pathology and Laboratory Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Michele Bevere
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Paola Piccoli
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Serena Ammendola
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Corrado Pedrazzani
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology, and Pediatrics, University and Hospital Trust of Verona, Verona, Italy
| | - Luca Landoni
- General and Pancreatic Surgery Department, Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Sara Cingarlini
- Department of Medicine, Section of Medical Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Michele Milella
- Department of Medicine, Section of Medical Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Massimo Milione
- Pathology Unit 1, Pathology and Laboratory Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy; ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy; ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy.
| |
Collapse
|
13
|
Ohata H, Shiokawa D, Sakai H, Kanda Y, Okimoto Y, Kaneko S, Hamamoto R, Nakagama H, Okamoto K. PROX1 induction by autolysosomal activity stabilizes persister-like state of colon cancer via feedback repression of the NOX1-mTORC1 pathway. Cell Rep 2023; 42:112519. [PMID: 37224811 DOI: 10.1016/j.celrep.2023.112519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/06/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023] Open
Abstract
Cancer chemoresistance is often attributed to slow-cycling persister populations with cancer stem cell (CSC)-like features. However, how persister populations emerge and prevail in cancer remains obscure. We previously demonstrated that while the NOX1-mTORC1 pathway is responsible for proliferation of a fast-cycling CSC population, PROX1 expression is required for chemoresistant persisters in colon cancer. Here, we show that enhanced autolysosomal activity mediated by mTORC1 inhibition induces PROX1 expression and that PROX1 induction in turn inhibits NOX1-mTORC1 activation. CDX2, identified as a transcriptional activator of NOX1, mediates PROX1-dependent NOX1 inhibition. PROX1-positive and CDX2-positive cells are present in distinct populations, and mTOR inhibition triggers conversion of the CDX2-positive population to the PROX1-positive population. Inhibition of autophagy synergizes with mTOR inhibition to block cancer proliferation. Thus, mTORC1 inhibition-mediated induction of PROX1 stabilizes a persister-like state with high autolysosomal activity via a feedback regulation that involves a key cascade of proliferating CSCs.
Collapse
Affiliation(s)
- Hirokazu Ohata
- Teikyo University, Advanced Comprehensive Research Organization, Tokyo 173-0003, Japan
| | | | - Hiroaki Sakai
- Teikyo University, Advanced Comprehensive Research Organization, Tokyo 173-0003, Japan
| | - Yusuke Kanda
- Teikyo University, Advanced Comprehensive Research Organization, Tokyo 173-0003, Japan
| | - Yoshie Okimoto
- Teikyo University, Advanced Comprehensive Research Organization, Tokyo 173-0003, Japan
| | - Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | | | - Koji Okamoto
- Teikyo University, Advanced Comprehensive Research Organization, Tokyo 173-0003, Japan.
| |
Collapse
|
14
|
Vlahović I, Rajc J, Švagelj I, Šolić K, Švagelj D. Potential predictors for CDX2 expression loss and mismatch repair deficiency in colorectal cancer. Pathol Oncol Res 2023; 29:1610908. [PMID: 37325467 PMCID: PMC10266418 DOI: 10.3389/pore.2023.1610908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
CDX2 expression loss is commonly associated with mismatch repair deficiency (dMMR) in colorectal cancer (CRC). However, there are only a few studies that have attempted to correlate CDX2 expression loss with specific MMR genes (MLH1, MSH2, MSH6, PMS2). This is a retrospective study of 327 patients who underwent surgery due to CRC. Nine patients (2.9%) had two synchronous CRCs, making the total sample 336 CRC. Histopathological data such as tumor type, tumor grade, perineural, lymphatic, and vascular invasion, pT stage, pN stage, peritumoral and intratumoral lymphocytic infiltration were collected and recorded in the database. After immunohistochemical analysis, CDX2 expression, MLH1, MSH2, MSH6, and PMS2 deficiency were also recorded. CDX2 expression loss was detected in 19 out of 336 CRCs (5.9%) and was associated with ascending colon CRC, partially mucinous adenocarcinoma, poorly differentiated carcinoma, and dMMR. Forty-four (13.1%) of CRCs were dMMR. We found a statistically significant association between CDX2 expression loss and MLH1 and PMS2 deficiency. Considering that most expression phenotypes include pairs of MMR genes, we analyzed MLH1/PMS2 and MSH2/MSH6 as heterodimers. Analysis of heterodimers showed a similar result, namely, that MLH1/PMS2 heterodimer deficiency was significantly associated with CDX2 expression loss. We also constructed a regression model for CDX2 expression loss and for dMMR. Poor tumor differentiation and MLH1/PMS2 heterodimer deficiency have been identified as potential predictors for CDX2 expression loss. CRC in the ascending colon and CDX2 expression loss have been identified as positive potential predictors of dMMR with rectal cancer as negative potential predictor of dMMR. Our study showed a significant association between CDX2 expression loss and MLH1 and PMS2 deficiency in CRC. We also managed to produce a regression model for CDX2 expression and showed that poor tumor differentiation and MLH1/PMS2 heterodimer deficiency are independent factors for CDX2 expression loss. We were the first to include CDX2 expression in a regression model for dMMR and showed that CDX2 expression loss can be used as a predictive factor for dMMR, which should be confirmed by further studies.
Collapse
Affiliation(s)
- Ivan Vlahović
- Department of Abdominal Surgery, Clinical Hospital Center Osijek, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Jasmina Rajc
- Department of Pathology and Forensic Medicine, Clinical Hospital Center Osijek, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Ivan Švagelj
- Department of Pathology and Cytology, General County Hospital Vinkovci, Vinkovci, Croatia
| | - Krešimir Šolić
- Department of Medical Statistics and Medical Informatics, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Dražen Švagelj
- Department of Pathology and Cytology, General County Hospital Vinkovci, Vinkovci, Croatia
| |
Collapse
|
15
|
Satala CB, Jung I, Gurzu S. Mucin-Phenotype and Expression of the Protein V-Set and Immunoglobulin Domain Containing 1 (VSIG1): New Insights into Gastric Carcinogenesis. Int J Mol Sci 2023; 24:ijms24108697. [PMID: 37240039 DOI: 10.3390/ijms24108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
In gastric cancer (GC), intestinal metaplasia (IM) is a common precursor lesion, but its relationship to the MUC2/MUC5AC/CDX2 axis is not completely understood. Although V-set and immunoglobulin domain containing 1 (VSIG1) is supposed to be a specific marker for gastric mucosa and GC, respectively, no data about its relationship with IM or mucin phenotype have been published. The aim of our study was to explore the possible linkage between IM and these four molecules. The clinicopathological features of 60 randomly selected GCs were examined in association with VSIG1, MUC2, MUC5AC and CDX2. Two online database platforms were also used to establish the transcription factors (TFs) network involved in MUC2/MUC5AC/CDX2 cascade. IM was more frequently encountered in females (11/16 cases) and in patients below 60 years old (10/16 cases). Poorly differentiated (G3) carcinomas tended to show a loss of CDX2 (27/33 cases) but not of MUC2 and MUC5AC. MUC5AC and CDX2 were lost in parallel with the depth of invasion of the pT4 stage (28/35 and 29/35 cases), while an advanced Dukes-MAC-like stage was only correlated with CDX2 and VSIG1 loss (20/37 and 30/37 cases). VSIG1 was directly correlated with MUC5AC (p = 0.04) as an indicator of gastric phenotype. MUC2-negative cases showed a propensity towards lymphatic invasion (37/40 cases) and distant metastases, while CDX2-negative cases tended to associate with hematogenous dissemination (30/40 cases). Regarding the molecular network, only 3 of the 19 TFs involved in this carcinogenic cascade (SP1, RELA, NFKB1) interacted with all targeted genes. In GC, VSIG1 can be considered an indicator of gastric phenotype carcinomas, where carcinogenesis is mainly driven by MUC5AC. Although infrequently encountered in GC, CDX2 positivity might indicate a locally advanced stage and risk for vascular invasion, especially in tumors developed against the background of IM. The loss of VSIG1 indicates a risk for lymph node metastases.
Collapse
Affiliation(s)
- Catalin-Bogdan Satala
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
- Department of Pathology, Clinical County Emergency Hospital, 540136 Targu Mures, Romania
| | - Ioan Jung
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
- Department of Pathology, Clinical County Emergency Hospital, 540136 Targu Mures, Romania
- Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Science and Technology, 540136 Targu Mures, Romania
| |
Collapse
|
16
|
Mocan LP, Rusu I, Melincovici CS, Boșca BA, Mocan T, Crăciun R, Spârchez Z, Iacobescu M, Mihu CM. The Role of Immunohistochemistry in the Differential Diagnosis between Intrahepatic Cholangiocarcinoma, Hepatocellular Carcinoma and Liver Metastasis, as Well as Its Prognostic Value. Diagnostics (Basel) 2023; 13:diagnostics13091542. [PMID: 37174934 PMCID: PMC10177238 DOI: 10.3390/diagnostics13091542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is the second most frequent primary hepatic malignant tumor, after hepatocellular carcinoma (HCC). Its incidence has risen worldwide, yet the only potentially curative treatment, surgical resection, is seldom applicable, and the median overall survival remains extremely low. So far, there are no personalized therapy regimens. This study investigated whether routine immunohistochemical stains have diagnostic and/or prognostic value in iCCA. Clinical, imaging, and pathology data were retrospectively gathered for patients diagnosed with iCCA, HCC, or liver metastases assessed using liver needle biopsies. Three study groups with an equal number of cases (n = 65) were formed. In the iCCA group, CK19, CA19-9, CK7, and CEA demonstrated the highest sensitivities (100%, 100%, 93.7%, and 82.6%, respectively). The most relevant stains used for diagnosing HCCs were Glypican 3, CD34 (sinusoidal pattern), and Hep Par 1, with corresponding sensitivities of 100%, 100%, and 98.2%. The immunohistochemical panels for diagnosing metastatic tumors were chosen after correlating the clinical data and morphologic H&E aspects. Moderate/intensely positive CK7 expression and absent/low amount of intratumoral immune cells were favorable prognostic factors and correlated with increased overall survival in both the univariate analysis and the multivariate regression adjusted for age, existence of cirrhosis, number of tumors, and tumor differentiation.
