1
|
Groeger S, Meyle J. The role of programmed death receptor (PD-)1/PD-ligand (L)1 in periodontitis and cancer. Periodontol 2000 2024; 96:150-169. [PMID: 38351432 PMCID: PMC11579837 DOI: 10.1111/prd.12548] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/02/2023] [Accepted: 12/14/2023] [Indexed: 11/22/2024]
Abstract
The programmed-death-ligand-1 (PD-L1) is an immune-modulating molecule that is constitutively expressed on various immune cells, different epithelial cells and a multitude of cancer cells. It is a costimulatory molecule that may impair T-cell mediated immune response. Ligation to the programmed-death-receptor (PD)-1, on activated T-cells and further triggering of the related signaling pathways can induce T-cells apoptosis or anergy. The upregulation of PD-L1 in various cancer types, including oral squamous cell carcinomas, was demonstrated and has been linked to immune escape of tumors and poor prognosis. A bidirectional relationship exists between the increased PD-L1 expression and periodontitis as well as the epithelial-mesenchymal transition (EMT), a process of interconversion of epithelial cells to mesenchymal cells that may induce immune escape of tumors. Interaction between exosomal PD-L1 and PD-1 on T-cells may cause immunosuppression by blocking the activation and proliferation of T-cells. The efficacy and importance of treatment with PD-1/PD-L1 checkpoint inhibitors and their prognostic influence on human cancers was demonstrated. Regarding PD-1/PD-L1 checkpoint inhibitors, resistances exist or may develop, basing on various factors. Further investigations of the underlying mechanisms will help to overcome the therapeutic limitations that result from resistances and to develop new strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Sabine Groeger
- Department of Periodontology, Dental SchoolJustus‐Liebig‐University of GiessenGiessenGermany
- Department of Orthodontics, Dental SchoolJustus‐Liebig‐University of GiessenGiessenGermany
| | - Joerg Meyle
- Department of Periodontology, Dental SchoolJustus‐Liebig‐University of GiessenGiessenGermany
| |
Collapse
|
2
|
Villar A, Mendes B, Viègas M, de Aquino Alexandre AL, Paladini S, Cossatis J. The relationship between periodontal disease and cancer: Insights from a Systematic Literature Network Analysis. Cancer Epidemiol 2024; 91:102595. [PMID: 38878682 DOI: 10.1016/j.canep.2024.102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 07/16/2024]
Abstract
This paper investigates the relationship between periodontal disease and various cancer types. It provides a comprehensive overview of the existing knowledge about the interaction between periodontal disease and carcinogenesis, explores the underlying biological mechanisms of this connection, and consider the impact of these findings on healthcare practices and future research directions. Utilizing Systematic Literature Network Analysis, which combines bibliometric analysis with Systematic Literature Review, this study analyzes 164 documents from 2000 to 2023. Focus is placed on the 38 most globally cited papers, enabling a targeted and comprehensive analysis of the predominant research within this scope. This review highlights that colorectal, oral, pancreatic, lung, and gastrointestinal cancers have consistent associations with periodontal disease. On the other hand, hematological, breast and prostate cancers show associations with periodontal disease, but these links are less pronounced and more variable, indicating the need for targeted research in these domains. These insights emphasize the necessity for a multidisciplinary healthcare approach, recognizing the systemic implications of periodontal disease.
Collapse
Affiliation(s)
- Alice Villar
- Universidade Veiga de Almeida (UVA), R. Dezenove de Fevereiro, 172 - Botafogo, Rio de Janeiro, RJ 22280-030, Brazil.
| | - Bruna Mendes
- University Castelo Branco (UCB), Av. de Santa Cruz, 1631 - Realengo, Rio de Janeiro, RJ 21710-255, Brazil
| | - Mirna Viègas
- University Castelo Branco (UCB), Av. de Santa Cruz, 1631 - Realengo, Rio de Janeiro, RJ 21710-255, Brazil
| | | | - Stefania Paladini
- School of Arts, Social Sciences, and Management, Queen Margaret University, Musselburgh, East Lothian, UK
| | - João Cossatis
- University Castelo Branco (UCB), Av. de Santa Cruz, 1631 - Realengo, Rio de Janeiro, RJ 21710-255, Brazil
| |
Collapse
|
3
|
Wang M, Noghabaei G, Raeisi T, Li D, Alizadeh H, Alizadeh M. Metformin and risk of hematological cancers in patients with diabetes: a systematic review and meta-analysis. Ann Saudi Med 2024; 44:126-134. [PMID: 38615182 PMCID: PMC11016148 DOI: 10.5144/0256-4947.2024.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/01/2024] [Indexed: 04/15/2024] Open
Abstract
FUNDING No external funding.
Collapse
Affiliation(s)
- Min Wang
- From the Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Giti Noghabaei
- From the Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Raeisi
- From the Department of Medicine, Hormozgan University of Medical Sciences, Bandar-Abbas, Iran
| | - Dandan Li
- From the Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Hamzeh Alizadeh
- From the Department of Genetics and Breeding, University of Guilan, Rasht, Gilan, Iran
| | - Mohammad Alizadeh
- From the Department of Medical Surgical Nursing, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Sun X, Guo P, Wang N, Shi Y, Li Y. A refined therapeutic plan based on the machine-learning prognostic model of liver hepatocellular carcinoma. Comput Biol Med 2024; 169:107907. [PMID: 38184863 DOI: 10.1016/j.compbiomed.2023.107907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/24/2023] [Indexed: 01/09/2024]
Abstract
To deeply explore new strategy of the individual therapy for the patients with liver hepatocellular carcinoma (LIHC), we observed gene expression profile in patients with LIHC and made a comprehensive analysis of the inflammation-related phenotypes, we detected a set of characteristic genes associated with the biological activities of tumor cells, among which 3 genes and 2 lncRNAs are tagged on the LIHC prognosis. Then we constructed a novel prognostic model by machine learning, called Inf-PR model, and evaluated the drug sensitivity and immune targets by a series of bioinformatics tools. Ten-fold cross-validation testified that the model achieved excellent performance on prediction and classification of prognostic risks, which was not only able to get more reliable prognosis information than the age, gender, grade and stage, but also exceeded those previously reported similar models. Accordingly, drug sensitivity was detected in different prognostic risk groups, the result displayed that 10 FDA-approved small molecular drugs including lovastatin and sorafenib had higher sensitivities and perturbativities in the high-risk group, and other 15 drugs including doxorubicin and lenvatinib had better sensitivities and perturbativities in the low-risk group. Moreover, it suggested the patients with high risk would better combine with immunotherapy than those with low risk. Taken together, this study presents a new individual precision strategy about drug and target selection to treat LIHC based on this evaluation model, which is a powerful supplement for current anti-tumor therapy.
Collapse
Affiliation(s)
- Xiangcheng Sun
- West China Biopharm Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Peng Guo
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Ning Wang
- West China Biopharm Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yun Shi
- West China Biopharm Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yan Li
- West China Biopharm Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
5
|
Zhai C, Liu B, Kan F, Zhai S, Zhang R. MicroRNA‑27a‑3p regulates the proliferation and chemotaxis of pulmonary macrophages in non‑small cell lung carcinoma tissues through CXCL2. Oncol Lett 2023; 26:492. [PMID: 37854860 PMCID: PMC10579986 DOI: 10.3892/ol.2023.14079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/26/2022] [Indexed: 10/20/2023] Open
Abstract
The present study aimed to investigate microRNA (miRNA)-27a-3p expression in the pulmonary macrophages and peripheral blood of patients with early non-small cell lung carcinoma (NSCLC) and its regulatory effect on the infiltration of pulmonary macrophages into cancer tissues and invasion of NSCLC cells. Blood specimens were withdrawn from 36 patients with NSCLC and 29 healthy subjects. NSCLC tissues and cancer-adjacent tissues were both obtained from patients with NSCLC; furthermore, certain tissue samples were used to extract macrophages. The levels of miRNA-27a-3p and C-X-C motif ligand chemokine 2 (CXCL2) mRNA were detected by reverse transcription-quantitative PCR and the levels of CXCL2 protein were measured by ELISA and western blot analysis. A dual-luciferase reporter assay was performed to determine the interactions between miRNA and mRNA. An MTT assay was employed to examine the viability of transfected cells and macrophages and a Transwell assay was performed to assess chemotaxis. The differential expression of miRNA-27a-3p in NSCLC tissues, pulmonary macrophages and peripheral blood indicated that miRNA-27a-3p exerted different roles in these specimens. CXCL2 was upregulated in NSCLC tissues at both transcriptional and translational levels. In addition, the untranslated region of CXCL2 was confirmed to be directly targeted by miRNA-27a-3p prior to its transcriptional activation. Furthermore, miRNA-27a-3p regulated CXCL2 expression, thereby affecting the proliferation of human pulmonary macrophages. The present study highlights that miRNA-27a-3p expression in the pulmonary macrophages and peripheral blood of patients with NSCLC is downregulated, while its target gene CXCL2 is upregulated. miRNA-27a-3p may regulate the viability and chemotaxis of macrophages in tumor tissues of patients with NSCLC through CXCL2 and is expected to become a genetic marker of this disease.
