1
|
Koch DT, Schirren M, Jacobi S, Nieß H, Renz BW, Werner J, Guba MO, Koliogiannis D. Impact of Hypothermic Oxygenated Machine Perfusion on Immune Cell Clearance in Liver Transplantation: Enhancing Graft Function and Post-Transplant Outcomes. J Clin Med 2024; 14:127. [PMID: 39797210 PMCID: PMC11721044 DOI: 10.3390/jcm14010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Hypothermic oxygenated machine perfusion (HOPE) has emerged as a critical innovation in liver transplantation (LTx), offering significant protection against ischemia-reperfusion injury (IRI). This study focuses on quantifying and characterizing immune cells flushed out during HOPE to explore its effects on graft function and post-transplant outcomes. Materials and Methods: Fifty liver grafts underwent end-ischemic HOPE. Perfusate samples were collected at three time points: at the start of perfusion, after 10 min, and at the end of perfusion. The samples were analyzed to quantify and characterize immune cells, assessing the effectiveness of HOPE in reducing cellular debris and its impact on graft quality. Results: The primary perfusate contained significant concentrations of immune cells, mainly segmented neutrophils, lymphocytes, and monocytes. After 10 min of perfusion, outflow cell concentration decreased by over 95%, and by the end of perfusion, a more than 99% reduction was observed. Conclusions: HOPE effectively reduces immune cell concentrations in liver grafts, suggesting a mechanism for improved graft function and reduced post-transplant complications. These findings support the continued use and optimization of HOPE in LTx.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dionysios Koliogiannis
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (D.T.K.)
| |
Collapse
|
2
|
Liu J, Yin D, Zhang W, Wang X, James TD, Li P, Tang B. A multifunctional "three-in-one" fluorescent theranostic system for hepatic ischemia-reperfusion injury. Chem Sci 2024; 15:19820-19833. [PMID: 39568886 PMCID: PMC11575585 DOI: 10.1039/d4sc04962d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is the main cause of postoperative liver dysfunction and liver failure. Traditional separation of HIRI diagnosis and therapy confers several disadvantages, including the inability to visualize the therapeutic and asynchronous action. However, developing a versatile material with integrated diagnosis and treatment for HIRI remains a great challenge. Given that hypochlorous acid (HOCl) plays a crucial oxidative role in HIRI, we developed a single-component multifunctional fluorescent theranostic platform (MB-Gly) with a "three-in-one" molecular design incorporating a near-infrared fluorophore methylene blue, glycine and a HOCl-response unit, which could not only provide real-time visualization of HIRI but also boost targeted drug delivery. Using MB-Gly, we were able to achieve real-time and dynamic monitoring of HOCl during HIRI in hepatocytes and mouse livers and reduce the liver damage in hepatocytes and mice. RNA sequencing illustrated the therapeutic role of MB-Gly associated with changes in gene expression related to apoptosis, oxidative stress, metabolism and inflammation. To the best of our knowledge, this is the first multifunctional fluorescent theranostic system for HIRI reported to date. Our smart "three-in-one" approach shines light on the etiology and pathogenesis of HIRI, providing profound insights into the development of potential therapeutic targets.
Collapse
Affiliation(s)
- Jihong Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University China
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Dongni Yin
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University China
| | - Tony D James
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University China
- Department of Chemistry, University of Bath Bath BA2 7AY UK
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University China
- College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University China
- Laoshan Laboratory Qingdao 266237 People's Republic of China
| |
Collapse
|
3
|
Pham L, Arroum T, Wan J, Pavelich L, Bell J, Morse PT, Lee I, Grossman LI, Sanderson TH, Malek MH, Hüttemann M. Regulation of mitochondrial oxidative phosphorylation through tight control of cytochrome c oxidase in health and disease - Implications for ischemia/reperfusion injury, inflammatory diseases, diabetes, and cancer. Redox Biol 2024; 78:103426. [PMID: 39566165 PMCID: PMC11617887 DOI: 10.1016/j.redox.2024.103426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
Mitochondria are essential to cellular function as they generate the majority of cellular ATP, mediated through oxidative phosphorylation, which couples proton pumping of the electron transport chain (ETC) to ATP production. The ETC generates an electrochemical gradient, known as the proton motive force, consisting of the mitochondrial membrane potential (ΔΨm, the major component in mammals) and ΔpH across the inner mitochondrial membrane. Both ATP production and reactive oxygen species (ROS) are linked to ΔΨm, and it has been shown that an imbalance in ΔΨm beyond the physiological optimal intermediate range results in excessive ROS production. The reaction of cytochrome c oxidase (COX) of the ETC with its small electron donor cytochrome c (Cytc) is the proposed rate-limiting step in mammals under physiological conditions. The rate at which this redox reaction occurs controls ΔΨm and thus ATP and ROS production. Multiple mechanisms are in place that regulate this reaction to meet the cell's energy demand and respond to acute stress. COX and Cytc have been shown to be regulated by all three main mechanisms, which we discuss in detail: allosteric regulation, tissue-specific isoforms, and post-translational modifications for which we provide a comprehensive catalog and discussion of their functional role with 55 and 50 identified phosphorylation and acetylation sites on COX, respectively. Disruption of these regulatory mechanisms has been found in several common human diseases, including stroke and myocardial infarction, inflammation including sepsis, and diabetes, where changes in COX or Cytc phosphorylation lead to mitochondrial dysfunction contributing to disease pathophysiology. Identification and subsequent targeting of the underlying signaling pathways holds clear promise for future interventions to improve human health. An example intervention is the recently discovered noninvasive COX-inhibitory infrared light therapy that holds promise to transform the current standard of clinical care in disease conditions where COX regulation has gone awry.
Collapse
Affiliation(s)
- Lucynda Pham
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Lauren Pavelich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| | - Jamie Bell
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA; Division of Pediatric Critical Care, Children's Hospital of Michigan, Central Michigan University, Detroit, MI, 48201, USA.
| | - Paul T Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, 31116, Republic of Korea.
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Thomas H Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Moh H Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
4
|
Li S, Xiang A, Guo F, Alarfaj AA, Gao Z. Fangchinoline protects hepatic ischemia/reperfusion liver injury in rats through anti-oxidative stress and anti-inflammation properties: an in silico study. Biotechnol Appl Biochem 2024; 71:1281-1292. [PMID: 38984607 DOI: 10.1002/bab.2628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024]
Abstract
Liver ischemia-reperfusion (I/R) injury is a common cause of organ failure, developed by a sudden block in the blood and oxygen supply and subsequent restoration. I/R damage is responsible for acute and chronic rejection after organ transplantation, accounting for 10% of early graft failure. The study investigated the therapeutic properties of fangchinoline in liver injury-induced rats. The rats were divided into three groups: Sham, I/R without pretreatment, and I/R + 10 mg/kg fangchinoline pretreatment. Blood and liver samples were collected for assays, and an in silico docking analysis was conducted to determine fangchinoline's inhibitory effect. The pretreatment with 10 mg/kg of fangchinoline effectively reduced hepatic marker enzymes such as AST, LDH, and ALT in the serum of rats with liver I/R damage. Fangchinoline treatment significantly reduced interleukin-8 (IL-8), IL-6, and tumor necrosis factor-α (TNF-α) in I/R-induced rats, boosting antioxidants and decreasing MDA. Histopathological studies showed liver injury protection, and fangchinoline inhibited TNF-α and IL-6 with improved binding affinity. Fangchinoline has hepatoprotective properties by reducing inflammation in rats with liver I/R damage, as demonstrated in the current study. Hence, it can be an effective salutary agent in preventing liver damage caused by I/R.
