1
|
Carr A, Coulter JA, Workman J, Fay J, Farrelly A, Eustace AJ, Bennie L, Grogan L, Breathnach O, Morris PG, McNamara DA, Cremona M, O'Neill BDP, Hennessy BT, Toomey S. Targeting the phosphatidylinositol-3-kinase (PI3K) and mitogen activated protein kinase (MAPK) signalling pathways to enhance chemoradiotherapy in locally advanced rectal cancer. Cancer Treat Res Commun 2025; 43:100926. [PMID: 40245445 DOI: 10.1016/j.ctarc.2025.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/04/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Responses to neoadjuvant chemoradiotherapy for locally advanced rectal cancer are not uniform. The phosphatidylinositol-3 kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways are involved in tumorigenesis and treatment resistance in many cancers; therefore, targeting these pathways could enhance response to chemoradiotherapy. A panel of colorectal cancer (CRC) cell lines (n = 10) with varying PI3K and MAPK mutational backgrounds were treated with combinations of 5-Flourouracil (5-FU), radiation, the PI3K inhibitor copanlisib, and/or the MEK inhibitor refametinib, and their effects on proliferation in vitro were measured. BALB/c SCID mice were implanted with CRC cell lines representative of each mutational background, treated with copanlisib and/or chemoradiotherapy, and monitored for tumor growth. In vitro, PIK3CA mutated cell lines were most sensitive to copanlisib (IC50=28 nM) and KRAS mutated cell lines were most sensitive to refametinib (IC50 = 36 nM), while the combination of copanlisib and refametinib was synergistic in 9/10 cell lines tested. The addition of copanlisib to 5-FU chemoradiotherapy inhibited cell growth compared to 5-FU chemoradiotherapy alone, an effect that was most notable in LS-1034 (KRAS mutated) and Caco-2 (PIK3CA/KRAS wild-type) cell lines. In vivo copanlisib and 5-FU chemoradiotherapy reduced tumor growth in all xenograft models and increased overall survival in LS-1034 and Caco-2 xenografts. Our results suggest that activation of the kinase signalling pathway may modulate PI3K/MEK inhibitor responsiveness in colorectal cancer. Furthermore, the addition of copanlisib to 5-FU chemoradiotherapy resulted in an enhanced anti-proliferative cytotoxic effect compared to 5-FU chemoradiotherapy alone, regardless of the background mutational status, and supports further clinical development of this regimen.
Collapse
Affiliation(s)
- Aoife Carr
- Department of Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | | | - Julie Workman
- Department of Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Joanna Fay
- Department of Pathology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Angela Farrelly
- Department of Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Alex J Eustace
- Department of Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Lindsey Bennie
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Liam Grogan
- Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland; Beaumont RCSI Cancer Centre, Dublin, Ireland
| | - Oscar Breathnach
- Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland; Beaumont RCSI Cancer Centre, Dublin, Ireland
| | - Patrick G Morris
- Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland; Beaumont RCSI Cancer Centre, Dublin, Ireland
| | - Deborah A McNamara
- Beaumont RCSI Cancer Centre, Dublin, Ireland; Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Mattia Cremona
- Department of Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Brian D P O'Neill
- Beaumont RCSI Cancer Centre, Dublin, Ireland; St. Luke's Radiation Oncology Network, Dublin, Ireland
| | - Bryan T Hennessy
- Department of Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland; Beaumont RCSI Cancer Centre, Dublin, Ireland
| | - Sinead Toomey
- Department of Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Beaumont RCSI Cancer Centre, Dublin, Ireland.
| |
Collapse
|
2
|
Singh SR, Bhaskar R, Ghosh S, Yarlagadda B, Singh KK, Verma P, Sengupta S, Mladenov M, Hadzi-Petrushev N, Stojchevski R, Sinha JK, Avtanski D. Exploring the Genetic Orchestra of Cancer: The Interplay Between Oncogenes and Tumor-Suppressor Genes. Cancers (Basel) 2025; 17:1082. [PMID: 40227591 PMCID: PMC11988167 DOI: 10.3390/cancers17071082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Cancer is complex because of the critical imbalance in genetic regulation as characterized by both the overexpression of oncogenes (OGs), mainly through mutations, amplifications, and translocations, and the inactivation of tumor-suppressor genes (TSGs), which entail the preservation of genomic integrity by inducing apoptosis to counter the malignant growth. Reviewing the intricate molecular interplay between OGs and TSGs draws attention to their cell cycle, apoptosis, and cancer metabolism regulation. In the present review, we discuss seminal discoveries, such as Knudson's two-hit hypothesis, which framed the field's understanding of cancer genetics, leading to the next breakthroughs with next-generation sequencing and epigenetic profiling, revealing novel insights into OG and TSG dysregulation with opportunities for targeted therapy. The key pathways, such as MAPK/ERK, PI3K/AKT/mTOR, and Wnt/β-catenin, are presented in the context of tumor progression. Importantly, we further highlighted the advances in therapeutic strategies, including inhibitors of KRAS and MYC and restoration of TSG function, despite which mechanisms of resistance and tumor heterogeneity pose daunting challenges. A high-level understanding of interactions between OG-TSGs forms the basis for effective, personalized cancer treatment-something to strive for in better clinical outcomes. This synthesis should integrate foundational biology with translation and, in this case, contribute to the ongoing effort against cancer.
Collapse
Affiliation(s)
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si 38541, Republic of Korea;
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | | | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Symbiosis International (Deemed University), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune 411057, India
| | - Prashant Verma
- School of Management, BML Munjal University, NH8, Sidhrawali, Gurugram 122413, India
| | - Sonali Sengupta
- Department of Gastroenterology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | | | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
3
|
França TC, Maddalena M, Kouidmi I, Ayotte Y, Islam ST, LaPlante SR. SI/II Pocket of Ras: An Opportunity for a Once "Undruggable" Target. ACS OMEGA 2025; 10:9463-9473. [PMID: 40092832 PMCID: PMC11904710 DOI: 10.1021/acsomega.4c10493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/19/2025] [Accepted: 02/05/2025] [Indexed: 03/19/2025]
Abstract
Mutations on the Ras-family of small GTPases are among the most common molecular oncogenic drivers, with the HRas isoform being primarily associated with head-and-neck and genito-urinary cancers. Although once considered "undruggable," recent efforts have identified a structurally conserved surface pocket in the Ras family, designated the SI/II pocket, situated near the binding site of the guanidine exchange factor (GEF) SOS1. The SI/II pocket may represent a potential target site for a pan-Ras drug. A crystal structure representing the native state of GDP-bound HRasG12V was generated to characterize the topology of the SI/II pocket. This native-state structure was employed, together with the published structure of GppNHp-bound HRasG12V in state 1 (PDB ID: 4EFM), as a base for further molecular dynamics simulations exploring the conformational dynamics of the SI/II pocket via four generated synthetic HRas model structures. Our results show that the SI/II pocket is natively inaccessible in GDP-bound HRas yet becomes accessible in state 1 GppNHp-bound HRas systems, an effect that seems to be more evident in the mutated enzyme. This points to the GTP-bound state as a most promising target for Ras inhibitors directed at the SI/II pocket. Occlusion of the SI/II pocket is dictated by the spatial position of the α2 α helix in relation to the protein core, with α2 residue Y71 acting as a "tyrosine toggle" capable of restricting the pocket access.
Collapse
Affiliation(s)
- Tanos
C. C. França
- INRS
Centre Armand Frappier Santé Biotechnologie, 531 des Prairies Boulevard, Laval, Quebec H7 V 1B7, Canada
- Laboratory
of Molecular Modeling Applied to the Chemical and Biological Defense
(LMCBD), Military Institute of Engineering (IME), Praça General Tibúrcio
80, 22290-270 Rio
de Janeiro, Brazil
- Center
for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Michael Maddalena
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Sante Biotechnologie, Universite du Quebec,
Institut Pasteur International Network, Laval, QC, H7V
1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Universite Laval, Quebec, QC, G1V 0A6, Canada
| | - Imène Kouidmi
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Sante Biotechnologie, Universite du Quebec,
Institut Pasteur International Network, Laval, QC, H7V
1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Universite Laval, Quebec, QC, G1V 0A6, Canada
| | - Yann Ayotte
- NMX
Research and Solutions Inc., Laval, Québec H7 V 5B7, Canada
| | - Salim T. Islam
- Institut
National de la Recherche Scientifique (INRS), Centre Armand-Frappier
Sante Biotechnologie, Universite du Quebec,
Institut Pasteur International Network, Laval, QC, H7V
1B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Universite Laval, Quebec, QC, G1V 0A6, Canada
| | - Steven R. LaPlante
- NMX
Research and Solutions Inc., Laval, Québec H7 V 5B7, Canada
- PROTEO,
the Quebec Network for Research on Protein Function, Engineering,
and Applications, Universite Laval, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
4
|
Pokhrel B, Tan Z, Jiang H. Identification of transcriptional regulators and signaling pathways mediating postnatal rumen growth and functional maturation in cattle. J Anim Sci 2025; 103:skae367. [PMID: 39656757 PMCID: PMC11781194 DOI: 10.1093/jas/skae367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
The rumen plays an essential role in the physiology and health of ruminants. The rumen undergoes substantial changes in size and function from birth to adulthood. The cellular and molecular mechanisms underlying these changes are not clear. This study aimed to identify the transcription factors (TFs) and signaling pathways mediating these changes in cattle. We found that the ratios of the emptied rumen, reticulum, omasum, and abomasum to body weight in adult steers were 4.8 (P < 0.01), 3.1 (P < 0.01), 6.0 (P < 0.01), and 0.8 (P = 0.9) times those in neonatal calves, respectively. The length of rumen papillae and the thickness of rumen epithelium, tunica mucosa and submucosa, tunica muscularis, and tunica serosa increased 7.4-, 2.0-, 3.0-, 2.9-, and 4.6-fold (P < 0.01 for all), respectively, from neonatal calves to adult steers. However, the density of rumen papillae was lower in adult steers than in neonatal calves (P < 0.05). The size of rumen epithelial cells was not different between neonatal calves and adult steers (P = 0.57). RNA sequencing identified 2,922 genes differentially expressed in the rumen between neonatal calves and adult steers. Functional enrichment analyses revealed that organ development, blood vessel development, Ras signaling, and Wnt signaling were among the functional terms enriched in genes downregulated in adult steers vs. neonatal calves and that fatty acid metabolism, immune responses, PPAR signaling, and Rap1 signaling were among those enriched in genes upregulated in adult steers vs. neonatal calves. Serum response factor (SRF), interferon regulatory factor 4, and purine-rich single-stranded DNA-binding protein alpha were among the major candidate TFs controlling the expression of genes upregulated, while TCF4, inhibitor of DNA binding 4, and snail family transcriptional repressor 2 were among those controlling the expression of genes downregulated in adult steers vs. neonatal calves. Taken together, these results suggest that the rumen grows by increasing the number, not the size, of cells from birth to adulthood, that the absorptive, metabolic, immune, and motility functions of the rumen are acquired or significantly enhanced during the postnatal life, and that the changes in rumen size and function from birth to adulthood are mediated by many candidate TFs, including SRF and TCF4, and many candidate signaling pathways, including the PPAR and Wnt signaling pathways.
Collapse
Affiliation(s)
- Binod Pokhrel
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhendong Tan
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Honglin Jiang
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
5
|
Khan J, Ghosh P, Bajpai U, Dwivedi K, Saluja D. Integrated analysis of cell cycle and p53 signaling pathways related genes in breast, colorectal, lung, and pancreatic cancers: implications for prognosis and drug sensitivity for therapeutic potential. Discov Oncol 2024; 15:832. [PMID: 39715832 PMCID: PMC11666898 DOI: 10.1007/s12672-024-01712-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024] Open
Abstract
Cancer, a leading cause of death worldwide, is projected to increase by 76.6% in new cases and 89.7% in mortality by 2050 (WHO 2022). Among various types, lung cancer is the most prevalent with high morbidity, while breast, colorectal, and pancreatic cancers also show high mortality rates. Cancer progression often involves disruption in cell cycle regulation and signaling pathways, with mutations in genes like TP53, EGFR, and K-RAS playing significant roles. In this study, we analyzed gene expression datasets to identify common molecular signatures across breast, colorectal, lung and pancreatic cancers. Our focus was on genes related to cell cycle regulation and p53 signaling pathway, intending to discover potential biomarkers for improved diagnosis and treatment strategies. The study analyzed GEO datasets; GSE45827, GSE9348, GSE30219, and GSE62165 for breast, colorectal, lung, and pancreatic cancers respectively. Differentially expressed genes (DEGs) were identified using GEO2R, and functional annotation and pathway analysis were performed using WebGestalt. Common cell cycle and p53 signaling genes were acquired from MSigDB using GSEA. A protein-protein interaction network was constructed using STRING and Cytoscape, identifying top hub genes. Validation of hub genes at mRNA and protein levels was done via GEPIA2 and Human Protein Atlas. Survival analysis was conducted using TCGA data by GEPIA2 and LASSO, and drug sensitivity was analyzed with the GSCA drug bank database, highlighting potential therapeutic targets. The study identified 411 common DEGs among these four cancers. Pathway and functional enrichment revealed key biological processes and pathways like p53 signaling, and cell cycle. The intersection of these DEGs with genes involved in cell cycle and p53 signaling, identified 23 common genes that were used for constructing a PPI network. The top 10 hub genes were validated both for mRNA and protein expression, revealing they are significantly overexpressed in all studied cancers. Prognostic relevance showed that MCM4, MCM6, CCNA2, CDC20, and CHEK1 are associated with survival. Additionally, drug sensitivity analysis highlighted key gene-drug interactions, suggesting potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jiyauddin Khan
- Dr B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Priyanjana Ghosh
- Dr B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Urmi Bajpai
- Department of Biomedical Sciences, Acharya Narendra Dev College University of Delhi, University of Delhi, New Delhi, 110019, India
| | - Kountay Dwivedi
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Daman Saluja
- Dr B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
- Department of Allied and Basic Sciences, Shri Guru Gobind Singh Tricentenary University, Gurugram, 122505, Haryana, India.
| |
Collapse
|
6
|
Young BD, Williams DE, Bright AJ, Peterson A, Traylor-Knowles N, Rosales SM. Genet identity and season drive gene expression in outplanted Acropora palmata at different reef sites. Sci Rep 2024; 14:29444. [PMID: 39604459 PMCID: PMC11603135 DOI: 10.1038/s41598-024-80479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Coral reefs are experiencing decreases in coral cover due to anthropogenic influences. Coral restoration is addressing this decline by outplanting large volumes of corals onto reef systems. Understanding how outplanted corals react at a transcriptomic level to different outplant locations over time is important, as it will highlight how habitat affects the coral host and influences physiological measures. In this study, the transcriptomic dynamics of four genets of outplanted Acropora palmata were assessed over a year at three reef sites in the Florida Keys. Genet identity was more important than time of sampling or outplant site, with differing levels of baseline immune and protein production the key drivers. Once accounting for genet, enriched growth processes were identified in the winter, and increased survival and immune expression were found in the summer. The effect of the reef site was small, with hypothesized differences in autotrophic versus heterotrophic dependent on outplant depth. We hypothesize that genotype identity is an important consideration for reef restoration, as differing baseline gene expression could play a role in survivorship and growth. Additionally, outplanting during cooler winter months may be beneficial due to higher expression of growth processes, allowing establishment of outplants on the reef system.