Collapse
Affiliation(s)
- Congying Zhai
- Department of Pulmonary and Critical Care Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| | - Baoliang Liu
- Department of Pulmonary and Critical Care Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| | - Fanggong Kan
- Department of Oncology, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| | - Shuhui Zhai
- Department of Clinical Medicine, Jining Medical College, Jining, Shandong 272067, P.R. China
| | - Ronghua Zhang
- Department of Pulmonary and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
6
|
Shi M, Liu X, Pan W, Li N, Tang B. Anti-inflammatory strategies for photothermal therapy of cancer. J Mater Chem B 2023. [PMID: 37326239 DOI: 10.1039/d3tb00839h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High temperature generated by photothermal therapy (PTT) can trigger an inflammatory response at the tumor site, which not only limits the efficacy of PTT but also increases the risk of tumor metastasis and recurrence. In light of the current limitations posed by inflammation in PTT, several studies have revealed that inhibiting PTT-induced inflammation can significantly improve the efficacy of cancer treatment. In this review, we summarize the research progress made in combining anti-inflammatory strategies to enhance the effectiveness of PTT. The goal is to offer valuable insights for developing better-designed photothermal agents in clinical cancer therapy.
Collapse
Affiliation(s)
- Mingwan Shi
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
7
|
Liang Y, Li Q, Liu Y, Guo Y, Li Q. Awareness of intratumoral bacteria and their potential application in cancer treatment. Discov Oncol 2023; 14:57. [PMID: 37148441 PMCID: PMC10164222 DOI: 10.1007/s12672-023-00670-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023] Open
Abstract
Hitherto, the recognition of the microbiota role in tumorigenesis and clinical studies mostly focused on the intestinal flora. In contrast to the gut microbiome, microorganisms resident in tumor tissue are in close contact with cancer cells and therefore have the potential to have similar or even different functional patterns to the gut flora. Some investigations have shown intratumoral bacteria, which might come from commensal microbiota in mucosal areas including the gastrointestinal tract and oral cavity, or from nearby normal tissues. The existence, origin, and interactions of intratumoral bacteria with the tumor microenvironment all contribute to intratumoral microorganism heterogeneity. Intratumoral bacteria have a significant role in tumor formation. They can contribute to cancer at the genetic level by secreting poisons that directly damage DNA and also intimately related to immune system response at the systemic level. Intratumoral bacteria have an impact on chemotherapy and immunotherapy in cancer. Importantly, various properties of bacteria such as targeting and ease of modification make them powerful candidates for precision therapy, and combining microbial therapies with other therapies is expected to improve the effectiveness of cancer treatment. In this review, we mainly described the heterogeneity and potential sources of intratumoral bacteria, overviewed the important mechanisms by which they were involved in tumor progression, and summarized their potential value in oncology therapy. At last, we highlight the problems of research in this field, and look forward to a new wave of studies using the various applications of intratumoral microorganisms in cancer therapy.
Collapse
Affiliation(s)
- Yin Liang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Qiyan Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Yulin Liu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Yajie Guo
- Department of Emergency, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| | - Qingjiao Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| |
Collapse
|
8
|
Prospect of bacteria for tumor diagnosis and treatment. Life Sci 2022; 312:121215. [PMID: 36414093 DOI: 10.1016/j.lfs.2022.121215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
In recent decades, the comprehensive cancer treatments including surgery, chemotherapy, and radiotherapy have improved the overall survival rate and quality of life of many cancer patients. However, we are still facing many difficult problems in the cancer treatment, such as unpredictable side effects, high recurrence rate, and poor curative effect. Therefore, the better intervention strategies are needed in this field. In recent years, the role and importance of microbiota in a variety of diseases were focused on as a hot research topic, and the role of some intracellular bacteria of cancer cells in carcinogenesis has recently been discovered. The impact of bacteria on cancer is not limited to their contribution to tumorigenesis, but the overall susceptibility of bacteria to subsequent tumor progression, the development of concurrent infections, and the response to anti-cancer therapy have also been found to be affected. Concerns about the contribution of bacteria in the anti-cancer response have inspired researchers to develop bacteria-based anti-cancer treatments. In this paper, we reviewed the main roles of bacteria in the occurrence and development of tumors, and summarized the mechanism of bacteria in the occurrence, development, and clinical anti-tumor treatment of tumors, providing new insights for the in-depth study of the role of bacteria in tumor diagnosis and treatment. This review aims to provide a new perspective for the development of new technologies based on bacteria to enhance anti-tumor immunotherapy.
Collapse
|
9
|
Kannan S, Kannan Murugan A, Balasubramaniam S, Kannan Munirajan A, Alzahrani AS. Gliomas: Genetic alterations, mechanisms of metastasis, recurrence, drug resistance, and recent trends in molecular therapeutic options. Biochem Pharmacol 2022; 201:115090. [PMID: 35577014 DOI: 10.1016/j.bcp.2022.115090] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022]
Abstract
Glioma is the most common intracranial tumor with poor treatment outcomes and has high morbidity and mortality. Various studies on genomic analyses of glioma found a variety of deregulated genes with somatic mutations including TERT, TP53, IDH1, ATRX, TTN, etc. The genetic alterations in the key genes have been demonstrated to play a crucial role in gliomagenesis by modulating important signaling pathways that alter the fundamental intracellular functions such as DNA damage and repair, cell proliferation, metabolism, growth, wound healing, motility, etc. The SPRK1, MMP2, MMP9, AKT, mTOR, etc., genes, and noncoding RNAs (miRNAs, lncRNAs, circRNAs, etc) were shown mostly to be implicated in the metastases of glioma. Despite advances in the current treatment strategies, a low-grade glioma is a uniformly fatal disease with overall median survival of ∼5-7 years while the patients bearing high-grade tumors display poorer median survival of ∼9-10 months mainly due to aggressive metastasis and therapeutic resistance. This review discusses the spectrum of deregulated genes, molecular and cellular mechanisms of metastasis, recurrence, and its management, the plausible causes for the development of therapy resistance, current treatment options, and the recent trends in malignant gliomas. Understanding the pathogenic mechanisms and advances in molecular genetics would aid in the novel diagnosis, prognosis, and translation of pathogenesis-based treatment opportunities which could pave the way for precision medicine in glioma.
Collapse
Affiliation(s)
- Siddarth Kannan
- School of Medicine, University of Central Lancashire, Preston PR1 2HE UK
| | - Avaniyapuram Kannan Murugan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh - 11211 Saudi Arabia.
| | | | - Arasambattu Kannan Munirajan
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600113 India
| | - Ali S Alzahrani
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh - 11211 Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh - 11211 Saudi Arabia
| |
Collapse
|
10
|
Chondroblastic Osteosarcoma Associated with Previous Chronic Osteomyelitis Caused by Serratia liquefaciens in a German Shepherd Dog. Vet Sci 2022; 9:vetsci9030096. [PMID: 35324824 PMCID: PMC8954284 DOI: 10.3390/vetsci9030096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Development of bone tumors as a result of chronic osteomyelitis represents a relatively rare and late complication in humans and animals. We described a malignant transformation (chondroblastic osteosarcoma) in a 7-year-old German shepherd with a history of polyostotic osteomyelitis caused by Serratia liquefaciens when the dog was 15 months old. The tumor developed in the right humeral diaphysis, one of the sites of polyostotic osteomyelitis. To the best of our knowledge this is the first report of polyostotic osteomyelitis caused by Serratia liquefaciens in dogs.
Collapse
|
11
|
Jain R, Hussein MA, Pierce S, Martens C, Shahagadkar P, Munirathinam G. Oncopreventive and oncotherapeutic potential of licorice triterpenoid compound glycyrrhizin and its derivatives: Molecular insights. Pharmacol Res 2022; 178:106138. [PMID: 35192957 PMCID: PMC8857760 DOI: 10.1016/j.phrs.2022.106138] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023]
Abstract
Licorice (Glycyrrhiza glabra) is a well-known natural herb used to treat different ailments since ancient times. Glycyrrhizin (GL), which is the primary triterpenoid compound of licorice extract, has been known to have broad-spectrum pharmacological effects. GL is cleaved into glucuronide and the aglycone, glycyrrhetinic acid (GA), which exists in two stereoisomeric forms: 18α- and 18β-GA. It is well documented that GL and GA have great potential as anti-inflammatory, anticancer, antiviral, anti-diabetic, antioxidant, and hepatoprotective agents. Studies undertaken during the coronavirus disease 2019 pandemic suggest that GL is effective at inhibiting the viral replication of severe acute respiratory syndrome coronavirus 2. The anticancer effects of GL and GA involve modulating various signaling pathways, such as the phosphatase and tensin homolog/phosphatidylinositol 3-kinase/protein kinase B pathway, the mitogen-activated protein kinase, and the mammalian target of rapamycin/signal transducer and activator of transcription 3, which are mainly involved in regulating cancer cell death, oxidative stress, and inflammation. The potential of GL and GA in preventing cancer development and suppressing the growth and invasion of different cancer types has been reviewed in this paper. This review also provides molecular insights on the mechanism of action for the oncopreventive and oncotherapeutic effects of GL and its derivative, GA, which could help develop more specific forms of these agents for clinical use.