Collapse
Affiliation(s)
- Lavinia Patricia Mocan
- Department of Histology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ioana Rusu
- Department of Pathology, "Prof. Dr. Octavian Fodor" Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Carmen Stanca Melincovici
- Department of Histology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Bianca Adina Boșca
- Department of Histology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Tudor Mocan
- UBBMed Department, Babeș-Balyai University, 400347 Cluj-Napoca, Romania
- Department of Gastroenterology, "Prof. Dr. Octavian Fodor" Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Rareș Crăciun
- Department of Gastroenterology, "Prof. Dr. Octavian Fodor" Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- 3rd Medical Department, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Zeno Spârchez
- Department of Gastroenterology, "Prof. Dr. Octavian Fodor" Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- 3rd Medical Department, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Maria Iacobescu
- Department of Proteomics and Metabolomics, MedFUTURE Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
17
|
Ziranu P, Pretta A, Pozzari M, Maccioni A, Badiali M, Fanni D, Lai E, Donisi C, Persano M, Gerosa C, Puzzoni M, Bardanzellu F, Ambu R, Pusceddu V, Dubois M, Cerrone G, Migliari M, Murgia S, Spanu D, Pretta G, Aimola V, Balconi F, Murru S, Faa G, Scartozzi M. CDX-2 expression correlates with clinical outcomes in MSI-H metastatic colorectal cancer patients receiving immune checkpoint inhibitors. Sci Rep 2023; 13:4397. [PMID: 36928082 PMCID: PMC10020482 DOI: 10.1038/s41598-023-31538-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) showed efficacy in metastatic colorectal cancer (mCRC) with mismatch-repair deficiency or high microsatellite instability (dMMR-MSI-H). Unfortunately, a patient's subgroup did not benefit from immunotherapy. Caudal-related homeobox transcription factor 2 (CDX-2) would seem to influence immunotherapy's sensitivity, promoting the chemokine (C-X-C motif) ligand 14 (CXCL14) expression. Therefore, we investigated CDX-2 role as a prognostic-predictive marker in patients with mCRC MSI-H. We retrospectively collected data from 14 MSI-H mCRC patients treated with ICIs between 2019 and 2021. The primary endpoint was the 12-month progression-free-survival (PFS) rate. The secondary endpoints were overall survival (OS), PFS, objective response rate (ORR), and disease control rate (DCR). The PFS rate at 12 months was 81% in CDX-2 positive patients vs 0% in CDX-2 negative patients (p = 0.0011). The median PFS was not reached (NR) in the CDX-2 positive group versus 2.07 months (95%CI 2.07-10.8) in CDX-2 negative patients (p = 0.0011). Median OS was NR in CDX-2-positive patients versus 2.17 months (95% Confidence Interval [CI] 2.17-18.7) in CDX2-negative patients (p = 0.026). All CDX-2-positive patients achieved a disease response, one of them a complete response. Among CDX-2-negative patients, one achieved stable disease, while the other progressed rapidly (ORR: 100% vs 0%, p = 0.0005; DCR: 100% vs 50%, p = 0.02). Twelve patients received 1st-line pembrolizumab (11 CDX-2 positive and 1 CDX-2 negative) not reaching median PFS, while two patients (1 CDX-2 positive and 1 CDX-2 negative) received 3rd-line pembrolizumab reaching a median PFS of 10.8 months (95% CI, 10.8-12.1; p = 0.036). Although our study reports results on a small population, the prognostic role of CDX-2 in CRC seems confirmed and could drive a promising predictive role in defining the population more sensitive to immunotherapy treatment. Modulating the CDX-2/CXCL14 axis in CDX-2-negative patients could help overcome primary resistance to immunotherapy.
Collapse
Affiliation(s)
- Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Andrea Pretta
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Marta Pozzari
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Antonio Maccioni
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Manuela Badiali
- Genetic and Genomic Laboratory, Pediatric Children Hospital A. Cao ASL8, Cagliari, Italy
| | - Daniela Fanni
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital and University of Cagliari, Cagliari, Italy
| | - Eleonora Lai
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Clelia Donisi
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Mara Persano
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Clara Gerosa
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Puzzoni
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Fabio Bardanzellu
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Rossano Ambu
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital and University of Cagliari, Cagliari, Italy
| | - Valeria Pusceddu
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Marco Dubois
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Giulia Cerrone
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Migliari
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Sara Murgia
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Dario Spanu
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Gianluca Pretta
- Science Department, King's School Hove, Hangleton Way, Hove, BN3 8BN, UK
| | - Valentina Aimola
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital and University of Cagliari, Cagliari, Italy
| | - Francesca Balconi
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Stefania Murru
- Genetic and Genomic Laboratory, Pediatric Children Hospital A. Cao ASL8, Cagliari, Italy
| | - Gavino Faa
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital and University of Cagliari, Cagliari, Italy
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
18
|
Cutaneous Squamous Cell Carcinoma with Signet-Ring Cell Component and CDX2 Expression in a Patient Treated with PD-1 Inhibitor: A Case Report of a Common Tumor with Unusual Differentiation. Case Rep Pathol 2023; 2023:3378044. [DOI: 10.1155/2023/3378044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 02/11/2023] Open
Abstract
Signet-ring cell squamous cell carcinoma (SRCSCC) is an uncommon variant of cutaneous SCC that has been reported in the head and neck region. Herein, we present a case of a 56-year-old female with a cutaneous SCC that recurred after surgical excision, during treatment with cemiplimab (a programmed death receptor-1 (PD-1) inhibitor). Histologically, the recurrent SCC revealed a second component characterized by the presence of signet-ring-like cells (SRLCs). Immunohistochemical studies demonstrated that the tumor cells were positive for P63, CK5/6, CDX2, and P53 while negative for P16, CK7, CK20, and CD68 stains. An abnormal expression of B-catenin was also observed in the tumor. To our knowledge, SRCSCC developing during treatment with an immune checkpoint inhibitor has not been documented in the literature. Our findings suggest a form of acquired SCC cell resistance to immunotherapy that might involve CDX2-related pathways.
Collapse
|
19
|
Asahina Y, Hashimoto H, Aihara M, Noie T, Morikawa T. Impact of Neoadjuvant Chemotherapy on SATB2 Expression in Colorectal Carcinomas: SATB2 Positivity is Preserved in Most Cases, but Down-Expressed in Effective Cases of Chemotherapy. Int J Surg Pathol 2023; 31:46-55. [PMID: 35343276 DOI: 10.1177/10668969221088881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Special AT-rich sequence-binding protein 2 (SATB2) is a novel, diagnostically useful, and highly sensitive immunohistochemical marker for both primary and metastatic colorectal or appendiceal tumors. In the present study, we aimed to assess the impact of neoadjuvant chemotherapy on SATB2 expression in primary colorectal carcinomas and their corresponding liver metastases. Forty-four patients with colorectal carcinomas who received neoadjuvant chemotherapy were included. SATB2 expression in specimens of biopsy, resected primary colorectal carcinomas, and resected metastatic foci were examined by immunohistochemistry and compared to caudal-type homeobox transcription factor 2 (CDX2). Using a modified H-score, expressions were scored semiquantitatively for both staining intensity and tumor cell proportion with nuclear staining. SATB2 was positive in 43/44 cases (98%) in biopsy specimens, 42/44 cases (96%) in resected colorectal carcinomas with neoadjuvant chemotherapy, and 9/9 cases (100%) with liver metastases. However, these expressions were variably decreased, and the H-score was lower in resected colorectal carcinomas (158 ± 69) than in biopsy specimens (174 ± 60) (p < 0.01). The proportion of SATB2-positive area of colorectal carcinoma was 93% in metastatic foci, while the CDX2-positive area was 78%. When categorized by histopathological tumor regression, the most effective tumors of chemotherapy showed the lowest H-score in resected colorectal carcinomas among the three groups (p < 0.01). SATB2 is a useful marker for both primary colorectal carcinoma and corresponding liver metastases, even with neoadjuvant chemotherapy. However, caution should be exercised when performing needle biopsy for metastatic foci with neoadjuvant therapy because expressions could be decreased, especially in chemotherapy-effective cases, and show immunohistochemically negative results.
Collapse
Affiliation(s)
- Yuichi Asahina
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.,Department of Diagnostic Pathology, 13635NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625, Japan
| | - Hirotsugu Hashimoto
- Department of Diagnostic Pathology, 13635NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625, Japan.,Faculty of Healthcare, Tokyo Healthcare University, 4-1-17, Higashi-Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Tamaki Noie
- Department of Surgery, 13635NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625, Japan
| | - Teppei Morikawa
- Department of Diagnostic Pathology, 13635NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625, Japan.,Faculty of Healthcare, Tokyo Healthcare University, 4-1-17, Higashi-Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
| |
Collapse
|
20
|
CDX2 expression in primary skin tumors-case series and review of the literature. Hum Pathol 2022; 129:1-10. [PMID: 35926811 DOI: 10.1016/j.humpath.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022]
Abstract
CDX2 expression characterizes tumors of gastrointestinal origin, including those of intestinal-type differentiation. In dermatopathology, CDX2 expression is reported in 4 settings: cutaneous metastases from carcinomas of intestinal origin or differentiation, extramammary Paget's disease associated with an underlying colorectal or urothelial tumor, pilomatricomas and pilomatrical carcinomas, and rare primary cutaneous (adeno)squamous carcinomas with intestinal immunophenotype. Over 4 years (10/2017-10/2021), 252 dermatopathology cases with CDX2 immunostain were reviewed, revealing 46 cases with confirmed positive staining. Among them, 11 cases confirmed as primary nonintestinal type cutaneous carcinoma with definitively positive CDX2 nuclear staining were further studied. All cases demonstrated basaloid morphology with atypia, variable necrosis, and brisk mitotic activity. Cases 1-5 had heterogeneous features that cannot be further classified, including 2 cases with neuroendocrine or pseudoglandular/pseudopapillary features, and 1 case with human papillomavirus high-risk E6/E7 ISH positivity. In cases 6 through 11, the diagnosis of pilomatrical carcinoma was supported morphologically. This study substantiates the association of CDX2 with pilomatrical carcinoma. In addition, CDX2 positivity was observed in a subset of basaloid cutaneous carcinomas of ambiguous classification. However, this finding also raises a diagnostic pitfall in clinical diagnostic specificity of the CDX2 immunostain in skin cancers, which can be observed in rare while heterogeneous subsets of primary cutaneous carcinomas with primitive cytomorphology.