Collapse
Affiliation(s)
- Shuangxi Li
- Hepatopancreatobiliary Surgery Department, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - AnDong Xiang
- Second Department of General Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Feng Guo
- Clinical Skills Training Center, Kunming Medical University, Kunming, Yunnan, China
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zehai Gao
- Second Department of General Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| |
Collapse
|
5
|
Caballero-Marcos A, Rodríguez-Bachiller L, Baroja-Mazo A, Morales Á, Fernández-Cáceres P, Fernández-Martínez M, DíazFontenla F, Velasco E, Fernández-Yunquera A, Díaz-Zorita B, Cortese S, Pérez-Peña JM, Colón-Rodríguez A, Romero-Cristóbal M, Asencio JM, Bañares R, López-Baena JÁ, Salcedo-Plaza M. Dynamics of Ischemia/Reperfusion Injury Markers During Normothermic Liver Machine Perfusion. Transplant Direct 2024; 10:e1728. [PMID: 39553741 PMCID: PMC11567704 DOI: 10.1097/txd.0000000000001728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 11/19/2024] Open
Abstract
Background A comprehensive mechanistic assessment of normothermic machine perfusion (NMP) is an essential step toward identifying biomarkers to assess liver viability. Although some studies have evaluated the effect of NMP on inflammation markers, there are other key pathological mechanisms involved in ischemia/reperfusion injury (IRI) that have not yet been evaluated. Methods Eight human donor livers preserved by NMP were included to analyze IRI during preservation. Concentrations of several biomarkers involved in different biological processes of IRI were measured in the perfusate. Results Perfusate levels of intercellular adhesion molecule 1, P-selectin, vascular cell adhesion molecule 1, metalloproteinase with thrombospondin motif type 1, member 13, phospholipase A2 group VII, and syndecan-1 progressively increased during NMP. Noteworthy, perfusate lactate levels showed a strong correlation with C-X-C motif chemokine ligand 10 (P = 0.001), intercellular adhesion molecule 1 (P = 0.01), and urokinase plasminogen activator (P = 0.001). Conclusions Perfusate lactate correlates with the main underlying biological mechanisms occurring in the NMP environment. Moreover, several IRI biomarkers accumulate during NMP, which may limit the extent of the benefits of this technology.
Collapse
Affiliation(s)
- Aránzazu Caballero-Marcos
- Hepatology and Liver Transplantation Unit, Hospital General Universitario Gregorio Marañón, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Luis Rodríguez-Bachiller
- Transplant and Hepatobiliopancreatic Surgery Unit, Department of General and Digestive Surgery, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Álvaro Morales
- Transplant and Hepatobiliopancreatic Surgery Unit, Department of General and Digestive Surgery, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Paloma Fernández-Cáceres
- Hepatology and Liver Transplantation Unit, Hospital General Universitario Gregorio Marañón, Universidad Complutense, Madrid, Spain
| | - María Fernández-Martínez
- Transplant and Hepatobiliopancreatic Surgery Unit, Department of General and Digestive Surgery, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Fernando DíazFontenla
- Hepatology and Liver Transplantation Unit, Hospital General Universitario Gregorio Marañón, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Enrique Velasco
- Transplant and Hepatobiliopancreatic Surgery Unit, Department of General and Digestive Surgery, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ainhoa Fernández-Yunquera
- Hepatology and Liver Transplantation Unit, Hospital General Universitario Gregorio Marañón, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Benjamin Díaz-Zorita
- Transplant and Hepatobiliopancreatic Surgery Unit, Department of General and Digestive Surgery, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Sergio Cortese
- Transplant and Hepatobiliopancreatic Surgery Unit, Department of General and Digestive Surgery, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - José María Pérez-Peña
- Department of Anesthesiology, Reanimation and Intensive Care, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Arturo Colón-Rodríguez
- Transplant and Hepatobiliopancreatic Surgery Unit, Department of General and Digestive Surgery, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Mario Romero-Cristóbal
- Hepatology and Liver Transplantation Unit, Hospital General Universitario Gregorio Marañón, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - José Manuel Asencio
- Transplant and Hepatobiliopancreatic Surgery Unit, Department of General and Digestive Surgery, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Rafael Bañares
- Hepatology and Liver Transplantation Unit, Hospital General Universitario Gregorio Marañón, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - José Ángel López-Baena
- Transplant and Hepatobiliopancreatic Surgery Unit, Department of General and Digestive Surgery, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Magdalena Salcedo-Plaza
- Hepatology and Liver Transplantation Unit, Hospital General Universitario Gregorio Marañón, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|
6
|
Elsayed Abouzed DE, Ezelarab HAA, Selim HMRM, Elsayed MMA, El Hamd MA, Aboelez MO. Multimodal modulation of hepatic ischemia/reperfusion-induced injury by phytochemical agents: A mechanistic evaluation of hepatoprotective potential and safety profiles. Int Immunopharmacol 2024; 138:112445. [PMID: 38944946 DOI: 10.1016/j.intimp.2024.112445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury is a clinically fundamental phenomenon that occurs through liver resection surgery, trauma, shock, and transplantation. AIMS OF THE REVIEW This review article affords an expanded and comprehensive overview of various natural herbal ingredients that have demonstrated hepatoprotective effects against I/R injury through preclinical studies in animal models. MATERIALS AND METHODS For the objective of this investigation, an extensive examination was carried out utilizing diverse scientific databases involving PubMed, Google Scholar, Science Direct, Egyptian Knowledge Bank (EKB), and Research Gate. The investigation was conducted based on specific identifiable terms, such as hepatic ischemia/reperfusion injury, liver resection and transplantation, cytokines, inflammation, NF-kB, interleukins, herbs, plants, natural ingredients, phenolic extract, and aqueous extract. RESULTS Bioactive ingredients derived from ginseng, curcumin, resveratrol, epigallocatechin gallate, quercetin, lycopene, punicalagin, crocin, celastrol, andrographolide, silymarin, and others and their effects on hepatic IRI were discussed. The specific mechanisms of action, signaling pathways, and clinical relevance for attenuation of liver enzymes, cytokine production, immune cell infiltration, oxidative damage, and cell death signaling in rodent studies are analyzed in depth. Their complex molecular actions involve modulation of pathways like TLR4, NF-κB, Nrf2, Bcl-2 family proteins, and others. CONCLUSION The natural ingredients have promising values in the protection and treatment of various chronic aggressive clinical conditions, and that need to be evaluated on humans by clinical studies.
