1
|
Nair SR, Nihad M, Shenoy P S, Gupta S, Bose B. Unveiling the effects of micro and nano plastics in embryonic development. Toxicol Rep 2025; 14:101954. [PMID: 40104046 PMCID: PMC11914762 DOI: 10.1016/j.toxrep.2025.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/20/2025] Open
Abstract
The improper disposal and degradation of plastics causes the formation and spread of micro and nano-sized plastic particles in the ecosystem. The widespread presence of these micro and nanoplastics leads to their accumulation in the biotic and abiotic components of the environment, thereby affecting the cellular and metabolic functions of organisms. Despite being classified as xenobiotic agents, information about their sources and exposure related to reproductive health is limited. Micro and nano plastic exposure during early developmental stages can cause abnormal embryonic development. It can trigger neurotoxicity and inflammatory responses as well in the developing embryo. In embryonic development, a comprehensive study of their role in pluripotency, gastrulation, and multi-differentiation potential is scarce. Due to ethical concerns associated with the direct use of human embryos, pluripotent cells and its 3D in vitro models (with cell lines) are an alternative source for effective research. Thus, the 3D Embryoid body (EB) model provides a platform for conducting embryotoxicity and multi-differentiation potential research. Pluripotent stem cells such as embryonic and induced pluripotent stem cells derived embryoid bodies (EBs) serve as a robust 3D in vitro model that mimics characteristics similar to that of human embryos. Thus, the 3D EB model provides a platform for conducting embryotoxicity and multi-differentiation potential research. Accordingly, this review discusses the significance of 3D in vitro models in conducting effective embryotoxicity research. Further, we also evaluated the possible sources/routes of microplastic generation and analyzed their surface chemistry and cytotoxic effects reported till date.
Collapse
Affiliation(s)
- Sanjay R Nair
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Muhammad Nihad
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Sebanti Gupta
- Division of Data Analytics, Bioinformatics and Structural Biology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| |
Collapse
|
2
|
Wang Y, Siebzehnrubl D, Weller M, Weiss T, Siebzehnrubl FA, Newland B. Vortioxetine: A Potential Drug for Repurposing for Glioblastoma Treatment via a Microsphere Local Delivery System. ACS Biomater Sci Eng 2025; 11:2203-2215. [PMID: 40167528 PMCID: PMC12001186 DOI: 10.1021/acsbiomaterials.5c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Drug repurposing is an attractive route for finding new therapeutics for brain cancers such as glioblastoma. Local administration of drugs to brain tumors or the postsurgical resection cavity holds promise to deliver a high dose to the target site with minimal off-target effects. Drug delivery systems aim to sustain the release of the drug at the target site but typically exhibit drawbacks such as a poor safety profile, uncontrolled/rapid drug release, or poor control over synthesis parameters/material dimensions. Herein, we analyzed the antidepressant vortioxetine and showed in vitro that it causes a greater loss of viability in glioblastoma cells than it does to normal primary human astrocytes. We developed a new droplet microfluidic-based emulsion method to reproducibly produce vortioxetine-loaded poly(lactic-co-glycolic) acid (PLGA) microspheres with tight size control (36.80 ± 1.96 μm). The drug loading efficiency was around 90% when 9.1% (w/w) drug was loaded into the microspheres, and drug release could be sustained for three to 4 weeks. The vortioxetine microspheres showed robust antiglioblastoma efficacy in both 2D monolayer and 3D spheroid patient-derived glioblastoma cells, highlighting the potential of combining an antidepressant with sustained local delivery as a new therapeutic strategy.