Collapse
|
21
|
Fuller LD, Dunn A, Huber AR, Vyas M, Gonzalez RS. Clinicopathologic Features of Gynecologic Malignancies Presenting Clinically as Colonic Malignancies. Am J Clin Pathol 2022; 157:82-89. [PMID: 34302332 DOI: 10.1093/ajcp/aqab097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To systematically evaluate gynecologic malignancies (adnexal or uterine) causing gastrointestinal (GI) signs (eg, mass on colonoscopy) or symptoms (eg, bloody stools) clinically mimicking a GI primary malignancy. METHODS The archives of 2 institutions were retrospectively reviewed for gynecologic malignancies clinically manifesting as colonic lesions. For each case, available radiologic, endoscopic, and histologic findings were recorded. RESULTS We identified 16 cases: 13 biopsies and 3 resections. The masses were localized in the rectosigmoid (14 cases [88%]), right (1 case [6%]), and transverse (1 case [6%]) colon. Gastrointestinal-type complaints included abdominal pain, weight loss, hematochezia, and obstruction; 1 case was asymptomatic and found during screening colonoscopy. Nine patients (56%) had no known prior gynecologic malignancy, and in only 2 of these patients was there some clinical suspicion of a noncolonic primary malignancy. Most cases (13 [81%]) were serous carcinoma, usually high-grade adnexal or primary peritoneal. Six cases (38%) directly extended into the colon, and 7 (44%) metastasized; route of spread was unclear in the others. Only 1 case (6%) showed mucosal involvement, and none showed desmoplasia or dirty necrosis. Four of the 13 serous carcinomas (31%) showed psammoma bodies. CONCLUSIONS Advanced gynecologic malignancies, most commonly serous carcinoma, can rarely manifest as GI lesions. Clues to noncolonic origin on biopsy include lack of colonic mucosal involvement/dysplasia, desmoplasia, or dirty necrosis.
Collapse
Affiliation(s)
| | - Andrew Dunn
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA
| | - Aaron R Huber
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA
| | - Monika Vyas
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Raul S Gonzalez
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
22
|
Nayak J, Mohanty P, Lenka A, Sahoo N, Agrawala S, Panigrahi SK. Histopathological and Immunohistochemical Evaluation of CDX2 and Ki67 in Colorectal Lesions with their Expression Pattern in Different Histologic Variants, Grade, and Stage of Colorectal Carcinomas. J Microsc Ultrastruct 2021; 9:183-189. [PMID: 35070694 PMCID: PMC8751680 DOI: 10.4103/jmau.jmau_69_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/07/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022] Open
Abstract
Background: A variety of colorectal lesions are surgically treated encompassing both benign and malignant polyps and colorectal cancer (CRC). CRC is the third most common cause of death in developed countries. Over the last decade, CDX2 has been linked to CRC progression, with reduced expression of the protein associated with more advanced tumor stage, vessel invasion, and metastasis. Aims and Objectives: To analyze the histopathology and immunohistochemistry (IHC) of CDX2 and Ki67 with their expression pattern; in different lesions of colon and rectum with special reference to various grade/stage/histological variants of CRC and to find out whether they can be used as possible predictive marker. Materials and Methods: The study conducted was hospital based, both retrospective and perspective type comprising colorectal samples of total 367 cases (N) within a period of 2½ years. Surgical samples were collected, then grossed, processed, stained with routine hematoxylin and eosin stain in our department followed by IHC of CDX2 and Ki67 in only 60 randomly selected cases (n = 60). Results: Out of total 367 cases, 265 cases were prospective study and 102 cases were retrospective study (240 cases were colonic lesions, and 127 are rectal lesions). The samples included were both from colonoscopy biopsy (small) 319 cases and 48 colectomy specimen (large). Mean age of the study participants was 49.62 years with a standard deviation of 17.34 years and predominantly male, but the difference was not statistically significant (P > 0.05). Colon (238 cases, 64.9%) as a whole affected more than rectum and left sided tumors more than the right side. All 60 cases were found to be positive for CDX2 expression (i.e., 100%); majority (n = 38) being carcinoma cases possessing high score and was statistically significant (P = 0.008, using Chi-square test) indicating strong association, whereas Ki-67 showed an increased index from noneoplastic to neoplastic cases. Conclusion: These markers can be used as future predictive biomarkers which will precisely evaluate risk group, prognosis, and response to therapy hence can be used as target therapy reducing irrational treatment.
Collapse
Affiliation(s)
- Jhasaketan Nayak
- Department of Hemato-Oncology, AIIMS, Bhubaneswar, Odisha, India
| | - Pranita Mohanty
- Department of Pathology, IMS and SUM Hospital, Bhubaneswar, Odisha, India
| | - Anasuya Lenka
- Department of Pathology, IMS and SUM Hospital, Bhubaneswar, Odisha, India
| | - Nibedita Sahoo
- Department of Pathology, IMS and SUM Hospital, Bhubaneswar, Odisha, India
| | - Sunil Agrawala
- Department of Surgical Oncology, IMS and SUM Hospital, Bhubaneswar, Odisha, India
| | | |
Collapse
|
23
|
Ishizuki S, Nakamura Y. Extramammary Paget's Disease: Diagnosis, Pathogenesis, and Treatment with Focus on Recent Developments. Curr Oncol 2021; 28:2969-2986. [PMID: 34436026 PMCID: PMC8395499 DOI: 10.3390/curroncol28040260] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022] Open
Abstract
Extramammary Paget's disease (EMPD) is a rare neoplasm that usually develops in apocrine gland-bearing areas, such as the vulva, scrotum, and penis. EMPD may present with a focal, multifocal, or an ectopic lesion. Clinically, EMPD lesions often exhibit infiltrative erythema, which is sometimes similar to other skin disorders such as eczema. While primary EMPD arises as intraepithelial neoplasm of the epidermis, EMPD-like lesions may occur from epidermotropic spread of malignant cells or direct extension from an underlying internal neoplasm, known as secondary EMPD. Because treatment strategies differ for primary EMPD and secondary EMPD, accurate diagnosis based on detailed histopathological evaluation is required. In the early stages, EMPD usually shows indolent growth, and most cases are diagnosed as carcinoma in situ. However, invasive lesions may result in metastases, and deep invasion is associated with high incidence of metastases. Conventional chemotherapies have been used for EMPD treatment in patients with distant metastases, but the efficacy is not satisfactory, and the prognosis for such patients remains poor. Recent studies have provided various insights into the molecular pathogenesis of the development and advancement of EMPD, which may lead to novel treatment approaches for metastatic EMPD. This review addresses the diagnosis, pathogenesis, and treatment of EMPD with focus on recent progress in understanding this disease.
Collapse
Affiliation(s)
| | - Yoshiyuki Nakamura
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| |
Collapse
|
24
|
Malignant Sinonasal Tumors: Update on Histological and Clinical Management. ACTA ACUST UNITED AC 2021; 28:2420-2438. [PMID: 34287240 PMCID: PMC8293118 DOI: 10.3390/curroncol28040222] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 02/03/2023]
Abstract
Tumors of nasal cavity and paranasal sinuses (TuNSs) are rare and heterogeneous malignancies, presenting different histological features and clinical behavior. We reviewed the literature about etiology, biology, and clinical features of TuNSs to define pathologic features and possible treatment strategies. From a diagnostic point of view, it is mandatory to have high expertise and perform an immunohistochemical assessment to distinguish between different histotypes. Due to the extreme rarity of these neoplasms, there are no standard and evidence-based therapeutic strategies, lacking prospective and large clinical trials. In fact, most studies are retrospective analyses. Surgery represents the mainstay of treatment of TuNSs for small and localized tumors allowing complete tumor removal. Locally advanced lesions require more demolitive surgery that should be always followed by adjuvant radio- or chemo-radiotherapy. Recurrent/metastatic disease requires palliative chemo- and/or radiotherapy. Many studies emphasize the role of specific genes mutations in the development of TuNSs like mutations in the exons 4-9 of the TP53 gene, in the exon 9 of the PIK3CA gene and in the promoter of the TERT gene. In the near future, this genetic assessment will have new therapeutic implications. Future improvements in the understanding of the etiology, biology, and clinical features of TuNSs are warranted to improve their management.
Collapse
|
25
|
Das B, Okamoto K, Rabalais J, Young JA, Barrett KE, Sivagnanam M. Aberrant Epithelial Differentiation Contributes to Pathogenesis in a Murine Model of Congenital Tufting Enteropathy. Cell Mol Gastroenterol Hepatol 2021; 12:1353-1371. [PMID: 34198013 PMCID: PMC8479479 DOI: 10.1016/j.jcmgh.2021.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Congenital tufting enteropathy (CTE) is an intractable diarrheal disease of infancy caused by mutations of epithelial cell adhesion molecule (EpCAM). The cellular and molecular basis of CTE pathology has been elusive. We hypothesized that the loss of EpCAM in CTE results in altered lineage differentiation and defects in absorptive enterocytes thereby contributing to CTE pathogenesis. METHODS Intestine and colon from mice expressing a CTE-associated mutant form of EpCAM (mutant mice) were evaluated for specific markers by quantitative real-time polymerase chain reaction, Western blotting, and immunostaining. Body weight, blood glucose, and intestinal enzyme activity were also investigated. Enteroids derived from mutant mice were used to assess whether the decreased census of major secretory cells could be rescued. RESULTS Mutant mice exhibited alterations in brush-border ultrastructure, function, disaccharidase activity, and glucose absorption, potentially contributing to nutrient malabsorption and impaired weight gain. Altered cell differentiation in mutant mice led to decreased enteroendocrine cells and increased numbers of nonsecretory cells, though the hypertrophied absorptive enterocytes lacked key features, causing brush border malfunction. Further, treatment with the Notch signaling inhibitor, DAPT, increased the numbers of major secretory cell types in mutant enteroids (graphical abstract 1). CONCLUSIONS Alterations in intestinal epithelial cell differentiation in mutant mice favor an increase in absorptive cells at the expense of major secretory cells. Although the proportion of absorptive enterocytes is increased, they lack key functional properties. We conclude that these effects underlie pathogenic features of CTE such as malabsorption and diarrhea, and ultimately the failure to thrive seen in patients.