Collapse
Affiliation(s)
- Deiaa E Elsayed Abouzed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt.
| | - Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Diriyah 13713, Riyadh, Saudi Arabia; Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 35527, Egypt.
| | - Mahmoud M A Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt.
| | - Mohamed A El Hamd
- Department of Pharmaceutical Chemistry, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt.
| | - Moustafa O Aboelez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
7
|
Zhang H, You G, Yang Q, Jin G, Lv G, Fan L, Chen Y, Li H, Yi S, Li H, Guo N, Liu W, Yang Y. CX3CR1 deficiency promotes resolution of hepatic ischemia-reperfusion injury by regulating homeostatic function of liver infiltrating macrophages. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167130. [PMID: 38537684 DOI: 10.1016/j.bbadis.2024.167130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Hepatic ischemia-reperfusion injury(HIRI) remains to be an unsolved risk factor that contributes to organ failure after liver surgery. Our clinical retrospective study showed that lower donor liver CX3-C chemokine receptor-1(CX3CR1) mRNA expression level were correlated with upregulated pro-resolved macrophage receptor MERTK, as well as promoted restoration efficiency of allograft injury in liver transplant. To further characterize roles of CX3CR1 in regulating resolution of HIRI, we employed murine liver partial warm ischemia-reperfusion model by Wt & Cx3cr1-/- mice and the reperfusion time was prolonged from 6 h to 4-7 days. Kupffer cells(KCs) were depleted by clodronate liposome(CL) in advance to focus on infiltrating macrophages, and repopulation kinetics were determined by FACS, IF and RNA-Seq. CX3CR1 antagonist AZD8797 was injected i.p. to interrogate potential pharmacological therapeutic strategies. In vitro primary bone marrow macrophages(BMMs) culture by LXR agonist DMHCA, as well as molecular and functional studies, were undertaken to dissect roles of CX3CR1 in modulating macrophages cytobiological development and resolutive functions. We observed that deficiency or pharmacological inhibition of CX3CR1 facilitated HIRI resolution via promoted macrophages migration in CCR1/CCR5 manner, as well as enhanced MerTK-mediated efferocytosis. Our study demonstrated the critical roles of CX3CR1 in progression of HIRI and identified it as a potential therapeutic target in clinical liver transplantation.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guohua You
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Department of Surgical and Transplant Intensive Care Unit, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Yang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guanghui Jin
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guo Lv
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linda Fan
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yifan Chen
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huidi Li
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuhong Yi
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Na Guo
- Department of Anesthesiology, the Third Affifiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Wei Liu
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
Felli E, Felli E, Muttillo EM, Urade T, Laracca GG, Giannelli V, Famularo S, Geny B, Ettorre GM, Rombouts K, Pinzani M, Diana M, Gracia-Sancho J. Liver ischemia-reperfusion injury: From trigger loading to shot firing. Liver Transpl 2023; 29:1226-1233. [PMID: 37728488 DOI: 10.1097/lvt.0000000000000252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023]
Abstract
An ischemia-reperfusion injury (IRI) results from a prolonged ischemic insult followed by the restoration of blood perfusion, being a common cause of morbidity and mortality, especially in liver transplantation. At the maximum of the potential damage, IRI is characterized by 2 main phases. The first is the ischemic phase, where the hypoxia and vascular stasis induces cell damage and the accumulation of damage-associated molecular patterns and cytokines. The second is the reperfusion phase, where the local sterile inflammatory response driven by innate immunity leads to a massive cell death and impaired liver functionality. The ischemic time becomes crucial in patients with underlying pathophysiological conditions. It is possible to compare this process to a shooting gun, where the loading trigger is the ischemia period and the firing shot is the reperfusion phase. In this optic, this article aims at reviewing the main ischemic events following the phases of the surgical timeline, considering the consequent reperfusion damage.
Collapse
Affiliation(s)
- Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
| | - Emanuele Felli
- Department of Digestive Surgery and Liver Transplantation, University Hospital of Tours, France
| | - Edoardo M Muttillo
- Department of Medical Surgical Science and Translational Medicine, Sant' Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Takeshi Urade
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Japan
| | - Giovanni G Laracca
- Department of Medical Surgical Science and Translational Medicine, Sant' Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Valerio Giannelli
- Department of Transplantation and General Surgery, San Camillo Hospital, Italy
| | - Simone Famularo
- Department of Biomedical Science, Humanitas University Pieve Emanuele, Italy
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Research Institute Against Cancer of the Digestive System (IRCAD), France
| | - Bernard Geny
- Institute of Physiology, EA3072 Mitochondria Respiration and Oxidative Stress, University of Strasbourg, France
| | - Giuseppe M Ettorre
- Department of Transplantation and General Surgery, San Camillo Hospital, Italy
| | - Krista Rombouts
- University College London - Institute for Liver and Digestive Health, Royal Free Hospital, NW3 2PF London, United Kingdom
| | - Massimo Pinzani
- University College London - Institute for Liver and Digestive Health, Royal Free Hospital, NW3 2PF London, United Kingdom
| | - Michele Diana
- Research Institute Against Cancer of the Digestive System (IRCAD), France
| | - Jordi Gracia-Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, Hospital Clínic Barcelona, CIBEREHD, Barcelona, Spain
| |
Collapse
|
9
|
Nelson VL, Stumbras AR, Palumbo RN, Riesgraf SA, Balboa MS, Hannah ZA, Bergstrom IJ, Fecteau CJ, Lake JR, Barry JJ, Ross JJ. Manufacturing and Functional Characterization of Bioengineered Liver Grafts for Extracorporeal Liver Assistance in Acute Liver Failure. Bioengineering (Basel) 2023; 10:1201. [PMID: 37892931 PMCID: PMC10604724 DOI: 10.3390/bioengineering10101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Acute Liver Failure (ALF) is a life-threatening illness characterized by the rapid onset of abnormal liver biochemistries, coagulopathy, and the development of hepatic encephalopathy. Extracorporeal bioengineered liver (BEL) grafts could offer a bridge therapy to transplant or recovery. The present study describes the manufacture of clinical scale BELs created from decellularized porcine-derived liver extracellular matrix seeded entirely with human cells: human umbilical vein endothelial cells (HUVECs) and primary human liver cells (PHLCs). Decellularized scaffolds seeded entirely with human cells were shown to adhere to stringent sterility and safety guidelines and demonstrated increased functionality when compared to grafts seeded with primary porcine liver cells (PPLCs). BELs with PHLCs were able to clear more ammonia than PPLCs and demonstrated lower perfusion pressures during patency testing. Additionally, to determine the full therapeutic potential of BELs seeded with PHLCs, longer culture periods were assessed to address the logistical constraints associated with manufacturing and transporting a product to a patient. The fully humanized BELs were able to retain their function after cold storage simulating a product transport period. Therefore, this study demonstrates the manufacture of bioengineered liver grafts and their potential in the clinical setting as a treatment for ALF.