Collapse
Affiliation(s)
- Benjamin D Young
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA.
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA.
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, FL, USA.
| | - Dana E Williams
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
- Southeast Fisheries Science Center, National Oceanic and Atmospheric Administration-National Marine Fisheries Service, Miami, FL, USA
| | - Allan J Bright
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
- Southeast Fisheries Science Center, National Oceanic and Atmospheric Administration-National Marine Fisheries Service, Miami, FL, USA
| | - Annie Peterson
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
- Southeast Fisheries Science Center, National Oceanic and Atmospheric Administration-National Marine Fisheries Service, Miami, FL, USA
| | - Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, FL, USA
| | - Stephane M Rosales
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| |
Collapse
|
7
|
Dakal TC, Dhakar R, Beura A, Moar K, Maurya PK, Sharma NK, Ranga V, Kumar A. Emerging methods and techniques for cancer biomarker discovery. Pathol Res Pract 2024; 262:155567. [PMID: 39232287 DOI: 10.1016/j.prp.2024.155567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Modern cancer research depends heavily on the identification and validation of biomarkers because they provide important information about the diagnosis, prognosis, and response to treatment of the cancer. This review will provide a comprehensive overview of cancer biomarkers, including their development phases and recent breakthroughs in transcriptomics and computational techniques for detecting these biomarkers. Blood-based biomarkers have great potential for non-invasive tumor dynamics and treatment response monitoring. These include circulating tumor DNA, exosomes, and microRNAs. Comprehensive molecular profiles are provided by multi-omic technologies, which combine proteomics, metabolomics, and genomes to support the identification of biomarkers and the targeting of therapeutic interventions. Genetic changes are detected by next-generation sequencing, and patterns of protein expression are found by protein arrays and mass spectrometry. Tumor heterogeneity and clonal evolution can be understood using metabolic profiling and single-cell studies. It is projected that the use of several biomarkers-genetic, protein, mRNA, microRNA, and DNA profiles, among others-will rise, enabling multi-biomarker analysis and improving individualised treatment plans. Biomarker identification and patient outcome prediction are further improved by developments in AI algorithms and imaging techniques. Robust biomarker validation and reproducibility require cooperation between industry, academia, and doctors. Biomarkers can provide individualized care, meet unmet clinical needs, and enhance patient outcomes despite some obstacles. Precision medicine will continue to take shape as scientific research advances and the integration of biomarkers with cutting-edge technologies continues to offer a more promising future for personalized cancer care.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India.
| | - Ramgopal Dhakar
- Deparment of Life Science, Mewar University, Chittorgarh, Rajasthan 312901, India
| | - Abhijit Beura
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
| | - Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Narendra Kumar Sharma
- Deparment of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan 304022, India
| | - Vipin Ranga
- DBT-NECAB, Assam Agriculture University, Jorhat, Assam 785013, India
| | - Abhishek Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India; Manipal Academy of Higher Education (MAHE) Manipal, Karnataka, India.
| |
Collapse
|
8
|
Hossain MA. Targeting the RAS upstream and downstream signaling pathway for cancer treatment. Eur J Pharmacol 2024; 979:176727. [PMID: 38866361 DOI: 10.1016/j.ejphar.2024.176727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Cancer often involves the overactivation of RAS/RAF/MEK/ERK (MAPK) and PI3K-Akt-mTOR pathways due to mutations in genes like RAS, RAF, PTEN, and PIK3CA. Various strategies are employed to address the overactivation of these pathways, among which targeted therapy emerges as a promising approach. Directly targeting specific proteins, leads to encouraging results in cancer treatment. For instance, RTK inhibitors such as imatinib and afatinib selectively target these receptors, hindering ligand binding and reducing signaling initiation. These inhibitors have shown potent efficacy against Non-Small Cell Lung Cancer. Other inhibitors, like lonafarnib targeting Farnesyltransferase and GGTI 2418 targeting geranylgeranyl Transferase, disrupt post-translational modifications of proteins. Additionally, inhibition of proteins like SOS, SH2 domain, and Ras demonstrate promising anti-tumor activity both in vivo and in vitro. Targeting downstream components with RAF inhibitors such as vemurafenib, dabrafenib, and sorafenib, along with MEK inhibitors like trametinib and binimetinib, has shown promising outcomes in treating cancers with BRAF-V600E mutations, including myeloma, colorectal, and thyroid cancers. Furthermore, inhibitors of PI3K (e.g., apitolisib, copanlisib), AKT (e.g., ipatasertib, perifosine), and mTOR (e.g., sirolimus, temsirolimus) exhibit promising efficacy against various cancers such as Invasive Breast Cancer, Lymphoma, Neoplasms, and Hematological malignancies. This review offers an overview of small molecule inhibitors targeting specific proteins within the RAS upstream and downstream signaling pathways in cancer.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
9
|
Wu L, Xu M, Li X, Aierken D, Yu J, Qin T. A real-world pharmacovigilance study of KRAS G12C mutation inhibitors based on the food and drug administration adverse event reporting system. Front Pharmacol 2024; 15:1418469. [PMID: 39263575 PMCID: PMC11387170 DOI: 10.3389/fphar.2024.1418469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Introduction Sotorasib and adagrasib have been widely used for the non-small cell lung cancer (NSCLC) patients harboring Kirsten rat sarcoma viral oncogene homolog (KRAS) G12C mutation. It's necessary to assess their safety profiles in the real-world population. Methods A retrospective pharmacovigilance was conducted to examine adverse events (AEs) associated with sotorasib and adagrasib therapies using the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS). Disproportionality analysis was performed employing Venn analysis and four data-mining algorithms, including the reporting odds ratio (ROR), the proportional reporting ratio (PRR), the Bayesian confidence propagation neural network (BCPNN), and the multi-item gamma Poisson shrinker (MGPS). Results The most commonly reported system organ classes (SOCs) for both adagrasib and sororasib were general, gastrointestinal, and investigations disorders. Notably, sotorasib exhibited significant signals for neoplasms and hepatobiliary disorders in four algorithms. Specifically, AEs related to neoplasms were predominantly associated with lung malignancies, all of which were consistent with the therapeutic indications of KRAS G12C mutation inhibitor. A total of 19 common AEs were identified in sotorasib and adagrasib, spanning gastrointestinal, general, hepatobiliary, investigations, metabolism, musculoskeletal, neoplasms, and respiratory disorders. 4 severe AEs (SAEs) were identified in sotorasib, with 3 SAEs displaying significant signals in four algorithms, including drug-induced liver injury, pancreatitis, and hepatic failure. In adagrasib, only 2 SAEs were detected, with renal failure showing significant signals in four algorithms. Conclusion This study offers a comprehensive evaluation of the major safety signals associated with sotorasib and adagrasib, providing valuable information for clinicians regarding drug selection and safety considerations, thereby facilitating the design of future prospective safety studies.
Collapse
Affiliation(s)
- Lisha Wu
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Oncology, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, China
| | - Maosheng Xu
- Department of Oncology, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, China
| | - Xueqin Li
- Department of Oncology, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, China
| | - Dilinuer Aierken
- Department of Oncology, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, China
| | - Jinxiu Yu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Qin
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Oncology, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, China
| |
Collapse
|
10
|
Zutshi N, Mohapatra BC, Mondal P, An W, Goetz BT, Wang S, Li S, Storck MD, Mercer DF, Black AR, Thayer SP, Black JD, Lin C, Band V, Band H. Cbl and Cbl-b ubiquitin ligases are essential for intestinal epithelial stem cell maintenance. iScience 2024; 27:109912. [PMID: 38974465 PMCID: PMC11225835 DOI: 10.1016/j.isci.2024.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/29/2024] [Accepted: 05/03/2024] [Indexed: 07/09/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) control stem cell maintenance vs. differentiation decisions. Casitas B-lineage lymphoma (CBL) family ubiquitin ligases are negative regulators of RTKs, but their stem cell regulatory roles remain unclear. Here, we show that Lgr5+ intestinal stem cell (ISC)-specific inducible Cbl-knockout (KO) on a Cblb null mouse background (iDKO) induced rapid loss of the Lgr5 Hi ISCs with transient expansion of the Lgr5 Lo transit-amplifying population. LacZ-based lineage tracing revealed increased ISC commitment toward enterocyte and goblet cell fate at the expense of Paneth cells. Functionally, Cbl/Cblb iDKO impaired the recovery from radiation-induced intestinal epithelial injury. In vitro, Cbl/Cblb iDKO led to inability to maintain intestinal organoids. Single-cell RNA sequencing in organoids identified Akt-mTOR (mammalian target of rapamycin) pathway hyperactivation upon iDKO, and pharmacological Akt-mTOR axis inhibition rescued the iDKO defects. Our results demonstrate a requirement for Cbl/Cblb in the maintenance of ISCs by fine-tuning the Akt-mTOR axis to balance stem cell maintenance vs. commitment to differentiation.
Collapse
Affiliation(s)
- Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bhopal C. Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pinaki Mondal
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin T. Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shuo Wang
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sicong Li
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew D. Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David F. Mercer
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adrian R. Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sarah P. Thayer
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jennifer D. Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chi Lin
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vimla Band
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
11
|
Ma G, Huo B, Shen Y, Zhu X, Cheng C, Li W, Cao W, Li J. Genomic Alterations Correlated to Trastuzumab Resistance and Clinical Outcomes in HER2+/HR- Breast Cancers of Patients Living in Northwestern China. J Cancer 2024; 15:4467-4476. [PMID: 39006074 PMCID: PMC11242333 DOI: 10.7150/jca.84832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/27/2024] [Indexed: 07/16/2024] Open
Abstract
Anti-HER2 therapy has significantly improved the survival rates of patients with HER2+ breast cancer. However, a subset of these patients eventually experience treatment failure, and the underlying genetic mechanisms remain largely unexplored. This underscores the need to investigate the genomic heterogeneity of HER2+ breast cancer. In this study, we focus on HER2+/HR- breast cancer, as it differs from HER2+/HR+ breast cancer in terms of genetic and biological characteristics. We performed gene-targeted genome sequencing on 45 HER2+/HR- breast cancer samples and identified 650 mutations across 268 cancer-related genes. TP53 (71.1%) and PIK3CA (35.6%) were the most frequently mutated genes in our sample. Additionally, ERBB2 (77.8%), CDK12 (42.2%), and MYC (11.1%) exhibited a high frequency of copy number amplifications (CNAs). Comparative analysis with two other HER2+/HR- breast cancer cohorts revealed that our cohort had higher genetic variation rates in ARID1A, PKHD1, PTPN13, FANCA, SETD2, BRCA2, BLM, STAG2, FAT1, TOP2A, POLE, ATM, KMT2B, FGFR4, and EPAS1. Notably, in our cohort, NF1 and ATM mutations were more prevalent in trastuzumab-resistant patients (NF1, p=0.016; ATM, p=0.006) and were associated with primary trastuzumab resistance (NF1, p=0.042; ATM, p=0.021). Moreover, patients with NF1 mutations (p=0.009) and high histological grades (p=0.028) were more likely to experience early relapse. Ultimately, we identified a unique cancer-related gene mutation profile and a subset of genes associated with primary resistance to trastuzumab and RFS in patients with HER2+/HR- breast cancer in Northwest China. These findings could lay the groundwork for future studies aimed at elucidating the mechanisms of resistance to trastuzumab and improving HER2-targeted treatment strategies.