Collapse
Affiliation(s)
- Barun Das
- Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Kevin Okamoto
- Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - John Rabalais
- Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Jocelyn A. Young
- Department of Pediatrics, University of California, San Diego, La Jolla, California,Department of Pediatrics, Rady Children’s Hospital, San Diego, California
| | - Kim E. Barrett
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Mamata Sivagnanam
- Department of Pediatrics, University of California, San Diego, La Jolla, California,Department of Pediatrics, Rady Children’s Hospital, San Diego, California,Correspondence Address correspondence to: Mamata Sivagnanam, MD, Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, 9500 Gilman Drive, La Jolla, CA 92093. fax: 858-967-8917.
| |
Collapse
|
26
|
Khumukcham SS, Manavathi B. Two decades of a protooncogene HPIP/PBXIP1: Uncovering the tale from germ cell to cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188576. [PMID: 34090932 DOI: 10.1016/j.bbcan.2021.188576] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 01/17/2023]
Abstract
Hematopoietic PBX interacting protein (HPIP or pre-B-cell leukemia transcription factor interacting protein (PBXIP1) was discovered two decades ago as a corepressor of pre-B-cell leukemia homeobox (PBX) 1 with a vital functional role in hematopoiesis. Later it emerged as a potential biomarker of poor prognosis and tumorigenesis for more than a dozen different cancers. It regulates aggressive cancer phenotypes, cell proliferation, metastasis, EMT, etc. The anomaly in the regulation of HPIP is linked with physiological disorders like renal fibrosis, chronic kidney disease and osteoarthritis. Scientists have unraveled more than twenty interacting proteins of HPIP and its functional role in various physiological and cellular processes that involves normal neuronal development, embryogenesis, endometrium decidualization, and germ cell proliferation. Over the past 20 years, we have witnessed the emerging role of HPIP and its association with a myriad of cellular activities ranging from germ cell proliferation to cancer aggressiveness, modulating multitude of signaling cascades like TGF-β1, PI3K/AKT, Wnt, mTOR, and Sonic hedgehog signaling pathways. This review will give the current understanding of HPIP, in terms of its diverse functions, theoretical ideas, and further explore cellular links and promising areas that need to be investigated. We also provide a comprehensive overview of the transcript variants of HPIP and distinct sets of transcription factors regulating their expression, which may help to understand the role of HPIP in various cellular or physiological conditions.
Collapse
Affiliation(s)
- Saratchandra Singh Khumukcham
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Bramanandam Manavathi
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
27
|
Melincovici CS, Boşca AB, Şuşman S, Cutaş A, Mărginean M, Ilea A, Moldovan IM, Jianu EM, Neag MA, Bulboacă AE, Mihu CM. Assessment of mismatch repair deficiency, CDX2, beta-catenin and E-cadherin expression in colon cancer: molecular characteristics and impact on prognosis and survival - an immunohistochemical study. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:715-727. [PMID: 33817713 PMCID: PMC8112747 DOI: 10.47162/rjme.61.3.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microsatellite instability (MSI) or the deficiency of mismatch repair (MMR) proteins is one of the molecular pathways of colorectal tumorigenesis and may have important clinical implications in predicting the treatment response. We evaluated the relationship between clinicopathological features and MMR proteins [mutL homologue 1 (MLH1), mutS homologue 2 (MSH2), mutS homologue 6 (MSH6), postmeiotic segregation increased 2 (PMS2)], adhesion molecules (E-cadherin, beta-catenin) and caudal-type homeobox 2 (CDX2) in 31 patients with colon adenocarcinoma, using immunohistochemistry. We also aimed to assess the prognostic value of the studied proteins. MLH1 loss was correlated to PMS2 loss (p=0.006) and MSH2 loss (p=0.023); MSH2 loss was significantly associated to MSH6 loss (p=0.011). Tumors with MSH6 loss, together with tumors with PMS2 loss, covered all the patients with MSI status. We found a significant correlation between MSI tumors and mucinous histological type (p=0.03), but no significant associations with other clinicopathological features or with survival rate. There was a significant correlation between E-cadherin expression and differentiation degree (p=0.018) and between beta-catenin expression and lymph node invasion (p=0.046). No significant association between CDX2 loss and any clinical or pathological features was found (p>0.05). No significant differences were identified in overall survival according to E-cadherin, beta-catenin or CDX2 expression (p>0.05). In our study, PMS2 loss was significantly correlated with CDX2 loss (p=0.03). In conclusion, the molecular analysis of biological markers for colon cancer may be important for patient stratification, in order to select the optimal treatment algorithm. Our results suggest that probably the double panel (MSH6 and PMS2) is enough to detect the MSI status, instead of using the quadruple panel.
Collapse
Affiliation(s)
- Carmen Stanca Melincovici
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania;
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
De Michele S, Remotti HE, Del Portillo A, Lagana SM, Szabolcs M, Saqi A. SATB2 in Neoplasms of Lung, Pancreatobiliary, and Gastrointestinal Origins. Am J Clin Pathol 2021; 155:124-132. [PMID: 32914850 DOI: 10.1093/ajcp/aqaa118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Special AT-rich binding protein 2 (SATB2) immunohistochemistry (IHC) has high sensitivity and specificity for colorectal adenocarcinoma (CRC), but data on its expression in specific subsets of pulmonary, gastric, small bowel, and pancreatobiliary adenocarcinomas (ADCAs) are relatively limited or discordant. We assessed SATB2 expression in a large cohort of ADCAs from these sites to determine its reliability in distinguishing CRC from them. METHODS SATB2 IHC was performed on 335 neoplasms, including 40 lung ADCAs, 165 pancreatobiliary neoplasms (34 intraductal papillary mucinous neoplasms [IPMNs], 19 pancreatic ADCAs, 112 cholangiocarcinomas [CCs]), and 35 gastric, 13 small bowel, 36 ampullary (AMP), and 46 CRC ADCAs. The cases were evaluated for positivity (defined as ≥5% nuclear staining), and an H-score was calculated based on the percentage of SATB2+ cells and staining intensity. Analysis was performed to determine the optimal H-score threshold to separate CRC and non-CRC. RESULTS SATB2 was positive in 3% of lung, 2% of CC, 17% of gastric, 38% of small bowel, and 6% of AMP ADCAs. All pancreatic ADCA/IPMNs were negative, and 87% CRCs were positive. CONCLUSIONS SATB2 is not entirely specific for colorectal origin and can be expressed in a subset of gastrointestinal ADCAs. It is most useful in the differential of CRC vs lung and pancreatobiliary ADCAs.
Collapse
Affiliation(s)
- Simona De Michele
- Department of Pathology and Cell Biology at Columbia University Irving Medical Center, New York, NY
| | - Helen E Remotti
- Department of Pathology and Cell Biology at Columbia University Irving Medical Center, New York, NY
| | - Armando Del Portillo
- Department of Pathology and Cell Biology at Columbia University Irving Medical Center, New York, NY
| | - Stephen M Lagana
- Department of Pathology and Cell Biology at Columbia University Irving Medical Center, New York, NY
| | - Matthias Szabolcs
- Department of Pathology and Cell Biology at Columbia University Irving Medical Center, New York, NY
| | - Anjali Saqi
- Department of Pathology and Cell Biology at Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
29
|
McCarty MF, Lerner A. Perspective: Prospects for Nutraceutical Support of Intestinal Barrier Function. Adv Nutr 2020; 12:316-324. [PMID: 33126251 PMCID: PMC8243597 DOI: 10.1093/advances/nmaa139] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/28/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Impairment of intestinal barrier function is linked to certain pathologies and to aging, and can be a cause of bacterial infections, systemic and hepatic inflammation, food allergies, and autoimmune disorders. The formation and maintenance of intestinal tight junctions is supported by glucagon-like peptide-2 (GLP-2), which via insulin-like growth factor I activity boosts phosphoinositide 3-kinase/Akt/mammalian target of rapamycin complex 1 (PI3K/Akt/mTORC1) signaling in enterocytes. 5'-AMP-activated protein kinase (AMPK) activity as well as estrogen receptor-β (ERβ) activity are also protective in this regard. Conversely, activation of mitogen-activated protein kinases (MAPKs) and cellular Src (c-Src) under inflammatory conditions can induce dissociation of tight junctions. Hence, nutraceuticals that promote GLP-2 secretion from L cells-effective pre/probiotics, glycine, and glutamine-as well as diets rich in soluble fiber or resistant starch, can support intestinal barrier function. AMPK activators-notably berberine and the butyric acid produced by health-promoting microflora-are also beneficial in this regard, as are soy isoflavones, which function as selective agonists for ERβ. The adverse impact of MAPK and c-Src overactivation on the intestinal barrier can be combatted with various antioxidant measures, including phycocyanobilin, phase 2-inducer nutraceuticals, and N-acetylcysteine. These considerations suggest that rationally designed functional foods or complex supplementation programs could have clinical potential for supporting and restoring healthful intestinal barrier function.
Collapse
|
30
|
Ozguldez HO, Fan R, Bedzhov I. Placental gene editing via trophectoderm-specific Tat-Cre/loxP recombination. Development 2020; 147:dev.190371. [PMID: 32541013 DOI: 10.1242/dev.190371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/05/2020] [Indexed: 11/20/2022]
Abstract
The ways in which placental defects affect embryonic development are largely overlooked because of the lack of a trophoblast-specific approach for conditional gene ablation. To tackle this, we have established a simple, fast and efficient method for trophectodermal Tat-Cre/loxP recombination. We used the natural permeability barrier in mouse blastocysts in combination with off-the-shelf Tat-Cre recombinase to achieve editing of conditional alleles in the trophoblast lineage. This direct approach enables gene function analysis during implantation and placentation in mice, thereby crucially helping to broaden our understanding of human reproduction and development.