Collapse
Affiliation(s)
- Victoria L. Nelson
- Miromatrix Medical Inc., Eden Prairie, MN 55344, USA; (A.R.S.); (R.N.P.); (S.A.R.); (M.S.B.); (Z.A.H.); (C.J.F.); (J.R.L.); (J.J.R.)
| | - Aron R. Stumbras
- Miromatrix Medical Inc., Eden Prairie, MN 55344, USA; (A.R.S.); (R.N.P.); (S.A.R.); (M.S.B.); (Z.A.H.); (C.J.F.); (J.R.L.); (J.J.R.)
| | - R. Noelle Palumbo
- Miromatrix Medical Inc., Eden Prairie, MN 55344, USA; (A.R.S.); (R.N.P.); (S.A.R.); (M.S.B.); (Z.A.H.); (C.J.F.); (J.R.L.); (J.J.R.)
| | - Shawn A. Riesgraf
- Miromatrix Medical Inc., Eden Prairie, MN 55344, USA; (A.R.S.); (R.N.P.); (S.A.R.); (M.S.B.); (Z.A.H.); (C.J.F.); (J.R.L.); (J.J.R.)
| | - Marie S. Balboa
- Miromatrix Medical Inc., Eden Prairie, MN 55344, USA; (A.R.S.); (R.N.P.); (S.A.R.); (M.S.B.); (Z.A.H.); (C.J.F.); (J.R.L.); (J.J.R.)
| | - Zachary A. Hannah
- Miromatrix Medical Inc., Eden Prairie, MN 55344, USA; (A.R.S.); (R.N.P.); (S.A.R.); (M.S.B.); (Z.A.H.); (C.J.F.); (J.R.L.); (J.J.R.)
| | - Isaac J. Bergstrom
- Miromatrix Medical Inc., Eden Prairie, MN 55344, USA; (A.R.S.); (R.N.P.); (S.A.R.); (M.S.B.); (Z.A.H.); (C.J.F.); (J.R.L.); (J.J.R.)
| | - Christopher J. Fecteau
- Miromatrix Medical Inc., Eden Prairie, MN 55344, USA; (A.R.S.); (R.N.P.); (S.A.R.); (M.S.B.); (Z.A.H.); (C.J.F.); (J.R.L.); (J.J.R.)
| | - John R. Lake
- Miromatrix Medical Inc., Eden Prairie, MN 55344, USA; (A.R.S.); (R.N.P.); (S.A.R.); (M.S.B.); (Z.A.H.); (C.J.F.); (J.R.L.); (J.J.R.)
- Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, Minneapolis, MN 55455, USA
| | - John J. Barry
- Miromatrix Medical Inc., Eden Prairie, MN 55344, USA; (A.R.S.); (R.N.P.); (S.A.R.); (M.S.B.); (Z.A.H.); (C.J.F.); (J.R.L.); (J.J.R.)
| | - Jeff J. Ross
- Miromatrix Medical Inc., Eden Prairie, MN 55344, USA; (A.R.S.); (R.N.P.); (S.A.R.); (M.S.B.); (Z.A.H.); (C.J.F.); (J.R.L.); (J.J.R.)
| |
Collapse
|
10
|
Kiouptsi K, Casari M, Mandel J, Gao Z, Deppermann C. Intravital Imaging of Thrombosis Models in Mice. Hamostaseologie 2023; 43:348-359. [PMID: 37857297 DOI: 10.1055/a-2118-2932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Intravital microscopy is a powerful tool to study thrombosis in real time. The kinetics of thrombus formation and progression in vivo is studied after inflicting damage to the endothelium through mechanical, chemical, or laser injury. Mouse models of atherosclerosis are also used to induce thrombus formation. Vessels of different sizes and from different vascular beds such as carotid artery or vena cava, mesenteric or cremaster arterioles, can be targeted. Using fluorescent dyes, antibodies, or reporter mouse strains allows to visualize key cells and factors mediating the thrombotic processes. Here, we review the latest literature on using intravital microscopy to study thrombosis as well as thromboinflammation following transient middle cerebral artery occlusion, infection-induced immunothrombosis, and liver ischemia reperfusion.
Collapse
Affiliation(s)
- Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Martina Casari
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jonathan Mandel
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Zhenling Gao
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Carsten Deppermann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
11
|
Mouratidou C, Pavlidis ET, Katsanos G, Kotoulas SC, Mouloudi E, Tsoulfas G, Galanis IN, Pavlidis TE. Hepatic ischemia-reperfusion syndrome and its effect on the cardiovascular system: The role of treprostinil, a synthetic prostacyclin analog. World J Gastrointest Surg 2023; 15:1858-1870. [PMID: 37901735 PMCID: PMC10600776 DOI: 10.4240/wjgs.v15.i9.1858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023] Open
Abstract
Hepatic ischemia-reperfusion syndrome has been the subject of intensive study and experimentation in recent decades since it is responsible for the outcome of several clinical entities, such as major hepatic resections and liver transplantation. In addition to the organ's post reperfusion injury, this syndrome appears to play a central role in the dysfunction of distant tissues and systems. Thus, continuous research should be directed toward finding effective therapeutic options to improve the outcome and reduce the postoperative morbidity and mortality rates. Treprostinil is a synthetic analog of prostaglandin I2, and its experimental administration has shown encouraging results. It has already been approved by the Food and Drug Administration in the United States for pulmonary arterial hypertension and has been used in liver transplantation, where preliminary encouraging results showed its safety and feasibility by using continuous intravenous administration at a dose of 5 ng/kg/min. Treprostinil improves renal and hepatic function, diminishes hepatic oxidative stress and lipid peroxidation, reduces hepatictoll-like receptor 9 and inflammation, inhibits hepatic apoptosis and restores hepatic adenosine triphosphate (ATP) levels and ATP synthases, which is necessary for functional maintenance of mitochondria. Treprostinil exhibits vasodilatory properties and antiplatelet activity and regulates proinflammatory cytokines; therefore, it can potentially minimize ischemia-reperfusion injury. Additionally, it may have beneficial effects on cardiovascular parameters, and much current research interest is concentrated on this compound.
Collapse
Affiliation(s)
| | - Efstathios T Pavlidis
- 2nd Propedeutic Department of Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Georgios Katsanos
- Department of Transplantation, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | | | - Eleni Mouloudi
- Intensive Care Unit, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Georgios Tsoulfas
- Department of Transplantation, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Ioannis N Galanis
- 2nd Propedeutic Department of Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Theodoros E Pavlidis
- 2nd Propedeutic Department of Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| |
Collapse
|
12
|
Wang L, Feng ZJ, Ma X, Li K, Li XY, Tang Y, Peng C. Mitochondrial quality control in hepatic ischemia-reperfusion injury. Heliyon 2023; 9:e17702. [PMID: 37539120 PMCID: PMC10395149 DOI: 10.1016/j.heliyon.2023.e17702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
Hepatic ischemia-reperfusion injury is a phenomenon in which exacerbating damage of liver cells due to restoration of blood flow following ischemia during liver surgery, especially those involving liver transplantation. Mitochondria, the energy-producing organelles, are crucial for cell survival and apoptosis and have evolved a range of quality control mechanisms to maintain homeostasis in the mitochondrial network in response to various stress conditions. Hepatic ischemia-reperfusion leads to disruption of mitochondrial quality control mechanisms, as evidenced by reduced mitochondrial autophagy, excessive division, reduced fusion, and inhibition of biogenesis. This leads to dysfunction of the mitochondrial network. The accumulation of damaged mitochondria ultimately results in apoptosis of hepatocytes due to the release of apoptotic proteins like cytochrome C. This worsens hepatic ischemia-reperfusion injury. Currently, hepatic ischemia-reperfusion injury protection is being studied using different approaches such as drug pretreatment, stem cells and exosomes, genetic interventions, and mechanical reperfusion, all aimed at targeting mitochondrial quality control mechanisms. This paper aims to provide direction for future research on combating HIRI by reviewing the latest studies that focus on targeting mitochondrial quality control mechanisms.