Collapse
Affiliation(s)
- Gang Ma
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Binliang Huo
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yanwei Shen
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xulong Zhu
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Chong Cheng
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Wensheng Li
- Department of Pathology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Wei Cao
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jianhui Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
12
|
Bakhsh T, Alhazmi S, Farsi A, Yusuf AS, Alharthi A, Qahl SH, Alghamdi MA, Alzahrani FA, Elgaddar OH, Ibrahim MA, Bahieldin A. Molecular detection of exosomal miRNAs of blood serum for prognosis of colorectal cancer. Sci Rep 2024; 14:8902. [PMID: 38632250 PMCID: PMC11024162 DOI: 10.1038/s41598-024-58536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer affecting people. The discovery of new, non-invasive, specific, and sensitive molecular biomarkers for CRC may assist in the diagnosis and support therapeutic decision making. Exosomal miRNAs have been demonstrated in carcinogenesis and CRC development, which makes these miRNAs strong biomarkers for CRC. Deep sequencing allows a robust high-throughput informatics investigation of the types and abundance of exosomal miRNAs. Thus, exosomal miRNAs can be efficiently examined as diagnostic biomarkers for disease screening. In the present study, a number of 660 mature miRNAs were detected in patients diagnosed with CRC at different stages. Of which, 29 miRNAs were differentially expressed in CRC patients compared with healthy controls. Twenty-nine miRNAs with high abundance levels were further selected for subsequent analysis. These miRNAs were either highly up-regulated (e.g., let-7a-5p, let-7c-5p, let-7f-5p, let-7d-3p, miR-423-5p, miR-3184-5p, and miR-584) or down-regulated (e.g., miR-30a-5p, miR-99-5p, miR-150-5p, miR-26-5p and miR-204-5p). These miRNAs influence critical genes in CRC, leading to either tumor growth or suppression. Most of the reported diagnostic exosomal miRNAs were shown to be circulating in blood serum. The latter is a novel miRNA that was found in exosomal profile of blood serum. Some of the predicted target genes of highly expressed miRNAs participate in several cancer pathways, including CRC pathway. These target genes include tumor suppressor genes, oncogenes and DNA repair genes. Main focus was given to multiple critical signaling cross-talking pathways including transforming growth factor β (TGFβ) signaling pathways that are directly linked to CRC. In conclusion, we recommend further analysis in order to experimentally confirm exact relationships between selected differentially expressed miRNAs and their predicted target genes and downstream functional consequences.
Collapse
Affiliation(s)
- Tahani Bakhsh
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia.
| | - Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, 80200, Jedaah, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, 80200, Jeddah, Saudi Arabia
- Central lab of biological Sciences, Faculty of Sciences, King Abdulaziz University, 80200, Jeddah, Saudi Arabia
| | - Ali Farsi
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Abdulaziz S Yusuf
- Department of Biochemistry, Faculty of science, Stem Cell Unit, King Fahad Center for Medical Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Medical Laboratory Sciences Department, Fakeeh College for Medical Sciences, 21461, Jeddah, Saudi Arabia
| | - Amani Alharthi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, 11952, Majmaah, Saudi Arabia
| | - Safa H Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Maha Ali Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Faisal A Alzahrani
- Department of Biochemistry, Faculty of science, Stem Cell Unit, King Fahad Center for Medical Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Ola H Elgaddar
- Department of Chemical Pathology, Alexandria University, Alexandria, Egypt
| | - Mohanad A Ibrahim
- Data Science Program, King Abdullah International Medical Research Center, 11481, Riyadh, Saudi Arabia
| | - Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
13
|
Mathur A, Meena A, Luqman S. Monoterpenoids: An upcoming class of therapeutic agents for modulating cancer metastasis. Phytother Res 2024; 38:939-969. [PMID: 38102850 DOI: 10.1002/ptr.8081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Monoterpenoids, a sub-class of terpenoids, are secondary metabolites frequently extracted from the essential oils of aromatic plants. Their antitumor properties including antiproliferative, apoptotic, antiangiogenic, and antimetastatic effects along with other biological activities have been the subject of extensive study due to their diverse characteristics. In recent years, numerous investigations have been conducted to understand its potential anticancer impacts, specifically focusing on antiproliferative and apoptotic mechanisms. Metastasis, a malignancy hallmark, can exert either protective or destructive influences on tumor cells. Despite this, the potential antimetastatic and antiangiogenic attributes of monoterpenoids need further exploration. This review focuses on specific monoterpenoids, examining their effects on metastasis and relevant signaling pathways. The monoterpenoids exhibit a high level of complexity as natural products that regulate metastatic proteins through various signaling pathways, including phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin, mitogen-activated protein kinase/extracellular signal-regulated kinase/jun N-terminal kinase, nuclear factor kappa B, vascular endothelial growth factor, and epithelial mesenchymal transition process. Additionally, this review delves into the biosynthesis and classification of monoterpenoids, their potential antitumor impacts on cell lines, the plant sources of monoterpenoids, and the current status of limited clinical trials investigating their efficacy against cancer. Moreover, monoterpenoids depict promising potential in preventing cancer metastasis, however, inadequate clinical trials limit their drug usage. State-of-the-art techniques and technologies are being employed to overcome the challenges of utilizing monoterpenoids as an anticancer agent.
Collapse
Affiliation(s)
- Anurag Mathur
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. SENSORS (BASEL, SWITZERLAND) 2023; 24:37. [PMID: 38202898 PMCID: PMC10780704 DOI: 10.3390/s24010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Biomarkers are vital in healthcare as they provide valuable insights into disease diagnosis, prognosis, treatment response, and personalized medicine. They serve as objective indicators, enabling early detection and intervention, leading to improved patient outcomes and reduced costs. Biomarkers also guide treatment decisions by predicting disease outcomes and facilitating individualized treatment plans. They play a role in monitoring disease progression, adjusting treatments, and detecting early signs of recurrence. Furthermore, biomarkers enhance drug development and clinical trials by identifying suitable patients and accelerating the approval process. In this review paper, we described a variety of biomarkers applicable for cancer detection and diagnosis, such as imaging-based diagnosis (CT, SPECT, MRI, and PET), blood-based biomarkers (proteins, genes, mRNA, and peptides), cell imaging-based diagnosis (needle biopsy and CTC), tissue imaging-based diagnosis (IHC), and genetic-based biomarkers (RNAseq, scRNAseq, and spatial transcriptomics).
Collapse
Affiliation(s)
| | | | | | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (S.D.); (M.K.D.); (R.D.)
| |
Collapse
|
15
|
Yang L, Atakhanova N, Arellano MTC, Mohamed MY, Hani T, Fahdil AA, Castillo-Acobo RY, Juyal A, Hussein AK, Amin AH, Pecho RDC, Akhavan-Sigari R. Translational research of new developments in targeted therapy of colorectal cancer. Pathol Res Pract 2023; 252:154888. [PMID: 37948996 DOI: 10.1016/j.prp.2023.154888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
A severe global health concern is the rising incidence and mortality rate of colorectal cancer (CRC). Chemotherapy, which is typically used to treat CRC, is known to have limited specificity and can have noticeable side effects. A paradigm shift in cancer treatment has been brought about by the development of targeted therapies, which has led to the appearance of pharmacological agents with improved efficacy and decreased toxicity. Epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (HER2), and BRAF are among the molecular targets covered in this review that are used in targeted therapy for CRC. The current discussion also covers advancements in targeted therapeutic approaches, such as antibody-drug conjugates, immune checkpoint inhibitors, and chimeric antigen receptor (CAR) T-cell therapy. A review of the clinical trials and application of these particular therapies in treating CRC is also done. Despite the improvements in targeted therapy for CRC, problems such as drug resistance and patient selection remain to be solved. Despite this, targeted therapies have offered fresh possibilities for identifying and treating CRC, paving the way for the development of personalized medicine and extending the life expectancy and general well-being of CRC patients.
Collapse
Affiliation(s)
- Lei Yang
- Department of Clinical Laboratory, People's Hospital of Chongqing Liangjiang New Area, Chongqing 401121, China
| | - Nigora Atakhanova
- Head of the Department of Oncology, Tashkent Medical Academy, Tashkent 100109, Uzbekistan
| | | | | | - Thamer Hani
- Dentistry Department, Al-Turath University College, Baghdad, Iraq
| | - Ali A Fahdil
- Medical technical college, Al-Farahidi University, Iraq
| | | | - Ashima Juyal
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | | | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
16
|
Bissa M, Galli V, Schifanella L, Vaccari M, Rahman MA, Gorini G, Binello N, Sarkis S, Gutowska A, Silva de Castro I, Doster MN, Moles R, Ferrari G, Shen X, Tomaras GD, Montefiori DC, N’guessan KF, Paquin-Proulx D, Kozlowski PA, Venzon DJ, Choo-Wosoba H, Breed MW, Kramer J, Franchini G. In Vivo Treatment with Insulin-like Growth Factor 1 Reduces CCR5 Expression on Vaccine-Induced Activated CD4 + T-Cells. Vaccines (Basel) 2023; 11:1662. [PMID: 38005994 PMCID: PMC10675829 DOI: 10.3390/vaccines11111662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
At the heart of the DNA/ALVAC/gp120/alum vaccine's efficacy in the absence of neutralizing antibodies is a delicate balance of pro- and anti-inflammatory immune responses that effectively decreases the risk of SIVmac251 acquisition in macaques. Vaccine efficacy is linked to antibodies recognizing the V2 helical conformation, DC-10 tolerogenic dendritic cells eliciting the clearance of apoptotic cells via efferocytosis, and CCR5 downregulation on vaccine-induced gut homing CD4+ cells. RAS activation is also linked to vaccine efficacy, which prompted the testing of IGF-1, a potent inducer of RAS activation with vaccination. We found that IGF-1 changed the hierarchy of V1/V2 epitope recognition and decreased both ADCC specific for helical V2 and efferocytosis. Remarkably, IGF-1 also reduced the expression of CCR5 on vaccine-induced CD4+ gut-homing T-cells, compensating for its negative effect on ADCC and efferocytosis and resulting in equivalent vaccine efficacy (71% with IGF-1 and 69% without).
Collapse
Affiliation(s)
- Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Monica Vaccari
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
- Tulane National Primate Center & School of Medicine, Tulane University, Covington, LA 70118, USA
| | - Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Giacomo Gorini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Nicolò Binello
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Anna Gutowska
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Melvin N. Doster
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ramona Moles
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Guido Ferrari
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaoying Shen
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Georgia D. Tomaras
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - David C. Montefiori
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kombo F. N’guessan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Dominic Paquin-Proulx
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - David J. Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Hyoyoung Choo-Wosoba
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Matthew W. Breed
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD 21701, USA
| | - Joshua Kramer
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD 21701, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Ephraim R, Fraser S, Devereaux J, Stavely R, Feehan J, Eri R, Nurgali K, Apostolopoulos V. Differential Gene Expression of Checkpoint Markers and Cancer Markers in Mouse Models of Spontaneous Chronic Colitis. Cancers (Basel) 2023; 15:4793. [PMID: 37835487 PMCID: PMC10571700 DOI: 10.3390/cancers15194793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The presence of checkpoint markers in cancer cells aids in immune escape. The identification of checkpoint markers and early cancer markers is of utmost importance to gain clarity regarding the relationship between colitis and progressive inflammation leading to cancer. Herein, the gene expression levels of checkpoint makers, cancer-related pathways, and cancer genes in colon tissues of mouse models of chronic colitis (Winnie and Winnie-Prolapse mice) using next-generation sequencing are determined. Winnie mice are a result of a Muc2 missense mutation. The identification of such genes and their subsequent expression and role at the protein level would enable novel markers for the early diagnosis of cancer in IBD patients. The differentially expressed genes in the colonic transcriptome were analysed based on the Kyoto Encyclopedia of Genes and Genomes pathway. The expression of several oncogenes is associated with the severity of IBD, with Winnie-Prolapse mice expressing a large number of key genes associated with development of cancer. This research presents a number of new targets to evaluate for the development of biomarkers and therapeutics.
Collapse
Affiliation(s)
- Ramya Ephraim
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (R.E.); (S.F.); (J.D.); (J.F.); (K.N.)
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (R.E.); (S.F.); (J.D.); (J.F.); (K.N.)
| | - Jeannie Devereaux
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (R.E.); (S.F.); (J.D.); (J.F.); (K.N.)
| | - Rhian Stavely
- Pediatric Surgery Research Laboratories, Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (R.E.); (S.F.); (J.D.); (J.F.); (K.N.)
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Rajaraman Eri
- STEM/School of Science, RMIT University, Melbourne, VIC 3001, Australia;
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (R.E.); (S.F.); (J.D.); (J.F.); (K.N.)
- Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (R.E.); (S.F.); (J.D.); (J.F.); (K.N.)
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| |
Collapse
|
18
|
Mohseni N, Ghaniee Zarich M, Afshar S, Hosseini M. Identification of Novel Biomarkers for Response to Preoperative Chemoradiation in Locally Advanced Rectal Cancer with Genetic Algorithm-Based Gene Selection. J Gastrointest Cancer 2023; 54:937-950. [PMID: 36534304 DOI: 10.1007/s12029-022-00873-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The conventional treatment for patients with locally advanced colorectal tumors is preoperative chemo-radiotherapy (PCRT) preceding surgery. This treatment strategy has some long-term side effects, and some patients do not respond to it. Therefore, an evaluation of biomarkers that may help predict patients' response to PCRT is essential. METHODS We took advantage of genetic algorithm to search the space of possible combinations of features to choose subsets of genes that would yield convenient performance in differentiating PCRT responders from non-responders using a logistic regression model as our classifier. RESULTS We developed two gene signatures; first, to achieve the maximum prediction accuracy, the algorithm yielded 39 genes, and then, aiming to reduce the feature numbers as much as possible (while maintaining acceptable performance), a 5-gene signature was chosen. The performance of the two gene signatures was (accuracy = 0.97 and 0.81, sensitivity = 0.96 and 0.83, and specificity = 86 and 0.77) using a logistic regression classifier. Through analyzing bias and variance decomposition of the model error, we further investigated the involved genes by discovering and validating another 28-gene signature which possibly points towards two different sub-systems involved in the response of the patients to treatment. CONCLUSIONS Using genetic algorithm as our gene selection method, we have identified two groups of genes that can differentiate PCRT responders from non-responders in patients of the studied dataset with considerable performance. IMPACT After passing standard requirements, our gene signatures may be applicable as a robust and effective PCRT response prediction tool for colorectal cancer patients in clinical settings and may also help future studies aiming to further investigate involved pathways gain a clearer picture for the course of their research.