Collapse
Affiliation(s)
- Hatice O Ozguldez
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Rui Fan
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Ivan Bedzhov
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| |
Collapse
|
31
|
Saller J, Al Diffalha S, Neill K, Bhaskar RA, Oliveri C, Boulware D, Levine H, Kalvaria I, Corbett FS, Khazanchi A, Klapman J, Coppola D. CDX-2 Expression in Esophageal Biopsies Without Goblet Cell Intestinal Metaplasia May Be Predictive of Barrett's Esophagus. Dig Dis Sci 2020; 65:1992-1998. [PMID: 31691172 PMCID: PMC7771382 DOI: 10.1007/s10620-019-05914-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/20/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND CDX-2 is a nuclear homeobox transcription factor not normally expressed in esophageal and gastric epithelia, reported to highlight intestinal metaplasia (IM) in the esophagus. Pathological absence of goblet cells at initial screening via hematoxylin and eosin (HE) and alcian blue (AB) staining results in patient exclusion from surveillance programs. AIMS This study aimed to determine whether non-goblet cell IM, as defined by CDX-2 positivity, can be considered to be a precursor to Barrett's esophagus (BE). METHODS This study received IRB approval (17,284). Patients with gastroesophageal reflux disease (n = 181) who underwent upper-gastrointestinal endoscopy with biopsies of the distal esophagus to rule out BE using HE/AB staining and CDX-2 immunostaining were followed for 3 years. Initial and follow-up staining results were evaluated for age/sex. RESULTS Differences between development of goblet cell IM in CDX-2-negative and CDX-2-positive groups were evaluated. A Kaplan-Meier curve showed that, out of the 134 patients initially positive for CDX-2, 25 (18.7%) had developed goblet cell IM after 2 years and 106 (79.1%) after 3 years. Conversely, of the 47 patients initially negative for CDX-2, 8 (17.9%) developed goblet cell IM after 24 months and only 11 (23.8%) after 40 to 45 months (P = .049; age-adjusted Cox proportional hazard regression model). CONCLUSION In cases that are initially AB negative and CDX-2 positive, CDX-2 was demonstrated to have a potential prognostic utility for early detection of progression to BE. CDX-2 expression is significantly predictive for risk of goblet cell IM development 40 to 45 months after initial biopsy.
Collapse
Affiliation(s)
- James Saller
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sameer Al Diffalha
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kevin Neill
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Rahill A Bhaskar
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - David Boulware
- Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Isaac Kalvaria
- Florida Digestive Health Specialists, Lakewood Ranch, FL, USA
| | - F Scott Corbett
- Florida Digestive Health Specialists, Lakewood Ranch, FL, USA
| | - Arun Khazanchi
- Florida Digestive Health Specialists, Lakewood Ranch, FL, USA
| | - Jason Klapman
- Endoscopy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Domenico Coppola
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
- Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
32
|
Engel RM, Chan WH, Nickless D, Hlavca S, Richards E, Kerr G, Oliva K, McMurrick PJ, Jardé T, Abud HE. Patient-Derived Colorectal Cancer Organoids Upregulate Revival Stem Cell Marker Genes following Chemotherapeutic Treatment. J Clin Med 2020; 9:jcm9010128. [PMID: 31906589 PMCID: PMC7019342 DOI: 10.3390/jcm9010128] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer stem cells have been proposed to drive disease progression, tumour recurrence and chemoresistance. However, studies ablating leucine rich repeat containing G protein-coupled receptor 5 (LGR5)-positive stem cells have shown that they are rapidly replenished in primary tumours. Following injury in normal tissue, LGR5+ stem cells are replaced by a newly defined, transient population of revival stem cells. We investigated whether markers of the revival stem cell population are present in colorectal tumours and how this signature relates to chemoresistance. We examined the expression of different stem cell markers in a cohort of patient-derived colorectal cancer organoids and correlated expression with sensitivity to 5-fluorouracil (5-FU) treatment. Our findings revealed that there was inter-tumour variability in the expression of stem cell markers. Clusterin (CLU), a marker of the revival stem cell population, was significantly enriched following 5-FU treatment and expression correlated with the level of drug resistance. Patient outcome data revealed that CLU expression is associated with both lower patient survival and an increase in disease recurrence. This suggests that CLU is a marker of drug resistance and may identify cells that drive colorectal cancer progression.
Collapse
Affiliation(s)
- Rebekah M. Engel
- Department of Anatomy and Developmental Biology, Monash University, Clayton Victoria 3800, Australia; (R.M.E.); (W.H.C.); (S.H.); (E.R.); (G.K.)
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern Victoria 3144, Australia; (K.O.); (P.J.M.)
| | - Wing Hei Chan
- Department of Anatomy and Developmental Biology, Monash University, Clayton Victoria 3800, Australia; (R.M.E.); (W.H.C.); (S.H.); (E.R.); (G.K.)
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - David Nickless
- Anatomical Pathology Department, Cabrini Pathology, Cabrini Hospital, Malvern, Victoria 3144, Australia;
| | - Sara Hlavca
- Department of Anatomy and Developmental Biology, Monash University, Clayton Victoria 3800, Australia; (R.M.E.); (W.H.C.); (S.H.); (E.R.); (G.K.)
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Elizabeth Richards
- Department of Anatomy and Developmental Biology, Monash University, Clayton Victoria 3800, Australia; (R.M.E.); (W.H.C.); (S.H.); (E.R.); (G.K.)
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Genevieve Kerr
- Department of Anatomy and Developmental Biology, Monash University, Clayton Victoria 3800, Australia; (R.M.E.); (W.H.C.); (S.H.); (E.R.); (G.K.)
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Monash BDI Organoid Program, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Karen Oliva
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern Victoria 3144, Australia; (K.O.); (P.J.M.)
| | - Paul J. McMurrick
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern Victoria 3144, Australia; (K.O.); (P.J.M.)
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash University, Clayton Victoria 3800, Australia; (R.M.E.); (W.H.C.); (S.H.); (E.R.); (G.K.)
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Monash BDI Organoid Program, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Correspondence: (T.J.); (H.E.A.)
| | - Helen E. Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton Victoria 3800, Australia; (R.M.E.); (W.H.C.); (S.H.); (E.R.); (G.K.)
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Monash BDI Organoid Program, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
- Correspondence: (T.J.); (H.E.A.)
| |
Collapse
|
33
|
Guerrieri C, Jobbagy Z, Hudacko R. Expression of CDX2 in metastatic prostate cancer. Pathologica 2019; 111:105-107. [PMID: 31748757 PMCID: PMC8138494 DOI: 10.32074/1591-951x-19-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/30/2019] [Indexed: 11/30/2022] Open
Abstract
The intestinal marker CDX2 has recently been found to stain a small
percentage of primary prostate adenocarcinomas, but little is known of
its expression in metastatic prostate cancers. We present a case of
metastatic prostate adenocarcinoma that stained for CDX2 and highlight
the confusion this may create when evaluating a carcinoma of unknown
primary.
Collapse
Affiliation(s)
- C Guerrieri
- Department of Pathology, Immunology and Molecular Pathology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Z Jobbagy
- Department of Pathology, Immunology and Molecular Pathology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - R Hudacko
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
34
|
Kim JT, Li C, Weiss HL, Zhou Y, Liu C, Wang Q, Evers BM. Regulation of Ketogenic Enzyme HMGCS2 by Wnt/β-catenin/PPARγ Pathway in Intestinal Cells. Cells 2019; 8:cells8091106. [PMID: 31546785 PMCID: PMC6770209 DOI: 10.3390/cells8091106] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
The Wnt/β-catenin pathway plays a crucial role in development and renewal of the intestinal epithelium. Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting ketogenic enzyme in the synthesis of ketone body β-hydroxybutyrate (βHB), contributes to the regulation of intestinal cell differentiation. Here, we have shown that HMGCS2 is a novel target of Wnt/β-catenin/PPARγ signaling in intestinal epithelial cancer cell lines and normal intestinal organoids. Inhibition of the Wnt/β-catenin pathway resulted in increased protein and mRNA expression of HMGCS2 and βHB production in human colon cancer cell lines LS174T and Caco2. In addition, Wnt inhibition increased expression of PPARγ and its target genes, FABP2 and PLIN2, in these cells. Conversely, activation of Wnt/β-catenin signaling decreased protein and mRNA levels of HMGCS2, βHB production, and expression of PPARγ and its target genes in LS174T and Caco2 cells and mouse intestinal organoids. Moreover, inhibition of PPARγ reduced HMGCS2 expression and βHB production, while activation of PPARγ increased HMGCS2 expression and βHB synthesis. Furthermore, PPARγ bound the promoter of HMGCS2 and this binding was enhanced by β-catenin knockdown. Finally, we showed that HMGCS2 inhibited, while Wnt/β-catenin stimulated, glycolysis, which contributed to regulation of intestinal cell differentiation. Our results identified HMGCS2 as a downstream target of Wnt/β-catenin/PPARγ signaling in intestinal epithelial cells. Moreover, our findings suggest that Wnt/β-catenin/PPARγ signaling regulates intestinal cell differentiation, at least in part, through regulation of ketogenesis.
Collapse
Affiliation(s)
- Ji Tae Kim
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536 USA.
| | - Chang Li
- Department of Surgery, University of Kentucky, Lexington, KY 40536 USA.
| | - Heidi L Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536 USA.
| | - Yuning Zhou
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536 USA.
| | - Chunming Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536 USA.
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA.
| | - Qingding Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536 USA.
- Department of Surgery, University of Kentucky, Lexington, KY 40536 USA.
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536 USA.