Collapse
Affiliation(s)
- LiuSong Wang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zan Jie Feng
- Department of Biochemistry and Molecular Biology, Zunyi Medical University, Zunyi, China
| | - Xuan Ma
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kai Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xin Yao Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Tang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Cijun Peng
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
13
|
Kwon JI, Heo H, Chae YJ, Min J, Lee DW, Kim ST, Choi MY, Sung YS, Kim KW, Choi Y, Woo DC, Woo CW. Is aryl hydrocarbon receptor antagonism after ischemia effective in alleviating acute hepatic ischemia-reperfusion injury in rats? Heliyon 2023; 9:e15596. [PMID: 37206053 PMCID: PMC10189182 DOI: 10.1016/j.heliyon.2023.e15596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Aryl hydrocarbon receptors (AhRs) have been reported to be important mediators of ischemic injury in the brain. Furthermore, the pharmacological inhibition of AhR activation after ischemia has been shown to attenuate cerebral ischemia-reperfusion (IR) injury. Here, we investigated whether AhR antagonist administration after ischemia was also effective in ameliorating hepatic IR injury. A 70% partial hepatic IR (45-min ischemia and 24-h reperfusion) injury was induced in rats. We administered 6,2',4'-trimethoxyflavone (TMF, 5 mg/kg) intraperitoneally 10 min after ischemia. Hepatic IR injury was observed using serum, magnetic resonance imaging-based liver function indices, and liver samples. TMF-treated rats showed significantly lower relative enhancement (RE) values and serum alanine aminotransferase (ALT) and aspartate aminotransferase levels than did untreated rats at 3 h after reperfusion. After 24 h of reperfusion, TMF-treated rats had significantly lower RE values, ΔT1 values, serum ALT levels, and necrotic area percentage than did untreated rats. The expression of the apoptosis-related proteins, Bax and cleaved caspase-3, was significantly lower in TMF-treated rats than in untreated rats. This study demonstrated that inhibition of AhR activation after ischemia was effective in ameliorating IR-induced liver injury in rats.
Collapse
Affiliation(s)
- Jae-Im Kwon
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hwon Heo
- Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Yeon Ji Chae
- Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Joongkee Min
- Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Do-Wan Lee
- Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Sang Tae Kim
- Convergence Medicine Research Center, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Monica Young Choi
- Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Yu Sub Sung
- Clinical Research Center, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Kyung Won Kim
- Department of Radiology, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Yoonseok Choi
- Medical Research Institute, Gangneung Asan Hospital, 38, Bangdong-gil, Sacheon-myeon, Gangneung-si, Gangwon-do, Republic of Korea
| | - Dong Cheol Woo
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Convergence Medicine Research Center, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
- Corresponding author
| | - Chul-Woong Woo
- Convergence Medicine Research Center, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
- Corresponding author
| |
Collapse
|
14
|
Qiu S, Li X, Zhang J, Shi P, Cao Y, Zhuang Y, Tong L. Neutrophil membrane-coated taurine nanoparticles protect against hepatic ischemia-reperfusion injury. Eur J Pharmacol 2023; 949:175712. [PMID: 37054936 DOI: 10.1016/j.ejphar.2023.175712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Hepatic ischemia-reperfusion (I/R) injury is a multifactorial process caused by transient tissue hypoxia and the following reoxygenation, commonly occurring in liver transplantation and hepatectomy. Hepatic I/R can induce a systemic inflammatory response, liver dysfunction, or even multiple organ failure. Although we have previously reported that taurine could attenuate acute liver injury after hepatic I/R, only a tiny proportion of the systemically injected taurine could reach the targeted organ and tissues. In this present study, we prepared taurine nanoparticles (Nano-taurine) by coating taurine with neutrophil membranes and investigated the protective effects of Nano-taurine against I/R-induced injury and the underlying mechanisms. Our results showed that Nano-taurine restored liver function by declining AST and ALT levels and reducing histology damage. Nano-taurine decreased inflammatory cytokines, including interleukin (IL)-6, tumor necrosis factor (TNF)-α, intercellular adhesion molecule (ICAM)-1, NLR pyrin domain containing 3 (NLRP3) and apoptosis-associated speck-like protein containing CARD (ASC) and oxidants including superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), catalase (CAT) and reactive oxygen species (ROS), exhibiting anti-inflammatory and antioxidant properties. The expression of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) was increased, while prostaglandin-endoperoxide synthase 2 (Ptgs2) was decreased upon administration of Nano-taurine, suggesting that inhibiting ferroptosis may be involved in the mechanism during hepatic I/R injury. These results suggest that Nano-taurine have a targeted therapeutic effect on hepatic I/R injury by inhibiting inflammation, oxidative stress, and ferroptosis.
Collapse
Affiliation(s)
- Shijie Qiu
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163316, Heilongjiang Province, China
| | - Xuyi Li
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163316, Heilongjiang Province, China
| | - Jingyan Zhang
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163316, Heilongjiang Province, China
| | - Pilong Shi
- Department of Pharmacology, Daqing Campus, Harbin Medical University, Daqing, 163391, Heilongjiang Province, China
| | - Yonggang Cao
- Department of Pharmacology, Daqing Campus, Harbin Medical University, Daqing, 163391, Heilongjiang Province, China
| | - Yongzhi Zhuang
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163316, Heilongjiang Province, China.
| | - Liquan Tong
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163316, Heilongjiang Province, China.
| |
Collapse
|
15
|
Gobut H, Kucuk A, Şengel N, Arslan M, Ozdemir C, Mortas T, Kasapbası E, Kurtipek O, Kavutcu M. Effects of cerium oxide (CeO 2) on liver tissue in liver ischemia-reperfusion injury in rats undergoing desflurane anesthesia. BMC Anesthesiol 2023; 23:40. [PMID: 36737682 PMCID: PMC9896676 DOI: 10.1186/s12871-023-01999-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION During liver surgery and transplantation, periods of partial or total vascular occlusion are inevitable and result in ischemia-reperfusion injury (IRI). Nanomedicine uses the latest technology, which has emerged with interdisciplinary effects, such as biomedical sciences, physics, and engineering, to protect and improve human health. Interdisciplinary research has brought along the introduction of antioxidant nanoparticles as potential therapeutics. The goal of this study was to investigate the effects of cerium oxide (CeO2) administration and desflurane anesthesia on liver tissue in liver IR injury. MATERIAL AND METHODS Thirty rats were randomly divided into five groups: control (C), ischemia-reperfusion (IR), IR-desflurane (IRD), cerium oxide-ischemia reperfusion (CeO2-IR), and cerium oxide-ischemia reperfusion-desflurane (CeO2-IRD). In the IR, IRD, and CeO2-IRD groups, hepatic ischemia was induced after the porta hepatis was clamped for 120 min, followed by 120 min of reperfusion. Intraperitoneal 0.5 mg/kg CeO2 was administered to the CeO2 groups 30 min before ischemia. Desflurane (6%) was administered to the IRD and CeO2-IRD groups during IR. All groups were sacrificed under anesthesia. Liver tissue samples were examined under a light microscope by staining with hematoxylin-eosin (H&E). Malondialdehyde (MDA) levels, catalase (CAT), glutathione-s-transferase (GST), and arylesterase (ARE) enzyme activities were measured in the tissue samples. RESULTS The IR group had considerably more hydropic degeneration, sinusoidal dilatation, and parenchymal mononuclear cell infiltration than the IRD, CeO2-IR, and CeO2-IRD groups. Catalase and GST enzyme activity were significantly higher in the CeO2-IR group than in the IR group. The MDA levels were found to be significantly lower in the IRD, CeO2-IR, and CeO2-IRD groups than in the IR group. CONCLUSION Intraperitoneal CeO2 with desflurane reduced oxidative stress and corrected liver damage.