Collapse
Affiliation(s)
- Nima Mohseni
- Department of Biology, Faculty of Science, Lund University, Skåne, Sweden
| | | | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | | |
Collapse
|
19
|
Chang YH, Wu KC, Wang KH, Ding DC. Role of LRRN4 in promoting malignant behavior in a p53- and Rb-defective human fallopian tube epithelial cell line. Am J Cancer Res 2023; 13:3324-3341. [PMID: 37693155 PMCID: PMC10492127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023] Open
Abstract
This study explored the role of leucine-rich repeat neuronal 4 (LRRN4) in ovarian carcinogenesis using the p53- and Rb-defective human fallopian tube epithelial cell line FE25. We evaluated the expression of LRRN4 in FE25 cells with and without LRRN4 knockdown by short hairpin RNA (shRNA) and studied its effects on cell proliferation, cell cycle, migration, invasion, chemotherapeutic sensitivity, apoptosis, and xenograft formation. The results showed that FE25 shRNA-LRRN4 cells exhibited more aggressive malignant behaviors than FE25 cells, including faster proliferation and increased cell distribution in the G2/M phase, Akt pathway activation, cell migration, and cell invasion, as well as decreased sensitivity to chemotherapeutic drugs. FE25 shRNA-LRRN4 cells exhibited reduced levels of apoptosis and decreased expression of cleaved caspase 3, 7, 8, and 9, indicating reduced apoptotic activity. Additionally, FE25 shRNA-LRRN4 cells showed decreased LRRN4 and CK7 expression and increased WT1 expression, suggesting a potential role for LRRN4 in ovarian carcinogenesis. FE25 shRNA-LRRN4 generated a xenograft in mice with increased levels of WT1 and TP53 expression compared to their levels in cells. Overall, this study suggests that LRRN4 may play a role in ovarian carcinogenesis by promoting aggressive malignant behavior in FE25 cells through the activation of the Akt pathway. These findings provide insights into the potential molecular mechanisms underlying ovarian cancer and may have implications for the development of new therapeutic targets for this disease.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi UniversityHualien, Taiwan
| | - Kun-Chi Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi UniversityHualien, Taiwan
| | - Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi UniversityHualien, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi UniversityHualien, Taiwan
- Institute of Medical Sciences, College of Medicine, Tzu Chi UniversityHualien, Taiwan
| |
Collapse
|
20
|
Patra R, Dey AK, Mukherjee S. Identification of genes critical for inducing ulcerative colitis and exploring their tumorigenic potential in human colorectal carcinoma. PLoS One 2023; 18:e0289064. [PMID: 37535606 PMCID: PMC10399749 DOI: 10.1371/journal.pone.0289064] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease leading to continuous mucosal inflammation in the rectum extending proximally towards the colon. Chronic and/or recurrent UC is one of the critical predisposing mediators of the oncogenesis of human colorectal carcinoma (CRC). Perturbations of the differential expression of the UC-critical genes exert an intense impact on the neoplastic transformation of the affected tissue(s). Herein, a comprehensive exploration of the UC-critical genes from the transcriptomic profiles of UC patients was conducted to study the differential expression, functional enrichment, genomic alterations, signal transduction pathways, and immune infiltration level encountered by these genes concerning the oncogenesis of CRC. The study reveals that WFDC2, TTLL12, THRA, and EPHB3 play crucial roles as UC-CRC critical genes and are positively correlated with the molecular transformation of UC to CRC. Taken together, these genes can be used as potential biomarkers and therapeutic targets for combating UC-induced human CRC.
Collapse
Affiliation(s)
- Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Amit Kumar Dey
- Biomedical Research Centre, Translational Geroproteomics Unit, National Institute on Aging, National Institute of Health (NIH), Baltimore, MD, United States of America
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
21
|
Gravandi MM, Abdian S, Tahvilian M, Iranpanah A, Moradi SZ, Fakhri S, Echeverría J. Therapeutic targeting of Ras/Raf/MAPK pathway by natural products: A systematic and mechanistic approach for neurodegeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154821. [PMID: 37119761 DOI: 10.1016/j.phymed.2023.154821] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Multiple dysregulated pathways are behind the pathogenesis of neurodegenerative diseases (NDDs); however, the crucial targets are still unknown. Oxidative stress, apoptosis, autophagy, and inflammation are the most dominant pathways that strongly influence neurodegeneration. In this way, targeting the Ras/Raf/mitogen-activated protein kinases (MAPKs) pathway appears to be a developing strategy for combating NDDs like Parkinson's disease, Alzheimer's disease, stroke, aging, and other NDDs. Accordingly, plant secondary metabolites have shown promising potentials for the simultaneous modulation of the Ras/Raf/MAPKs pathway and play an essential role in NDDs. MAPKs include p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK 1/2), and c-Jun N-terminal kinase (JNK), which are important molecular players in neurodegeneration. Ras/Raf, which is located the upstream of MAPK pathway influences the initiation and progression of neurodegeneration and is regulated by natural products. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of plant- and marine-derived secondary metabolites against several NDDs through the modulation of the Ras/Raf/MAPK signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of natural products on the Ras/Raf/MAPK signaling pathway in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including PubMed, Scopus, and Web of Sciences. Associated reference lists were also searched for the literature review. RESULTS From a total of 1495 results, finally 107 articles were included in the present study. The results show that several natural compounds such as alkaloid, phenolic, terpenoids, and nanoformulation were shown to have modulatory effects on the Ras/Raf/MAPKs pathway. CONCLUSION Natural products are promising multi-targeted agents with on NDDs through Ras/Raf/MAPKs pathway. Nevertheless, additional and complementary studies are necessary to check its efficacy and potential side effects.
Collapse
Affiliation(s)
| | - Sadaf Abdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maedeh Tahvilian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile.
| |
Collapse
|
22
|
Chang YT, Chen CC, Chang SC, Chang YY, Lin BW, Chen HH, Hsieh YY, Hsu HC, Hsieh MC, Kuan FC, Wu CC, Lu WC, Su YL, Liang YH, Chen JB, Huang SY, Huang CW, Wang JY. Efficacy and Safety of a Parenteral Nutrition Program for Patients with RAS Wild-Type Metastatic Colorectal Cancer Administered First-Line Cetuximab Plus Chemotherapy: A Propensity Score Matching Study. Nutrients 2023; 15:2971. [PMID: 37447297 PMCID: PMC10346574 DOI: 10.3390/nu15132971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Malnutrition is a common problem in patients with metastatic colorectal cancer (mCRC) receiving targeted therapy plus chemotherapy, resulting in severe toxicity and decreased survival rates. This retrospective study employing propensity score matching (PSM) examined the efficacy and safety of a supplemental home parenteral nutrition (HPN) program for patients with RAS wild-type mCRC receiving cetuximab plus chemotherapy. This retrospective nationwide registry study included data from 14 medical centers/hospitals across Taiwan, and the data period ranged from November 2016 to December 2020. Patients with RAS wild-type mCRC receiving cetuximab plus chemotherapy as their first-line therapy were included and divided into HPN and non-HPN program groups. HPN was initiated based on patient-specific factors, such as baseline nutritional status, treatment-related toxicities, and comorbidities. Clinical outcomes were evaluated using response to therapy, duration of response (DoR), progression-free survival (PFS), and overall survival (OS). This study recruited 758 patients, of whom 110 and 648 were included in the HPN and non-HPN program groups, respectively. After 1:3 PSM, the data of 109 and 327 patients from the HPN and non-HPN program groups were analyzed, respectively. The HPN program group had a higher metastasectomy rate (33.9% vs. 20.2%, p = 0.005), and longer duration of treatment and DoR than the non-HPN program group (13.6 vs. 10.3 and 13.6 vs. 9.9 months, p = 0.001 and < 0.001, respectively). The HPN program group tended to have a longer median PFS (18.2 vs. 13.9 months, p = 0.102). Moreover, we noted a significant improvement in the median OS in the same group (53.4 vs. 34.6 months, p = 0.002). Supplemental HPN programs may be recommended for select patients with mCRC receiving targeted therapy plus chemotherapy to improve oncological outcomes.
Collapse
Affiliation(s)
- Yu-Tang Chang
- Division of Pediatric Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chou-Chen Chen
- Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Shih-Ching Chang
- Division of Colon and Rectal Surgery, Department of Surgery, Veterans General Hospital, Taipei 11217, Taiwan;
| | - Yu-Yao Chang
- Department of Colorectal Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan; (Y.-Y.C.); (S.-Y.H.)
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Bo-Wen Lin
- Department of Surgery, National Cheng Kung University Hospital, Tainan 70457, Taiwan;
| | - Hong-Hwa Chen
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Yao-Yu Hsieh
- Division of Hematology and Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hung-Chih Hsu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Meng-Che Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 84001, Taiwan
| | - Feng-Che Kuan
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
| | - Chih-Chien Wu
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 30010, Taiwan
| | - Wei-Chen Lu
- Department of Oncology, National Taiwan University Hospital Yunlin Branch, Yunlin 64041, Taiwan;
| | - Yu-Li Su
- Division of Hematology and Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Kaohsiung 33305, Taiwan;
| | - Yi-Hsin Liang
- Department of Oncology, National Taiwan University Hospital, Taipei 10002, Taiwan;
| | - Joe-Bin Chen
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
| | - Shuan-Yuan Huang
- Department of Colorectal Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan; (Y.-Y.C.); (S.-Y.H.)
| | - Ching-Wen Huang
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Jaw-Yuan Wang
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Pingtung Hospital, Ministry of Health and Welfare, Pingtung 90054, Taiwan
| |
Collapse
|
23
|
Zutshi N, Mohapatra BC, Mondal P, An W, Goetz BT, Wang S, Li S, Storck MD, Mercer DF, Black AR, Thayer SP, Black JD, Lin C, Band V, Band H. Cbl and Cbl-b Ubiquitin Ligases are Essential for Intestinal Epithelial Stem Cell Maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541154. [PMID: 37292716 PMCID: PMC10245689 DOI: 10.1101/2023.05.17.541154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Among the signaling pathways that control the stem cell self-renewal and maintenance vs. acquisition of differentiated cell fates, those mediated by receptor tyrosine kinase (RTK) activation are well established as key players. CBL family ubiquitin ligases are negative regulators of RTKs but their physiological roles in regulating stem cell behaviors are unclear. While hematopoietic Cbl/Cblb knockout (KO) leads to a myeloproliferative disease due to expansion and reduced quiescence of hematopoietic stem cells, mammary epithelial KO led to stunted mammary gland development due to mammary stem cell depletion. Here, we examined the impact of inducible Cbl/Cblb double-KO (iDKO) selectively in the Lgr5-defined intestinal stem cell (ISC) compartment. Cbl/Cblb iDKO led to rapid loss of the Lgr5 Hi ISC pool with a concomitant transient expansion of the Lgr5 Lo transit amplifying population. LacZ reporter-based lineage tracing showed increased ISC commitment to differentiation, with propensity towards enterocyte and goblet cell fate at the expense of Paneth cells. Functionally, Cbl/Cblb iDKO impaired the recovery from radiation-induced intestinal epithelial injury. In vitro , Cbl/Cblb iDKO led to inability to maintain intestinal organoids. Single cell RNAseq analysis of organoids revealed Akt-mTOR pathway hyperactivation in iDKO ISCs and progeny cells, and pharmacological inhibition of the Akt-mTOR axis rescued the organoid maintenance and propagation defects. Our results demonstrate a requirement for Cbl/Cblb in the maintenance of ISCs by fine tuning the Akt-mTOR axis to balance stem cell maintenance vs. commitment to differentiation.
Collapse
|
24
|
Kumar R, Mahmoud MM, Tashkandi HM, Haque S, Harakeh S, Ponnusamy K, Haider S. Combinatorial Network of Transcriptional and miRNA Regulation in Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24065356. [PMID: 36982429 PMCID: PMC10048903 DOI: 10.3390/ijms24065356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Colorectal cancer is one of the leading causes of cancer-associated mortality across the worldwide. One of the major challenges in colorectal cancer is the understanding of the regulatory mechanisms of biological molecules. In this study, we aimed to identify novel key molecules in colorectal cancer by using a computational systems biology approach. We constructed the colorectal protein–protein interaction network which followed hierarchical scale-free nature. We identified TP53, CTNBB1, AKT1, EGFR, HRAS, JUN, RHOA, and EGF as bottleneck-hubs. The HRAS showed the largest interacting strength with functional subnetworks, having strong correlation with protein phosphorylation, kinase activity, signal transduction, and apoptotic processes. Furthermore, we constructed the bottleneck-hubs’ regulatory networks with their transcriptional (transcription factor) and post-transcriptional (miRNAs) regulators, which exhibited the important key regulators. We observed miR-429, miR-622, and miR-133b and transcription factors (EZH2, HDAC1, HDAC4, AR, NFKB1, and KLF4) regulates four bottleneck-hubs (TP53, JUN, AKT1 and EGFR) at the motif level. In future, biochemical investigation of the observed key regulators could provide further understanding about their role in the pathophysiology of colorectal cancer.