Collapse
|
12
|
He L, Zhong Z, Chen M, Liang Q, Wang Y, Tan W. Current Advances in Coptidis Rhizoma for Gastrointestinal and Other Cancers. Front Pharmacol 2022; 12:775084. [PMID: 35046810 PMCID: PMC8762280 DOI: 10.3389/fphar.2021.775084] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a serious disease with an increasing number of reported cases and high mortality worldwide. Gastrointestinal cancer defines a group of cancers in the digestive system, e.g., liver cancer, colorectal cancer, and gastric cancer. Coptidis Rhizoma (C. Rhizoma; Huanglian, in Chinese) is a classical Chinese medicinal botanical drug for the treatment of gastrointestinal disorders and has been shown to have a wide variety of pharmacological activity, including antifungal, antivirus, anticancer, antidiabetic, hypoglycemic, and cardioprotective effects. Recent studies on C. Rhizoma present significant progress on its anticancer effects and the corresponding mechanisms as well as its clinical applications. Herein, keywords related to C. Rhizoma, cancer, gastrointestinal cancer, and omics were searched in PubMed and the Web of Science databases, and more than three hundred recent publications were reviewed and discussed. C. Rhizoma extract along with its main components, berberine, palmatine, coptisine, magnoflorine, jatrorrhizine, epiberberine, oxyepiberberine, oxyberberine, dihydroberberine, columbamine, limonin, and derivatives, are reviewed. We describe novel and classic anticancer mechanisms from various perspectives of pharmacology, pharmaceutical chemistry, and pharmaceutics. Researchers have transformed the chemical structures and drug delivery systems of these components to obtain better efficacy and bioavailability of C. Rhizoma. Furthermore, C. Rhizoma in combination with other drugs and their clinical application are also summarized. Taken together, C. Rhizoma has broad prospects as a potential adjuvant candidate against cancers, making it reasonable to conduct additional preclinical studies and clinical trials in gastrointestinal cancer in the future.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| | - Man Chen
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qilian Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| |
Collapse
|
13
|
Ikewaki N, Dedeepiya VD, Raghavan K, Rao KS, Vaddi S, Osawa H, Kisaka T, Kurosawa G, Srinivasan S, Kumar SRB, Senthilkumar R, Iwasaki M, Preethy S, Abraham SJK. β‑glucan vaccine adjuvant approach for cancer treatment through immune enhancement (B‑VACCIEN) in specific immunocompromised populations (Review). Oncol Rep 2021; 47:14. [PMID: 34779494 DOI: 10.3892/or.2021.8225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/07/2021] [Indexed: 11/06/2022] Open
Abstract
The incidence of cancer, which is the second leading cause of mortality globally, continues to increase, although continued efforts are being made to identify effective treatments with fewer side‑effects. Previous studies have reported that chronic microinflammation, which occurs in diseases, including diabetes, along with weakened immune systems, may ultimately lead to cancer development. Chemotherapy, radiotherapy and surgery are the mainstream approaches to treatment; however, they all lead to immune system weakness, which in turn increases the metastatic spread. The aim of the present review was to provide evidence of a biological response modifier β‑glucan [β‑glucan vaccine adjuvant approach to treating cancer via immune enhancement (B‑VACCIEN)] and its beneficial effects, including vaccine‑adjuvant potential, balancing metabolic parameters (including blood glucose and lipid levels), increasing peripheral blood cell cytotoxicity against cancer and alleviating chemotherapy side effects in animal models. This suggests its value as a potential strategy to provide long‑term prophylaxis in immunocompromised individuals or genetically prone to cancer.
Collapse
Affiliation(s)
- Nobunao Ikewaki
- Department of Medical Life Science, Kyushu University of Health and Welfare, Nobeoka, Miyazaki 882‑8508, Japan
| | | | - Kadalraja Raghavan
- Department of Paediatric Neurology, Kenmax Medical Service Private Limited, Tallakulam, Madurai 625002, India
| | - Kosagi-Sharaf Rao
- Institute of Scientific Research and High Technology Services of Panama (INDICASAT‑AIP), Clayton 88888, Republic of Panama
| | - Suryaprakash Vaddi
- Department of Urology, Yashoda Hospitals, Hyderabad, Telangana 50008, India
| | - Hiroshi Osawa
- Clinical Services Department, Omote Medical Clinic, Chiba 296‑8602, Japan
| | - Tomohiko Kisaka
- Division of Biodesign, Office of Research and Academic‑Government‑Community Collaboration, Hiroshima University, Higashihiroshima, Hiroshima 739‑8511, Japan
| | - Gene Kurosawa
- Department of Academic Research Support Promotion Facility, Center for Research Promotion and Support, Fujita Health University, Toyoake, Aichi 470‑1192, Japan
| | - Subramaniam Srinivasan
- The Mary‑Yoshio Translational Hexagon (MYTH), Nichi‑In Centre for Regenerative Medicine (NCRM), Chennai 600034, India
| | | | - Rajappa Senthilkumar
- The Fujio‑Eiji Academic Terrain (FEAT), Nichi‑In Centre for Regenerative Medicine (NCRM), Chennai 600034, India
| | - Masaru Iwasaki
- Centre for Advancing Clinical Research (CACR), University of Yamanashi‑ School of Medicine, Chuo, Yamanashi 409‑3898, Japan
| | - Senthilkumar Preethy
- The Fujio‑Eiji Academic Terrain (FEAT), Nichi‑In Centre for Regenerative Medicine (NCRM), Chennai 600034, India
| | - Samuel J K Abraham
- The Mary‑Yoshio Translational Hexagon (MYTH), Nichi‑In Centre for Regenerative Medicine (NCRM), Chennai 600034, India
| |
Collapse
|
14
|
Awasthi A, Raju MB, Rahman MA. Current Insights of Inhibitors of p38 Mitogen-Activated Protein Kinase in Inflammation. Med Chem 2021; 17:555-575. [PMID: 32106802 DOI: 10.2174/1573406416666200227122849] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/01/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The inflammatory process is one of the mechanisms by which our body upholds us from pathogens such as parasites, bacteria, viruses, and other harmful microorganisms. Inflammatory stimuli activate many intracellular signaling pathways such as the nuclear factor-kB (NF-kB) pathway and three mitogen-activated protein kinase (MAPK) pathways, which are mediated through extracellular-signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38. The p38 has evolved as an enticing target in treating many persistent inflammatory diseases. Hence, designing novel p38 inhibitors targeting MAPK pathways has acquired significance. OBJECTIVE Peruse to identify the lead target to discover novel p38MAPK inhibitors with different scaffolds having improved selectivity over the prototype drugs. METHODS Structure and the binding sites of p38MAPK were focused. Various scaffolds designed for inhibition and the molecules which have entered the clinical trials are discussed. RESULTS This review aspires to present the available information on the structure and the 3D binding sites of p38MAPK, various scaffolds designed for imidazole, urea, benzamide, azoles, quinoxaline, chromone, ketone as a potent p38MAPK inhibitors and their SAR studies and the molecules which have entered the clinical trials. CONCLUSION The development of successful selective p38MAPK inhibitors in inflammatory diseases is in progress despite all challenges. It was speculated that p38MAPK also plays an important role in treating diseases such as neuroinflammation, arterial inflammation, vascular inflammation, cancer and so on, which are posing the world with treatment challenges. In this review, clinical trials of drugs are discussed related to inflammatory and its related diseases. Research is in progress to design and develop novel p38MAPK inhibitors with minimal side effects.
Collapse
Affiliation(s)
- Archana Awasthi
- Department of Pharmaceutical Chemistry, Sri Venkateshwara College of Pharmacy, Madhapur, Hyderabad, Telangana, India
| | - Mantripragada Bhagavan Raju
- Department of Pharmaceutical Chemistry, Sri Venkateshwara College of Pharmacy, Madhapur, Hyderabad, Telangana, India
| | - Md Azizur Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
15
|
MicroRNA-758 Regulates Oral Squamous Cell Carcinoma via COX-2. Indian J Surg 2021. [DOI: 10.1007/s12262-020-02543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
16
|
Ottesen JT, Andersen M. Potential of Immunotherapies in Treating Hematological Cancer-Infection Comorbidities-A Mathematical Modelling Approach. Cancers (Basel) 2021; 13:3789. [PMID: 34359690 PMCID: PMC8345105 DOI: 10.3390/cancers13153789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The immune system attacks threats like an emerging cancer or infections like COVID-19 but it also plays a role in dealing with autoimmune disease, e.g., inflammatory bowel diseases, and aging. Malignant cells may tend to be eradicated, to appraoch a dormant state or escape the immune system resulting in uncontrolled growth leading to cancer progression. If the immune system is busy fighting a cancer, a severe infection on top of it may compromise the immunoediting and the comorbidity may be too taxing for the immune system to control. METHOD A novel mechanism based computational model coupling a cancer-infection development to the adaptive immune system is presented and analyzed. The model maps the outcome to the underlying physiological mechanisms and agree with numerous evidence based medical observations. RESULTS AND CONCLUSIONS Progression of a cancer and the effect of treatments depend on the cancer size, the level of infection, and on the efficiency of the adaptive immune system. The model exhibits bi-stability, i.e., virtual patient trajectories gravitate towards one of two stable steady states: a dormant state or a full-blown cancer-infection disease state. An infectious threshold curve exists and if infection exceed this separatrix for sufficiently long time the cancer escapes. Thus, early treatment is vital for remission and severe infections may instigate cancer progression. CAR T-cell Immunotherapy may sufficiently control cancer progression back into a dormant state but the therapy significantly gains efficiency in combination with antibiotics or immunomodulation.
