1
|
Naing A, Mahipal A, Javle M, Wang J, Bauer TM, Bajor DL, Elias AD, Shields A, Davis E, Chawla S, Safran H, Powderly JD, D’Amato G, Meyer CF, Tang X, Yao S, Keegan P. Safety and Efficacy of Toripalimab in Patients with Cholangiocarcinoma: An Open-Label, Phase 1 Study. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2025; 8:71-81. [PMID: 39816916 PMCID: PMC11728388 DOI: 10.36401/jipo-24-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 01/18/2025]
Abstract
Introduction This was the first phase 1 study conducted in the United States. It consisted of dose-escalation (part A) and multiple indication-specific cohort expansion (part B), investigating the safety and preliminary efficacy of toripalimab (anti-programmed cell death-1 inhibitor) in patients with advanced malignancies. Methods Patients with advanced malignancies that progressed after treatment with at least one prior line of standard systemic therapy, including the patients with advanced/recurrent cholangiocarcinoma (CCA), received toripalimab 240 mg every 3 weeks in part B. The primary endpoint was safety assessment. Efficacy endpoints included objective response rate (ORR), disease control rate (DCR), duration of response (DoR), progression-free survival (PFS) as assessed by the investigators according to Response Evaluation Criteria in Solid Tumors (version 1.1) and overall survival (OS). Results In part B, 166 patients, including the 42 patients with CCA, were enrolled and received toripalimab. Among the 166 patients, treatment-emergent adverse events (TEAEs) of any grade occurred in 158 (95.2%) patients, and 97 (58.4%) patients experienced TEAEs of Grade 3 or greater. The most common TEAE was fatigue (42.2%). Seven (4.2%) patients experienced TEAEs with a fatal outcome, none of which were identified by investigators as related to toripalimab. Investigator-assessed immune-related adverse events (irAE) of Grade 3 or higher occurred in 7 (4.2%) patients. In the CCA cohort, with the median follow-up of 4.4 months, the ORR and DCR were 4.8% (95% CI: 0.58, 16.16) and 40.5% (95% CI: 25.63, 56.72), respectively; median DoR was 7.8 (range 4.4+ to 7.8) months; median PFS was 2.1 (95% CI: 1.91, 3.88) months; median OS was not estimable. Conclusions Toripalimab had manageable side effects in patients with refractory cholangiocarcinoma and exhibited preliminary evidence of anti-tumor activity. However, further information regarding biomarkers is needed. ClinicalTrials.gov ID: NCT03474640.
Collapse
Affiliation(s)
- Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amit Mahipal
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Milind Javle
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Judy Wang
- Drug Development Unit, Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, FL, USA
| | | | - David L. Bajor
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Anthony D. Elias
- Department of Medicine, University of Colorado Cancer Center, Aurora, CO, USA
| | - Anthony Shields
- Department of Hematology-Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Elizabeth Davis
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Sant Chawla
- Sarcoma Oncology Research Center, Santa Monica, CA, USA
| | - Howard Safran
- Department of Medicine, Division of Hematology/Oncology, Lifespan Cancer Institute, Providence, RI, USA
| | - John D. Powderly
- Cancer Therapy and Research Center, Carolina BioOncology Institute, Huntersville, NC, USA
| | - Gina D’Amato
- Department of Medicine, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Christian F. Meyer
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Sheng Yao
- TopAlliance Biosciences Inc. Rockville, MD, USA
| | | |
Collapse
|
2
|
Bai M, Wang R, Huang C, Zhong R, Jiang N, Fu W, Mi N, Gao L, Jin Y, Ma H, Cao J, Yu H, Jing Q, Zhang C, Yue P, Zhang Y, Lin Y, Zhang H, Meng W. Biological and genetic characterization of a newly established human primary multidrug-resistant distal cholangiocarcinoma cell line, CBC3T-6. Sci Rep 2024; 14:29661. [PMID: 39613883 DOI: 10.1038/s41598-024-81392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
Distal cholangiocarcinoma is a rare and highly aggressive malignant tumor. The inherent tumor characteristics and growth pattern of cancer cells pose a challenge for diagnosis and treatment. Chemotherapy resistance leads to limited treatment options for patients with advanced cholangiocarcinoma. However, drug resistance studies in cholangiocarcinoma are often limited by the use of preclinical models that do not accurately replicate the essential features of the disease. In this study, we established and characterized a primary multidrug-resistant distal cholangiocarcinoma cell line, CBC3T-6. STR profiling indicated no evidence of cross-contamination. This cell line remains stable during long-term in vitro culture and is characterized by short doubling times and rapid subcutaneous tumor formation in mice. In addition, among the first-line anticancer drugs for cholangiocarcinoma, CBC3T-6 cells showed varying degrees of resistance to gemcitabine, oxaliplatin, cisplatin, and 5-FU. Whole exome sequencing analysis revealed that CBC3T-6 cells contained a variety of potentially pathogenic somatic cell mutations, such as TP53 and KRAS mutations. ABCB1 mutation as a possible therapeutic target for multidrug resistance. In conclusion, CBC3T-6 cells can be used as a useful tool to study the mechanism of cholangiocarcinoma and develop new therapeutic strategies for multidrug resistance.
Collapse
Affiliation(s)
- Mingzhen Bai
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruoshui Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Chongfei Huang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruyang Zhong
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ningzu Jiang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Wenkang Fu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ningning Mi
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Long Gao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yuyao Jin
- The Sixth Clinical Medical School of Guangzhou Medical University, Guangzhou, China
| | - Haidong Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jie Cao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Haiying Yu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China
- Gansu Province Key Laboratory of Biological Therapy and Regenerative Medicine Transformation, Lanzhou, China
| | - Qiang Jing
- Department of Pathology, First Hospital of Lanzhou University, Donggang District, Lanzhou, China
| | - Chao Zhang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China.
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China.
- Gansu Province Key Laboratory of Biological Therapy and Regenerative Medicine Transformation, Lanzhou, China.
| |
Collapse
|
3
|
Stapleton P, Ha N, Saxon S, Thomson JE. Haemobilia as a primary presentation of cholangiocarcinoma. BMJ Case Rep 2024; 17:e260524. [PMID: 39209753 DOI: 10.1136/bcr-2024-260524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
We present a case of haemobilia as a primary presentation for underlying cholangiocarcinoma. A man in his 50s initially presented to emergency with Quincke's triad, RUQ pain, jaundice and UGI bleeding. The initial diagnosis of haemobilia was made on endoscopic retrograde cholangiopancreatography (ERCP) on primary presentation, but the presence of blood and the recurrent clot obstruction of the biliary tract made the underlying diagnosis extremely difficult, resulting in the patient having 4 ERCP, 1 spyglass and multiple CTs and magnetic resonance cholangiopancreatography. Eventually, the patient underwent a Whipple's procedure without tissue diagnosis, confirming cholangiocarcinoma on histopathology. This case emphasises the difficulty of diagnosis of underlying malignancy in the setting of haemobilia, the benefit of multidisciplinary meeting discussions to support significant interventions and the need to be cautious and curious when managing atypical presentations.