- Department of Surgery, University of Kentucky, Lexington, KY 40536 USA.
| |
Collapse
|
35
|
Cavalcanti E, De Michele F, Lantone G, Panarese A, Caruso ML. Mucin phenotype of differentiated early gastric cancer: an immunohistochemistry study supporting therapeutic decision making. Cancer Manag Res 2019; 11:5047-5054. [PMID: 31354341 PMCID: PMC6589520 DOI: 10.2147/cmar.s193994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/17/2019] [Indexed: 12/28/2022] Open
Abstract
Introduction: Endoscopic submucosal dissection is widely employed in early gastric cancer (EGC). Foveolar phenotypes should be distinguished from the other differentiated EGC (DEGC) types because of their increased malignant potential. The phenotypic classification could be useful not only for investigating EGC tumorigenesis but also for evaluating the tumor aggressiveness to guide treatment decision making. Methods: On surgical tissue specimens, we studied the mucin phenotype of EGC to distinguish cases with a worse prognosis dictating different therapeutic options or a very close surveillance program. DEGC in our series were classified as mucin foveolar (51%) or mucin intestinal (49%) phenotype. We evaluated correlations among foveolar and intestinal phenotypic markers, tumor patterns, clinicopathologic features and prognostic and therapeutic implications. Immunohistochemistry (IHC) for MUC5AC and CDX2 was performed on 63 EGC patient specimens. MUCA5C was employed as gastric foveolar phenotypic marker and CDX2 as intestinal phenotypic marker. Results: Foveolar DEGC was significantly associated with larger tumor size (p=0.01), high grade (G2-G3) (p=0.001), vessel permeation (p=0.05), lymph node metastasis (p=0.001) and ulceration (p=0.001), whereas intestinal type DEGC was associated with low grade (p=0.001). Conclusion: IHC determination of the mucin phenotype is an easy, inexpensive method that can provide useful, sensitive markers distinguishing the foveolar or intestinal phenotype in DEGC. The precise identification of the foveolar type, featuring a poorer prognosis, should sound a warning bell mandating very close study of the lesion before endoscopic treatment or contraindicating endoscopic resection in favor of the open surgery option.
Collapse
Affiliation(s)
- Elisabetta Cavalcanti
- Histopathology Unit, National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Castellana Grotte, Bari, Italy
| | - Francesco De Michele
- Histopathology Unit, National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Castellana Grotte, Bari, Italy
| | - Giulio Lantone
- Surgery Unit, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, Castellana Grotte, Bari, Italy
| | - Alba Panarese
- Gastroenterology and Endoscopy Unit, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, Castellana Grotte, Bari, Italy
| | - Maria Lucia Caruso
- Histopathology Unit, National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Castellana Grotte, Bari, Italy
| |
Collapse
|
36
|
Parker NA, McBride C, Forge J, Lalich D. Bowel obstruction caused by colonic metastasis of lung adenocarcinoma: a case report and literature review. World J Surg Oncol 2019; 17:63. [PMID: 30961608 PMCID: PMC6454752 DOI: 10.1186/s12957-019-1611-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/29/2019] [Indexed: 01/07/2023] Open
Abstract
Introduction Lung cancer is the most common cause of cancer-related deaths globally. Metastatic disease is often found at the time of initial diagnosis in the majority of lung cancer patients. However, colonic metastases are rare. This report describes an uncommon case of colonic metastasis from lung adenocarcinoma. Case presentation A 64-year-old female presented to her gastroenterologist for progressively worsening abdominal pain and constipation. Exploratory colonoscopy revealed a large rectosigmoid mass resulting in near total rectal occlusion. Her specialist recommended she immediately go to her regional hospital for further workup. On admission, she complained of continued abdominal pain and constipation. Notably, she had a past medical history of non-small cell lung cancer (T1bN3M0 stage IIIB), diagnosed 1 year prior. She was thought to be in remission following radiation and immunotherapy with pembrolizumab. Upon hospital admission, she underwent an urgent colostomy, ileocecectomy and anastomosis, and rectosigmoid mass resection with tissue sampling. Pathology confirmed the diagnosis of colonic metastasis from primary lung adenocarcinoma. Treatment was with systemic chemotherapy followed by localized radiation to the pelvic region was started. She did not respond well to these therapies. Subsequent imaging showed refractory tumor growth in the pelvic region. Treatment could not be completed due to the patient experiencing a debilitating stroke, and she was transitioned to hospice care. Conclusions Clinicians should have a low threshold for intestinal investigation and considerations for colonic metastasis when patients with a history of primary lung cancer have abdominal symptoms.
Collapse
Affiliation(s)
- N A Parker
- Department of Internal Medicine, University of Kansas School of Medicine, 2817 N Tallgrass St, Wichita, KS, 67226, USA.
| | - C McBride
- Department of Internal Medicine, University of Kansas School of Medicine, 1010 N Kansas St, Wichita, KS, 67214, USA
| | - J Forge
- Department of Internal Medicine, University of Kansas School of Medicine, 1010 N Kansas St, Wichita, KS, 67214, USA
| | - D Lalich
- Department of Anatomical and Clinical Pathology, Wesley Medical Center, 550 N. Hillside St, Wichita, KS, 67214, USA
| |
Collapse
|
37
|
Joshi P, Darr AJ, Skromne I. CDX4 regulates the progression of neural maturation in the spinal cord. Dev Biol 2019; 449:132-142. [PMID: 30825428 DOI: 10.1016/j.ydbio.2019.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 11/17/2022]
Abstract
The progression of cells down different lineage pathways is a collaborative effort between networks of extracellular signals and intracellular transcription factors. In the vertebrate spinal cord, FGF, Wnt and Retinoic Acid signaling pathways regulate the progressive caudal-to-rostral maturation of neural progenitors by regulating a poorly understood gene regulatory network of transcription factors. We have mapped out this gene regulatory network in the chicken pre-neural tube, identifying CDX4 as a dual-function core component that simultaneously regulates gradual loss of cell potency and acquisition of differentiation states: in a caudal-to-rostral direction, CDX4 represses the early neural differentiation marker Nkx1.2 and promotes the late neural differentiation marker Pax6. Significantly, CDX4 prevents premature PAX6-dependent neural differentiation by blocking Ngn2 activation. This regulation of CDX4 over Pax6 is restricted to the rostral pre-neural tube by Retinoic Acid signaling. Together, our results show that in the spinal cord, CDX4 is part of the gene regulatory network controlling the sequential and progressive transition of states from high to low potency during neural progenitor maturation. Given CDX well-known involvement in Hox gene regulation, we propose that CDX factors coordinate the maturation and axial specification of neural progenitor cells during spinal cord development.
Collapse
Affiliation(s)
- Piyush Joshi
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, United States; Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, 600 5th St S, St. Petersburg, FL 33701, United States
| | - Andrew J Darr
- Department of Health Sciences Education, University of Illinois College of Medicine, 1 Illini Drive, Peoria, IL 61605, United States
| | - Isaac Skromne
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, United States; Department of Biology, University of Richmond, 138 UR Drive B322, Richmond, VA, 23173, United States.
| |
Collapse
|
38
|
Feltes BC. Architects meets Repairers: The interplay between homeobox genes and DNA repair. DNA Repair (Amst) 2018; 73:34-48. [PMID: 30448208 DOI: 10.1016/j.dnarep.2018.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
Homeobox genes are widely considered the major protagonists of embryonic development and tissue formation. For the past decades, it was established that the deregulation of these genes is intimately related to developmental abnormalities and a broad range of diseases in adults. Since the proper regulation and expression of homeobox genes are necessary for a successful developmental program and tissue function, their relation to DNA repair mechanisms become a necessary discussion. However, important as it is, studies focused on the interplay between homeobox genes and DNA repair are scarce, and there is no critical discussion on the subject. Hence, in this work, I aim to provide the first review of the current knowledge of the interplay between homeobox genes and DNA repair mechanisms, and offer future perspectives on this, yet, young ground for new researches. Critical discussion is conducted, together with a careful assessment of each reviewed topic.
Collapse
Affiliation(s)
- Bruno César Feltes
- Institute of Informatics, Department of Theoretical Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
39
|
Expression of CDX2 and Thyroid Transcription Factor-1 in Oropharyngeal Undifferentiated Carcinomas: A Potential Diagnostic Pitfall. Appl Immunohistochem Mol Morphol 2018; 26:268-273. [DOI: 10.1097/pai.0000000000000414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
CDX2 expression is concordant between primary colorectal cancer lesions and corresponding liver metastases independent of chemotherapy: a single-center retrospective study in Japan. Oncotarget 2018; 9:17056-17065. [PMID: 29682204 PMCID: PMC5908305 DOI: 10.18632/oncotarget.24842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 02/28/2018] [Indexed: 01/17/2023] Open
Abstract
Objective Loss of caudal-type homeobox transcription factor 2 (CDX2) expression in colorectal cancers (CRCs) has recently been proposed as a promising predictive biomarker for not only prognosis but also response to chemotherapy. However, the relationship between alterations in CDX2 expression during cancer progression and response to chemotherapy remains unclear. We herein aimed to determine the concordance of CDX2 expression between primary CRCs and corresponding liver metastases, in association with chemotherapy. Results Primary CRCs exhibited heterogeneous CDX2 expression. Seven of the 144 CRCs in the cohort (4.9%, 95% confidential interval, 2.0%–9.8%) were CDX2-negative. The concordance rate of the CDX2 expression status in patients who did not receive chemotherapy was 100% (P = 0.041), whereas the concordance rate among patients who received chemotherapy only after primary resection was 96.3% (P = 0.005). Moreover, the concordance rate in patients who received chemotherapy before both primary resection and liver metastasectomy was 100% (P < 0.001). Conclusion CDX2 expression status was highly concordant between primary CRCs and corresponding liver metastases, independent of chemotherapy, suggesting that the CDX2 expression status in CRCs was not affected by metastasis or chemotherapy. Methods A total of 144 consecutive patients with CRC who were treated at a single center in Japan between 2006 and 2014 were included. Formalin-fixed paraffin-embedded whole sections of surgically resected primary CRCs and corresponding liver metastases were assessed for CDX2 expression by immunohistochemistry.