Collapse
Affiliation(s)
- Rupesh Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida 201309, India;
| | - Maged Mostafa Mahmoud
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Molecular Genetics and Enzymology Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Hanaa M. Tashkandi
- Department of General Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 13-5053, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Steve Harakeh
- King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kalaiarasan Ponnusamy
- Biotechnology Division, National Centre for Disease Control, New Delhi 110054, India
- Correspondence: (K.P.); (S.H.)
| | - Shazia Haider
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida 201309, India;
- Correspondence: (K.P.); (S.H.)
| |
Collapse
|
25
|
Ahmadi Y, Fard JK, Ghafoor D, Eid AH, Sahebkar A. Paradoxical effects of statins on endothelial and cancer cells: the impact of concentrations. Cancer Cell Int 2023; 23:43. [PMID: 36899388 PMCID: PMC9999585 DOI: 10.1186/s12935-023-02890-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
In addition to their lipid-lowering functions, statins elicit additional pleiotropic effects on apoptosis, angiogenesis, inflammation, senescence, and oxidative stress. Many of these effects have been reported in cancerous and noncancerous cells like endothelial cells (ECs), endothelial progenitor cells (EPCs) and human umbilical vein cells (HUVCs). Not surprisingly, statins' effects appear to vary largely depending on the cell context, especially as pertains to modulation of cell cycle, senescence, and apoptotic processes. Perhaps the most critical reason for this discordance is the bias in selecting the applied doses in various cells. While lower (nanomolar) concentrations of statins impose anti-senescence, and antiapoptotic effects, higher concentrations (micromolar) appear to precipitate opposite effects. Indeed, most studies performed in cancer cells utilized high concentrations, where statin-induced cytotoxic and cytostatic effects were noted. Some studies report that even at low concentrations, statins induce senescence or cytostatic impacts but not cytotoxic effects. However, the literature appears to be relatively consistent that in cancer cells, statins, in both low or higher concentrations, induce apoptosis or cell cycle arrest, anti-proliferative effects, and cause senescence. However, statins' effects on ECs depend on the concentrations; at micromolar concentrations statins cause cell senescence and apoptosis, while at nonomolar concentrations statins act reversely.
Collapse
Affiliation(s)
- Yasin Ahmadi
- College of Science, Department of Medical Laboratory Sciences, Komar University of Science and Technology, 46001, Sulaymania, Iraq.
| | - Javad Khalili Fard
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dlzar Ghafoor
- College of Science, Department of Medical Laboratory Sciences, Komar University of Science and Technology, 46001, Sulaymania, Iraq
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Abu-Shahba N, Hegazy E, Khan FM, Elhefnawi M. In Silico Analysis of MicroRNA Expression Data in Liver Cancer. Cancer Inform 2023; 22:11769351231171743. [PMID: 37200943 PMCID: PMC10185868 DOI: 10.1177/11769351231171743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/04/2023] [Indexed: 05/20/2023] Open
Abstract
Abnormal miRNA expression has been evidenced to be directly linked to HCC initiation and progression. This study was designed to detect possible prognostic, diagnostic, and/or therapeutic miRNAs for HCC using computational analysis of miRNAs expression. Methods: miRNA expression datasets meta-analysis was performed using the YM500v2 server to compare miRNA expression in normal and cancerous liver tissues. The most significant differentially regulated miRNAs in our study undergone target gene analysis using the mirWalk tool to obtain their validated and predicted targets. The combinatorial target prediction tool; miRror Suite was used to obtain the commonly regulated target genes. Functional enrichment analysis was performed on the resulting targets using the DAVID tool. A network was constructed based on interactions among microRNAs, their targets, and transcription factors. Hub nodes and gatekeepers were identified using network topological analysis. Further, we performed patient data survival analysis based on low and high expression of identified hubs and gatekeeper nodes, patients were stratified into low and high survival probability groups. Results: Using the meta-analysis option in the YM500v2 server, 34 miRNAs were found to be significantly differentially regulated (P-value ⩽ .05); 5 miRNAs were down-regulated while 29 were up-regulated. The validated and predicted target genes for each miRNA, as well as the combinatorially predicted targets, were obtained. DAVID enrichment analysis resulted in several important cellular functions that are directly related to the main cancer hallmarks. Among these functions are focal adhesion, cell cycle, PI3K-Akt signaling, insulin signaling, Ras and MAPK signaling pathways. Several hub genes and gatekeepers were found that could serve as potential drug targets for hepatocellular carcinoma. POU2F1 and PPARA showed a significant difference between low and high survival probabilities (P-value ⩽ .05) in HCC patients. Our study sheds light on important biomarker miRNAs for hepatocellular carcinoma along with their target genes and their regulated functions.
Collapse
Affiliation(s)
- Nourhan Abu-Shahba
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
- Stem Cell Research Group, Medical Research Center of Excellence, National Research Centre, Cairo, Egypt
| | - Elsayed Hegazy
- School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Faiz M. Khan
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Mahmoud Elhefnawi
- Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Centre, Cairo, Egypt
- Mahmoud Elhefnawi, Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Centre, 33, elbohouth street, Cairo 11211, Egypt.
| |
Collapse
|
27
|
Jacobsen IC, Spanggaard I, Højgaard M, Belcaid L, Qvortrup C, Yde CW, Schmidt AY, Nielsen FC, Willemoe GL, Dam MS, Lassen U, Staal Rohrberg K. Extensive genomic analysis in patients with KRAS-mutated solid tumors shows high frequencies of concurrent alterations and potential targets but has limited clinical impact. Acta Oncol 2022; 61:1499-1506. [PMID: 36529989 DOI: 10.1080/0284186x.2022.2156809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND This study aimed to investigate the distribution and frequency of concurrent alterations in different cancers across KRAS subtypes and in different KRAS subtypes across cancers, and to identify potentially actionable targets and patients who received targeted treatment matched to their genomic profile (GP). MATERIALS AND METHODS In this descriptive and single-center study, we included 188 patients with solid tumors harboring KRAS mutations in codon 12, 13, 61, 117, or 146, referred to the Phase 1 Unit, Rigshospitalet, Copenhagen, Denmark from mid-2016 to 2020. Genomic co-alterations were detected with whole-exome sequencing, RNA sequencing, SNP array, and mRNA expression array on fresh biopsies. The study is part of the Copenhagen Prospective Personalized Oncology study (NCT02290522). RESULTS The majority of patients had colorectal cancer (60.1%), non-small cell lung cancer (11.2%), or pancreatic cancer (10.6%). Most tumors were KRAS-mutated in codon 12 or 13 (93.7%) including G12D (27.1%), G12V (26.6%), G12C (11.7%), and G13D (11.2%). A total of 175 different co-alterations were found, most frequently pathogenic APC and TP53 mutations (55.9% and 46.4%, respectively) and high expression of CEACAM5 (73.4%). Different cancers and KRAS subtypes showed different patterns of co-alterations, and 157 tumors (83.5%) had potentially actionable targets with varying evidence of targetability (assessed using ESMO Scale for Clinical Actionability of molecular Targets). Of the 188 patients included in the study, 15 (7.4%) received treatment matched to their GP (e.g., immunotherapy and synthetic lethality drugs), of whom one had objective partial response according to Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1. CONCLUSION Performing extensive genomic analysis in patients with known KRAS-mutated solid tumors may contribute with information to the genomic landscape of cancers and identify targets for immunotherapy or synthetic lethality drugs, but currently appears to have overall limited clinical impact, as few patients received targeted therapy matched to their GP.
Collapse
Affiliation(s)
- Ida Christine Jacobsen
- Phase 1 Unit, Department of Oncology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Iben Spanggaard
- Phase 1 Unit, Department of Oncology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Martin Højgaard
- Phase 1 Unit, Department of Oncology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Laïla Belcaid
- Phase 1 Unit, Department of Oncology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Camilla Qvortrup
- Phase 1 Unit, Department of Oncology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Christina Westmose Yde
- Center for Genomic Medicine, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Ane Yde Schmidt
- Center for Genomic Medicine, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Finn Cilius Nielsen
- Center for Genomic Medicine, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Gro Linno Willemoe
- Department of Pathology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Mikkel Seidelin Dam
- Department of Diagnostic Radiology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Ulrik Lassen
- Phase 1 Unit, Department of Oncology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Kristoffer Staal Rohrberg
- Phase 1 Unit, Department of Oncology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Mohammadinejad A, Mohajeri T, Aleyaghoob G, Heidarian F, Kazemi Oskuee R. Ellagic acid as a potent anticancer drug: A comprehensive review on in vitro, in vivo, in silico, and drug delivery studies. Biotechnol Appl Biochem 2022; 69:2323-2356. [PMID: 34846078 DOI: 10.1002/bab.2288] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022]
Abstract
Ellagic acid as a polyphenol or micronutrient, which can be naturally found in different vegetables and fruits, has gained considerable attention for cancer therapy due to considerable biological activities and different molecular targets. Ellagic acid with low hydrolysis and lipophilic and hydrophobic nature is not able to be absorbed in circulation. So, accumulation inside the intestinal epithelial cells or metabolization to other urolithins leads to the limitation of direct evaluation of EA effects in clinical studies. This review focuses on the studies which supported anticancer activity of pure or fruit-extracted ellagic acid through in vitro, in vivo, in silico, and drug delivery methods. The results demonstrate ellagic acid modulates the expression of various genes incorporated in the cancer-related process of apoptosis and proliferation, inflammation related-gens, and oxidative-related genes. Moreover, the ellagic acid formulation in carriers composed of lipid, silica, chitosan, iron- bovine serum albumin nanoparticles obviously enhanced the stable release and confident delivery with minimum loss. Also, in silico analysis proved that ellagic acid was able to be placed at a position of cocrystal ADP, in the deep cavity of the protein target, and tightly interact with binding pocket residues leading to suppression of substrate availability of protein and its activation inhibition.
Collapse
Affiliation(s)
- Arash Mohammadinejad
- Targeted Drug Delivery Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Taraneh Mohajeri
- Department of Obstetrics & Gynecology, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Ghazaleh Aleyaghoob
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Heidarian
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Burska AN, Ilyassova B, Dildabek A, Khamijan M, Begimbetova D, Molnár F, Sarbassov DD. Enhancing an Oxidative "Trojan Horse" Action of Vitamin C with Arsenic Trioxide for Effective Suppression of KRAS-Mutant Cancers: A Promising Path at the Bedside. Cells 2022; 11:3454. [PMID: 36359850 PMCID: PMC9657932 DOI: 10.3390/cells11213454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The turn-on mutations of the KRAS gene, coding a small GTPase coupling growth factor signaling, are contributing to nearly 25% of all human cancers, leading to highly malignant tumors with poor outcomes. Targeting of oncogenic KRAS remains a most challenging task in oncology. Recently, the specific G12C mutant KRAS inhibitors have been developed but with a limited clinical outcome because they acquire drug resistance. Alternatively, exploiting a metabolic breach of KRAS-mutant cancer cells related to a glucose-dependent sensitivity to oxidative stress is becoming a promising indirect cancer targeting approach. Here, we discuss the use of a vitamin C (VC) acting in high dose as an oxidative "Trojan horse" agent for KRAS-mutant cancer cells that can be potentiated with another oxidizing drug arsenic trioxide (ATO) to obtain a potent and selective cytotoxic impact. Moreover, we outline the advantages of VC's non-natural enantiomer, D-VC, because of its distinctive pharmacokinetics and lower toxicity. Thus, the D-VC and ATO combination shows a promising path to treat KRAS-mutant cancers in clinical settings.
Collapse
Affiliation(s)
- Agata N. Burska
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | | | - Aruzhan Dildabek
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Medina Khamijan
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dinara Begimbetova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ferdinand Molnár
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dos D. Sarbassov
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
30
|
Lee HX, Li WM, Ang CW, Reimer K, Liu V, Patrick BO, Yeong KY, Lee CH. Regio- and stereoselective synthesis of dispiropyrrolizidines through 1,3-dipolar cycloaddition reaction: Inhibition of KRAS expression. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Huang Q, Zhou Y, Wang B, Zhao Y, Zhang F, Ding B. Mutational landscape of pan-cancer patients with PIK3CA alterations in Chinese population. BMC Med Genomics 2022; 15:146. [PMID: 35778737 PMCID: PMC9248192 DOI: 10.1186/s12920-022-01297-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To analyze the mutational landscape of pan-cancer patients with PIK3CA mutations in Chinese population in real-world. METHODS We analyzed PIK3CA mutation status in sequencing data of cell-free DNA from plasma and genomic DNA from matched peripheral blood lymphocyte in 11,904 Chinese pan-cancer patients, and compared them with genomic data from the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Besides, concomitant genomic aberrations in PIK3CA-mutated samples were detected to investigate cancer driver genes, as well as their enriched pathways. Meanwhile, the mutations of Alpelisib targeting genes were screened and their co-alterations were analyzed according to OncoKB definition to identify the potential actionable ones. RESULTS The proportion of patients with PIK3CA mutations varied among 21 types of cancer, with the top being BRCA, CESC, SCL, and UCEC. The most common PIK3CA mutation hotspots were found to be E545K, E542K and H1047R. The Chinese cohort had significantly lower frequencies of PIK3CA mutations in breast and stomach cancers, but markedly higher PIK3CA mutation frequencies in large intestine, kidney and lung cancers than the COSMIC cohort. Compared with COSMIC cohort, the mutation frequencies of Alpelisib-targeted genes in breast cancer were significantly reduced in the Chinese cohort. All PIK3CA-mutated patients had concomitant genomic aberrations. While the most common concomitant genomic alterations occurred in TP53, EGFR and FAT1, these co-mutated genes were mainly enriched in RTK/RAS pathway, PI3K pathway and P53 pathway. Moreover, 83.6% of patients carrying mutations in Alpelisib-targeted genes had at least one actionable concomitant alteration. Level 1 actionable alteration was identified in LUAD, BRCA, COAD, LUSC, READ, and STAD. CONCLUSION Compared with the Western cohort, the mutation frequency of PIK3CA in breast cancer was reduced in the Chinese cohort. RTK/RAS pathway, PI3K pathway and P53 pathway were identified as the most common co-mutation pathways, suggesting that they may potentially serve as targets for possible Alpelisib-based combination therapy.