Collapse
Affiliation(s)
- Peter Stapleton
- The University of Sydney Discipline of Surgery, Sydney, New South Wales, Australia
- Urology, Grampians Health, Ballarat, Victoria, Australia
| | | | - Sarah Saxon
- Department of Pathology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - John-Edwin Thomson
- Hepato-pancreato-biliary Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Verma S, Grindrod N, Breadner D, Lock M. The Current Role of Radiation in the Management of Cholangiocarcinoma-A Narrative Review. Cancers (Basel) 2024; 16:1776. [PMID: 38730728 PMCID: PMC11083065 DOI: 10.3390/cancers16091776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a rare cancer of bile ducts. It is associated with a poor prognosis. The incidence of CCA is rising worldwide. Anatomical subgroups have been used to classify patients for treatment and prognosis. There is a growing understanding of clinically important distinctions based on underlying genetic differences that lead to different treatment options and outcomes. Its management is further complicated by a heterogeneous population and relative rarity, which limits the conduct of large trials to guide management. Surgery has been the primary method of therapy for localized disease; however, recurrence and death remain high with or without surgery. Therefore, there have been concerted efforts to investigate new treatment options, such as the use of neoadjuvant treatments to optimize surgical outcomes, targeted therapy, leveraging a new understanding of immunobiology and stereotactic radiation. In this narrative review, we address the evidence to improve suboptimal outcomes in unresectable CCA with radiation, as well as the role of radiation in neoadjuvant and postoperative treatment. We also briefly discuss the recent developments in systemic treatment with targeted therapies and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Saurav Verma
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada; (S.V.); (N.G.); (D.B.)
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Natalie Grindrod
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada; (S.V.); (N.G.); (D.B.)
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Daniel Breadner
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada; (S.V.); (N.G.); (D.B.)
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Michael Lock
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada; (S.V.); (N.G.); (D.B.)
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada
| |
Collapse
|
5
|
Zhang C, Wang Y, Wu G, Sun N, Bai H, Li X, Han S, Zhou H, Qi R, Zhang J. RPL35A promotes the progression of cholangiocarcinoma by mediating HSPA8 ubiquitination. Biol Direct 2024; 19:16. [PMID: 38395908 PMCID: PMC10885515 DOI: 10.1186/s13062-024-00453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a biliary epithelial malignant tumor with an increasing incidence worldwide. Therefore, further understanding of the molecular mechanisms of CCA progression is required to identify new therapeutic targets. METHODS The expression of RPL35A in CCA and para-carcinoma tissues was detected by immunohistochemical staining. IP-MS combined with Co-IP identified downstream proteins regulated by RPL35A. Western blot and Co-IP of CHX or MG-132 treated CCA cells were used to verify the regulation of HSPA8 protein by RPL35A. Cell experiments and subcutaneous tumorigenesis experiments in nude mice were performed to evaluate the effects of RPL35A and HSPA8 on the proliferation, apoptosis, cell cycle, migration of CCA cells and tumor growth in vivo. RESULTS RPL35A was significantly upregulated in CCA tissues and cells. RPL35A knockdown inhibited the proliferation and migration of HCCC-9810 and HUCCT1 cells, induced apoptosis, and arrested the cell cycle in G1 phase. HSPA8 was a downstream protein of RPL35A and overexpressed in CCA. RPL35A knockdown impaired HSPA8 protein stability and increased HSPA8 protein ubiquitination levels. RPL35A overexpression promoted CCA cell proliferation and migration. HSPA8 knockdown inhibited CCA cell proliferation and migration, and reversed the promoting effect of RPL35A. Furthermore, RPL35A promoted tumor growth in vivo. In contrast, HSPA8 knockdown suppressed tumor growth, while was able to restore the effects of RPL35A overexpression. CONCLUSION RPL35A was upregulated in CCA tissues and promoted the progression of CCA by mediating HSPA8 ubiquitination.
Collapse
Affiliation(s)
- Chengshuo Zhang
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China
| | - Yu Wang
- Department of General Surgery, Anshan Central Hospital, No.51, South Zhonghua Road, Tiedong District, 114008, Anshan, Liaoning Province, China
| | - Gang Wu
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China
| | - Ning Sun
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China
| | - Han Bai
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China
| | - Xuejian Li
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China
| | - Shuai Han
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China
| | - Haonan Zhou
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China
| | - Ruizhao Qi
- Senior Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, No.28, Fuxing Road, Haidian District, 100039, Beijing, China.
| | - Jialin Zhang
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China.
| |
Collapse
|
6
|
Myint KZ, Balasubramanian B, Venkatraman S, Phimsen S, Sripramote S, Jantra J, Choeiphuk C, Mingphruedhi S, Muangkaew P, Rungsakulkij N, Tangtawee P, Suragul W, Farquharson WV, Wongprasert K, Chutipongtanate S, Sanvarinda P, Ponpuak M, Poungvarin N, Janvilisri T, Suthiphongchai T, Yacqub-Usman K, Grabowska AM, Bates DO, Tohtong R. Therapeutic Implications of Ceritinib in Cholangiocarcinoma beyond ALK Expression and Mutation. Pharmaceuticals (Basel) 2024; 17:197. [PMID: 38399413 PMCID: PMC10892566 DOI: 10.3390/ph17020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a difficult-to-treat cancer, with limited therapeutic options and surgery being the only curative treatment. Standard chemotherapy involves gemcitabine-based therapies combined with cisplatin, oxaliplatin, capecitabine, or 5-FU with a dismal prognosis for most patients. Receptor tyrosine kinases (RTKs) are aberrantly expressed in CCAs encompassing potential therapeutic opportunity. Hence, 112 RTK inhibitors were screened in KKU-M213 cells, and ceritinib, an approved targeted therapy for ALK-fusion gene driven cancers, was the most potent candidate. Ceritinib's cytotoxicity in CCA was assessed using MTT and clonogenic assays, along with immunofluorescence, western blot, and qRT-PCR techniques to analyze gene expression and signaling changes. Furthermore, the drug interaction relationship between ceritinib and cisplatin was determined using a ZIP synergy score. Additionally, spheroid and xenograft models were employed to investigate the efficacy of ceritinib in vivo. Our study revealed that ceritinib effectively killed CCA cells at clinically relevant plasma concentrations, irrespective of ALK expression or mutation status. Ceritinib modulated multiple signaling pathways leading to the inhibition of the PI3K/Akt/mTOR pathway and activated both apoptosis and autophagy. Additionally, ceritinib and cisplatin synergistically reduced CCA cell viability. Our data show ceritinib as an effective treatment of CCA, which could be potentially explored in the other cancer types without ALK mutations.