Collapse
Affiliation(s)
- Johnny T. Ottesen
- Center for Mathematical Modeling-Human Health and Disease (COMMAND), Roskilde University, 4000 Roskilde, Denmark;
- IMFUFA, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Morten Andersen
- Center for Mathematical Modeling-Human Health and Disease (COMMAND), Roskilde University, 4000 Roskilde, Denmark;
- IMFUFA, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| |
Collapse
|
17
|
Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6:263. [PMID: 34248142 PMCID: PMC8273155 DOI: 10.1038/s41392-021-00658-5] [Citation(s) in RCA: 999] [Impact Index Per Article: 249.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer development and its response to therapy are regulated by inflammation, which either promotes or suppresses tumor progression, potentially displaying opposing effects on therapeutic outcomes. Chronic inflammation facilitates tumor progression and treatment resistance, whereas induction of acute inflammatory reactions often stimulates the maturation of dendritic cells (DCs) and antigen presentation, leading to anti-tumor immune responses. In addition, multiple signaling pathways, such as nuclear factor kappa B (NF-kB), Janus kinase/signal transducers and activators of transcription (JAK-STAT), toll-like receptor (TLR) pathways, cGAS/STING, and mitogen-activated protein kinase (MAPK); inflammatory factors, including cytokines (e.g., interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF)-α), chemokines (e.g., C-C motif chemokine ligands (CCLs) and C-X-C motif chemokine ligands (CXCLs)), growth factors (e.g., vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β), and inflammasome; as well as inflammatory metabolites including prostaglandins, leukotrienes, thromboxane, and specialized proresolving mediators (SPM), have been identified as pivotal regulators of the initiation and resolution of inflammation. Nowadays, local irradiation, recombinant cytokines, neutralizing antibodies, small-molecule inhibitors, DC vaccines, oncolytic viruses, TLR agonists, and SPM have been developed to specifically modulate inflammation in cancer therapy, with some of these factors already undergoing clinical trials. Herein, we discuss the initiation and resolution of inflammation, the crosstalk between tumor development and inflammatory processes. We also highlight potential targets for harnessing inflammation in the treatment of cancer.
Collapse
|
18
|
Altadill A, Eiro N, González LO, Andicoechea A, Fernández-Francos S, Rodrigo L, García-Muñiz JL, Vizoso FJ. Relationship between Metalloprotease-7 and -14 and Tissue Inhibitor of Metalloprotease 1 Expression by Mucosal Stromal Cells and Colorectal Cancer Development in Inflammatory Bowel Disease. Biomedicines 2021; 9:biomedicines9050495. [PMID: 33946534 PMCID: PMC8147221 DOI: 10.3390/biomedicines9050495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 11/26/2022] Open
Abstract
Colorectal carcinoma (CRC) associated with inflammatory bowel disease (IBD) is an example of an inflammation-related cancer. Matrix metalloproteases (MMP) are known to be associated with both processes. The aim of the study was to compare the expression of MMP-7, MMP-14 and tissue inhibitor of metalloproteases-1 (TIMP-1) in sporadic CRC- and IBD-associated CRC, and to compare the expression in inflamed and non-inflamed colonic tissue samples from IBD patients without or with associated CRC. An immunohistochemical study of MMP-7, -14 and TIMP-1 was performed on sporadic CRC (n = 86), IBD-associated CRC (n = 23) and colorectal mucosa of non-tumor samples from IBD patients without (n = 47) and with (n = 23) associated CRC. These factors were more frequently expressed by cancer-associated fibroblasts (CAF) from IBD-associated CRC than by CAF from CRC not associated with IBD. Regarding the inflamed tissue of IBD patients, Crohn’s disease (CD) patients with CRC development showed a higher expression of MMP-14 by fibroblasts and by mononuclear inflammatory cells (MICs) than CD patients without CRC development. In non-inflamed tissue samples, MMP-7 associated with fibroblasts and MICs, and TIMP-1 associated with MICs, were more frequently expressed in CD patients with CRC development than in CD patients without CRC development. Our data suggest that these factor expressions by stromal cells may be biological markers of CRC development risk in IBD patients.
Collapse
Affiliation(s)
- Antonio Altadill
- Department of Internal Medicine, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain;
| | - Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain; (N.E.); (S.F.-F.); (J.L.G.-M.)
| | - Luis O. González
- Department of Anatomical Pathology, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain;
| | - Alejandro Andicoechea
- Department of Surgery, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain;
| | - Silvia Fernández-Francos
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain; (N.E.); (S.F.-F.); (J.L.G.-M.)
| | - Luis Rodrigo
- Department of Gastroenterology, Central University Hospital of Asturias, Av. Roma, s/n, 33011 Oviedo, Spain;
| | - José Luis García-Muñiz
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain; (N.E.); (S.F.-F.); (J.L.G.-M.)
| | - Francisco J. Vizoso
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain; (N.E.); (S.F.-F.); (J.L.G.-M.)
- Department of Surgery, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain;
- Correspondence: ; Tel.: +34-985320050
| |
Collapse
|
19
|
|
20
|
Anunciação TAD, Garcez LS, Pereira EM, Queiroz VADO, Costa PRDF, Oliveira LPMD. Curcumin supplementation in the treatment of patients with cancer: a systematic review. BRAZ J PHARM SCI 2021. [DOI: 10.1590/s2175-979020200004181008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Eiro N, Cid S, Aguado N, Fraile M, de Pablo N, Fernández B, Domínguez F, González LO, Vizoso FJ. MMP1 and MMP11 Expression in Peripheral Blood Mononuclear Cells upon Their Interaction with Breast Cancer Cells and Fibroblasts. Int J Mol Sci 2020; 22:ijms22010371. [PMID: 33396463 PMCID: PMC7795480 DOI: 10.3390/ijms22010371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 01/01/2023] Open
Abstract
Tumor-infiltrating immune cells phenotype is associated with tumor progression. However, little is known about the phenotype of the peripheral blood mononuclear cells (PBMC) from breast cancer patients. We investigated MMP1 and MMP11 expression in PBMC from breast cancer patients and we analyzed gene expression changes upon their interaction with cancer cells and cancer-associated fibroblasts (CAF). We measured the impact of PBMC on proinflammatory gene expression in breast cancer cells, normal fibroblast (NF), and CAF and the impact on proliferation and invasiveness capacity of breast cancer cells. Gene expression of MMP1 and MMP11 in PBMC from breast cancer patients (n = 54) and control (n = 28); expression of IL1A, IL6, IL17, IFNβ, and NFĸB in breast cancer cell lines (MCF-7 and MDA-MB-231); and, additionally, IL10 and MMP11 in CAF and NF were analyzed by qRT-PCR before and after co-culture. Our results show the existence of a subpopulation of breast cancer patients (25.9%) with very high levels of MMP11 gene expression in PBMC. Also, gene expression of MMP1 and MMP11 increases in PBMC after co-culture with breast cancer cell lines, NF or CAF. PBMC from healthy or breast cancer patients induce an increased proliferation rate on MCF-7 and an increased invasiveness capacity of MDA-MB-231. Finally, we show a differential expression profile of inflammatory genes in NF and CAF when co-cultured with control or breast cancer PBMC. We have observed that MMPs’ expression in PBMC is regulated by the microenvironment, while the expression of inflammatory genes in NF or CAF is differentially regulated by PBMC. These findings confirm the importance of the crosstalk between stromal cells and suggest that PBMC would play a role in promoting aggressive tumor behavior.
Collapse
Affiliation(s)
- Noemi Eiro
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.C.); (M.F.); (N.d.P.)
- Correspondence: (N.E.); (F.J.V.); Tel.: +34-985320050 (ext. 84216) (N.E.)
| | - Sandra Cid
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.C.); (M.F.); (N.d.P.)
| | - Nuria Aguado
- Department of Surgery, Hospital Universitario San Agustín, 33401 Avilés, Spain;
| | - María Fraile
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.C.); (M.F.); (N.d.P.)
| | - Nagore de Pablo
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.C.); (M.F.); (N.d.P.)
| | - Berta Fernández
- Department of Surgery, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain;
| | - Francisco Domínguez
- Department of Anatomical Pathology, Hospital Universitario de Cabueñes, 33394 Gijón, Spain;
| | - Luis O. González
- Department of Anatomical Pathology, Fundación Hospital de Jove, 33209 Gijón, Spain;
| | - Francisco J. Vizoso
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.C.); (M.F.); (N.d.P.)
- Department of Surgery, Fundación Hospital de Jove, 33290 Gijón, Spain
- Correspondence: (N.E.); (F.J.V.); Tel.: +34-985320050 (ext. 84216) (N.E.)
| |
Collapse
|
22
|
Ex vivo/in vitro effects of aspirin and ibuprofen, bulk and nano forms, in peripheral lymphocytes of prostate cancer patients and healthy individuals. Mutat Res 2020; 861-862:503306. [PMID: 33551100 DOI: 10.1016/j.mrgentox.2020.503306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022]
Abstract
Inhibiting inflammatory processes or eliminating inflammation represents a logical role in the suppression and treatment strategy of cancer. Several studies have shown that anti-inflammatory drugs (NSAIDs) act as anticancer agents while reducing metastases and mortality rate. NSAIDs are seriously limited by their side effects and toxicity, which can become cumulative with their long-term administration for chemoprevention. In the current ex vivo / in vitro study, the genotoxicity mechanisms of NSAIDS in bulk and nanoparticle forms allowed a strategy to prevent and minimise the damage in human lymphocytes. When compared to their bulk forms, acetylsalicylic acid (Aspirin) nano and ibuprofen nano (IBU N), both NSAIDs in 500 μg/mL concentration significantly decreased DNA damage measured by alkaline comet assay. Micronuclei (MNi) frequency also decreased after ASP N (500 μg/mL), ASP B (500 μg/mL) and IBU N (200 μg/mL) in prostate cancer patients and healthy individuals, however, the ibuprofen bulk (200 μg/mL) showed a significant increase in MNi formation in lymphocytes from healthy and prostate cancer patients when compared to the respective untreated lymphocytes. These findings suggest that a reduction in particle size had an impact on the reactivity of the drug, further emphasising the potential of nanoparticles to improve the current treatment options.