Collapse
Affiliation(s)
- Qingfeng Huang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China.,Tianjin' S Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.,Key Laboratory of Molecular Cancer Epidemiology, Tianjin, 300060, China
| | - Yang Zhou
- Genecast (Beijing) Biotechnology Co., Ltd, Beijing, 100000, China
| | - Bowen Wang
- Cheeloo College of Medicine, Shandong University, Jinan, 250000, China
| | - Yi Zhao
- Genecast (Beijing) Biotechnology Co., Ltd, Beijing, 100000, China
| | - Fengxia Zhang
- Genecast (Beijing) Biotechnology Co., Ltd, Beijing, 100000, China
| | - Bowen Ding
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China. .,Tianjin' S Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China. .,Key Laboratory of Molecular Cancer Epidemiology, Tianjin, 300060, China.
| |
Collapse
|
32
|
Bell PD, Pai RK. Immune Response in Colorectal Carcinoma: A Review of Its Significance as a Predictive and Prognostic Biomarker. Histopathology 2022; 81:696-714. [PMID: 35758208 DOI: 10.1111/his.14713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
Colorectal carcinoma is a leading cause of cancer-related death worldwide. There is significant prognostic heterogeneity in stage II and III tumours, necessitating the development of new biomarkers to better identify patients at risk of disease progression. Recently, the tumour immune environment, particularly the type and quantity of T lymphocytes, has been shown to be a useful biomarker in predicting prognosis for patients with colorectal carcinoma. In this review, the significance of the immune response in colorectal carcinoma, including its influence on prognosis and response to therapy, will be detailed.
Collapse
Affiliation(s)
- Phoenix D Bell
- Department of Pathology, University of Pittsburgh Medical Centre, Pittsburgh, PA, 15213, USA
| | - Reetesh K Pai
- Department of Pathology, University of Pittsburgh Medical Centre, Pittsburgh, PA, 15213, USA
| |
Collapse
|
33
|
Elrebehy MA, Al-Saeed S, Gamal S, El-Sayed A, Ahmed AA, Waheed O, Ismail A, El-Mahdy HA, Sallam AAM, Doghish AS. miRNAs as cornerstones in colorectal cancer pathogenesis and resistance to therapy: A spotlight on signaling pathways interplay - A review. Int J Biol Macromol 2022; 214:583-600. [PMID: 35768045 DOI: 10.1016/j.ijbiomac.2022.06.134] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 06/19/2022] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the world's third most prevalent cancer and the main cause of cancer-related mortality. A lot of work has been put into improving CRC patients' clinical care, including the development of more effective methods and wide biomarkers variety for prognostic, and diagnostic purposes. MicroRNAs (miRNAs) regulate a variety of cellular processes and play a significant role in the CRC progression and spread via controlling their target gene expression by translation inhibition or mRNA degradation. Consequently, dysregulation and disruption in their function, miRNAs are linked to CRC malignant pathogenesis by controlling several cellular processes involved in the CRC. These cellular processes include increased proliferative and invasive capacity, cell cycle aberration, evasion of apoptosis, enhanced EMT, promotion of angiogenesis and metastasis, and decreased sensitivity to major treatments. The miRNAs control cellular processes in CRC via regulation of pathways such as Wnt/β-catenin signaling, PTEN/AKT/mTOR axis, KRAS, TGFb signaling, VEGFR, EGFR, and P53. Hence, the goal of this review was to review miRNA biogenesis and present an updated summary of oncogenic and tumor suppressor (TS) miRNAs and their potential implication in CRC pathogenesis and responses to chemotherapy and radiotherapy. We also summarise the biological importance and clinical applications of miRNAs in the CRC.
Collapse
Affiliation(s)
- Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sarah Al-Saeed
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sara Gamal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Asmaa El-Sayed
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Alshaimaa A Ahmed
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Omnia Waheed
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry Department, Faculty of Pharmacy, Ain-Shams University, Abassia, Cairo 11566, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
34
|
Díaz E, Febres A, Giammarresi M, Silva A, Vanegas O, Gomes C, Ponte-Sucre A. G Protein-Coupled Receptors as Potential Intercellular Communication Mediators in Trypanosomatidae. Front Cell Infect Microbiol 2022; 12:812848. [PMID: 35651757 PMCID: PMC9149261 DOI: 10.3389/fcimb.2022.812848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Detection and transduction of environmental signals, constitute a prerequisite for successful parasite invasion; i.e., Leishmania transmission, survival, pathogenesis and disease manifestation and dissemination, with diverse molecules functioning as inter-cellular signaling ligands. Receptors [i.e., G protein-coupled receptors (GPCRs)] and their associated transduction mechanisms, well conserved through evolution, specialize in this function. However, canonical GPCR-related signal transduction systems have not been described in Leishmania, although orthologs, with reduced domains and function, have been identified in Trypanosomatidae. These inter-cellular communication means seem to be essential for multicellular and unicellular organism’s survival. GPCRs are flexible in their molecular architecture and may interact with the so-called receptor activity-modifying proteins (RAMPs), which modulate their function, changing GPCRs pharmacology, acting as chaperones and regulating signaling and/or trafficking in a receptor-dependent manner. In the skin, vasoactive- and neuro- peptides released in response to the noxious stimuli represented by the insect bite may trigger parasite physiological responses, for example, chemotaxis. For instance, in Leishmania (V.) braziliensis, sensory [Substance P, SP, chemoattractant] and autonomic [Vasoactive Intestinal Peptide, VIP, and Neuropeptide Y, NPY, chemorepellent] neuropeptides at physiological levels stimulate in vitro effects on parasite taxis. VIP and NPY chemotactic effects are impaired by their corresponding receptor antagonists, suggesting that the stimulated responses might be mediated by putative GPCRs (with essential conserved receptor domains); the effect of SP is blocked by [(D-Pro 2, D-Trp7,9]-Substance P (10-6 M)] suggesting that it might be mediated by neurokinin-1 transmembrane receptors. Additionally, vasoactive molecules like Calcitonin Gene-Related Peptide [CGRP] and Adrenomedullin [AM], exert a chemorepellent effect and increase the expression of a 24 kDa band recognized in western blot analysis by (human-)-RAMP-2 antibodies. In-silico search oriented towards GPCRs-like receptors and signaling cascades detected a RAMP-2-aligned sequence corresponding to Leishmania folylpolyglutamate synthase and a RAMP-3 aligned protein, a hypothetical Leishmania protein with yet unknown function, suggesting that in Leishmania, CGRP and AM activities may be modulated by RAMP- (-2) and (-3) homologs. The possible presence of proteins and molecules potentially involved in GPCRs cascades, i.e., RAMPs, signpost conservation of ancient signaling systems associated with responses, fundamental for cell survival, (i.e., taxis and migration) and may constitute an open field for description of pharmacophores against Leishmania parasites.
Collapse
Affiliation(s)
- Emilia Díaz
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Anthony Febres
- Section of Infectious Diseases, Baylor College of Medicine, TX, United States
| | - Michelle Giammarresi
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Adrian Silva
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Oriana Vanegas
- Pediatric Gastroenterology, University of Iowa, Iowa City, IA, United States
| | - Carlos Gomes
- Royal Berkshire NHS, Foundation Trust, Light House Lab, Bracknell, United Kingdom
| | - Alicia Ponte-Sucre
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
- Medical Mission Institute, Würzburg, Germany
- *Correspondence: Alicia Ponte-Sucre,
| |
Collapse
|
35
|
Rezazadeh A, Soleimanjahi H, Soudi S, Habibian A. Comparison of the Effect of Adipose Mesenchymal Stem Cells-Derived Secretome with and without Reovirus in CT26 Cells. ARCHIVES OF RAZI INSTITUTE 2022; 77:615-622. [PMID: 36284984 PMCID: PMC9548274 DOI: 10.22092/ari.2021.353845.1615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/23/2021] [Indexed: 01/24/2023]
Abstract
Colorectal cancer is the fourth leading cause of cancer-related deaths that has significantly increased over the past three decades. New therapeutic approaches, such as oncolytic viruses, have become very imperative recently to destroy cancer cells. The use of mesenchymal stem cells (MSCs) secretome that is produced in response to variant conditions involves different paracrine molecules secretion that has therapeutic potential in several chronic diseases. Mesenchymal stem cells and their derivatives are employed as regenerative medicine; nevertheless, there is ambiguity in the function of these cells in the control of malignancy. This study aimed to examine the apoptotic effect of secretomes derived from MSCs affected by encompassing oncolytic reoviruses. Mesenchymal stem cells were cultured after separation from abdominal adipose tissue of BALB/c mice. After three passages, the cells were infected by reovirus at the multiplicity of infection of 1 plaque-forming unit per cell. Uninfected and infected secretomes with reovirus were collected separately. The colorectal cancer CT26 cells were confronted with uninfected secretome, infected secretions, reovirus as a positive control, and Dulbecco's Modified Eagle Medium/High Glucose as negative control separately. Finally, apoptosis and necrosis were evaluated by flow cytometry. The infected secretome with reovirus was capable to induce apoptosis more than the uninfected secretome in CT26. However, the supernatant of reovirus infected cells was more capable to induce cell death, in comparison to the infected secretome. Infected MSCs with oncolytic reovirus produced a type of condition media that enhanced apoptosis induction and could have a therapeutic effect on cancer cells. Nonetheless, tumoral cells confronted with the oncolytic reovirus showed more capability in inducing apoptosis in CT26 cells. As a result, the use of oncolytic virus and infected secretome are more effective than uninfected secretome in inducing apoptosis.
Collapse
Affiliation(s)
- A Rezazadeh
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - H Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - S Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - A Habibian
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
36
|
Makutani Y, Sakai K, Yamada M, Wada T, Chikugo T, Satou T, Iwasa Y, Yamamoto H, de Velasco MA, Nishio K, Kawamura J. Performance of Idylla ™ RAS-BRAF mutation test for formalin-fixed paraffin-embedded tissues of colorectal cancer. Int J Clin Oncol 2022; 27:1180-1187. [PMID: 35474548 PMCID: PMC9209352 DOI: 10.1007/s10147-022-02167-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/03/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The Biocartis Idylla™ platform is a fully automated, real-time PCR-based diagnostic system. The Idylla™ KRAS and NRAS-BRAF Mutation Tests have been developed for the qualitative detection of mutations in KRAS, NRAS and BRAF genes, facilitating the genomic profiling of patients with colorectal cancer. The aim of the present study was to evaluate clinical performances of these tests in Japan. METHODS The RAS and BRAF mutation statuses of 253 formalin-fixed paraffin-embedded (FFPE) colorectal cancer tissues were analyzed using the Investigational Use Only Idylla™ KRAS Mutation Test and the Idylla™ NRAS-BRAF Mutation Test and an in vitro diagnostics (IVD) kit (MEBGEN RASKET™-B kit). RESULTS The success rate for obtaining a valid mutational data without retest of the Idylla tests was 97.6% (247/253): 111 KRAS mutations (43.8%), 9 NRAS mutations (3.6%), and 36 BRAF V600E mutations (14.2%) were detected using the Idylla tests. Compared with the MEBGEN RASKET-B results, the positive concordance rate was 97.4%, the negative concordance rate was 95.7%, and the overall concordance rate was 95.3% (κ = 0.919, 95% CI 0.871-0.967). The average turnaround time to Idylla™ KRAS and NRAS-BRAF Mutation Test was 5.6 working days (range: 3-11 days). CONCLUSION This result demonstrates a high concordance between the Idylla™ KRAS and NRAS-BRAF Mutation Tests and an existing IVD kit. In this manner, the Idylla™ mutation tests were validated for the detection of clinically significant KRAS, NRAS, and BRAF mutations in FFPE samples from colorectal cancer patients.