Collapse
Affiliation(s)
- Kyaw Zwar Myint
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (K.Z.M.); (B.B.); (S.V.); (T.J.)
| | - Brinda Balasubramanian
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (K.Z.M.); (B.B.); (S.V.); (T.J.)
- Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Simran Venkatraman
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (K.Z.M.); (B.B.); (S.V.); (T.J.)
| | - Suchada Phimsen
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (S.P.); (C.C.)
| | - Supisara Sripramote
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.S.); (J.J.); (T.S.)
| | - Jeranan Jantra
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.S.); (J.J.); (T.S.)
| | - Chaiwat Choeiphuk
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (S.P.); (C.C.)
| | - Somkit Mingphruedhi
- Hepato-Pancreatic-Biliary Surgery Unit, Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (P.M.); (N.R.); (P.T.); (W.S.); (W.V.F.)
| | - Paramin Muangkaew
- Hepato-Pancreatic-Biliary Surgery Unit, Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (P.M.); (N.R.); (P.T.); (W.S.); (W.V.F.)
| | - Narongsak Rungsakulkij
- Hepato-Pancreatic-Biliary Surgery Unit, Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (P.M.); (N.R.); (P.T.); (W.S.); (W.V.F.)
| | - Pongsatorn Tangtawee
- Hepato-Pancreatic-Biliary Surgery Unit, Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (P.M.); (N.R.); (P.T.); (W.S.); (W.V.F.)
| | - Wikran Suragul
- Hepato-Pancreatic-Biliary Surgery Unit, Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (P.M.); (N.R.); (P.T.); (W.S.); (W.V.F.)
| | - Watoo Vassanasiri Farquharson
- Hepato-Pancreatic-Biliary Surgery Unit, Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (P.M.); (N.R.); (P.T.); (W.S.); (W.V.F.)
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Somchai Chutipongtanate
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Pimtip Sanvarinda
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Marisa Ponpuak
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Naravat Poungvarin
- Department of Clinical Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Tavan Janvilisri
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (K.Z.M.); (B.B.); (S.V.); (T.J.)
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.S.); (J.J.); (T.S.)
| | - Tuangporn Suthiphongchai
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.S.); (J.J.); (T.S.)
| | - Kiren Yacqub-Usman
- Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; (K.Y.-U.); (A.M.G.); (D.O.B.)
| | - Anna M. Grabowska
- Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; (K.Y.-U.); (A.M.G.); (D.O.B.)
| | - David O. Bates
- Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; (K.Y.-U.); (A.M.G.); (D.O.B.)
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.S.); (J.J.); (T.S.)
| |
Collapse
|
7
|
Mehrabi A, Golriz M, Ramouz A, Khajeh E, Hammad A, Hackert T, Müller-Stich B, Strobel O, Ali-Hasan-Al-Saegh S, Ghamarnejad O, Al-Saeedi M, Springfeld C, Rupp C, Mayer P, Mieth M, Goeppert B, Hoffmann K, Büchler MW. Promising Outcomes of Modified ALPPS for Staged Hepatectomy in Cholangiocarcinoma. Cancers (Basel) 2023; 15:5613. [PMID: 38067316 PMCID: PMC10705795 DOI: 10.3390/cancers15235613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 09/14/2024] Open
Abstract
Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) is a two-stage procedure that can potentially cure patients with large cholangiocarcinoma. The current study evaluates the impact of modifications on the outcomes of ALPPS in patients with cholangiocarcinoma. In this single-center study, a series of 30 consecutive patients with cholangiocarcinoma (22 extrahepatic and 8 intrahepatic) who underwent ALPPS between 2011 and 2021 was evaluated. The ALPPS procedure in our center was modified in 2016 by minimizing the first stage of the surgical procedure through biliary externalization after the first stage, antibiotic administration during the interstage phase, and performing biliary reconstructions during the second stage. The rate of postoperative major morbidity and 90-day mortality, as well as the one- and three-year disease-free and overall survival rates were calculated and compared between patients operated before and after 2016. The ALPPS risk score before the second stage of the procedure was lower in patients who were operated on after 2016 (before 2016: median 6.4; after 2016: median 4.4; p = 0.010). Major morbidity decreased from 42.9% before 2016 to 31.3% after 2016, and the 90-day mortality rate decreased from 35.7% before 2016 to 12.5% after 2016. The three-year survival rate increased from 40.8% before 2016 to 73.4% after 2016. Our modified ALPPS procedure improved perioperative and postoperative outcomes in patients with extrahepatic and intrahepatic cholangiocarcinoma. Minimizing the first step of the ALPPS procedure was key to these improvements.
Collapse
Affiliation(s)
- Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Mohammad Golriz
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Ali Ramouz
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Elias Khajeh
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ahmed Hammad
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Beat Müller-Stich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sadeq Ali-Hasan-Al-Saegh
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Omid Ghamarnejad
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Mohammed Al-Saeedi
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christoph Springfeld
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Christian Rupp
- Department of Internal Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Philipp Mayer
- Department of Interventional Radiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Markus Mieth
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Benjamin Goeppert
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Katrin Hoffmann
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Markus W. Büchler
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Yang SM, Kim J, Lee JY, Lee JS, Lee JM. Regulation of glucose and glutamine metabolism to overcome cisplatin resistance in intrahepatic cholangiocarcinoma. BMB Rep 2023; 56:600-605. [PMID: 37401237 PMCID: PMC10689087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/06/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a bile duct cancer and a rare malignant tumor with a poor prognosis owing to the lack of an early diagnosis and resistance to conventional chemotherapy. A combination of gemcitabine and cisplatin is the typically attempted first-line treatment approach. However, the underlying mechanism of resistance to chemotherapy is poorly understood. We addressed this by studying dynamics in the human ICC SCK cell line. Here, we report that the regulation of glucose and glutamine metabolism was a key factor in overcoming cisplatin resistance in SCK cells. RNA sequencing analysis revealed a high enrichment cell cycle-related gene set score in cisplatin-resistant SCK (SCK-R) cells compared to parental SCK (SCK WT) cells. Cell cycle progression correlates with increased nutrient requirement and cancer proliferation or metastasis. Commonly, cancer cells are dependent upon glucose and glutamine availability for survival and proliferation. Indeed, we observed the increased expression of GLUT (glucose transporter), ASCT2 (glutamine transporter), and cancer progression markers in SCK-R cells. Thus, we inhibited enhanced metabolic reprogramming in SCK-R cells through nutrient starvation. SCK-R cells were sensitized to cisplatin, especially under glucose starvation. Glutaminase-1 (GLS1), which is a mitochondrial enzyme involved in tumorigenesis and progression in cancer cells, was upregulated in SCK-R cells. Targeting GLS1 with the GLS1 inhibitor CB-839 (telaglenastat) effectively reduced the expression of cancer progression markers. Taken together, our study results suggest that a combination of GLUT inhibition, which mimics glucose starvation, and GLS1 inhibition could be a therapeutic strategy to increase the chemosensitivity of ICC. [BMB Reports 2023; 56(11): 600-605].