Collapse
|
23
|
Chen X, Wei H, Qian D, Wang Y, Guan Y, Er P, Song Y, Liu N, Wang J, Zhao L, Yuan Z, Wang P, Pang Q, Zhang W. Predictive value of EGF and uPAR for chemoradiotherapy response and survival in patients with esophageal squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1152. [PMID: 33241001 PMCID: PMC7576018 DOI: 10.21037/atm-20-4503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Chemoradiotherapy (CRT) plays a central role in the treatment of esophageal squamous cell carcinoma (ESCC). However, no effective biomarkers have been identified for predict CRT sensitivity and prognosis of patients with ESCC. The aim of this study was to investigate cytokine profiles of epidermal growth factor (EGF) and urokinase plasminogen activator receptor (uPAR) in 68 ESCC patients, and to evaluate the clinical utility of these markers. Methods This pilot study enrolled 68 patients who received neoadjuvant CRT followed by radical surgery or definitive CRT between 2015 and 2017. Serum specimen was obtained from each patient before treatment and at the time of administration of total doses of 40 Gy. Cytokines expression analyses were performed in pre- and post-treatment serum using human cytokine antibody arrays which contained 120 known tumor-related cytokines. Results Seven differentially expressed cytokines identified by cytokine antibody arrays in pre- and post-treatment serum from 4 patients with CRT sensitivity and 4 patients with CRT resistance. Of these, up-regulation of EGF and uPAR in serum at the doses of 40 Gy were associated with adverse clinical outcomes. The predictive value of EGF and uPAR were further assessed in a second set of 60 ESCCs. A total of 68 patients enrolled in this study. The median follow-up duration of these patients was 15.87 months (range, 6.21–23.85 months). Cox multivariate survival analyses revealed that high uPAR ratio after CRT independently predicted progression-free survival (PFS) (HR =3.999, 95% CI: 1.503–10.639, P=0.006) and patients with elevated levels of EGF after CRT exhibited significantly worse overall survival (OS) (HR =2.574, 95% CI: 1.046–6.335, P=0.040). Of note, uPAR expression was significantly positive correlation with EGF expression in pre- and post-treatment serum (P=0.0001, P=0.0038). Patients with both high EGF and uPAR ratios had an inferior PFS and OS, compared to patients with a high EGF ratio only or uPAR ratio only or neither (1-year PFS rate 44.2% vs. 61.4%, 1-year OS rate 64.2% vs. 83.4%, P=0.033 and 0.029, respectively). Conclusions The levels of EGF and uPAR in serum are reliable and predictive biomarkers for survival in ESCC patients. Further prospective validation in larger independent cohorts is necessary to fully assess its predictive power. We present the following article in accordance with the REMARK reporting checklist.
Collapse
Affiliation(s)
- Xi Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hui Wei
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin, China
| | - Dong Qian
- Department of radiotherapy, The First Affiliated Hospital of University of Science and Technology of China, Heifei, China
| | - Yuwen Wang
- Department of radiotherapy, Tianjin Medical University Cancer Hospital Airport Hospital, Tianjin, China
| | - Yong Guan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Puchun Er
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yongchun Song
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ningbo Liu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jun Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qingsong Pang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wencheng Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
24
|
A 6-Week Worksite Positivity Program Leads to Greater Life Satisfaction, Decreased Inflammation, and a Greater Number of Employees With A1C Levels in Range. J Occup Environ Med 2020; 61:357-372. [PMID: 30614897 DOI: 10.1097/jom.0000000000001527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To determine whether a 6-week Positivity Program could impact employee cardiovascular inflammation, blood sugars, cortisol, dehydroepiandrosterone (DHEA), and/or life satisfaction. METHODS Pre- and post-study blood draw and life satisfaction questionnaire tracked changes in 10 cardiovascular and inflammatory biomarkers for 63 employees who participated in a 6-week Positivity Program comprised of three interventions: gratitude, HeartMath's Heart Lock-In, and yoga stretches with guided imagery. RESULTS Improvements were recorded in life satisfaction as well as in seven of 10 cardiovascular and inflammatory biomarkers, including high sensitivity C-reactive protein (HsCRP) (-27%), hemoglobin A1c (HbA1c) (-1%), glucose (-2%), myeloperoxidase (MPO) (-5%), lipoprotein-associated phospholipase-A2 (Lp-PLA2) (-9%), apolipoprotein B (ApoB) (-6%), and DHEA (1%). No improvements were recorded in cortisol (11%), small-dense LDL (sdLDL) (0%), or oxidized LDL (OxLDL) (7%). CONCLUSIONS Data suggest that engaging in 6 weeks of a workplace Positivity Program may improve employee life satisfaction, blood sugar levels, and some markers of cardiovascular inflammation.
Collapse
|
25
|
AHMED AMIRABEN, ZIDI SABRINA, ALMAWI WASSIM, GHAZOUANI EZZEDDINE, MEZLINI AMEL, LOUESLATI BESMAYACOUBI, STAYOUSSEF MOUNA. Single nucleotide polymorphism of transforming growth factor-β1 and interleukin-6 as risk factors for ovarian cancer. Cent Eur J Immunol 2020; 45:267-275. [PMID: 33437178 PMCID: PMC7790009 DOI: 10.5114/ceji.2020.101242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/02/2018] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION We investigated the association between common variants in TGF-β1, IL-6 and the risk of ovarian cancer (OC) in Tunisian patients and control women. MATERIAL METHODS AND RESULTS Study subjects comprised 71 OC cases and 74 control women. Genotyping of TGF-β1 and IL-6 SNPs was done by real-time PCR. No differences were noted in the minor allele frequencies of the three TGF-β1 SNPs between OC patients and controls. However, marked differences in the distribution of TGF-β1 rs1800469 genotypes were seen between OC cases and controls (p < 0.001), with TGF-β1 rs1800469 heterozygous (C/T) genotype being negatively associated with OC (OR [95% CI] = 0.24 [0.15-0.58]). The allelic and genotypic distributions at IL-6 polymorphisms showed a positive association between minor allele (G) at IL-6 rs1880242 variant (p = 0.0275; R [95% CI] = 1.88 [1.03-3.46]) and the occurrence of OC. In fact, the presence of T allele [G/T + T/T] decrease the risk of OC (p = 0.021; OR [95% CI] = 0.38 [0.17-0.88]). In addition, the Haploview analysis demonstrated high linkage disequilibrium (LD) between IL-6 SNPs and eight-locus haplotype analysis identified that GGAGGGGA and GGAGGGTA haplotypes are positively associated with OC risk. A negative association was shown between IL-6 haplotype (TGGGCCTA) and OC occurrence. CONCLUSIONS Our results suggest that TGF-β1 rs1800469, IL-6 rs1880242 variants and IL-6 haplotype (TGGGCCTA) have protective roles of OC risk. IL-6 haplotypes (GGAGGGGA and GGAGGGTA) increase OC susceptibility among Tunisian women.
Collapse
Affiliation(s)
- AMIRA BEN AHMED
- Department of Biology, Faculty of Sciences of Tunis, Laboratory of Mycology, Pathologies and Biomarkers: LR16ES05, El Manar University, Tunis, Tunisia
| | - SABRINA ZIDI
- Department of Biology, Faculty of Sciences of Tunis, Laboratory of Mycology, Pathologies and Biomarkers: LR16ES05, El Manar University, Tunis, Tunisia
| | - WASSIM ALMAWI
- College of Health Sciences, Abu Dhabi University, United Arab Emirates
| | | | | | - BESMA YACOUBI LOUESLATI
- Department of Biology, Faculty of Sciences of Tunis, Laboratory of Mycology, Pathologies and Biomarkers: LR16ES05, El Manar University, Tunis, Tunisia
| | - MOUNA STAYOUSSEF
- Department of Biology, Faculty of Sciences of Tunis, Laboratory of Mycology, Pathologies and Biomarkers: LR16ES05, El Manar University, Tunis, Tunisia
| |
Collapse
|
26
|
L. D. Santos L, D. D. Custódio I, Silva ATF, C. C. Ferreira I, C. Marinho E, C. Caixeta D, V. Souza A, R. Teixeira R, Araújo TG, Shivappa N, R. Hébert J, Paiva CE, S. Espíndola F, Goulart LR, C. P. Maia Y. Overweight Women with Breast Cancer on Chemotherapy Have More Unfavorable Inflammatory and Oxidative Stress Profiles. Nutrients 2020; 12:E3303. [PMID: 33126617 PMCID: PMC7692181 DOI: 10.3390/nu12113303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation and redox imbalance are strongly influenced by diet and nutritional status, and both are risk factors for tumor development. This prospective study aimed to explore the associations between inflammatory and antioxidant markers and nutritional status in women with breast cancer undergoing chemotherapy. The women were evaluated at three times: T0, after the infusion of the first cycle; T1, after infusion of the intermediate cycle; and T2, after the infusion of the last chemotherapy cycle. The consumption of antioxidant nutrients and the Total Dietary Antioxidant Capacity reduced between T0 and T2 and the Dietary Inflammatory Index scores increased throughout the chemotherapy. Blood samples taken at the end of the chemotherapy showed lower levels of glutathione reductase and reduced glutathione, with greater quantification of the transcripts for Interleukin-6 and Tumor Necrosis Factor α. It should be emphasized that the Total Dietary Antioxidant Capacity is lower and the Dietary Inflammatory Index is higher in the group of overweight patients at the end of the follow-up, besides showing lower levels of the redox status, especially the plasma levels of glutathione reductase (p = 0.039). In addition, trends towards higher transcriptional levels of cytokines in peripheral blood were observed more often in overweight women than in non-overweight women. In this study of 55 women with breast cancer, nine (16%) with metastases, diet became more pro-inflammatory with fewer antioxidants during the chemotherapy. Briefly, we have shown that chemotherapy is critical for high-risk overweight women due to their reduced intake of antioxidant nutrients, generating greater inflammatory and oxidative stress profiles, suggesting the adoption of healthier dietary practices by women with breast cancer throughout their chemotherapy.