Collapse
Affiliation(s)
- Yusuke Makutani
- Department of Surgery, Faculty of Medicine, Kindai University, Osaka-sayama, Osaka, 589-8511, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Faculty of Medicine, Kindai University, Ohnohigashi 377-2, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Masahiro Yamada
- Department of Surgery, Shiga General Hospital, Moriyama, Shiga, 524-8524, Japan
| | - Toshiaki Wada
- Department of Surgery, Faculty of Medicine, Kindai University, Osaka-sayama, Osaka, 589-8511, Japan
| | - Takaaki Chikugo
- Department of Diagnostic Pathology, Kindai University Hospital, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Takao Satou
- Department of Diagnostic Pathology, Kindai University Hospital, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Yoko Iwasa
- Department of Diagnostic Pathology, Shiga General Hospital, Moriyama, Shiga, 524-8524, Japan
| | - Hidekazu Yamamoto
- Department of Surgery, Shiga General Hospital, Moriyama, Shiga, 524-8524, Japan
- Department of Diagnostic Pathology, Shiga General Hospital, Moriyama, Shiga, 524-8524, Japan
| | - Marco A de Velasco
- Department of Genome Biology, Faculty of Medicine, Kindai University, Ohnohigashi 377-2, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Faculty of Medicine, Kindai University, Ohnohigashi 377-2, Osaka-Sayama, Osaka, 589-8511, Japan.
| | - Junichiro Kawamura
- Department of Surgery, Faculty of Medicine, Kindai University, Osaka-sayama, Osaka, 589-8511, Japan
| |
Collapse
|
37
|
Xu C, Chen Y, Long F, Ye J, Li X, Huang Q, Yao D, Wang X, Zhao J, Meng W, Mo X, Lu R, Fan C, Zhang T. Prognostic value and biological function of LRRN4 in colorectal cancer. Cancer Cell Int 2022; 22:158. [PMID: 35440048 PMCID: PMC9020117 DOI: 10.1186/s12935-022-02579-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/08/2022] [Indexed: 02/08/2023] Open
Abstract
Background Several nervous and nerve-related biomarkers have been detected in colorectal cancer (CRC) and can contribute to the progression of CRC. However, the role of leucine-rich repeat neuronal 4 (LRRN4), a recently identified neurogenic marker, in CRC remains unclear. Methods We examined the expression and clinical outcomes of LRRN4 in CRC from TCGA-COREAD mRNA-sequencing datasets and immunohistochemistry in a Chinese cohort. Furthermore, colony formation, flow cytometry, wound healing assays and mouse xenograft models were used to investigate the biological significance of LRRN4 in CRC cell lines with LRRN4 knockdown or overexpression in vitro and in vivo. In addition, weighted coexpression network analysis, DAVID and western blot analysis were used to explore the potential molecular mechanism. Results We provide the first evidence that LRRN4 expression, at both the mRNA and protein levels, was remarkably high in CRC compared to controls and positively correlated with the clinical outcome of CRC patients. Specifically, LRRN4 was an independent prognostic factor for progression-free survival and overall survival in CRC patients. Further functional experiments showed that LRRN4 promoted cell proliferation, cell DNA synthesis and cell migration and inhibited apoptosis. Knockdown of LRRN4 can correspondingly decrease these effects in vitro and can significantly suppress the growth of xenografts. Several biological functions and signaling pathways were regulated by LRRN4, including proteoglycans in cancer, glutamatergic synapse, Ras, MAPK and PI3K. LRRN4 knockdown resulted in downregulation of Akt, p-Akt, ERK1/2 and p-ERK1/2, the downstream of the Ras/MAPK signaling pathway, overexpression of LRRN4 leaded to the upregulation of these proteins. Conclusions Our results suggest that LRRN4 could be a biological and molecular determinant to stratify CRC patients into distinct risk categories, and mechanistically, this is likely attributable to LRRN4 regulating several malignant phenotypes of neoplastic cells via RAS/MAPK signal pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02579-x.
Collapse
Affiliation(s)
- Cheng Xu
- College of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China.,Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Yulin Chen
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Feiwu Long
- Department of Gastrointestinal, Bariatric and Metabolic Surgery, and Research Center for Nutrition, Metabolism and Food Safety, West China-PUMC CC.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, China
| | - Junman Ye
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Xue Li
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Qiaorong Huang
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Dejiao Yao
- College of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China.,Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Xiaoli Wang
- College of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China.,Department of Oncology, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jin Zhao
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Wentong Meng
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Ran Lu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China.
| | - Chuanwen Fan
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China. .,Department of Gastrointestinal, Bariatric and Metabolic Surgery, and Research Center for Nutrition, Metabolism and Food Safety, West China-PUMC CC.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, China. .,Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, 58183, Linköping, Sweden.
| | - Tao Zhang
- College of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China. .,Cancer Center, The General Hospital of Western Theater Command, Chengdu, 610000, China.
| |
Collapse
|
38
|
The potential of PIK3CA, KRAS, BRAF, and APC hotspot mutations as a non-invasive detection method for colorectal cancer. Mol Cell Probes 2022; 63:101807. [DOI: 10.1016/j.mcp.2022.101807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
|
39
|
Crutcher MM, Baybutt TR, Kopenhaver JS, Snook AE, Waldman SA. Emerging drug targets for colon cancer: A preclinical assessment. Expert Opin Ther Targets 2022; 26:207-216. [PMID: 35129035 PMCID: PMC9075542 DOI: 10.1080/14728222.2022.2039119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/03/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the second leading cause of cancer-related death in the United States. There have been improvements in screening, and therefore overall survival, but patients continue to present at late stages when minimal treatment options are available to them. While some targeted therapies have been introduced, their application is limited by patient-specific tumor characteristics. Additional targets for CRC in patients who present at a late stage, or who experience tumor relapse, need to be identified to continue to improve patient outcomes. AREAS COVERED This review focuses on emerging pathways and drug targets for the treatment of colorectal cancer. The shift to the cancer stem cell model and potential targets involving Wnt, NF-κB, phosphodiesterases, RAS, and guanylyl cyclase C, are discussed. The current utility of checkpoint inhibitors and evolving immunological options are examined. EXPERT OPINION Surgery and current systemic cytotoxic therapies are inadequate to appropriately treat the full spectrum of CRC, especially in those patients who present with metastatic or treatment-refractory disease. In addition to the identification of new, more generalizable targets, additional focus is being placed on novel administrations. Immuno-oncologic options and stem cell-targeting therapies for mCRC will become available to patients and may increase survival.
Collapse
Affiliation(s)
- Madison M. Crutcher
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Trevor R. Baybutt
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jessica S. Kopenhaver
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E. Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A. Waldman
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
40
|
Clinical Translation of Combined MAPK and Autophagy Inhibition in RAS Mutant Cancer. Int J Mol Sci 2021; 22:ijms222212402. [PMID: 34830283 PMCID: PMC8623813 DOI: 10.3390/ijms222212402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 01/23/2023] Open
Abstract
RAS (rat sarcoma virus) mutant cancers remain difficult to treat despite the advances in targeted therapy and immunotherapy. Targeted therapies against the components of mitogen-activated protein kinase (MAPK) pathways, including RAS, RAF, MEK, and ERK, have demonstrated activity in BRAF mutant and, in limited cases, RAS mutant cancer. RAS mutant cancers have been found to activate adaptive resistance mechanisms such as autophagy during MAPK inhibition. Here, we review the recent clinically relevant advances in the development of the MAPK pathway and autophagy inhibitors and focus on their application to RAS mutant cancers. We provide analysis of the preclinical rationale for combining the MAPK pathway and autophagy and highlight the most recent clinical trials that have been launched to capitalize on this potentially synthetic lethal approach to cancer therapy.
Collapse
|
41
|
Rath S, Perikala V, Jena AB, Dandapat J. Factors regulating dynamics of angiotensin-converting enzyme-2 (ACE2), the gateway of SARS-CoV-2: Epigenetic modifications and therapeutic interventions by epidrugs. Biomed Pharmacother 2021; 143:112095. [PMID: 34479017 PMCID: PMC8403698 DOI: 10.1016/j.biopha.2021.112095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022] Open
Abstract
Angiotensin-converting enzyme-2 (ACE2) is one of the major components of the renin-angiotensin system (RAS) and participates in the physiological functions of the cardiovascular system and lungs. Recent studies identified ACE2 as the receptor for the S-protein of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and thus acts as the gateway for viral entry into the human body. Virus infection causes an imbalance in the RAS axis and induces acute lungs injury and fibrosis. Various factors regulate ACE2 expression patterns as well as control its epigenetic status at both transcription and translational levels. This review is mainly focused on the impact of environmental toxicants, drugs, endocrine disruptors, and hypoxia as controlling parameters for ACE2 expression and its possible modulation by epigenetic changes which are marked by DNA methylation, histone modifications, and micro-RNAs (miRNAs) profile. Furthermore, we have emphasized on interventions of various phytochemicals and bioactive compounds as epidrugs that regulate ACE2-S-protein interaction and thereby curb viral infection. Since ACE2 is an important component of the RAAS axis and a crucial entry point of SARS-CoV-2, the dynamics of ACE2 expression in response to various extrinsic and intrinsic factors are of contemporary relevance. We have collated updated information on ACE2 expression modulated by epidrugs, and urge to take over further studies on these important physiological regulators to unravel many more systemic linkages related to both metabolic and infectious diseases, in general and SARS-CoV-2 in particular for further development of targeted interventions.
Collapse
Affiliation(s)
- Suvasmita Rath
- Centre of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Venkateswarlu Perikala
- Centre of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Atala Bihari Jena
- Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Jagneshwar Dandapat
- Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India; Post-Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India.
| |
Collapse
|
42
|
Samouha A, Fogel EJ, Goel S, Maitra R. Oncolytic Virus Affects the RAS Pathway in Cancer: RNA Sequence Analysis. JOURNAL OF ONCOLOGY RESEARCH AND THERAPY 2021; 6:10118. [PMID: 34841205 PMCID: PMC8623657 DOI: 10.29011/2574-710x.10118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Approximately 45% of individuals diagnosed with Colorectal Cancer (CRC) also possess KRAS mutations. One developing therapeutic method for this disease is reovirus treatment. It is theorized that reovirus treatment on patients with KRAS mutated CRC cells would be successful due to the virus' innate oncolytic properties [1]. Reovirus, a stable form of nonenveloped double-stranded RNA, causes minor infections in humans under normal circumstances. However, when the virus encounters KRAS mutated cells, it has the potential to lyse them [2]. While this method of treatment to CRC has shown signs of success, we are still some ways from universal administration of reovirus as a treatment. This review seeks to utilize various studies, as well as our original research data, to investigate reovirus as an efficient method of treatment, with a focus on select growth, apoptotic and RAS-related genes, and their effectiveness of mitigating KRAS mutated CRC post reovirus treatment. Furthermore, the review highlights transcriptome analysis as an effective tool to examine these genes and their activity. It has been shown that reovirus treatment induces apoptosis and mitigates growth related gene activity. CONCLUSIONS This review confirms the novelty of our findings on the efficacy of reovirus in CRC treatment. The study that this review article discusses concluded that 10 apoptotic and lymphocyte-related genes were found to be upregulated and 6 angiogenesis and Ras-related genes were found to be downregulated post reovirus treatment. These findings enforce the notion that reovirus could be used as a novel treatment for KRAS mutated CRC.
Collapse
Affiliation(s)
| | - Elisha J Fogel
- Department of Biology, Yeshiva University, New York, USA
| | - Sanjay Goel
- Montefiore Medical Center, Morris Park Ave Bronx, New York, USA
| | - Radhashree Maitra
- Department of Biology, Yeshiva University, New York, USA
- Montefiore Medical Center, Morris Park Ave Bronx, New York, USA
| |
Collapse
|
43
|
Aran V, Heringer M, da Mata PJ, Kasuki L, Miranda RL, Andreiuolo F, Chimelli L, Filho PN, Gadelha MR, Neto VM. Identification of mutant K-RAS in pituitary macroadenoma. Pituitary 2021; 24:746-753. [PMID: 33954928 DOI: 10.1007/s11102-021-01151-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 01/17/2023]
Abstract
PURPOSE RAS genes are among the most frequently mutated genes in cancer, where their mutation frequency varies according to the distinct RAS isoforms and tumour types. Despite occurring more prevalent in malignant tumours, RAS mutations were also observed in few benign tumours. Pituitary adenomas are examples of benign tumours which vary in size and aggressiveness. The present study was performed to investigate, via liquid biopsy and tissue analysis, the presence of K-RAS mutations in a pituitary macroadenoma. METHODS Molecular analysis was performed to investigate K-RAS mutations using the droplet digital PCR (ddPCR) method by evaluating both plasma (liquid biopsy) and the solid tumour of a patient diagnosed with a giant clinically non-functioning pituitary tumour. RESULTS The patient underwent surgical resection due to visual loss, and the histopathological analysis showed a gonadotrophic pituitary macroadenoma. The molecular analysis revealed the presence of mutant K-RAS both in the plasma and in the tumour tissue which, to our knowledge, has not been previously reported in the literature. CONCLUSION Our findings highlight the exceptional capacity of the digital PCR in detecting low frequency mutations (below 1%), since we detected, for the first time, K-RAS mutations in pituitary macroadenoma. The potential impact of K-RAS mutations in these tumours should be further investigated.
Collapse
Affiliation(s)
- Veronica Aran
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende156-Centro, Rio de Janeiro, 20231-092, Brazil.
| | - Manoela Heringer
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende156-Centro, Rio de Janeiro, 20231-092, Brazil
| | - Paulo Jose da Mata
- Neurosurgery Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Leandro Kasuki
- Neuroendocrine Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
- Endocrine Unit and Neuroendocrinology Research Center, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renan Lyra Miranda
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Felipe Andreiuolo
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Leila Chimelli
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Paulo Niemeyer Filho
- Neurosurgery Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Monica Roberto Gadelha
- Neuroendocrine Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
- Endocrine Unit and Neuroendocrinology Research Center, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivaldo Moura Neto
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende156-Centro, Rio de Janeiro, 20231-092, Brazil
| |
Collapse
|
44
|
Fonseca A, Ramalhete SV, Mestre A, Pires das Neves R, Marreiros A, Castelo-Branco P, Roberto VP. Identification of colorectal cancer associated biomarkers: an integrated analysis of miRNA expression. Aging (Albany NY) 2021; 13:21991-22029. [PMID: 34547721 PMCID: PMC8507258 DOI: 10.18632/aging.203556] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer is one of the leading causes of cancer-related deaths worldwide. This complex disease still holds severe problems concerning diagnosis due to the high invasiveness nature of colonoscopy and the low accuracy of the alternative diagnostic methods. Additionally, patient heterogeneity even within the same stage is not properly reflected in the current stratification system. This scenario highlights the need for new biomarkers to improve non-invasive screenings and clinical management of patients. MicroRNAs (miRNAs) have emerged as good candidate biomarkers in cancer as they are stable molecules, easily measurable and detected in body fluids thus allowing for non-invasive diagnosis and/or prognosis. In this study, we performed an integrated analysis first using 4 different datasets (discovery cohorts) to identify miRNAs associated with colorectal cancer development, unveil their role in this disease by identifying putative targets and regulatory networks and investigate their ability to serve as biomarkers. We have identified 26 differentially expressed miRNAs which interact with frequently deregulated genes known to participate in commonly altered pathways in colorectal cancer. Most of these miRNAs have high diagnostic power, and their prognostic potential is evidenced by panels of 5 miRNAs able to predict the outcome of stage II and III colorectal cancer patients. Notably, 8 miRNAs were validated in three additional independent cohorts (validation cohorts) including a plasma cohort thus reinforcing the value of miRNAs as non-invasive biomarkers.