Collapse
Affiliation(s)
- So Mi Yang
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
| | - Jueun Kim
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Ji-Yeon Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
| | - Ji Min Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
9
|
White K, Anwar AI, Jin K, Bollich V, Kelkar RA, Talbot NC, Klapper RJ, Ahmadzadeh S, Viswanath O, Varrassi G, Shekoohi S, Kaye AD. Infigratinib for the Treatment of Metastatic or Locally Advanced Cholangiocarcinoma With Known FGFR2 Gene Fusions or Rearrangements. Cureus 2023; 15:e46792. [PMID: 37954763 PMCID: PMC10634393 DOI: 10.7759/cureus.46792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive and diverse malignancy with a poor prognosis. Related to a typical indolent course of progression, most cases of CCA are metastatic or locally advanced at the time of presentation. For patients with nonresectable tumors or metastatic disease, the mainstay of treatment is comprehensive with combination chemotherapy. The first-line chemotherapeutic combination for the treatment of CCA are cisplatin and gemcitabine-based chemotherapies. However, many locally advanced and progressive CCA cases are refractory to first-line management. Within the past few years, the increase in the incidence of metastatic CCA and its poor prognosis has brought to light the need for novel therapeutic approaches to treatment. With advancements in next-generation genome sequencing, multiple molecular pathways have been identified in the pathogenesis of CCA and have shown great potential as alternative treatments in cases of CCA refractory to surgical resection. FGFR2 fusions or rearrangements have been identified in 10-16% of all intrahepatic CCA and are thought to serve as a pathway of resistance for a number of nonresectable and refractory cases of cholangiocarcinoma. A novel therapeutic agent that has been discussed is infigratinib, a selective, ATP-competitive inhibitor of fibroblast growth factor receptor 2 (FGFR2). In a phase 1 trial, infigratinib showed a safe profile and showed remarkable clinical efficacy in advanced CCA with FGFR2 fusions or rearrangements in phase II trials. As of May 2021, the Food and Drug Administration (FDA) approved infigratinib for CCA largely based on tumor response and duration of response. As of 2021, infigratinib, futibatinib, and pemigatinib, similar novel selective FGFR inhibitors, have been approved by the FDA for the treatment of locally advanced or metastatic CCA harboring FGFR2 gene mutations. The present investigation reviews the development of infigratinib in particular and its clinical efficacy compared to other available treatment options for cholangiocarcinoma. While the side effect profile of infigratinib is minimal, particularly GI side effects, when compared with futibatinib and pemigatinib, the overall response rate (ORR) and median overall survival (mOS) for infigratinib (ORR=23.1%, mOS=3.8 months) was significantly lower than futibatinib (ORR=35.8%, mOS=21.1 months) and pemigatinib (ORR=35.5%, mOS=21.1 months). While there is ample promise for the use of infigratinib as molecular-directed therapy in the treatment of CCA harboring FGFR2 mutations, there is an appropriate concern for patient-acquired resistance. The heterogeneous nature of FGFR mutations and the emergence of different resistance mechanisms emphasize a need for more agents to inhibit FGFR rearrangements effectively.
Collapse
Affiliation(s)
- Kathryn White
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Ahmed I Anwar
- Department of Psychology, Quinnipiac University, Hamden, USA
| | - Kevin Jin
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Victoria Bollich
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Rucha A Kelkar
- School of Medicine, Medical University of South Carolina, Charleston, USA
| | - Norris C Talbot
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Rachel J Klapper
- Radiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Omar Viswanath
- Pain Management, Valley Pain Consultants - Envision Physician Services, Phoenix, USA
| | | | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| |
Collapse
|
10
|
Borakati A, Froghi F, Bhogal RH, Mavroeidis VK. Liver transplantation in the management of cholangiocarcinoma: Evolution and contemporary advances. World J Gastroenterol 2023; 29:1969-1981. [PMID: 37155529 PMCID: PMC10122785 DOI: 10.3748/wjg.v29.i13.1969] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive malignancy arising from the biliary epithelium. It may occur at any location along the biliary tree with the perihilar area being the most common. Prognosis is poor with 5-year overall survival at less than 10%, typically due to unresectable disease at presentation. Radical surgical resection with clear margins offers a chance of cure in patients with resectable tumours, but is frequently not possible due to locally advanced disease. On the other hand, orthotopic liver transplantation (LT) allows for a radical and potentially curative resection for these patients, but has been historically controversial due to the limited supply of donor grafts and previously poor outcomes. In patients with perihilar CCA, within specific criteria and following the implementation of a protocol combining neoadjuvant chemoradiation and LT, excellent results have been achieved in the last decades, resulting in its increasing acceptance as an indication for LT and the standard of care in several centres with significant experience. However, in intrahepatic CCA, the role of LT remains controversial and owing to dismal previous results it is not an accepted indication. Nevertheless, more recent studies have demonstrated favourable results with LT in early intrahepatic CCA, indicating that, under defined criteria, its role may increase in the future. This review highlights the history and contemporary advances of LT in CCA, with particular focus on the improving outcomes of LT in intrahepatic and perihilar CCA and future perspectives.
Collapse
Affiliation(s)
- Aditya Borakati
- Department of HPB and Liver Transplantation Surgery, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, United Kingdom
| | - Farid Froghi
- Department of HPB and Liver Transplantation Surgery, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, United Kingdom
| | - Ricky H Bhogal
- Department of Academic Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, United Kingdom
| | - Vasileios K Mavroeidis
- Department of Academic Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, United Kingdom
| |
Collapse
|
11
|
Fernández L, Gastaca M, Alonso E, Prieto M, Ruiz P, Ventoso A, Palomares I, Perfecto A, Valdivieso A. Surgical treatment for recurrent cholangiocarcinoma: a single-center series. Front Oncol 2023; 13:1169133. [PMID: 37143948 PMCID: PMC10152064 DOI: 10.3389/fonc.2023.1169133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Purpose The present study aims to assess the results obtained after surgical treatment of cholangiocarcinoma (CC) recurrences. Methods We carried out a single-center retrospective study, including all patients with recurrence of CC. The primary outcome was patient survival after surgical treatment compared with chemotherapy or best supportive care. A multivariate analysis of variables affecting mortality after CC recurrence was performed. Results Eighteen patients were indicated surgery to treat CC recurrence. Severe postoperative complication rate was 27.8% with a 30-day mortality rate of 16.7%. Median survival after surgery was 15 months (range 0-50) with 1- and 3-year patient survival rates of 55.6% and 16.6%, respectively. Patient survival after surgery or CHT alone, was significantly better than receiving supportive care (p< 0.001). We found no significant difference in survival when comparing CHT alone and surgical treatment (p=0.113). Time to recurrence of <1 year, adjuvant CHT after resection of the primary tumor and undergoing surgery or CHT alone versus best supportive care were independent factors affecting mortality after CC recurrence in the multivariate analysis. Conclusion Surgery or CHT alone improved patient survival after CC recurrence compared to best supportive care. Surgical treatment did not improve patient survival compared to CHT alone.