Collapse
Affiliation(s)
- Letícia L. D. Santos
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38402-022, Brazil; (L.L.D.S.); (A.T.F.S.); (I.C.C.F.); (T.G.A.)
| | - Isis D. D. Custódio
- Graduate Program in Health Sciences, Federal University of Uberlândia, Uberlândia 38400-902, Brazil; (I.D.D.C.); (E.C.M.); (F.S.E.)
| | - Alinne T. F. Silva
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38402-022, Brazil; (L.L.D.S.); (A.T.F.S.); (I.C.C.F.); (T.G.A.)
| | - Izabella C. C. Ferreira
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38402-022, Brazil; (L.L.D.S.); (A.T.F.S.); (I.C.C.F.); (T.G.A.)
| | - Eduarda C. Marinho
- Graduate Program in Health Sciences, Federal University of Uberlândia, Uberlândia 38400-902, Brazil; (I.D.D.C.); (E.C.M.); (F.S.E.)
| | - Douglas C. Caixeta
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-302, Brazil; (D.C.C.); (A.V.S.); (R.R.T.)
| | - Adriele V. Souza
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-302, Brazil; (D.C.C.); (A.V.S.); (R.R.T.)
| | - Renata R. Teixeira
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-302, Brazil; (D.C.C.); (A.V.S.); (R.R.T.)
| | - Thaise G. Araújo
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38402-022, Brazil; (L.L.D.S.); (A.T.F.S.); (I.C.C.F.); (T.G.A.)
| | - Nitin Shivappa
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC 29208, USA; (N.S.); (J.R.H.)
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208, USA
- Department of Nutrition, Connecting Health Innovations LLC, Columbia, SC 29201, USA
| | - James R. Hébert
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC 29208, USA; (N.S.); (J.R.H.)
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208, USA
- Department of Nutrition, Connecting Health Innovations LLC, Columbia, SC 29201, USA
| | - Carlos Eduardo Paiva
- Department of Clinical Oncology, Graduate Program in Oncology, Palliative Care and Quality of Life Research Group (GPQual), Pio XII Foundation—Barretos Cancer Hospital, Barretos 14784-400, Brazil;
| | - Foued S. Espíndola
- Graduate Program in Health Sciences, Federal University of Uberlândia, Uberlândia 38400-902, Brazil; (I.D.D.C.); (E.C.M.); (F.S.E.)
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-302, Brazil; (D.C.C.); (A.V.S.); (R.R.T.)
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38402-022, Brazil; (L.L.D.S.); (A.T.F.S.); (I.C.C.F.); (T.G.A.)
- Graduate Program in Health Sciences, Federal University of Uberlândia, Uberlândia 38400-902, Brazil; (I.D.D.C.); (E.C.M.); (F.S.E.)
| | - Yara C. P. Maia
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38402-022, Brazil; (L.L.D.S.); (A.T.F.S.); (I.C.C.F.); (T.G.A.)
- Graduate Program in Health Sciences, Federal University of Uberlândia, Uberlândia 38400-902, Brazil; (I.D.D.C.); (E.C.M.); (F.S.E.)
| |
Collapse
|
27
|
Lobo YA, Bonazza C, Batista FP, Castro RA, Bonturi CR, Salu BR, de Cassia Sinigaglia R, Toma L, Vicente CM, Pidde G, Tambourgi DV, Alvarez-Flores MP, Chudzinski-Tavassi AM, Oliva MLV. EcTI impairs survival and proliferation pathways in triple-negative breast cancer by modulating cell-glycosaminoglycans and inflammatory cytokines. Cancer Lett 2020; 491:108-120. [PMID: 32841713 DOI: 10.1016/j.canlet.2020.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/21/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023]
Abstract
Breast cancer is the most common malignant tumor among women worldwide, and triple-negative breast cancer is the most aggressive type of breast cancer, which does not respond to hormonal therapies. The protease inhibitor, EcTI, extracted from seeds of Enterolobium contortisiliquum, acts on the main signaling pathways of the MDA-MB-231 triple-negative breast cancer cells. This inhibitor, when bound to collagen I of the extracellular matrix, triggers a series of pathways capable of decreasing the viability, adhesion, migration, and invasion of these cells. This inhibitor can interfere in the cell cycle process through the main signaling pathways such as the adhesion, Integrin/FAK/SRC, Akt, ERK, and the cell death pathway BAX and BCL-2. It also acts by reducing the main inflammatory cytokines such as TGF-α, IL-6, IL-8, and MCP-1, besides NFκB, a transcription factor, responsible for the aggressive and metastatic characteristics of this type of tumor. Thus, the inhibitor was able to reduce the main processes of carcinogenesis of this type of cancer.
Collapse
Affiliation(s)
- Yara A Lobo
- Biochemistry, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Camila Bonazza
- Gynecology, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Fabrício P Batista
- Biochemistry, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Rodrigo A Castro
- Gynecology, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Camila R Bonturi
- Biochemistry, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Bruno R Salu
- Biochemistry, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Rita de Cassia Sinigaglia
- Electron Microscopy Center at the Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Leny Toma
- Biochemistry, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Carolina M Vicente
- Biochemistry, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Giselle Pidde
- Immunochemistry, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, 05503-900, SP, Brazil
| | - Denise V Tambourgi
- Immunochemistry, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, 05503-900, SP, Brazil
| | - Miryam P Alvarez-Flores
- Center of Excellence in New Target Discovery (CENTD), Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, 05503-900, SP, Brazil
| | - Ana M Chudzinski-Tavassi
- Center of Excellence in New Target Discovery (CENTD), Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, 05503-900, SP, Brazil
| | - Maria Luiza V Oliva
- Biochemistry, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil.
| |
Collapse
|
28
|
|
29
|
Chakraborty C, Sharma AR, Sharma G, Lee SS. The Interplay among miRNAs, Major Cytokines, and Cancer-Related Inflammation. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:606-620. [PMID: 32348938 PMCID: PMC7191126 DOI: 10.1016/j.omtn.2020.04.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
Inflammation is closely related with the progression of cancer and is an indispensable component that orchestrates the tumor microenvironment. Studies suggest that different mediator and cellular effectors, including cytokines (interleukins, tumor necrosis factor-α [TNF-α], transforming growth factor-β [TGF-β], and granulocyte macrophage colony-stimulating factor [GM-CSF]), chemokines, as well as some transcription factors (nuclear factor κB [NF-κB], signal transducer and activator of transcription 3 [STAT3], hypoxia-inducible factor-1α [HIF1α]), play a crucial role during cancer-related inflammation (CRI). MicroRNAs (miRNAs) are the key components of cellular physiology. They play notable roles during posttranscriptional gene regulation and, thus, might have a potential role in controlling the inflammatory cascade during cancer progression. Taking into consideration the role identified for miRNAs in relation to inflammatory cytokines, we have tried to review their participation in neoplastic progression. Additionally, the involvement of miRNAs with some important transcription factors (NF-κB, STAT3, HIF1α) and proteins (cyclooxygenase-2 [COX-2], inducible nitric oxide synthase [iNOS]) closely associated with inflammation during cancer has also been discussed. A clear insight into the responsibility of miRNAs in cytokine signaling and inflammation related to CRI could project them as new therapeutic molecules, which could lead to improved treatment of CRI in the near future.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India; Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| |
Collapse
|
30
|
Kim H, Shin KK, Kim HG, Jo M, Kim JK, Lee JS, Choung ES, Li WY, Lee SW, Kim KH, Yoo BC, Cho JY. Src/NF-κB-Targeted Anti-Inflammatory Effects of Potentilla glabra var. Mandshurica (Maxim.) Hand.-Mazz. Ethanol Extract. Biomolecules 2020; 10:biom10040648. [PMID: 32331432 PMCID: PMC7225925 DOI: 10.3390/biom10040648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a complex protective response of body tissues to harmful stimuli. Acute inflammation can progress to chronic inflammation, which can lead to severe disease. Therefore, this research focuses on the development of anti-inflammatory drugs, and natural extracts have been explored as potential agents. No study has yet examined the inflammation-associated pharmacological activity of Potentilla glabra Var. mandshurica (Maxim.) Hand.-Mazz ethanol extract (Pg-EE). To examine the mechanisms by which Pg-EE exerts anti-inflammatory effects, we studied its activities in lipopolysaccharide (LPS)-treated murine macrophage RAW264.7 cells and an HCl/EtOH-induced gastritis model. LPS-triggered nitric oxide (NO) release and mRNA levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) in RAW264.7 cells were suppressed by Pg-EE in a dose-dependent manner. Using a luciferase assay and western blot assay, we found that the NF-κB pathway was inhibited by Pg-EE, particularly by the decreased level of phosphorylated proteins of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) subunits (p65 and p50), inhibitor of kappa B alpha (IκBα), p85, and Src. Using an overexpression strategy, cellular thermal shift assay, and immunoprecipitation analysis, we determined that the anti-inflammatory effect of Pg-EE was mediated by the inhibition of Src. Pg-EE further showed anti-inflammatory effects in vivo in the HCl/EtOH-induced gastritis mouse model. In conclusion, Pg-EE exerts anti-inflammatory activities by targeting Src in the NF-κB pathway, and these results suggest that Pg-EE could be used as an anti-inflammatory herbal medicine.
Collapse
Affiliation(s)
- Haeyeop Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (K.K.S.); (H.G.K.); (M.J.); (J.K.K.)
| | - Kon Kuk Shin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (K.K.S.); (H.G.K.); (M.J.); (J.K.K.)