Collapse
Affiliation(s)
- André Fonseca
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| | - Sara Ventura Ramalhete
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro 8005-139, Portugal
| | - André Mestre
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro 8005-139, Portugal
| | - Ricardo Pires das Neves
- CNC, Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-517, Portugal
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Coimbra 3030-789, Portugal
| | - Ana Marreiros
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro 8005-139, Portugal
| | - Pedro Castelo-Branco
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon 1400-038, Portugal
| | - Vânia Palma Roberto
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro 8005-139, Portugal
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal
| |
Collapse
|
45
|
Lu JW, Sun Y, Fong PSA, Lin LI, Liu D, Gong Z. Lipopolysaccharides Enhance Epithelial Hyperplasia and Tubular Adenoma in Intestine-Specific Expression of krasV12 in Transgenic Zebrafish. Biomedicines 2021; 9:biomedicines9080974. [PMID: 34440178 PMCID: PMC8393945 DOI: 10.3390/biomedicines9080974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Intestinal carcinogenesis is a multistep process that begins with epithelial hyperplasia, followed by a transition to an adenoma and then to a carcinoma. Many etiological factors, including KRAS mutations and inflammation, have been implicated in oncogenesis. However, the potential synergistic effects between KRAS mutations and inflammation as well as the potential mechanisms by which they promote intestinal carcinogenesis remain unclear. Thus, the objective of this study was to investigate the synergistic effects of krasV12, lipopolysaccharides (LPS), and/or dextran sulfate sodium (DSS) on inflammation, tumor progression, and intestinal disorders using transgenic adults and larvae of zebrafish. Histopathology and pathological staining were used to examine the intestines of krasV12 transgenic zebrafish treated with LPS and/or DSS. LPS and/or DSS treatment enhanced intestinal inflammation in krasV12 transgenic larvae with concomitant increases in the number of neutrophils and macrophages in the intestines. The expression of krasV12, combined with LPS treatment, also enhanced epithelial hyperplasia and tubular adenoma, demonstrated by histopathological examinations and by increases in cell apoptosis, cell proliferation, and downstream signaling of phosphorylated AKT serine/threonine kinase 1 (AKT), extracellular-signal-regulated kinase (ERK), and histone. We also found that krasV12 expression, combined with LPS treatment, significantly enhanced changes in intestinal morphology, specifically (1) decreases in goblet cell number, goblet cell size, villi height, and intervilli space, as well as (2) increases in villi width and smooth muscle thickness. Moreover, krasV12 transgenic larvae cotreated with DSS and LPS exhibited exacerbated intestinal inflammation. Cotreatment with DSS and LPS in krasV12-expressing transgenic adult zebrafish also enhanced epithelial hyperplasia and tubular adenoma, compared with wild-type fish that received the same cotreatment. In conclusion, our data suggest that krasV12 expression, combined with LPS and/or DSS treatment, can enhance intestinal tumor progression by activating the phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway and may provide a valuable in vivo platform to investigate tumor initiation and antitumor drugs for gastrointestinal cancers.
Collapse
Affiliation(s)
- Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (Y.S.); (P.-S.A.F.)
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan;
- Correspondence: (J.-W.L.); (Z.G.); Tel.: +65-6516-2860 (Z.G.)
| | - Yuxi Sun
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (Y.S.); (P.-S.A.F.)
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Pei-Shi Angelina Fong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (Y.S.); (P.-S.A.F.)
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan;
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10048, Taiwan
| | - Dong Liu
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (Y.S.); (P.-S.A.F.)
- Correspondence: (J.-W.L.); (Z.G.); Tel.: +65-6516-2860 (Z.G.)
| |
Collapse
|
46
|
Shaikh M, Shinde Y, Pawara R, Noolvi M, Surana S, Ahmad I, Patel H. Emerging Approaches to Overcome Acquired Drug Resistance Obstacles to Osimertinib in Non-Small-Cell Lung Cancer. J Med Chem 2021; 65:1008-1046. [PMID: 34323489 DOI: 10.1021/acs.jmedchem.1c00876] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pyrimidine core-containing compound Osimertinib is the only epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) from the third generation that has been approved by the U.S. Food and Drug Administration to target threonine 790 methionine (T790M) resistance while sparing the wild-type epidermal growth factor receptor (WT EGFR). It is nearly 200-fold more selective toward the mutant EGFR as compared to the WT EGFR. A tertiary cystein 797 to serine 797 (C797S) mutation in the EGFR kinase domain has hampered Osimertinib treatment in patients with advanced EGFR-mutated non-small-cell lung cancer (NSCLC). This C797S mutation is presumed to induce a tertiary-acquired resistance to all current reversible and irreversible EGFR TKIs. This review summarizes the molecular mechanisms of resistance to Osimertinib as well as different strategies for overcoming the EGFR-dependent and EGFR-independent mechanisms of resistance, new challenges, and a future direction.
Collapse
Affiliation(s)
- Matin Shaikh
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Yashodeep Shinde
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Rahul Pawara
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Malleshappa Noolvi
- Shree Dhanvantari College of Pharmacy, Kim, Surat, Gujarat, India 394111
| | - Sanjay Surana
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Iqrar Ahmad
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Harun Patel
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| |
Collapse
|
47
|
Cuesta C, Arévalo-Alameda C, Castellano E. The Importance of Being PI3K in the RAS Signaling Network. Genes (Basel) 2021; 12:1094. [PMID: 34356110 PMCID: PMC8303222 DOI: 10.3390/genes12071094] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Ras proteins are essential mediators of a multitude of cellular processes, and its deregulation is frequently associated with cancer appearance, progression, and metastasis. Ras-driven cancers are usually aggressive and difficult to treat. Although the recent Food and Drug Administration (FDA) approval of the first Ras G12C inhibitor is an important milestone, only a small percentage of patients will benefit from it. A better understanding of the context in which Ras operates in different tumor types and the outcomes mediated by each effector pathway may help to identify additional strategies and targets to treat Ras-driven tumors. Evidence emerging in recent years suggests that both oncogenic Ras signaling in tumor cells and non-oncogenic Ras signaling in stromal cells play an essential role in cancer. PI3K is one of the main Ras effectors, regulating important cellular processes such as cell viability or resistance to therapy or angiogenesis upon oncogenic Ras activation. In this review, we will summarize recent advances in the understanding of Ras-dependent activation of PI3K both in physiological conditions and cancer, with a focus on how this signaling pathway contributes to the formation of a tumor stroma that promotes tumor cell proliferation, migration, and spread.
Collapse
Affiliation(s)
| | | | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (C.C.); (C.A.-A.)
| |
Collapse
|
48
|
Hedgehog/GLI Signaling Pathway: Transduction, Regulation, and Implications for Disease. Cancers (Basel) 2021; 13:cancers13143410. [PMID: 34298625 PMCID: PMC8304605 DOI: 10.3390/cancers13143410] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The Hedgehog/GLI (Hh/GLI) pathway plays a major role during development and it is commonly dysregulated in many diseases, including cancer. This highly concerted series of ligands, receptors, cytoplasmic signaling molecules, transcription factors, and co-regulators is involved in regulating the biological functions controlled by this pathway. Activation of Hh/GLI in cancer is most often through a non-canonical method of activation, independent of ligand binding. This review is intended to summarize our current understanding of the Hh/GLI signaling, non-canonical mechanisms of pathway activation, its implication in disease, and the current therapeutic strategies targeting this cascade. Abstract The Hh/GLI signaling pathway was originally discovered in Drosophila as a major regulator of segment patterning in development. This pathway consists of a series of ligands (Shh, Ihh, and Dhh), transmembrane receptors (Ptch1 and Ptch2), transcription factors (GLI1–3), and signaling regulators (SMO, HHIP, SUFU, PKA, CK1, GSK3β, etc.) that work in concert to repress (Ptch1, Ptch2, SUFU, PKA, CK1, GSK3β) or activate (Shh, Ihh, Dhh, SMO, GLI1–3) the signaling cascade. Not long after the initial discovery, dysregulation of the Hh/GLI signaling pathway was implicated in human disease. Activation of this signaling pathway is observed in many types of cancer, including basal cell carcinoma, medulloblastoma, colorectal, prostate, pancreatic, and many more. Most often, the activation of the Hh/GLI pathway in cancer occurs through a ligand-independent mechanism. However, in benign disease, this activation is mostly ligand-dependent. The upstream signaling component of the receptor complex, SMO, is bypassed, and the GLI family of transcription factors can be activated regardless of ligand binding. Additional mechanisms of pathway activation exist whereby the entirety of the downstream signaling pathway is bypassed, and PTCH1 promotes cell cycle progression and prevents caspase-mediated apoptosis. Throughout this review, we summarize each component of the signaling cascade, non-canonical modes of pathway activation, and the implications in human disease, including cancer.
Collapse
|
49
|
Xu J, Wen J, Li S, Shen X, You T, Huang Y, Xu C, Zhao Y. Immune-Related Nine-MicroRNA Signature for Predicting the Prognosis of Gastric Cancer. Front Genet 2021; 12:690598. [PMID: 34290743 PMCID: PMC8287335 DOI: 10.3389/fgene.2021.690598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/21/2021] [Indexed: 12/21/2022] Open
Abstract
Recent findings have demonstrated the superiority and utility of microRNAs (miRNAs) as new biomarkers for cancer diagnosis, therapy, and prognosis. In this study, to explore the prognostic value of immune-related miRNAs in gastric cancer (GC), we analyzed the miRNA-expression profiles of 389 patients with GC, using data deposited in The Cancer Genome Atlas database. Using a forward- and backward-variable selection and multivariate Cox regression analyses model, we identified a nine-miRNA signature (the “ImmiRSig,” consisting of miR-125b-5p, miR-99a-3p, miR-145-3p, miR-328-3p, miR-133a-5p, miR-1292-5p, miR-675-3p, miR-92b-5p, and miR-942-3p) in the training cohort that enabled the division of patients into high- and low-risk groups with significantly different survival rates. The ImmiRSig was successfully validated with an independent test cohort of 193 GC patients. Univariate and multivariate Cox regression analyses indicated that the ImmiRSig would serve as an independent prognostic factor after adjusting for other clinical covariates. Pending further prospective validation, the identified ImmiRSig appears to have significant clinical importance in terms of improving outcome predictions and guiding personalized treatment for patients with GC. Finally, significant associations between the ImmiRSig and the half-maximal inhibitory concentrations of chemotherapeutic agents were observed, suggesting that ImmiRSig may predict the clinical efficacy of chemotherapy.
Collapse
Affiliation(s)
- Jingxuan Xu
- The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jian Wen
- The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shuangquan Li
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xian Shen
- The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Tao You
- The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yingpeng Huang
- The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chongyong Xu
- The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yaping Zhao
- The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
50
|
Shapira S, Boustanai I, Kazanov D, Ben Shimon M, Fokra A, Arber N. Innovative dual system approach for selective eradication of cancer cells using viral-based delivery of natural bacterial toxin-antitoxin system. Oncogene 2021; 40:4967-4979. [PMID: 34172933 PMCID: PMC8342310 DOI: 10.1038/s41388-021-01792-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 01/20/2023]
Abstract
The inactivation of p53, a tumor suppressor, and the activation of the RAS oncogene are the most frequent genetic alterations in cancer. We have shown that a unique E. coli MazF-MazE toxin–antitoxin (TA) system can be used for selective and effective eradication of RAS-mutated cancer cells. This out of the box strategy holds great promise for effective cancer treatment and management. We provide proof of concept for a novel platform to selectively eradicate cancer cells using an adenoviral delivery system based on the adjusted natural bacterial system. We generated adenoviral vectors carrying the mazF toxin (pAdEasy-Py4-SV40mP-mCherry-MazF) and the antitoxin mazE (pAdEasy-RGC-SV40mP-MazE-IRES-GFP) under the regulation of RAS and p53, resp. The control vector carries the toxin without the RAS-responsive element (pAdEasy-ΔPy4-SV40mP-mCherry-MazF). In vitro, the mazF-mazE TA system (Py4-SV40mP-mCherry-MazF+RGC-SV40mP-MazE-IRES-GFP) induced massive, dose-dependent cell death, at 69% compared to 19% for the control vector, in a co-infected HCT116 cell line. In vivo, the system caused significant tumor growth inhibition of HCT116 (KRASmut/p53mut) tumors at 73 and 65% compared to PBS and ΔPY4 control groups, resp. In addition, we demonstrate 65% tumor growth inhibition in HCT116 (KRASmut/p53wt) cells, compared to the other two control groups, indicating a contribution of the antitoxin in blocking system leakage in WT RAS cells. These data provide evidence of the feasibility of using mutations in the p53 and RAS pathway to efficiently kill cancer cells. The platform, through its combination of the antitoxin (mazE) with the toxin (mazF), provides effective protection of normal cells from basal low activity or leakage of mazF.
Collapse
Affiliation(s)
- Shiran Shapira
- The Integrated Cancer Prevention Center and the Health Promotion Center, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilana Boustanai
- The Integrated Cancer Prevention Center and the Health Promotion Center, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dina Kazanov
- The Integrated Cancer Prevention Center and the Health Promotion Center, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Marina Ben Shimon
- The Integrated Cancer Prevention Center and the Health Promotion Center, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Ahmad Fokra
- The Integrated Cancer Prevention Center and the Health Promotion Center, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nadir Arber
- The Integrated Cancer Prevention Center and the Health Promotion Center, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|