Collapse
Affiliation(s)
- Laura Fernández
- General Surgery Department, Hospital de Urduliz, Urduliz, Spain
| | - Mikel Gastaca
- Hepatobiliary Surgery and Liver Transplantation Unit, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Bilbao, Spain
- Facultad de Medicina y Odontología, Universidad del País Vasco/ Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
- *Correspondence: Mikel Gastaca, ;
| | - Eva Alonso
- General Surgery Department, Hospital Universitario Cruces, Bilbao, Spain
| | - Mikel Prieto
- Hepatobiliary Surgery and Liver Transplantation Unit, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Bilbao, Spain
- Facultad de Medicina y Odontología, Universidad del País Vasco/ Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
| | - Patricia Ruiz
- Hepatobiliary Surgery and Liver Transplantation Unit, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Bilbao, Spain
| | - Alberto Ventoso
- Hepatobiliary Surgery and Liver Transplantation Unit, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Bilbao, Spain
| | - Ibone Palomares
- Hepatobiliary Surgery and Liver Transplantation Unit, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Bilbao, Spain
| | - Arkaitz Perfecto
- Hepatobiliary Surgery and Liver Transplantation Unit, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Bilbao, Spain
| | - Andrés Valdivieso
- Hepatobiliary Surgery and Liver Transplantation Unit, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Bilbao, Spain
- Facultad de Medicina y Odontología, Universidad del País Vasco/ Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
| |
Collapse
|
12
|
Smith EN, Coleman A, J. Galgano S, Burgan CM, Porter KK. Cholangiocarcinoma. ONCOLOGIC IMAGING : A MULTIDISCIPLINARY APPROACH 2023:133-159. [DOI: 10.1016/b978-0-323-69538-1.00011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Anticancer Activity of (±)-Kusunokinin Derivatives towards Cholangiocarcinoma Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238291. [PMID: 36500383 PMCID: PMC9735782 DOI: 10.3390/molecules27238291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
This study aimed to investigate the cytotoxicity and anticancer activity of (±)-kusunokinin derivatives ((±)-TTPG-A and (±)-TTPG-B). The cytotoxicity effect was performed on human cancer cells, including breast cancer, cholangiocarcinoma, colon and ovarian cancer-cells, compared with normal cells, using the MTT assay. Cell-cycle arrest and apoptosis were detected using flow-cytometry analysis. We found that (±)-TTPG-B exhibited the strongest cytotoxicity on aggressive breast-cancer (MDA-MB-468 and MDA-MB-231) and cholangiocarcinoma (KKU-M213), with an IC50 value of 0.43 ± 0.01, 1.83 ± 0.04 and 0.01 ± 0.001 µM, respectively. Interestingly, (±)-TTPG-A and (±)-TTPG-B exhibited less toxicity than (±)-kusunokinin (9.75 ± 0.39 µM) on L-929 cells (normal fibroblasts). Moreover, (±)-TTPG-A predominated the ell-cycle arrest at the S phase, while (±)-TTPG-B caused cell arrest at the G0/G1 phase, in the same way as (±)-kusunokinin in KKU-M213 cells. Both (±)-TTPG-A and (±)-TTPG-B induced apoptosis and multi-caspase activity more than (±)-kusunokinin. Taken together, we conclude that (±)-TTPG-A and (±)-TTPG-B have a strong anticancer effect on cholangiocarcinoma. Moreover, (±)-TTPG-B could be a potential candidate compound for breast cancer and cholangiocarcinoma in the future.
Collapse
|
14
|
Sonsomnuek P, Tarasuk M, Plengsuriyakarn T, Boonprasert K, Na-Bangchang K. Apoptotic and Anti-metastatic Effects of Atractylodes lancea (Thunb.) DC. in a Hamster Model of Cholangiocarcinoma. Asian Pac J Cancer Prev 2022; 23:3093-3101. [PMID: 36172672 PMCID: PMC9810284 DOI: 10.31557/apjcp.2022.23.9.3093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Cholangiocarcinoma (CCA) is a highly aggressive tumor with a greater risk of distant metastasis. The promising anti-CCA activity and safety profile of Atractylodes lancea (AL) have previously been reported in a series of in vitro, in vivo and clinical studies. The present study investigated the effect of AL extract on apoptosis and metastasis signaling pathways in the Opisthorchis viverrini/dimethylnitrosamine (OV/DMN)-induced CCA hamster model. MATERIALS AND METHODS Hamster liver tissues were obtained from the four groups (n = 5 per group), i.e., (i) 5-FU treated CCA (40 µg/mL); (ii) CCA; (iii) AL-treated CCA (5,000 mg/kg), and (iv) normal hamsters. Total RNA was isolated, and the expression levels of apoptosis-related and metastasis-related genes were determined by qRT-PCR analysis. RESULTS The expression levels of p16, caspase-3, caspase-8, caspase-9, Apaf-1, p53 and Eef1a1 were downregulated, while that of the remaining genes were upregulated in CCA hamsters compared with normal hamsters. AL treatment increased the expression of p16, caspase-9, caspase-3, Apaf-1, p53 and E-cadherin and decreased the expression of cyclin D1, cdk4, Bax, Akt/PKB, Bcl-2, Mfge-8, Lass4, S100A6, TGF-β, Smad-2, Smad-3, Smad-4, MMP-9, and N-cadherin. The expression of Eef1a1 was unchanged. CONCLUSION The anti-CCA activity of AL in OV/DMN-induced CCA hamsters could be due to the induction of cell cycle arrest at the G1 phase and activation of the apoptosis pathway, resulting in cancer cell death. The activation of the apoptosis pathway mainly involved the intrinsic pathway (activation of caspase-3 and caspase-9 through p53 and Mfge-8 modulation and downregulation of anti-apoptotic genes Akt and Bcl-2). In addition, AL could also inhibit the canonical TGF-β signaling pathway, MMP-9 and N-cadherin to suppress tumor metastasis.