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (K.K.S.); (H.G.K.); (M.J.); (J.K.K.)
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
| | - Minkyeong Jo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (K.K.S.); (H.G.K.); (M.J.); (J.K.K.)
| | - Jin Kyeong Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (K.K.S.); (H.G.K.); (M.J.); (J.K.K.)
| | - Jong Sub Lee
- DanjoungBio Co., Ltd., Wonju 26303, Korea; (J.S.L.); (E.S.C.)
| | - Eui Su Choung
- DanjoungBio Co., Ltd., Wonju 26303, Korea; (J.S.L.); (E.S.C.)
| | - Wan Yi Li
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650224, China;
| | - Sang Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Kyung-Hee Kim
- Biomarker Branch, Research Institute, National Cancer Center, Goyang 10408, Korea;
| | - Byong Chul Yoo
- Biomarker Branch, Research Institute, National Cancer Center, Goyang 10408, Korea;
- Correspondence: (B.C.Y.); (J.Y.C.); Tel.: +82-31-920-2342 (B.C.Y.); +82-31-290-7876 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (K.K.S.); (H.G.K.); (M.J.); (J.K.K.)
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (B.C.Y.); (J.Y.C.); Tel.: +82-31-920-2342 (B.C.Y.); +82-31-290-7876 (J.Y.C.)
| |
Collapse
|
31
|
Targeting of oncogenic signaling pathways by berberine for treatment of colorectal cancer. Med Oncol 2020; 37:49. [PMID: 32303850 DOI: 10.1007/s12032-020-01367-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
Abstract
Studies indicate that inhibiting a single signaling pathway or one single product of a gene is insufficient for the prevention and treatment of cancer. This is due to the fact that dysregulation must occur in more than 500 genes in order to produce a cancerous phenotype. Despite this evidence, available drugs used for cancer treatment focus on a single target. Meanwhile, berberine as a nutraceutical is capable of targeting various processes involved in tumor development including proliferation, invasion, angiogenesis, and metastasis. In comparison with synthetic agents, berberine is cheaper, safer, and more available. Berberine has shown anti-inflammatory properties which make it an ideal option in order to prevent inflammation-associated cancers. Colorectal cancer is one of the most common cancers all over the world and its incidence is increasing each day. Therefore, further investigations about berberine could be helpful in the discovery of novel agents for preventing and/or treating colorectal cancer. This review emphasizes the studies investigating the roles of berberine in colorectal cancer such as controlling cell signaling pathways, inducing apoptosis, regulating microRNAs, attenuating oxidative stress, and affecting inflammation.
Collapse
|
32
|
Liang C, Cao H, Cao X. Tetrandrine can alleviate inflammation and delay the growth of lung cancer during low-dose radiotherapy of non-small cell lung cancer. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1736951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Chenglei Liang
- Department of Pharmacy, Xuyi County Hospital of Traditional Chinese Medicine, Xuyi, Jiangsu, P.R. China
| | - Hu Cao
- Department of Pharmacy, Xuyi County Hospital of Traditional Chinese Medicine, Xuyi, Jiangsu, P.R. China
| | - Xiaopin Cao
- Department of Pharmacy, Xuyi County Hospital of Traditional Chinese Medicine, Xuyi, Jiangsu, P.R. China
| |
Collapse
|
33
|
Association Between the Interleukin-17 Gene Polymorphism -197G>A and the Risk of Prostate Cancer in a Galician Population. Pathol Oncol Res 2020; 26:483-489. [DOI: 10.1007/s12253-018-0537-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
|
34
|
Grote V, Levnajić Z, Puff H, Ohland T, Goswami N, Frühwirth M, Moser M. Dynamics of Vagal Activity Due to Surgery and Subsequent Rehabilitation. Front Neurosci 2019; 13:1116. [PMID: 31827417 PMCID: PMC6849369 DOI: 10.3389/fnins.2019.01116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Background Vagal activity is critical for maintaining key body functions, including the stability of inflammatory control. Its weakening, such as in the aftermatch of a surgery, leaves the body vulnerable to diverse inflammatory conditions, including sepsis. Methods Vagal activity can be measured by the cardiorespiratory interaction known as respiratory sinus arrhythmia or high-frequency heart-rate variability (HRV). We examined the vagal dynamics before, during and after an orthopedic surgery. 39 patients had their HRV measured around the period of operation and during subsequent rehabilitation. Measurements were done during 24 h circadian cycles on ten specific days. For each patient, the circadian vagal activity was calculated from HRV data. Results Our results confirm the deteriorating effect of surgery on vagal activity. Patients with stronger pre-operative vagal activity suffer greater vagal withdrawal during the peri-operative phase, but benefit from stronger improvements during post-operative period, especially during the night. Rehabilitation seems not only to efficiently restore the vagal activity to pre-operative level, but in some cases to actually improve it. Discussion Our findings indicate that orthopedic rehabilitation has the potential to strengthen the vagal activity and hence boost inflammatory control. We conclude that providing a patient with a vagal reinforcement procedure prior to the surgery (“pre-habilitation”) might be a beneficial strategy against post-operative complications. The study also shows the clinical usefulness of quantifying the cardiorespiratory interactions.
Collapse
Affiliation(s)
- Vincent Grote
- Human Research Institute, Weiz, Austria.,Orthopedic Rehabilitation Center, Humanomed Center Althofen, Althofen, Austria.,Division of Physiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Zoran Levnajić
- Complex Systems and Data Science Lab, Faculty of Information Studies in Novo Mesto, Novo Mesto, Slovenia
| | - Henry Puff
- Orthopedic Rehabilitation Center, Humanomed Center Althofen, Althofen, Austria
| | - Tanja Ohland
- Orthopedic Rehabilitation Center, Humanomed Center Althofen, Althofen, Austria
| | - Nandu Goswami
- Division of Physiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | | | - Maximilian Moser
- Human Research Institute, Weiz, Austria.,Division of Physiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| |
Collapse
|
35
|
Qi YL, Li Y, Man XX, Sui HY, Zhao XL, Zhang PX, Qu XS, Zhang H, Wang BX, Li J, Qi SF, Jia LL, Luan HY, Zhang CB, Wang WQ. CXCL3 overexpression promotes the tumorigenic potential of uterine cervical cancer cells via the MAPK/ERK pathway. J Cell Physiol 2019; 235:4756-4765. [PMID: 31667838 DOI: 10.1002/jcp.29353] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022]
Abstract
CXCL3 belongs to the CXC-type chemokine family and is known to play a multifaceted role in various human malignancies. While its clinical significance and mechanisms of action in uterine cervical cancer (UCC) remain unclear. This investigation demonstrated that the UCC cell line HeLa expressed CXCL3, and strong expression of CXCL3 was detected in UCC tissues relative to nontumor tissues. In addition, CXCL3 expression was strongly correlated with CXCL5 expression in UCC tissues. In vitro, HeLa cells overexpressing CXCL3, HeLa cells treated with exogenous CXCL3 or treated with conditioned medium from WPMY cells overexpressing CXCL3, exhibited enhanced proliferation and migration activities. In agreement with these findings, CXCL3 overexpression was also associated with the generation of HeLa cell tumor xenografts in athymic nude mice. Subsequent mechanistic studies demonstrated that CXCL3 overexpressing influenced the expression of extracellular signal-regulated kinase (ERK) signaling pathway associated genes, including ERK1/2, Bcl-2, and Bax, whereas the CXCL3-induced proliferation and migration effects were attenuated by exogenous administration of the ERK1/2 blocker PD98059. The data of the current investigation support that CXCL3 appears to hold promise as a potential tumor marker and interference target for UCC.
Collapse
Affiliation(s)
- Ya-Ling Qi
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China.,Department of Histology and Embryology, Hainan Medical College, Haikou, Hainan, China
| | - Yue Li
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xia-Xia Man
- Department of Oncologic Gynecology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Hong-Yu Sui
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xiao-Lian Zhao
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Peng-Xia Zhang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xiu-Sheng Qu
- First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Hui Zhang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Bai-Xin Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Jing Li
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Shu-Fang Qi
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Lin-Lin Jia
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Hai-Yan Luan
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Chun-Bin Zhang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Wei-Qun Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
36
|
Eiro N, Cid S, Fernández B, Fraile M, Cernea A, Sánchez R, Andicoechea A, DeAndrés Galiana EJ, González LO, Fernández‐Muñiz Z, Fernández‐Martínez JL, Vizoso FJ. MMP11 expression in intratumoral inflammatory cells in breast cancer. Histopathology 2019; 75:916-930. [DOI: 10.1111/his.13956] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Noemi Eiro
- Research Unit Fundación Hospital de Jove Gijón Spain
| | - Sandra Cid
- Research Unit Fundación Hospital de Jove Gijón Spain
| | - Berta Fernández
- Department of Surgery Hospital Universitario Central de Asturias Oviedo Spain
| | - Maria Fraile
- Research Unit Fundación Hospital de Jove Gijón Spain
| | - Ana Cernea
- Department of Mathematics Group of Inverse Problems, Optimization and Machine Learning University of Oviedo Oviedo Spain
| | - Rosario Sánchez
- Department of Surgery Fundación Hospital de Jove Gijón Spain
| | | | - Enrique J DeAndrés Galiana
- Department of Mathematics Group of Inverse Problems, Optimization and Machine Learning University of Oviedo Oviedo Spain
- Department of Informatics and Computer Science University of Oviedo Oviedo Spain
| | - Luis O González
- Department of Anatomical Pathology Fundación Hospital de Jove Gijón Spain
| | - Zulima Fernández‐Muñiz
- Department of Mathematics Group of Inverse Problems, Optimization and Machine Learning University of Oviedo Oviedo Spain
| | - Juan L Fernández‐Martínez
- Department of Mathematics Group of Inverse Problems, Optimization and Machine Learning University of Oviedo Oviedo Spain
| | - Francisco J Vizoso
- Research Unit Fundación Hospital de Jove Gijón Spain
- Department of Surgery Fundación Hospital de Jove Gijón Spain
| |
Collapse
|
37
|
Abstract
Carbon nanotubes (CNTs) are nanomaterials with unique physicochemical properties that are targets of great interest for industrial and commercial applications. Notwithstanding, some characteristics of CNTs are associated with adverse outcomes from exposure to pathogenic particulates, raising concerns over health risks in exposed workers and consumers. Indeed, certain forms of CNTs induce a range of harmful effects in laboratory animals, among which inflammation, fibrosis, and cancer are consistently observed for some CNTs. Inflammation, fibrosis, and malignancy are complex pathological processes that, in summation, underlie a major portion of human disease. Moreover, the functional interrelationship among them in disease pathogenesis has been increasingly recognized. The CNT-induced adverse effects resemble certain human disease conditions, such as pneumoconiosis, idiopathic pulmonary fibrosis (IPF), and mesothelioma, to some extent. Progress has been made in understanding CNT-induced pathologic conditions in recent years, demonstrating a close interconnection among inflammation, fibrosis, and cancer. Mechanistically, a number of mediators, signaling pathways, and cellular processes are identified as major mechanisms that underlie the interplay among inflammation, fibrosis, and malignancy, and serve as pathogenic bases for these disease conditions in CNT-exposed animals. These studies indicate that CNT-induced pathological effects, in particular, inflammation, fibrosis, and cancer, are mechanistically, and in some cases, causatively, interrelated. These findings generate new insights into CNT adverse effects and pathogenesis and provide new targets for exposure monitoring and drug development against inflammation, fibrosis, and cancer caused by inhaled nanomaterials.