Collapse
|
41
|
Li Z, Rock JB, Roth R, Lehman A, Marsh WL, Suarez A, Frankel WL. Dual Stain With SATB2 and CK20/Villin Is Useful to Distinguish Colorectal Carcinomas From Other Tumors. Am J Clin Pathol 2018; 149:241-246. [PMID: 29471325 DOI: 10.1093/ajcp/aqx160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Small sample size limits the number of immunostains that may be attempted in colorectal carcinoma (CRC) biopsy specimens. We investigated the utility of dual stain with special AT-rich sequence binding protein 2 (SATB2) or caudal-type homeobox 2 (CDX2) and cytokeratin 20 (CK20) or villin in identifying CRC. METHODS Tissue microarrays with 222 CRCs and 375 other carcinomas were built. Dual stain was performed pairing nuclear stains CDX2 or SATB2 with CK20 or villin. RESULTS All four single stains showed excellent sensitivity (93%-99%) but variable specificity (56%-88%) for CRC. All four dual stains also showed excellent sensitivity (90%-96%) while much improved specificity (88%-98%) compared with single stains. SATB2 dual stain (with CK20 or villin) showed a higher specificity than CDX2 dual stain (with CK20 or villin) with a comparable sensitivity. CONCLUSIONS SATB2 dual stain shows the greatest potential clinical utility in identifying CRC and is superior to CDX2 dual stain. More important, SATB2 dual stain could be helpful for specimens with limited tissues or those having a nonclassic staining pattern.
Collapse
Affiliation(s)
- Zaibo Li
- Department of Pathology, The Ohio State University, Columbus
| | - Jonathan B Rock
- Department of Pathology, The Ohio State University, Columbus
| | - Rachel Roth
- Department of Pathology, The Ohio State University, Columbus
| | - Amy Lehman
- Center for Biostatistics, The Ohio State University, Columbus
| | - William L Marsh
- Department of Pathology, The Ohio State University, Columbus
| | - Adrian Suarez
- Department of Pathology, The Ohio State University, Columbus
| | - Wendy L Frankel
- Department of Pathology, The Ohio State University, Columbus
| |
Collapse
|
42
|
Boulagnon-Rombi C, Schneider C, Leandri C, Jeanne A, Grybek V, Bressenot AM, Barbe C, Marquet B, Nasri S, Coquelet C, Fichel C, Bouland N, Bonnomet A, Kianmanesh R, Lebre AS, Bouché O, Diebold MD, Bellon G, Dedieu S. LRP1 expression in colon cancer predicts clinical outcome. Oncotarget 2018; 9:8849-8869. [PMID: 29507659 PMCID: PMC5823651 DOI: 10.18632/oncotarget.24225] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/09/2018] [Indexed: 01/10/2023] Open
Abstract
LRP1 (low-density lipoprotein receptor-related protein 1), a multifunctional endocytic receptor, has recently been identified as a hub within a biomarker network for multi-cancer clinical outcome prediction. As its role in colon cancer has not yet been characterized, we here investigate the relationship between LRP1 and outcome. MATERIALS AND METHODS LRP1 mRNA expression was determined in colon adenocarcinoma and paired colon mucosa samples, as well as in stromal and tumor cells obtained after laser capture microdissection. Clinical potential was further investigated by immunohistochemistry in a population-based colon cancer series (n = 307). LRP1 methylation, mutation and miR-205 expression were evaluated and compared with LRP1 expression levels. RESULTS LRP1 mRNA levels were significantly lower in colon adenocarcinoma cells compared with colon mucosa and stromal cells obtained after laser capture microdissection. Low LRP1 immunohistochemical expression in adenocarcinomas was associated with higher age, right-sided tumor, loss of CDX2 expression, Annexin A10 expression, CIMP-H, MSI-H and BRAFV600E mutation. Low LRP1 expression correlated with poor clinical outcome, especially in stage IV patients. While LRP1 expression was downregulated by LRP1 mutation, LRP1 promoter was never methylated. CONCLUSIONS Loss of LRP1 expression is associated with worse colon cancer outcomes. Mechanistically, LRP1 mutation modulates LRP1 expression.
Collapse
Affiliation(s)
- Camille Boulagnon-Rombi
- Laboratoire de Biopathologie, Centre Hospitalier Universitaire et Faculté de Médecine, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Christophe Schneider
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, Reims, France
| | - Chloé Leandri
- Service de Gastro-entérologie et Cancérologie Digestive, Centre Hospitalier Universitaire, Reims, France
| | - Albin Jeanne
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
- SATT Nord, Lille, France
| | - Virginie Grybek
- Laboratoire de Génétique, Centre Hospitalier Universitaire, Reims, France
| | | | - Coralie Barbe
- Unité d’Aide Méthodologique, Centre Hospitalier Universitaire, Reims, France
| | - Benjamin Marquet
- Laboratoire de Biopathologie, Centre Hospitalier Universitaire et Faculté de Médecine, Reims, France
| | - Saviz Nasri
- CRB Tumorothèque de Champagne-Ardenne, Reims, France
| | | | - Caroline Fichel
- Laboratoire de Biopathologie, Centre Hospitalier Universitaire et Faculté de Médecine, Reims, France
| | - Nicole Bouland
- Laboratoire de Biopathologie, Centre Hospitalier Universitaire et Faculté de Médecine, Reims, France
| | - Arnaud Bonnomet
- Plateforme d’Imagerie Cellulaire et Tissulaire, Université de Reims Champagne-Ardenne, Reims, France
| | - Reza Kianmanesh
- Service de Chirurgie Digestive, Centre Hospitalier Universitaire, Reims, France
| | - Anne-Sophie Lebre
- Laboratoire de Génétique, Centre Hospitalier Universitaire, Reims, France
| | - Olivier Bouché
- Service de Gastro-entérologie et Cancérologie Digestive, Centre Hospitalier Universitaire, Reims, France
| | - Marie-Danièle Diebold
- Laboratoire de Biopathologie, Centre Hospitalier Universitaire et Faculté de Médecine, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Georges Bellon
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
- Laboratoire de Biochimie, Centre Hospitalier Universitaire, Reims, France
| | - Stéphane Dedieu
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, Reims, France
| |
Collapse
|
43
|
A Comprehensive Evaluation of Special AT-rich Sequence-binding Protein 2 (SATB2) Immunohistochemical Staining in Mucinous Tumors From Gastrointestinal and Nongastrointestinal Sites. Appl Immunohistochem Mol Morphol 2017; 27:378-385. [PMID: 29271791 DOI: 10.1097/pai.0000000000000627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Special AT-rich sequence-binding protein 2 (SATB2) is an accurate marker for conventional colorectal carcinoma (CRC), although its sensitivity and specificity in mucinous tumors from the colon and other sites remains unknown. The objective of this study is to evaluate the accuracy of SATB2 expression detected by immunohistochemical assay, as a marker of primary CRC in mucinous adenocarcinomas. SATB2 immunohistochemical stains were performed on whole sections from 63 conventional CRCs (controls), 47 mucinous CRCs (mCRC), and 182 noncolorectal mucinous tumors. SATB2 intensity was scored as 1 to 3 based on the estrogen receptor/progesterone receptor grading system, and the percent positive cells was scored in broad categories as follows: 0 (negative)≤5%, 1=5% to 49%, 2≥50%. An optimal sensitivity/specificity pairing (83% and 95%, respectively) was achieved in the mCRCs when the additive intensity and percent score was ≥3 (ie, intensity score+percent score=total score). Defining this total score (histologic score/"H score") as a "positive" result, the sensitivity of SATB2 for conventional CRC was 98% (62/63) versus 83% (39/47) for mCRCs (P=0.02); whereas 5% (9/182) of all noncolorectal mucinous tumors were considered positive. SATB2 especially demonstrated reduced specificity when applied to mucinous gastroesophageal and breast carcinomas, which showed significant expression in 27% and 9% of cases, respectively. In summary, SATB2 is a less sensitive marker of colorectal origin in mCRC compared with conventional CRC and shows significantly reduced specificity in mucinous gastroesophageal and breast primaries.
Collapse
|
44
|
Mohandas S, Vairappan B. Role of pregnane X-receptor in regulating bacterial translocation in chronic liver diseases. World J Hepatol 2017; 9:1210-1226. [PMID: 29184608 PMCID: PMC5696604 DOI: 10.4254/wjh.v9.i32.1210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial translocation (BT) has been impeccably implicated as a driving factor in the pathogenesis of a spectrum of chronic liver diseases (CLD). Scientific evidence accumulated over the last four decades has implied that the disease pathologies in CLD and BT are connected as a loop in the gut-liver axis and exacerbate each other. Pregnane X receptor (PXR) is a ligand-activated transcription factor and nuclear receptor that is expressed ubiquitously along the gut-liver-axis. PXR has been intricately associated with the regulation of various mechanisms attributed in causing BT. The importance of PXR as the mechanistic linker molecule in the gut-liver axis and its role in regulating bacterial interactions with the host in CLD has not been explored. PubMed was used to perform an extensive literature search using the keywords PXR and bacterial translocation, PXR and chronic liver disease including cirrhosis. In an adequate expression state, PXR acts as a sensor for bile acid dysregulation and bacterial derived metabolites, and in response shapes the immune profile beneficial to the host. Activation of PXR could be therapeutic in CLD as it counter-regulates endotoxin mediated inflammation and maintains the integrity of intestinal epithelium. This review mainly focuses PXR function and its regulation in BT in the context of chronic liver diseases.