Collapse
Affiliation(s)
- Huseyin Gobut
- grid.25769.3f0000 0001 2169 7132Department of General Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Aysegul Kucuk
- Department of Physiology, Kutahya Health Sciences University Faculty of Medicine, Kutahya, Turkey
| | - Necmiye Şengel
- grid.25769.3f0000 0001 2169 7132Department of Oral and Maxillofacial Surgery (as a specialist in Anesthesiology and Reanimation), Gazi University Faculty of Dentistry, Ankara, Turkey
| | - Mustafa Arslan
- Department of Anesthesiology and Reanimation, Gazi University Faculty of Medicine, 06510, Ankara, Turkey. .,Gazi University, Life Sciences and Application Research Centre, Ankara, Turkey.
| | - Cagrı Ozdemir
- grid.25769.3f0000 0001 2169 7132Department of Anesthesiology and Reanimation, Gazi University Faculty of Medicine, 06510 Ankara, Turkey
| | - Tulay Mortas
- grid.411047.70000 0004 0595 9528Department of Histology and Embryology, Kırıkkale University Faculty of Medicine, Kırıkkale, Turkey
| | - Esat Kasapbası
- grid.25769.3f0000 0001 2169 7132Department of Anesthesiology and Reanimation, Gazi University Faculty of Medicine, 06510 Ankara, Turkey
| | - Omer Kurtipek
- grid.25769.3f0000 0001 2169 7132Department of Anesthesiology and Reanimation, Gazi University Faculty of Medicine, 06510 Ankara, Turkey
| | - Mustafa Kavutcu
- grid.25769.3f0000 0001 2169 7132Department of Medical Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
16
|
Cumhur Cure M, Cure E. Severe acute respiratory syndrome coronavirus 2 may cause liver injury via Na +/H + exchanger. World J Virol 2023; 12:12-21. [PMID: 36743661 PMCID: PMC9896593 DOI: 10.5501/wjv.v12.i1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/03/2022] [Accepted: 11/22/2022] [Indexed: 01/18/2023] Open
Abstract
The liver has many significant functions, such as detoxification, the urea cycle, gluconeogenesis, and protein synthesis. Systemic diseases, hypoxia, infections, drugs, and toxins can easily affect the liver, which is extremely sensitive to injury. Systemic infection of severe acute respiratory syndrome coronavirus 2 can cause liver damage. The primary regulator of intracellular pH in the liver is the Na+/H+ exchanger (NHE). Physiologically, NHE protects hepatocytes from apoptosis by making the intracellular pH alkaline. Severe acute respiratory syndrome coronavirus 2 increases local angiotensin II levels by binding to angiotensin-converting enzyme 2. In severe cases of coronavirus disease 2019, high angi-otensin II levels may cause NHE overstimulation and lipid accumulation in the liver. NHE overstimulation can lead to hepatocyte death. NHE overstimulation may trigger a cytokine storm by increasing proinflammatory cytokines in the liver. Since the release of proinflammatory cytokines such as interleukin-6 increases with NHE activation, the virus may indirectly cause an increase in fibrinogen and D-dimer levels. NHE overstimulation may cause thrombotic events and systemic damage by increasing fibrinogen levels and cytokine release. Also, NHE overstimulation causes an increase in the urea cycle while inhibiting vitamin D synthesis and gluconeogenesis in the liver. Increasing NHE3 activity leads to Na+ loading, which impairs the containment and fluidity of bile acid. NHE overstimulation can change the gut microbiota composition by disrupting the structure and fluidity of bile acid, thus triggering systemic damage. Unlike other tissues, tumor necrosis factor-alpha and angiotensin II decrease NHE3 activity in the intestine. Thus, increased luminal Na+ leads to diarrhea and cytokine release. Severe acute respiratory syndrome coronavirus 2-induced local and systemic damage can be improved by preventing virus-induced NHE overstimulation in the liver.
Collapse
Affiliation(s)
- Medine Cumhur Cure
- Department of Biochemistry, Private Tanfer Hospital, Istanbul 34394, Turkey
| | - Erkan Cure
- Department of Internal Medicine, Bagcilar Medilife Hospital, Istanbul 34200, Turkey
| |
Collapse
|
17
|
Wang L, Shao J, Su C, Yang J. The application of optical technology in the diagnosis and therapy of oxidative stress-mediated hepatic ischemia-reperfusion injury. Front Bioeng Biotechnol 2023; 11:1133039. [PMID: 36890921 PMCID: PMC9986550 DOI: 10.3389/fbioe.2023.1133039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is defined as liver tissue damage and cell death caused by reperfusion during liver transplantation or hepatectomy. Oxidative stress is one of the important mechanisms of HIRI. Studies have shown that the incidence of HIRI is very high, however, the number of patients who can get timely and efficient treatment is small. The reason is not hard to explain that invasive ways of detection and lack of timely of diagnostic methods. Hence, a new detection method is urgently needed in clinic application. Reactive oxygen species (ROS), which are markers of oxidative stress in the liver, could be detected by optical imaging and offer timely and effective non-invasive diagnosis and monitoring. Optical imaging could become the most potential tool of diagnosis of HIRI in the future. In addition, optical technology can also be used in disease treatment. It found that optical therapy has the function of anti-oxidative stress. Consequently, it has possibility to treat HIRI caused by oxidative stress. In this review, we mainly summarized the application and prospect of optical techniques in oxidative stress-induced by HIRI.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Medicine, Hengyang Medical School, University of South China, Hengyang, China.,Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiali Shao
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chen Su
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jinfeng Yang
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Jötten L, Steinkraus KC, Traub B, Graf S, Mihaljevic AL, Kornmann M, Michalski CW, Hüttner FJ. Impact of perioperative steroid administration in patients undergoing elective liver resection: meta-analysis. BJS Open 2022; 6:6947850. [PMID: 36537738 PMCID: PMC9764439 DOI: 10.1093/bjsopen/zrac139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 10/02/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Perioperative steroid administration may improve postoperative outcomes in major abdominal surgery by reducing the systemic inflammatory response. The aim of this systematic review was to evaluate the impact of perioperative steroid administration on outcomes after elective liver resection. METHODS PubMed, Cochrane Library, and Web of Science were systematically searched for randomized clinical trials (RCTs) comparing perioperative steroid administration with placebo, standard of care, or no steroids with respect to postoperative outcomes, particularly postoperative complications. Two independent reviewers critically appraised the studies and extracted data. Meta-analyses were performed using a random-effects model with ORs calculated for dichotomous outcomes and mean differences (MDs) for continuous outcomes. RESULTS Ten RCTs comprising 930 patients were included. Perioperative steroid administration significantly reduced the overall postoperative complication rate (OR 0.61, 95 per cent c.i. 0.43 to 0.87; P = 0.006; I2 = 26 per cent). No significant differences were shown for individual complications. Several postoperative laboratory parameters were positively affected, like total serum bilirubin (MD -0.46; 95 per cent c.i. -0.74 to -0.18; P = 0.001; I2 = 80 per cent), interleukin 6 (MD -48.99; 95 per cent c.i. -60.72 to -37.27; P < 0.001; I2 = 0 per cent) and C-reactive protein (MD -5.20; 95 per cent c.i. -7.62 to -2.77; P < 0.001; I2 = 71 per cent). There were no signs of an increase in potential steroid-induced adverse events, namely infectious complications, thromboembolic events, or bleeding. CONCLUSIONS Perioperative steroid administration significantly reduces the overall complication rate after elective liver resection without an increased risk of adverse effects.