Collapse
Affiliation(s)
- Yu Wang
- School
of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| | - Dorit Siebzehnrubl
- Cardiff
University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff CF24 4HQ, United Kingdom
| | - Michael Weller
- Department
of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
| | - Tobias Weiss
- Department
of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
| | - Florian A. Siebzehnrubl
- Cardiff
University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff CF24 4HQ, United Kingdom
| | - Ben Newland
- School
of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| |
Collapse
|
3
|
Gholami K, Izadi M, Heshmat R, Aghamir SMK. Exploring the potential of solid and liquid amniotic membrane biomaterial in 3D models for prostate cancer research: A comparative analysis with 2D models. Tissue Cell 2025; 93:102726. [PMID: 39808865 DOI: 10.1016/j.tice.2025.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/13/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
OBJECTIVE Research and tools are necessary for understanding prostate cancer biology. 3D cell culture models have been created to overcome the limitations of animal models and 2D cell culture. The amniotic membrane (AM), a natural biomaterial, emerges as an ideal scaffold for 3D cultures due to its accessibility and incorporation of the extracellular matrix (ECM) in both solid and liquid forms. METHODS In this study, decellularized human amniotic membranes (DAM) and AM hydrogel were obtained and characterized. The solid DAM scaffold was employed to analyse cell proliferation, cell cycle, migration, apoptosis, and the content of epithelial-mesenchymal transition (EMT) proteins in prostate cancer cells in comparison to traditional 2D culture conditions under androgen deprivation treatment. Additionally, the liquid form of AM was assessed for its potential for 3D cultures of prostate cancer cells such as cells embedded in ECM, spheroid encapsulation, and invasion, with a parallel comparison to collagen. RESULTS The 3D DAM scaffold significantly impacted cancer cell migration, morphology, proliferation, and EMT protein expression compared to 2D models. AM hydrogel effectively preserved the structural integrity of spheroids and led to lower proliferated cells embedded in AM hydrogel compared to 2D culture. AM hydrogel, like collagen, has the potential to be utilized for simulating in vitro cellular invasion from the ECM. CONCLUSION In summary, the potential of the biomaterial of DAM and AM hydrogel in creating 3D culture models, combined with the brief duration required for decellularizing the AM, suggests that these materials offer an ideal tool for in vitro prostate cancer research.
Collapse
Affiliation(s)
- Keykavos Gholami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Izadi
- Department of Stem Cells Technology and Tissue Regeneration, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
4
|
Ordóñez-Rubiano EG, Rincón-Arias N, Shelton WJ, Salazar AF, Sierra MA, Bertani R, Gómez-Amarillo DF, Hakim F, Baldoncini M, Payán-Gómez C, Cómbita AL, Ordonez-Rubiano SC, Parra-Medina R. Current Applications of Single-Cell RNA Sequencing in Glioblastoma: A Scoping Review. Brain Sci 2025; 15:309. [PMID: 40149830 PMCID: PMC11940614 DOI: 10.3390/brainsci15030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Background and Objective: The discovery of novel molecular biomarkers via next-generation sequencing technologies has revolutionized how glioblastomas (GBMs) are classified nowadays. This has resulted in more precise diagnostic, prognostic, and therapeutic approaches to address this malignancy. The present work examines the applications of single-cell RNA sequencing (scRNA-seq) in GBM, focusing on its potential to address tumor complexity and therapeutic resistance and improve patient outcomes. Methods: A scoping review of original studies published between 2009 and 2024 was conducted using the PUBMED and EMBASE databases. Studies in English or Spanish related to single-cell analysis and GBM were included. Key Findings: The database search yielded 453 publications. Themes related to scRNA-seq applied for the diagnosis, prognosis, treatment, and understanding of the cancer biology of GBM were used as criteria for article selection. Of the 24 studies that were included in the review, 11 focused on the tumor microenvironment and cell subpopulations in GBM samples, 5 investigated the use of sequencing to elucidate the GBM cancer biology, 3 examined disease prognosis using sequencing models, 3 applied translational research through scRNA-seq, and 2 addressed treatment-related problems in GBM elucidated by scRNA-seq. Conclusions: This scoping review explored the various clinical applications of scRNA-seq technologies in approaching GBM. The findings highlight the utility of this technology in unraveling the complex cellular and immune landscapes of GBM, paving the way for improved diagnosis and personalized treatments. This cutting-edge approach might strengthen treatment strategies against tumor progression and recurrence, setting the stage for multi-targeted interventions that could significantly improve outcomes for patients with aggressive, treatment-resistant GBMs.
Collapse
Affiliation(s)
- Edgar G. Ordóñez-Rubiano
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Department of Neurosurgery, Fundación Universitaria de Ciencias de la Salud—FUCS, Hospital de San José—Sociedad de Cirugía de Bogotá, Bogotá 110111, Colombia;
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá 111071, Colombia; (D.F.G.-A.)
| | - Nicolás Rincón-Arias
- Department of Neurosurgery, Fundación Universitaria de Ciencias de la Salud—FUCS, Hospital de San José—Sociedad de Cirugía de Bogotá, Bogotá 110111, Colombia;
| | - William J. Shelton
- School of Medicine, Universidad de los Andes, Bogotá 110111, Colombia; (W.J.S.); (A.F.S.)