Collapse
Affiliation(s)
- Paradon Sonsomnuek
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand., Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand.
| | - Mayuri Tarasuk
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand.
| | - Tullayakorn Plengsuriyakarn
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand.
| | - Kanyarat Boonprasert
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand.
| | - Kesara Na-Bangchang
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand.,Director, Drug discovery, and Development Center, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand. ,For Correspondence:
| |
Collapse
|
15
|
Li C, Jin B, Sun H, Wang Y, Zhao H, Sang X, Yang H, Mao Y. Exploring the function of stromal cells in cholangiocarcinoma by three-dimensional bioprinting immune microenvironment model. Front Immunol 2022; 13:941289. [PMID: 35983036 PMCID: PMC9378822 DOI: 10.3389/fimmu.2022.941289] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor immune microenvironment significantly affects tumor progression, metastasis, and clinical therapy. Its basic cell components include tumor-associated endothelial cells, fibroblasts, and macrophages, all of which constitute the tumor stroma and microvascular network. However, the functions of tumor stromal cells have not yet been fully elucidated. The three-dimensional (3D) model created by 3D bioprinting is an efficient way to illustrate cellular interactions in vitro. However, 3D bioprinted model has not been used to explore the effects of stromal cells on cholangiocarcinoma cells. In this study, we fabricated 3D bioprinted models with tumor cells and stromal cells. Compared with cells cultured in two-dimensional (2D) environment, cells in 3D bioprinted models exhibited better proliferation, higher expression of tumor-related genes, and drug resistance. The existence of stromal cells promoted tumor cell activity in 3D models. Our study shows that 3D bioprinting of an immune microenvironment is an effective way to study the effects of stromal cells on cholangiocarcinoma cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huayu Yang
- *Correspondence: Huayu Yang, ; Yilei Mao,
| | - Yilei Mao
- *Correspondence: Huayu Yang, ; Yilei Mao,
| |
Collapse
|
16
|
Gao H, He Z, Gao C, Liu N, Zhang Z, Niu W, Niu J, Peng C. Exosome-transmitted miR-3124-5p promotes cholangiocarcinoma development via targeting GDF11. Front Oncol 2022; 12:936507. [PMID: 35978818 PMCID: PMC9376483 DOI: 10.3389/fonc.2022.936507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Objective Cholangiocarcinoma (CHOL) is a deadly cancer worldwide with limited available therapies. The aim of this study was to investigate key exosomal miRNAs and their functions in CHOL development. Methods Serum exosomes were isolated from patients with CHOL and healthy controls, followed by miRNA sequencing for identifying differentially expressed miRNAs (DEMs) and their functions. Then, the expression of key DEMs was experimentally validated in exosomes from clinical CHOL patients and CHOL cells. The effects of overexpression of key DEMs on CHOL cell migration and proliferation were investigated. A key exosomal DEM miR-3124-5p was identified. The effects of overexpression or knockdown of exosomal miR-3124-5p on the proliferation, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs) were investigated. Moreover, the function of exosomal miR-3124-5p on tumor growth in vivo was explored. Results A total of 632 exosomal DEMs were identified between CHOL and control samples. Target genes of DEMs were significantly enriched in pathways, such as the p53 signaling pathway. miR-3124-5p was upregulated in serum exosomes from CHOL patients and exosomes from CHOL cells, and overexpression of miR-3124-5p promoted RBE cell migration and viability. Moreover, overexpression of exosomal miR-3124-5p promoted the proliferation, migration, and angiogenesis of HUVECs, while knockdown of miR-3124-5p had the opposite effect. miR-3124-5p could target growth differentiation factor 11 (GDF11) and downregulate GDF11 expression. Furthermore, exosomal miR-3124-5p promoted tumor growth in vivo. Conclusions Our findings revealed that exosome-encapsulated miR-3124-5p promoted the malignant progression of CHOL by targeting GDF11. Exosomal miR-3124-5p and GDF11 could be promising biomarkers or therapeutic targets for CHOL.
Collapse
Affiliation(s)
- Huijie Gao
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Jinan, China
| | - Zhaobin He
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Jinan, China
| | - Chao Gao
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Jinan, China
| | - Naiqing Liu
- Department of General Surgery, Linyi Central Hospital, Linyi, China
| | - Zhaoyang Zhang
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Jinan, China
- Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Weibo Niu
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Jinan, China
| | - Jun Niu
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Jinan, China
| | - Cheng Peng
- Department of Hepatobiliary Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Jinan, China
- *Correspondence: Cheng Peng,
| |
Collapse
|
17
|
In Silico Target Identification of Galangin, as an Herbal Flavonoid against Cholangiocarcinoma. Molecules 2022; 27:molecules27144664. [PMID: 35889537 PMCID: PMC9351686 DOI: 10.3390/molecules27144664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a heterogenous group of malignancies in the bile duct, which proliferates aggressively. CCA is highly prevalent in Northeastern Thailand wherein it is associated with liver fluke infection, or Opisthorchis viverrini (OV). Most patients are diagnosed in advanced stages, when the cancer has metastasized or severely progressed, thereby limiting treatment options. Several studies investigate the effect of traditional Thai medicinal plants that may be potential therapeutic options in combating CCA. Galangin is one such herbal flavonoid that has medicinal properties and exhibits anti-tumor properties in various cancers. In this study, we investigate the role of Galangin in inhibiting cell proliferation, invasion, and migration in OV-infected CCA cell lines. We discovered that Galangin reduced cell viability and colony formation by inducing apoptosis in CCA cell lines in a dose-dependent manner. Further, Galangin also effectively inhibited invasion and migration in OV-infected CCA cells by reduction of MMP2 and MMP9 enzymatic activity. Additionally, using proteomics, we identified proteins affected post-treatment with Galangin. Enrichment analysis revealed that several kinase pathways were affected by Galangin, and the signature corroborated with that of small molecule kinase inhibitors. Hence, we identified putative targets of Galangin using an in silico approach which highlighted c-Met as candidate target. Galangin effectively inhibited c-Met phosphorylation and subsequent signaling in in vitro CCA cells. In addition, Galangin was able to inhibit HGF, a mediator of c-Met signaling, by suppressing HGF-stimulated invasion, as well as migration and MMP9 activity. This shows that Galangin can be a useful anti-metastatic therapeutic strategy in a subtype of CCA patients.
Collapse
|
18
|
Wang K, Chen YF, Yang YCSH, Huang HM, Lee SY, Shih YJ, Li ZL, Whang-Peng J, Lin HY, Davis PJ. The power of heteronemin in cancers. J Biomed Sci 2022; 29:41. [PMID: 35705962 PMCID: PMC9202199 DOI: 10.1186/s12929-022-00816-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Heteronemin (Haimian jing) is a sesterterpenoid-type natural marine product that is isolated from sponges and has anticancer properties. It inhibits cancer cell proliferation via different mechanisms, such as reactive oxygen species (ROS) production, cell cycle arrest, apoptosis as well as proliferative gene changes in various types of cancers. Recently, the novel structure and bioactivity evaluation of heteronemin has received extensive attention. Hormones control physiological activities regularly, however, they may also affect several abnormalities such as cancer. L-Thyroxine (T4), steroid hormones, and epidermal growth factor (EGF) up-regulate the accumulation of checkpoint programmed death-ligand 1 (PD-L1) and promote inflammation in cancer cells. Heteronemin suppresses PD-L1 expression and reduces the PD-L1-induced proliferative effect. In the current review, we evaluated research and evidence regarding the antitumor effects of heteronemin and the antagonizing effects of non-peptide hormones and growth factors on heteronemin-induced anti-cancer properties and utilized computational molecular modeling to explain how these ligands interacted with the integrin αvβ3 receptors. On the other hand, thyroid hormone deaminated analogue, tetraiodothyroacetic acid (tetrac), modulates signal pathways and inhibits cancer growth and metastasis. The combination of heteronemin and tetrac derivatives has been demonstrated to compensate for anti-proliferation in cancer cells under different circumstances. Overall, this review outlines the potential of heteronemin in managing different types of cancers that may lead to its clinical development as an anticancer agent.