Collapse
Affiliation(s)
- Jie Dong
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown , WV , USA
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown , WV , USA
| |
Collapse
|
38
|
Dietary Inflammatory Index, Dietary Non-Enzymatic Antioxidant Capacity, and Colorectal and Breast Cancer Risk (MCC-Spain Study). Nutrients 2019; 11:nu11061406. [PMID: 31234427 PMCID: PMC6628286 DOI: 10.3390/nu11061406] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
Inflammation and antioxidant capacity have been associated with colorectal and breast cancer. We computed the dietary inflammatory index (DII®), and the total dietary non-enzymatic antioxidant capacity (NEAC) and associated them with colorectal and breast cancer risk in the population-based multi case-control study in Spain (MCC-Spain). We included 1852 colorectal cancer and 1567 breast cancer cases, and 3447 and 1486 population controls, respectively. DII score and NEAC were derived using data from a semi-quantitative validated food frequency questionnaire. Unconditional logistic regression models were used to estimate odds ratios (OR) and 95% confidence intervals (95%CI) for energy-adjusted DII (E-DII), and a score combining E-DII and NEAC. E-DII was associated with colorectal cancer risk (OR = 1.93, highest quartile versus lowest, 95%CI:1.60–2.32; p-trend: <0.001); this increase was observed for both colon and rectal cancer. Less pronounced increased risks were observed for breast cancer (OR = 1.22, highest quartile versus lowest, 95%CI:0.99–1.52, p-trend: >0.10). The combined score of high E-DII scores and low antioxidant values were associated with colorectal cancer risk (OR = 1.48, highest quartile versus lowest, 95%CI: 1.26–1.74; p-trend: <0.001), but not breast cancer. This study provides evidence that a pro-inflammatory diet is associated with increased colorectal cancer risk while findings for breast cancer were less consistent.
Collapse
|
39
|
Kan S, Chai S, Chen W, Yu B. DNA methylation profiling identifies potentially significant epigenetically-regulated genes in glioblastoma multiforme. Oncol Lett 2019; 18:1679-1688. [PMID: 31423235 PMCID: PMC6614665 DOI: 10.3892/ol.2019.10512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most lethal and damaging types of human cancer. The current study was conducted to identify differentially methylated genes (DMGs) between GBM and normal controls, and to improve our understanding of GBM at the epigenetic level. The DNA methylation profile of GBM was downloaded from the Gene Expression Omnibus (GEO) database using the accession number GSE50923. The MethyAnalysis package was applied to identify DMGs between GBM and controls, which were then analyzed by functional enrichment analysis. Protein-protein interaction (PPI) networks were constructed using the hypermethylated and hypomethylated genes. Finally, transcription factors (TFs) that can regulate the hypermethylated and hypomethylated genes were predicted, followed by construction of transcriptional regulatory networks. Furthermore, another relevant dataset, GSE22867, was downloaded from the GEO database for data validation. A total of 476 hypermethylated and 850 hypomethylated genes were identified, which were mainly associated with the functions of ‘G-protein-coupled receptors ligand binding’, ‘cytokine activity’, ‘cytokine-cytokine receptor interaction’, and ‘D-glutamine and D-glutamate metabolism’. The hypermethylated gene neuropeptide Y (NPY) and the hypomethylated gene tumor necrosis factor (TNF) demonstrated high degrees in the PPI network. Forkhead box protein A1 (FOXA1), potassium voltage-gated channel subfamily C member 3 (KCNC3) and caspase-8 (CASP8) exhibited high degrees in the transcriptional regulatory networks. In addition, the methylation profiles of NPY, TNF, FOXA1, KCNC3 and CASP8 were confirmed by another dataset. In summary, the present study systematically analyzed the DNA methylation profile of GBM using bioinformatics approaches and identified several abnormally methylated genes, providing insight into the molecular mechanism underlying GBM.
Collapse
Affiliation(s)
- Shifeng Kan
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Song Chai
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Wenhua Chen
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Bo Yu
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| |
Collapse
|
40
|
Sun C, Gu Y, Chen G, Du Y. Bioinformatics Analysis of Stromal Molecular Signatures Associated with Breast and Prostate Cancer. J Comput Biol 2019; 26:1130-1139. [PMID: 31180245 DOI: 10.1089/cmb.2019.0045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study aimed to identify stromal molecular signatures associated with breast and prostate cancer. The microarray data GSE26910 was downloaded from Gene Expression Omnibus database, including six invasive breast tumor stroma, six matched normal controls, six invasive prostate tumor stroma, and six matched controls. The differentially expressed genes (DEGs) in invasive breast and prostate tumors stroma were, respectively, identified. Then common stromal genes (B_P.DEGs) were further screened. Protein-protein interaction (PPI) network was constructed and Gene Ontology analysis was performed. Besides, gene-chemical interactions were mapped in Comparative Toxicogenomics Database to screen the chemicals related to feature genes. The results showed that, in total, 16 B_P.DEGs were identified. Thereinto, only seven B_P.DEGs were mapped into PPI, and only four functional modules (adenylate cyclase activating polypeptide 1 (pituitary) receptor type I (ADCYAP1R1) module, aspartoacylase (ASPA) module, glutathione S-transferase mu 5 (GSTM5) module, and periplakin (PPL) module) were involved in important biological processes associated with cancer progression. In addition, the chemicals, such as dihydrotestosterone, apocarotenal, testosterone, and progesterone, were screened for the roles of feature genes in the progression of breast and prostate cancer. In conclusion, ADCYAP1R1, GSTM5, and PPL were stromal molecular signatures and might play a key role in the progression of breast and prostate cancer.
Collapse
Affiliation(s)
- Chao Sun
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Gu
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqing Chen
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yibao Du
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Mesothelium and Malignant Mesothelioma. J Dev Biol 2019; 7:jdb7020007. [PMID: 30965570 PMCID: PMC6630312 DOI: 10.3390/jdb7020007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Abstract
The mesothelium is an epithelial structure derived from the embryonic mesoderm. It plays an important role in the development of a number of different organs, including the heart, lungs, and intestines. In this publication, we discuss aspects of the development of the mesothelium, where mesothelial structures can be found, and review molecular and cellular characteristics associated with the mesothelium. Furthermore, we discuss the involvement of the mesothelium in a number of disease conditions, in particular in the pathogenesis of mesotheliomas with an emphasis on malignant pleural mesothelioma (MPM)—a primary cancer developing in the pleural cavity.
Collapse
|
42
|
Alnajjar KS, Sweasy JB. A new perspective on oxidation of DNA repair proteins and cancer. DNA Repair (Amst) 2019; 76:60-69. [PMID: 30818170 DOI: 10.1016/j.dnarep.2019.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen and nitrogen species (RONS) are formed as byproducts of many endogenous cellular processes, in response to infections, and upon exposure to various environmental factors. An increase in RONS can saturate the antioxidation system and leads to oxidative stress. Consequently, macromolecules are targeted for oxidative modifications, including DNA and protein. The oxidation of DNA, which leads to base modification and formation of abasic sites along with single and double strand breaks, has been extensively investigated. Protein oxidation is often neglected and is only recently being recognized as an important regulatory mechanism of various DNA repair proteins. This is a review of the current state of research on the regulation of DNA repair by protein oxidation with emphasis on the correlation between inflammation and cancer.
Collapse
Affiliation(s)
- Khadijeh S Alnajjar
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, United States.
| | - Joann B Sweasy
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, United States
| |
Collapse
|
43
|
Ginwala R, Bhavsar R, Chigbu DI, Jain P, Khan ZK. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants (Basel) 2019; 8:antiox8020035. [PMID: 30764536 PMCID: PMC6407021 DOI: 10.3390/antiox8020035] [ |