Collapse
Affiliation(s)
- Laila Jötten
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Kira C Steinkraus
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Benno Traub
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Sandra Graf
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - André L Mihaljevic
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Marko Kornmann
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | | | - Felix J Hüttner
- Correspondence to: Felix J. Hüttner, Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany (e-mail: )
| |
Collapse
|
19
|
Hypothermic Oxygenated Machine Perfusion (HOPE) Prior to Liver Transplantation Mitigates Post-Reperfusion Syndrome and Perioperative Electrolyte Shifts. J Clin Med 2022; 11:jcm11247381. [PMID: 36555997 PMCID: PMC9786550 DOI: 10.3390/jcm11247381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Post-reperfusion syndrome (PRS) and electrolyte shifts (ES) represent considerable challenges during liver transplantation (LT) being associated with significant morbidity. We aimed to investigate the impact of hypothermic oxygenated machine perfusion (HOPE) on PRS and ES in LT. (2) Methods: In this retrospective study, we compared intraoperative parameters of 100 LTs, with 50 HOPE preconditioned liver grafts and 50 grafts stored in static cold storage (SCS). During reperfusion phase, prospectively registered serum parameters and vasopressor administration were analyzed. (3) Results: Twelve percent of patients developed PRS in the HOPE cohort vs. 42% in the SCS group (p = 0.0013). Total vasopressor demand in the first hour after reperfusion was lower after HOPE pretreatment, with reduced usage of norepinephrine (−26%; p = 0.122) and significant reduction of epinephrine consumption (−52%; p = 0.018). Serum potassium concentration dropped by a mean of 14.1% in transplantations after HOPE, compared to a slight decrease of 1% (p < 0.001) after SCS. The overall incidence of early allograft dysfunction (EAD) was reduced by 44% in the HOPE group (p = 0.04). (4) Conclusions: Pre-transplant graft preconditioning with HOPE results in higher hemodynamic stability during reperfusion and lower incidence of PRS and EAD. HOPE has the potential to mitigate ES by preventing hyperpotassemic complications that need to be addressed in LT with HOPE-pre-treated grafts.
Collapse
|
20
|
Mohamadian M, Parsamanesh N, Chiti H, Sathyapalan T, Sahebkar A. Protective effects of curcumin on ischemia/reperfusion injury. Phytother Res 2022; 36:4299-4324. [PMID: 36123613 DOI: 10.1002/ptr.7620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion (I/R) injury is a term used to describe phenomena connected to the dysfunction of various tissue damage due to reperfusion after ischemic injury. While I/R may result in systemic inflammatory response syndrome or multiple organ dysfunction syndrome, there is still a long way to improve therapeutic outcomes. A number of cellular metabolic and ultrastructural alterations occur by prolonged ischemia. Ischemia increases the expression of proinflammatory gene products and bioactive substances within the endothelium, such as cytokines, leukocytes, and adhesion molecules, even as suppressing the expression of other "protective" gene products and substances, such as thrombomodulin and constitutive nitric oxide synthase (e.g., prostacyclin, nitric oxide [NO]). Curcumin is the primary phenolic pigment derived from turmeric, the powdered rhizome of Curcuma longa. Numerous studies have shown that curcumin has strong antiinflammatory and antioxidant characteristics. It also prevents lipid peroxidation and scavenges free radicals like superoxide anion, singlet oxygen, NO, and hydroxyl. In our study, we highlight the mechanisms of protective effects of curcumin against I/R injury in various organs.
Collapse
Affiliation(s)
- Malihe Mohamadian
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Parsamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Chiti
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Liu Y, Yan P, Bin Y, Qin X, Wu Z. Neutrophil extracellular traps and complications of liver transplantation. Front Immunol 2022; 13:1054753. [PMID: 36466888 PMCID: PMC9712194 DOI: 10.3389/fimmu.2022.1054753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/26/2022] [Indexed: 08/29/2023] Open
Abstract
Many end-stage liver disease etiologies are attributed to robust inflammatory cell recruitment. Neutrophils play an important role in inflammatory infiltration and neutrophil phagocytosis, oxidative burst, and degranulation. It has also been suggested that neutrophils may release neutrophil extracellular traps (NETs) to kill pathogens. It has been proven that neutrophil infiltration within the liver contributes to an inflammatory microenvironment and immune cell activation. Growing evidence implies that NETs are involved in the progression of numerous complications of liver transplantation, including ischemia-reperfusion injury, acute rejection, thrombosis, and hepatocellular carcinoma recurrence. NETs are discussed in this comprehensive review, focusing on their effects on liver transplantation complications. Furthermore, we discuss NETs as potential targets for liver transplantation therapy.
Collapse
Affiliation(s)
- Yanyao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Bin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Qin
- Department of General Surgery and Trauma Surgery, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Diminazene aceturate attenuates hepatic ischemia/reperfusion injury in mice. Sci Rep 2022; 12:18158. [PMID: 36307457 PMCID: PMC9616812 DOI: 10.1038/s41598-022-21865-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/04/2022] [Indexed: 12/31/2022] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury is one of the leading causes of mortality following partial hepatectomy, liver transplantation, hypovolemic shock and trauma; however, effective therapeutic targets for the treatment of hepatic I/R injury are lacking. Recent studies have shown that diminazene aceturate (DIZE) has protective effects against inflammation, oxidative stress and cell death, which are the main pathogenetic mechanisms associated with hepatic I/R injury. However, the mechanistic effects DIZE exerts on hepatic I/R remain unknown. C57BL/6 male mice were pretreated with either 15 mg/kg DIZE or vehicle control (saline) and subjected to partial liver ischemia for 60 min. One day after induction of hepatic I/R, liver damage, inflammatory responses, oxidative stress and apoptosis were analyzed. By evaluating plasma alanine aminotransferase levels and histology, we found that DIZE treatment attenuated liver failure and was associated with a reduction in histologically-apparent liver damage. We also found that DIZE-treated mice had milder inflammatory responses, less reactive oxidative damage and less apoptosis following hepatic I/R compared to vehicle-treated mice. Taken together, our study demonstrates that DIZE protects against ischemic liver injury by attenuating inflammation and oxidative damage and may be a potential therapeutic agent for the prevention and treatment of ischemic liver failure.