| | - Andres F. Salazar
- School of Medicine, Universidad de los Andes, Bogotá 110111, Colombia; (W.J.S.); (A.F.S.)
| | | | - Raphael Bertani
- Division of Neurosurgery, University of São Paulo, São Paulo 01246-904, Brazil;
| | - Diego F. Gómez-Amarillo
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá 111071, Colombia; (D.F.G.-A.)
| | - Fernando Hakim
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá 111071, Colombia; (D.F.G.-A.)
| | - Matías Baldoncini
- Laboratory of Microsurgical Neuroanatomy, Second Chair of Gross Anatomy, School of Medicine, University of Buenos Aires, Buenos Aires B1430, Argentina;
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, Cesar 202017, Colombia
| | - Alba Lucia Cómbita
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Grupo de Investigación Traslacional en Oncología, Instituto Nacional de Cancerología, Bogotá 111321, Colombia
| | - Sandra C. Ordonez-Rubiano
- Department of Chemistry, School of Humanities and Sciences, Stanford University, Stanford, CA 94305, USA;
| | - Rafael Parra-Medina
- Department of Pathology, Instituto Nacional de Cancerología, Bogotá 111511, Colombia;
- Research Institute, Fundación Universitaria de Ciencias de la Salud—FUCS, Hospital de San José—Sociedad de Cirugía de Bogotá, Bogotá 111711, Colombia
| |
Collapse
|
5
|
Shi A, Shi Y, Li J, Ye M, Ma X, Peng Y, Gai K, Chen J. Advancements in 3D gel culture systems for enhanced angiogenesis in bone tissue engineering. J Mater Chem B 2025; 13:3516-3527. [PMID: 39998426 DOI: 10.1039/d4tb01139b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Angiogenesis-osteogenesis coupling is a crucial process in bone tissue engineering, requiring a suitable material structure for vessel growth. Recently, the 3D culture system has gained significant attention due to its benefits in cell growth, proliferation and tissue regeneration. Its most notable advantage is its ECM-like function, which supports endothelial cell adhesion and facilitates the formation of vascular-like networks-crucial for angiogenesis-osteogenesis coupling. Hydrogels, with their highly hydrophilic polymer network resembling the extracellular matrix, make the 3D gel culture system an ideal approach for angiogenesis due to its cellular integrity and adjustable properties. This article reviews the current use of 3D gel culture systems in bone tissue engineering, covering substrates, characteristics and processing technologies, thereby offering readers profound insights into these systems.
Collapse
Affiliation(s)
- Aijing Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yixin Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Minghan Ye
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Xiaoqing Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yuke Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Kuo Gai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Junyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Bos TA, Polyakova E, van Gils JM, de Vries AAF, Goumans MJ, Freund C, DeRuiter MC, Jongbloed MRM. A systematic review and embryological perspective of pluripotent stem cell-derived autonomic postganglionic neuron differentiation for human disease modeling. eLife 2025; 14:e103728. [PMID: 40071727 PMCID: PMC11961123 DOI: 10.7554/elife.103728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/13/2025] [Indexed: 04/02/2025] Open
Abstract
Human autonomic neuronal cell models are emerging as tools for modeling diseases such as cardiac arrhythmias. In this systematic review, we compared 33 articles applying 14 different protocols to generate sympathetic neurons and 3 different procedures to produce parasympathetic neurons. All methods involved the differentiation of human pluripotent stem cells, and none employed permanent or reversible cell immortalization. Almost all protocols were reproduced in multiple pluripotent stem cell lines, and over half showed evidence of neural firing capacity. Common limitations in the field are a lack of three-dimensional models and models that include multiple cell types. Sympathetic neuron differentiation protocols largely mirrored embryonic development, with the notable absence of migration, axon extension, and target-specificity cues. Parasympathetic neuron differentiation protocols may be improved by including several embryonic cues promoting cell survival, cell maturation, or ion channel expression. Moreover, additional markers to define parasympathetic neurons in vitro may support the validity of these protocols. Nonetheless, four sympathetic neuron differentiation protocols and one parasympathetic neuron differentiation protocol reported more than two-thirds of cells expressing autonomic neuron markers. Altogether, these protocols promise to open new research avenues of human autonomic neuron development and disease modeling.