Collapse
Affiliation(s)
- Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taipei, 11031, Taiwan
| | - Yi-Fong Chen
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, 11031, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ya-Jung Shih
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taipei, 11031, Taiwan.,Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Zi-Lin Li
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taipei, 11031, Taiwan.,Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jacqueline Whang-Peng
- Cancer Center, Wan Fang Hospital, Taipei Medical University, No. 111, Section 3, Xinglong Road, Wenshan District, Taipei City, 116, Taipei, 11031, Taiwan.
| | - Hung-Yun Lin
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan. .,Cancer Center, Wan Fang Hospital, Taipei Medical University, No. 111, Section 3, Xinglong Road, Wenshan District, Taipei City, 116, Taipei, 11031, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, 12144, USA.
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, 12144, USA.,Department of Medicine, Albany Medical College, Albany, NY12144, USA
| |
Collapse
|
19
|
Sarker K, Ghosh A, Saha A, Mishra S, Sen S. Pharmacophore Based Design of Probable FGFR-1 Inhibitors from the 3D
Crystal Structure of Infigratinib - A Drug Used in the Treatment of
Cholangiocarcinomas. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666211007113720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Pemigatinib (INCB054828) and Infigratinib (BGJ398) are the few selective
drugs that are approved by the FDA to treat cholangiocarcinoma, a rare form of bile duct cancer. Infigratinib
is a pan FGFR inhibitor and has been found promising in Phase-3, first-line PROOF clinical trial. So,
screening drug-like compounds having similar pharmacophoric features like infigratinib is the inspiration
of the present work.
Objective:
The objective was to identify drug-like compounds with similar pharmacophoric features as in
infigratinib. The compounds screened through the 3D query pharmacophore of infigratinib were also
predicted for ADMET properties so that the compounds may have good bioavailability.
Method:
A pharmacophore was generated from the crystal structure of infigratinib with several pharmacophoric
features such as hydrogen bond donor, hydrophobic, positive ionizable, and ring aromatic.
MayBridge database containing 65,263 compounds was used for virtual screening (VS) using LibDock.
The initial Hit compounds were subjected to ADMET predictions. Finally, two Hit compounds were selected
and docked with the FGFR-1 receptor to predict the interaction of the ligand atoms with the amino
acid residues of the receptor's active site.
Result:
The fit score for infigratinib, N-(4-fluorophenyl)-2-(5-((2-(4-methoxy-2,5-dimethylphenyl)-2-
oxoethyl)thio)-4-methyl-4H-1,2,4-triazol-3-yl)acetamide (Hit-1) and 4-(4-((2-(5,6-dimethyl-1H-benzo[d]
imidazol-2-yl)ethyl)carbamoyl)pyridin-2-yl)-1-methylpiperazin-1-ium (Hit-4) is 4.58901, 4.36649, and
3.71732, respectively. The LibDock score of infigratinib, Hit-1, and Hit-4 is 122.474, 123.289, and
123.353, respectively. The binding affinity score (-PLP1) of infigratinib, Hit-1, and Hit-4 is -143.19, -
102.72, and -91.71.
Conclusion:
The present study concluded that the two compounds designated as Hit-1 and Hit-4 have
been identified as binders of FGFR-1, and Hit-4 occupies the whole pharmacophoric space of infigratinib,
and both the compounds LibDock scores are better than the infigratinib. The two compounds Hit-1 and
Hit-4 may be synthesized and studied for their enzyme inhibition assay on FGFR-1 and biologically evaluated
on different cell lines for Cholangiocarcinoma.
Collapse
Affiliation(s)
- Koushik Sarker
- A.P.C. Ray Memorial Cancer Chemotherapeutic Research Unit, College of Pharmaceutical Sciences, Mohuda, Berhampur,
Odisha 760002, India
| | - Avijit Ghosh
- A.P.C. Ray Memorial Cancer Chemotherapeutic Research Unit, College of Pharmaceutical Sciences, Mohuda, Berhampur,
Odisha 760002, India
| | - Abhijit Saha
- A.P.C. Ray Memorial Cancer Chemotherapeutic Research Unit, College of Pharmaceutical Sciences, Mohuda, Berhampur,
Odisha 760002, India
| | - Suvasish Mishra
- A.P.C. Ray Memorial Cancer Chemotherapeutic Research Unit, College of Pharmaceutical Sciences, Mohuda, Berhampur,
Odisha 760002, India
| | - Subrata Sen
- A.P.C. Ray Memorial Cancer Chemotherapeutic Research Unit, College of Pharmaceutical Sciences, Mohuda, Berhampur,
Odisha 760002, India
| |
Collapse
|
20
|
Chantree P, Chumkiew S, Jamklang M, Martviset P. Cytotoxic activities of ethanolic crude extracts from fruiting bodies of bamboo mushrooms (Dictyophora spp.) against cholangiocarcinoma cells. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.72098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Cholangiocarcinoma (CCA) is a highly progressive tumor. The standard chemotherapy varies in its effectiveness, with generally low efficacy. So, the discovery of novel chemotherapy is still required. The objective of this preliminary study was to determine the cytotoxic effects induced by three kinds of bamboo mushrooms (Dictyophora indusiata or Chinese bamboo mushroom; Ch-DTP, Short skirt bamboo mushroom (Thai isolate); Th-DTP, and orange skirt bamboo mushroom; Or-DTP) on CCA cells.
Materials and methods: CCA cell lines, including CL-6, HuCCT1, HuH28, and OUMS normal fibroblast cells, were treated with various concentrations of DTP extracts. The MTT assay was used to determine cytotoxicity, and cell morphology was observed by using phase-contrast microscopy.