Collapse
|
23
|
Zengin A, Erikçi A, Telli G, Gümüşel B, Kösemehmetoğlu K, Uçar G, Cem Algın M. Anti-inflammatory effects of oral and intraperitoneal administration of cerium oxide nanoparticles on experimental hepatic ischemia-reperfusion injury. Turk J Surg 2022; 38:255-265. [PMID: 36846057 PMCID: PMC9948672 DOI: 10.47717/turkjsurg.2022.5620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/10/2022] [Indexed: 12/24/2022]
Abstract
Objectives Hepatic ischemia-reperfusion (IR) injury occurs in liver surgery, resection, and transplantation. Reactive oxygen species (ROS) produced following IR starts the cascade of cell damage, necrosis/apoptosis, and proinflammatory responses by activating intracellular signaling cascade to drive hepatocellular damage. Cerium oxide nanoparticles (CONPs) act as anti-inflammatory and antioxidant agents. Thus, we evaluated the protective effects of oral (o.g.) and intraperitoneal (i.p.) administration of CONPs on hepatic IR injury. Material and Methods Mice were randomly divided into five groups: control, sham, IR protocol, CONP+IR (i.p.), and CONP+IR (o.g.). Mouse hepatic IR protocol was applied to the animals in the IR group. CONPs (300 μg/kg) were administered 24 hours before IR protocol. Blood and tissue samples were taken after the reperfusion period. Results Hepatic IR injury markedly increased enzyme activities, tissue lipid peroxidation, myeloperoxidase (MPO), xanthine oxidase (XO), nitrite oxide (NO), and tissue nuclear factor kappa-B (NF-κB) p65 levels, plasma pro-inflammatory cytokines, chemokines, and adhesion molecules while decreasing antioxidant markers and caused pathological changes in hepatic tissue. The expression of tumor necrosis factor alpha (TNF-α), matrix metalloproteinase 2 (MMP-2), and 9 increased, and tissue inhibitor matrix metalloproteinase 1 (TIMP-1) expression decreased in the IR group. Pretreatment with CONPs o.g. and i.p. 24 hours before hepatic ischemia improved the biochemical parameters above and alleviated the histopathological findings. Conclusion Results of the present study demonstrate a significant reduction in liver degeneration by administering CONPs via i.p. and o.g. route in an experimental liver IR model, suggesting that CONPs have the extensive potential to prevent hepatic IR injury.
Collapse
Affiliation(s)
- Akile Zengin
- Clinic of Gastrointestinal Surgery, Malatya Training and Research Hospital, Malatya, Türkiye
| | - Açelya Erikçi
- Department of Biochemistry, Lokman Hekim University Faculty of Pharmacy, Ankara, Türkiye
| | - Gökçen Telli
- Department of Pharmacology, Hacettepe University Faculty of Pharmacy, Ankara, Türkiye
| | - Bülent Gümüşel
- Department of Pharmacology, Lokman Hekim University Faculty of Pharmacy, Ankara, Türkiye
| | - Kemal Kösemehmetoğlu
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Gülberk Uçar
- Department of Biochemistry, Hacettepe University Faculty of Pharmacy, Ankara, Türkiye
| | - Mustafa Cem Algın
- Department of General Surgery, Kütahya Health Science University, Kütahya, Türkiye
| |
Collapse
|
24
|
Morsy MA, Ibrahim YF, Abdel Hafez SMN, Zenhom NM, Nair AB, Venugopala KN, Shinu P, Abdel-Gaber SA. Paeonol Attenuates Hepatic Ischemia/Reperfusion Injury by Modulating the Nrf2/HO-1 and TLR4/MYD88/NF-κB Signaling Pathways. Antioxidants (Basel) 2022; 11:antiox11091687. [PMID: 36139761 PMCID: PMC9495847 DOI: 10.3390/antiox11091687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatic ischemia/reperfusion (HIR) is the most common type of liver injury following several clinical situations. Modulating oxidative stress and inflammation by Nrf2/HO-1 and TLR4/MYD88/NF-κB pathways, respectively, is involved in alleviating HIR injury. Paeonol is a natural phenolic compound that demonstrates significant antioxidant and anti-inflammatory effects. The present study explored the possible protective effect of paeonol against HIR injury and investigated its possible molecular mechanisms in rats. Rats were randomly divided into four groups: sham-operated control, paeonol-treated sham-operated control, HIR untreated, and HIR paeonol-treated groups. The results confirmed that hepatic injury was significantly aggravated biochemically by elevated serum levels of alanine transaminase and aspartate transaminase, as well as by histopathological alterations, while paeonol reduced the increase in transaminases and alleviated pathological changes induced by HIR. Additionally, paeonol inhibited the HIR-induced oxidative stress in hepatic tissues by decreasing the upraised levels of malondialdehyde and nitric oxide and enhancing the suppressed levels of reduced glutathione and superoxide dismutase activity. Furthermore, paeonol activated the protective antioxidative Nrf2/HO-1 pathway. The protective effect of paeonol was associated with inhibiting the expression of the inflammatory key mediators TLR4, MYD88, NF-κB, and TNF-α. Finally, paeonol inhibited the increased mRNA levels of the pro-apoptotic marker Bax and enhanced the reduced mRNA levels of the anti-apoptotic marker Bcl-2. Taken together, our results proved for the first time that paeonol could protect against HIR injury by inhibiting oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, the Deanship of Scientific Research, the Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
- Correspondence: ; Tel.: +966-5496-72245
| | - Yasmine F. Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | | | - Nagwa M. Zenhom
- Department of Biochemistry, Faculty of Medicine, Al-Baha University, Albaha 65525, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Seham A. Abdel-Gaber
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
25
|
Oliveira THC, Vanheule V, Vandendriessche S, Poosti F, Teixeira MM, Proost P, Gouwy M, Marques PE. The GAG-Binding Peptide MIG30 Protects against Liver Ischemia-Reperfusion in Mice. Int J Mol Sci 2022; 23:ijms23179715. [PMID: 36077113 PMCID: PMC9456047 DOI: 10.3390/ijms23179715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) drives graft rejection and is the main cause of mortality after liver transplantation. During IRI, an intense inflammatory response marked by chemokine production and neutrophil recruitment occurs. However, few strategies are available to restrain this excessive response. Here, we aimed to interfere with chemokine function during IRI in order to disrupt neutrophil recruitment to the injured liver. For this, we utilized a potent glycosaminoglycan (GAG)-binding peptide containing the 30 C-terminal amino acids of CXCL9 (MIG30) that is able to inhibit the binding of chemokines to GAGs in vitro. We observed that mice subjected to IRI and treated with MIG30 presented significantly lower liver injury and dysfunction as compared to vehicle-treated mice. Moreover, the levels of chemokines CXCL1, CXCL2 and CXCL6 and of proinflammatory cytokines TNF-α and IL-6 were significantly reduced in MIG30-treated mice. These events were associated with a marked inhibition of neutrophil recruitment to the liver during IRI. Lastly, we observed that MIG30 is unable to affect leukocytes directly nor to alter the stimulation by either CXCL8 or lipopolysaccharide (LPS), suggesting that its protective properties derive from its ability to inhibit chemokine activity in vivo. We conclude that MIG30 holds promise as a strategy to treat liver IRI and inflammation.
Collapse
Affiliation(s)
- Thiago Henrique Caldeira Oliveira
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Fariba Poosti
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Mauro Martins Teixeira
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
|