Collapse
Affiliation(s)
- Thomas A Bos
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
| | - Elizaveta Polyakova
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
| | - Janine Maria van Gils
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
| | | | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical CentreLeidenNetherlands
| | - Christian Freund
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
- Leiden hiPSC Centre, Leiden University Medical CentreLeidenNetherlands
| | - Marco C DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
- Centre for Congenital Heart Disease Amsterdam-Leiden (CAHAL)LeidenNetherlands
| | - Monique RM Jongbloed
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
- Department of Cardiology, Leiden University Medical CentreLeidenNetherlands
- Centre for Congenital Heart Disease Amsterdam-Leiden (CAHAL)LeidenNetherlands
| |
Collapse
|
7
|
Bäumchen A, Balsters JM, Nenninger BS, Diebels S, Zimmermann H, Roland M, Gepp MM. Towards a Comprehensive Framework for Made-to-Measure Alginate Scaffolds for Tissue Engineering Using Numerical Simulation. Gels 2025; 11:185. [PMID: 40136890 PMCID: PMC11942394 DOI: 10.3390/gels11030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
Alginate hydrogels are integral to many cell-based models in tissue engineering and regenerative medicine. As a natural biomaterial, the properties of alginates can vary and be widely adjusted through the gelation process, making them versatile additives or bulk materials for scaffolds, microcarriers or encapsulation matrices in tissue engineering and regenerative medicine. The requirements for alginates used in biomedical applications differ significantly from those for technical applications. Particularly, the generation of novel niches for stem cells requires reliable and predictable properties of the resulting hydrogel. Ultra-high viscosity (UHV) alginates possess alginates with special physicochemical properties, and thus far, numerical simulations for the gelation process are currently lacking but highly relevant for future designs of stem cell niches and cell-based models. In this article, the gelation of UHV alginates is studied using a microscopic approach for disc- and sphere-shaped hydrogels. Based on the collected data, a multiphase continuum model was implemented to describe the cross-linking process of UHV alginate polysaccharides. The model utilizes four coupled kinetic equations based on mixture theory, which are solved using finite element software. A good agreement between simulation results and experimental data was found, establishing a foundation for future refinements in the development of an interactive tool for cell biologists and material scientists.
Collapse
Affiliation(s)
- Alexander Bäumchen
- Applied Mechanics, Saarland University, Campus A4 2, 66123 Saarbruecken, Germany; (A.B.); (S.D.)
| | - Johnn Majd Balsters
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany; (J.M.B.); (B.-S.N.); (H.Z.); (M.M.G.)
- Molecular and Cellular Biotechnology/Nanotechnology, Saarland University, Campus Saarbruecken, 66123 Saarbruecken, Germany
| | - Beate-Sophie Nenninger
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany; (J.M.B.); (B.-S.N.); (H.Z.); (M.M.G.)
- Molecular and Cellular Biotechnology/Nanotechnology, Saarland University, Campus Saarbruecken, 66123 Saarbruecken, Germany
| | - Stefan Diebels
- Applied Mechanics, Saarland University, Campus A4 2, 66123 Saarbruecken, Germany; (A.B.); (S.D.)
| | - Heiko Zimmermann
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany; (J.M.B.); (B.-S.N.); (H.Z.); (M.M.G.)
- Molecular and Cellular Biotechnology/Nanotechnology, Saarland University, Campus Saarbruecken, 66123 Saarbruecken, Germany
- Faculty of Marine Science, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile
| | - Michael Roland
- Applied Mechanics, Saarland University, Campus A4 2, 66123 Saarbruecken, Germany; (A.B.); (S.D.)
| | - Michael M. Gepp
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany; (J.M.B.); (B.-S.N.); (H.Z.); (M.M.G.)
| |
Collapse
|
8
|
Holme S, Richardson SM, Bella J, Pinali C. Hydrogels for Cardiac Tissue Regeneration: Current and Future Developments. Int J Mol Sci 2025; 26:2309. [PMID: 40076929 PMCID: PMC11900105 DOI: 10.3390/ijms26052309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Myocardial infarction remains a leading cause of death worldwide due to the heart's limited regenerative capability and the current lack of viable therapeutic solutions. Therefore, there is an urgent need to develop effective treatment options to restore cardiac function after a heart attack. Stem cell-derived cardiac cells have been extensively utilised in cardiac tissue regeneration studies. However, the use of Matrigel as a substrate for the culture and maturation of these cells has been a major limitation for the translation of this research into clinical application. Hydrogels are emerging as a promising system to overcome this problem. They are biocompatible and can provide stem cells with a supportive scaffold that mimics the extracellular matrix, which is essential for repairing damaged tissue in the myocardium after an infarction. Thus, hydrogels provide an alternative and reproducible option in addressing myocardial infarction due to their unique potential therapeutic benefits. This review explores the different types of natural and synthetic polymers used to create hydrogels and their various delivery methods, the most common being via injection and cardiac patches and other applications such as bioprinting. Many challenges remain before hydrogels can be used in a clinical setting, but they hold great promise for the future of cardiac tissue regeneration.