Results and discussion: The results suggested that Ch-DTP effectively killed all three CCA cell lines in both low (0.3 mg/mL) and high (0.6 mg/mL) doses, but Th-DTP and Or-DTP had significantly reduced cell viability only at high doses (p<0.001). Ch-DTP had the best effect by showing a response of more than 50% at a concentration of 0.3 mg/mL. Th-DTP had moderate effects at a concentration of lower than 0.6 mg/mL but worthwhile at higher concentrations, whereas Or-DTP had limited effects at concentrations of 0.4 mg/mL and downward, although the effects were significantly increased in the higher concentration range. Morphology of the Ch-DTP treated cells was greatly transformed both at low and high doses, but Th-DTP and Or-DTP showed definite alteration only at high doses. The morphological changes revealed apoptotic induction. In OUMS cells, no effects were recognized with any of the three DTPs.
Conclusion: This study indicated that DTP extracts could induce cytotoxicity in cholangiocarcinoma, with a high potential of being an effective therapeutic agent.
Graphical abstract:
Collapse
|
21
|
Tumor-associated macrophages promote cholangiocarcinoma progression via exosomal Circ_0020256. Cell Death Dis 2022; 13:94. [PMID: 35091535 PMCID: PMC8799724 DOI: 10.1038/s41419-022-04534-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 12/18/2022]
Abstract
This study investigated the exosomal circular RNAs (CircRNAs) produced by tumor-associated macrophages and delivered into the microenvironment of cholangiocarcinoma cells in order to use them as molecular targets for clinical therapy. Tumor-associated M2 macrophages (TAMs) were induced from THP-1 cells and identified by flow cytometry. The TAM-secreted exosomes were isolated from conditioned medium and a CircRNA microarray assay was performed to identify CircRNAs that were uniquely expressed in the isolated exosomes. Circ_0020256 was especially identified based on having the highest differential expression level among all of the CircRNA candidates. In vitro and in vivo experiments were performed to assess the effects of TAMs, exosomes, and Circ_0020256 on the growth and migration of cholangiocarcinoma (CCA) cells. The induced TAMs promoted the proliferation, migration, and invasion of CCA cells and those effects were mediated by exosomes secreted by the TAMs. In CCA cells (RBE and HCCC-9810), Circ_0020256 significantly promoted cellular activity by interacting with its intra-cellular microRNA target, miR-432-5p. In contrast, overexpression of transcription factor E2F3 in CCA cells restored the CCA cellular activities that were inhibited by miR-432-5p. On the other hand, treatment with small interference RNA (siRNA) for Circ_0020256 inhibited CCA cell proliferation, migration, and invasion both in vitro and in vivo. In conclusion, Circ_0020256 in TAM-secreted exosomes promoted the proliferation, migration, and invasion of CCA cells, and that promotional activity was regulated via a Circ_0020256/miR-432-5p/E2F3 axis.
Collapse
|
22
|
Deng J, Liu L, Li L, Sun J, Yan F. Hesperidin delays cell cycle progression into the G0/G1 phase via suspension of MAPK signaling pathway in intrahepatic cholangiocarcinoma. J Biochem Mol Toxicol 2022; 36:e22981. [PMID: 34984768 DOI: 10.1002/jbt.22981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/20/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) derived from epithelial cells of bile ducts is highly aggressive tumor. Hesperidin extracted from citrus fruits is a promising antitumor compound. The purpose of this study is to explore molecular mechanism by which hesperidin affects cholangiocarcinoma progression. Cellular functional experiments were performed and subcutaneous transplant xenograft model was established. Our findings indicated that hesperidin suppressed iCCA cell proliferation in time- and concentration-dependent manners. Hesperidin treatment induced cell cycle arrest at G0/G1 phase, whereas it has no effect on cell apoptosis. Further, data revealed that hesperidin attenuated MEK5 and ERK5 phosphorylation and inhibited ERK5 nuclear localization by reducing MEKK2 activity in MAPK signaling pathway. It could cause alterations in expression of the downstream genes, including CDK4, CDK6 (cell cycle protein kinases), Cyclin D1 (a G1/S checkpoint), P21, and P27 (two G1-checkpoint CDK inhibitors), thereby arresting cell cycle distribution of iCCA cells in the G0/G1 phase. BIX02189 treatment, a specific inhibitor of MEK5, in combination with hesperidin displayed synergistic inhibitory effects on cell cycle arrest and gene expressions. Furthermore, hesperidin administration alone or in combination with MEK5 inhibitor BIX02189 restrained iCCA tumor growth in vivo. Taken together, these results confirmed that hesperidin regulated the expression of cell cycle-related genes by inhibiting the activation of MEKK2/MEK5/ERK5 signaling pathway, inducing iCCA cell cycle arrest at the G0/G1 phase. Our study provides a theoretical foundation and experimental basis for further development of hesperidin as a therapeutic agent for iCCA treatment.
Collapse
Affiliation(s)
- Jie Deng
- Department of Oncology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| | - Li Liu
- Department of Oncology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| | - Li Li
- Department of Oncology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| | - Jianhai Sun
- Department of Oncology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| | - Fei Yan
- Department of Oncology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| |
Collapse
|
23
|
Klinhom-On N, Seubwai W, Sawanyawisuth K, Obchoei S, Mahalapbutr P, Wongkham S. FOXM1 inhibitor, Siomycin A, synergizes and restores 5-FU cytotoxicity in human cholangiocarcinoma cell lines via targeting thymidylate synthase. Life Sci 2021; 286:120072. [PMID: 34688691 DOI: 10.1016/j.lfs.2021.120072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
AIMS 5-Fluorouracil (5-FU), a thymidylate synthase (TS) inhibitor, has been used as the first-line chemotherapeutic drug for cholangiocarcinoma (CCA). The side effects and drug resistance have developed the limits of the clinical application of 5-FU in CCA treatment. Upregulation of Forkhead box M1 (FOXM1) and TS were shown to play a significant role in 5-FU resistance. In this study, the effect of Siomycin A (SioA), a FOXM1 inhibitor, on enhancing 5-FU cytotoxicity and reversing 5-FU resistance in CCA cell lines were demonstrated. MAIN METHODS Human CCA cell lines, KKU-100 and KKU-213A were used. Cell viability was determined using MTT assay. Expression of FOXM1 and TS proteins were determined using Western blotting. FOXM1 mRNA expression was quantitated using real-time PCR. The combination and dose reduction (DRI) were analyzed according to the Chou and Talalay method. KEY FINDING Single drug treatment of 5-FU and SioA effectively inhibited CCA cell growth in dose and time dependent fashions. The two CCA cell lines had different responses to 5-FU but exhibited similar sensitivity to SioA. FOXM1 and TS expression were increased in the 5-FU treated cells but were suppressed in the SioA treated cells. A direct binding of SioA, to TS and 5,10-methylene-tetrahydrofolate as an inactive ternary complex was simulated. The combined treatment of 5-FU with SioA showed a synergistic effect with a high DRI and restored 5-FU sensitivity in the 5-FU resistant cells. SIGNIFICANCE Targeting FOXM1 using SioA in combination with 5-FU might be a strategy to overcome the 5-FU resistance in CCA.
Collapse
|