Collapse
Affiliation(s)
- Sundhar Mohandas
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantari Nagar, Pondicherry 605006, India
| | - Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantari Nagar, Pondicherry 605006, India
| |
Collapse
|
45
|
Pure mucinous (colloid) adenocarcinoma of the conjunctiva. J Cutan Pathol 2017; 45:78-83. [DOI: 10.1111/cup.13060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 11/26/2022]
|
46
|
Blockhuys S, Agarwal NR, Hildesjö C, Jarlsfelt I, Wittung-Stafshede P, Sun XF. Second harmonic generation for collagen I characterization in rectal cancer patients with and without preoperative radiotherapy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-6. [PMID: 29019178 DOI: 10.1117/1.jbo.22.10.106006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Rectal cancer is treated with preoperative radiotherapy (RT) to downstage the tumor, reduce local recurrence, and improve patient survival. Still, the treatment outcome varies significantly and new biomarkers are desired. Collagen I (Col-I) is a potential biomarker, which can be visualized label-free by second harmonic generation (SHG). Here, we used SHG to identify Col-I changes induced by RT in surgical tissue, with the aim to evaluate the clinical significance of RT-induced Col-I changes. First, we established a procedure for quantitative evaluation of Col-I by SHG in CDX2-stained tissue sections. Next, we evaluated Col-I properties in material from 31 non-RT and 29 RT rectal cancer patients. We discovered that the Col-I intensity and anisotropy were higher in the tumor invasive margin than in the inner tumor and normal mucosa, and RT increased and decreased the intensity in inner tumor and normal mucosa, respectively. Furthermore, higher Col-I intensity in the inner tumor was related to increased distant recurrence in the non-RT group but to longer survival in the RT group. In conclusion, we present a new application of SHG for quantitative analysis of Col-I in surgical material, and the first data suggest Col-I intensity as a putative prognostic biomarker in rectal cancer.
Collapse
Affiliation(s)
- Stéphanie Blockhuys
- Linköping University, Department of Oncology, Linköping, Sweden
- Linköping University, Department of Clinical and Experimental Medicine, Linköping, Sweden
- Chalmers University of Technology, Department of Biology and Biological Engineering, Gothenburg, Sweden
| | - Nisha Rani Agarwal
- Chalmers University of Technology, Department of Biology and Biological Engineering, Gothenburg, Sweden
| | - Camilla Hildesjö
- Linköping University, Department of Oncology, Linköping, Sweden
- Linköping University, Department of Clinical and Experimental Medicine, Linköping, Sweden
- University Hospital of Linköping, Department of Clinical Pathology, Linköping, Sweden
| | | | | | - Xiao-Feng Sun
- Linköping University, Department of Oncology, Linköping, Sweden
- Linköping University, Department of Clinical and Experimental Medicine, Linköping, Sweden
| |
Collapse
|
47
|
Pfaender S, Sauer AK, Hagmeyer S, Mangus K, Linta L, Liebau S, Bockmann J, Huguet G, Bourgeron T, Boeckers TM, Grabrucker AM. Zinc deficiency and low enterocyte zinc transporter expression in human patients with autism related mutations in SHANK3. Sci Rep 2017; 7:45190. [PMID: 28345660 PMCID: PMC5366950 DOI: 10.1038/srep45190] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 02/22/2017] [Indexed: 01/16/2023] Open
Abstract
Phelan McDermid Syndrome (PMDS) is a genetic disorder characterized by features of Autism spectrum disorders. Similar to reports of Zn deficiency in autistic children, we have previously reported high incidence of Zn deficiency in PMDS. However, the underlying mechanisms are currently not well understood. Here, using inductively coupled plasma mass-spectrometry to measure the concentration of Zinc (Zn) and Copper (Cu) in hair samples from individuals with PMDS with 22q13.3 deletion including SHANK3 (SH3 and multiple ankyrin repeat domains 3), we report a high rate of abnormally low Zn/Cu ratios. To investigate possible underlying mechanisms, we generated enterocytes from PMDS patient-derived induced pluripotent stem cells and used Caco-2 cells with knockdown of SHANK3. We detected decreased expression of Zn uptake transporters ZIP2 and ZIP4 on mRNA and protein level correlating with SHANK3 expression levels, and found reduced levels of ZIP4 protein co-localizing with SHANK3 at the plasma membrane. We demonstrated that especially ZIP4 exists in a complex with SHANK3. Furthermore, we performed immunohistochemistry on gut sections from Shank3αβ knockout mice and confirmed a link between enterocytic SHANK3, ZIP2 and ZIP4. We conclude that apart from its well-known role in the CNS, SHANK3 might play a specific role in the GI tract.
Collapse
Affiliation(s)
- Stefanie Pfaender
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Ann Katrin Sauer
- WG Molecular Analysis of Synaptopathies, Neurology Dept., Neurocenter of Ulm University, 89081 Ulm, Germany
| | - Simone Hagmeyer
- WG Molecular Analysis of Synaptopathies, Neurology Dept., Neurocenter of Ulm University, 89081 Ulm, Germany
| | - Katharina Mangus
- WG Molecular Analysis of Synaptopathies, Neurology Dept., Neurocenter of Ulm University, 89081 Ulm, Germany
| | - Leonhard Linta
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Juergen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Guillaume Huguet
- Institut Pasteur, Human Genetics and Cognitive Functions Unit, 75015 Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, 75015 Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, 75013 Paris, France
| | - Thomas Bourgeron
- Institut Pasteur, Human Genetics and Cognitive Functions Unit, 75015 Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, 75015 Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, 75013 Paris, France
- FondaMental Foundation, 94010 Créteil, France
| | - Tobias M. Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Andreas M. Grabrucker
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
- WG Molecular Analysis of Synaptopathies, Neurology Dept., Neurocenter of Ulm University, 89081 Ulm, Germany
| |
Collapse
|
48
|
Emanuel PO, Desman G, Tallon B. Squamous cell carcinoma with enteric adenocarcinomatous differentiation. J Cutan Pathol 2017; 44:490-493. [DOI: 10.1111/cup.12910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Patrick O. Emanuel
- Department of Pathology and Molecular Medicine; University of Auckland; Auckland New Zealand
- Division of Dermatopathology, Mount Sinai Medical Center; New York New York
| | - Garrett Desman
- Division of Dermatopathology, Mount Sinai Medical Center; New York New York
| | - Ben Tallon
- Skin Dermatology Institute; Tauranga New Zealand
- Pathlab Bay of Plenty; Tauranga New Zealand
| |
Collapse
|
49
|
Mamlouk S, Childs LH, Aust D, Heim D, Melching F, Oliveira C, Wolf T, Durek P, Schumacher D, Bläker H, von Winterfeld M, Gastl B, Möhr K, Menne A, Zeugner S, Redmer T, Lenze D, Tierling S, Möbs M, Weichert W, Folprecht G, Blanc E, Beule D, Schäfer R, Morkel M, Klauschen F, Leser U, Sers C. DNA copy number changes define spatial patterns of heterogeneity in colorectal cancer. Nat Commun 2017; 8:14093. [PMID: 28120820 PMCID: PMC5288500 DOI: 10.1038/ncomms14093] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 11/28/2016] [Indexed: 02/06/2023] Open
Abstract
Genetic heterogeneity between and within tumours is a major factor determining cancer progression and therapy response. Here we examined DNA sequence and DNA copy-number heterogeneity in colorectal cancer (CRC) by targeted high-depth sequencing of 100 most frequently altered genes. In 97 samples, with primary tumours and matched metastases from 27 patients, we observe inter-tumour concordance for coding mutations; in contrast, gene copy numbers are highly discordant between primary tumours and metastases as validated by fluorescent in situ hybridization. To further investigate intra-tumour heterogeneity, we dissected a single tumour into 68 spatially defined samples and sequenced them separately. We identify evenly distributed coding mutations in APC and TP53 in all tumour areas, yet highly variable gene copy numbers in numerous genes. 3D morpho-molecular reconstruction reveals two clusters with divergent copy number aberrations along the proximal-distal axis indicating that DNA copy number variations are a major source of tumour heterogeneity in CRC.
Collapse
Affiliation(s)
- Soulafa Mamlouk
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
- German Cancer Consortium (DKTK), Heidelberg 69120, Germany
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Liam Harold Childs
- Knowledge Management in Bioinformatics, Humboldt University of Berlin, Berlin 10099, Germany
| | - Daniela Aust
- German Cancer Consortium (DKTK), Heidelberg 69120, Germany
- Institute for Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
- NCT Biobank Dresden, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Daniel Heim
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Friederike Melching
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Cristiano Oliveira
- Institute of Pathology, University of Heidelberg, Heidelberg 69120, Germany
| | - Thomas Wolf
- German Cancer Consortium (DKTK), Heidelberg 69120, Germany
- Institute of Pathology, University of Heidelberg, Heidelberg 69120, Germany
| | - Pawel Durek
- Experimental Rheumatology, German Rheumatism Research Centre, Berlin 10117, Germany
| | - Dirk Schumacher
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
- German Cancer Consortium (DKTK), Heidelberg 69120, Germany
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Hendrik Bläker
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
- German Cancer Consortium (DKTK), Heidelberg 69120, Germany
| | | | - Bastian Gastl
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
- BSIO Berlin School of Integrative Oncology, University Medicine Charité, Berlin 13353, Germany
| | - Kerstin Möhr
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Andrea Menne
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
- German Cancer Consortium (DKTK), Heidelberg 69120, Germany
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Silke Zeugner
- Institute for Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Torben Redmer
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
- German Cancer Consortium (DKTK), Heidelberg 69120, Germany
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Dido Lenze
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Sascha Tierling
- Department of Genetics/Epigenetics, FR8.3 Life Sciences, Saarland University, Saarbrücken 66123, Germany
| | - Markus Möbs
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Wilko Weichert
- German Cancer Consortium (DKTK), Heidelberg 69120, Germany
- Institute of Pathology, Technical University Munich, Munich 81675, Germany
| | - Gunnar Folprecht
- University Hospital Carl Gustav Carus, University Cancer Center/Medical Dpt. I, Dresden 01307, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin 10117, Germany
- Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin 10117, Germany
- Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Reinhold Schäfer
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
- German Cancer Consortium (DKTK), Heidelberg 69120, Germany
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Markus Morkel
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Frederick Klauschen
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Ulf Leser
- Knowledge Management in Bioinformatics, Humboldt University of Berlin, Berlin 10099, Germany
| | - Christine Sers
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
- German Cancer Consortium (DKTK), Heidelberg 69120, Germany
| |
Collapse
|
50
|
Preda O, Nogales FF. Diagnostic Immunopathology of Germ Cell Tumors. PATHOLOGY AND BIOLOGY OF HUMAN GERM CELL TUMORS 2017:131-179. [DOI: 10.1007/978-3-662-53775-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|