Collapse
Affiliation(s)
- Sonja Holme
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (S.H.); (S.M.R.)
| | - Stephen M. Richardson
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (S.H.); (S.M.R.)
| | - Jordi Bella
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (S.H.); (S.M.R.)
| | - Christian Pinali
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
9
|
Isinelli G, Failla S, Plebani R, Prete A. Exploring oncology treatment strategies with tyrosine kinase inhibitors through advanced 3D models (Review). MEDICINE INTERNATIONAL 2025; 5:13. [PMID: 39790707 PMCID: PMC11707505 DOI: 10.3892/mi.2024.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025]
Abstract
The limitations of two-dimensional (2D) models in cancer research have hindered progress in fully understanding the complexities of drug resistance and therapeutic failures. However, three-dimensional (3D) models provide a more accurate representation of in vivo environments, capturing critical cellular interactions and dynamics that are essential in evaluating the efficacy and toxicity of tyrosine kinase inhibitors (TKIs). These advanced models enable researchers to explore drug resistance mechanisms with greater precision, optimizing treatment strategies and improving the predictive accuracy of clinical outcomes. By leveraging 3D models, it will be possible to deepen the current understanding of TKIs and drive forward innovations in cancer treatment. The present review discusses the limitations of 2D models and the transformative impact of 3D models on oncology research, highlighting their roles in addressing the challenges of 2D systems and advancing TKI studies.
Collapse
Affiliation(s)
- Giorgia Isinelli
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02115, USA
- Department of Chemistry, Biology and Biotechnology, University of Perugia, I-06123 Perugia, Italy
| | - Sharon Failla
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Roberto Plebani
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D'Annunzio’ University, I-66100 Chieti-Pescara, Italy
| | - Alessandro Prete
- Department of Clinical and Experimental Medicine, Endocrine Unit 2, University of Pisa, I-56122 Pisa, Italy
| |
Collapse
|
10
|
Bianchi JRDO, Carvalho BG, Carvalho HF, de la Torre LG. Microfluidic-based gelatin methacrylate microgel as a scaffold to create reverse-polarity HT29 spheroids. Int J Biol Macromol 2025; 305:140824. [PMID: 39954894 DOI: 10.1016/j.ijbiomac.2025.140824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/16/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
The in vitro model for the human gut is an important tool for predicting drug absorption and toxicity, as well as for understanding infectious diseases due to the interactions between pathogens and hosts. We replicate the tops of intestinal villi (convex surfaces) using gelatin methacrylate (GelMa) microgels to culture HT29 on the surface and investigate the reverse-polarity spheroids. Microgels were utilized at different concentrations (7 and 10 % w/v) and stiffness, with Young's modulus of approximately 0.01 kPa produced via flow-focusing droplet microfluidics. The flow rate ratio was optimized to achieve microgels approximately 80 μm in size, enhancing cell adhesion. The HT29 cell line was cultured on the microgel surface, maintaining 95 % viability. Immunostaining indicated that the cells polarized in response to the curvature of the microgel, with cell nuclei oriented toward the gel and high expression of F-actin on the apical side. Furthermore, the HT29 cells cultured on the GelMa7 microgel exhibited higher expression of tight junctions than those on the GelMa microgels. We refer to this cell-laden microstructure, characterized by reverse-polarity spheroids formed by cell growth around microgels, as the microgut. The potential applications of the microgut method include drug absorption, toxicity assessments, and infectious disease research, underscoring its significance as a promising tool for the scientific community.
Collapse
|
11
|
Zhong J, Li W, Li H, Zhang J, Hou Z, Wang X, Zhou E, Lu K, Zhuang W, Sang H. A self-forming bone membrane generated by periosteum-derived stem cell spheroids enhances the repair of bone defects. Acta Biomater 2025; 193:185-201. [PMID: 39742905 DOI: 10.1016/j.actbio.2024.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
The periosteum, a highly specialized thin tissue, is instrumental in contributing to as much as 70 % of early bone formation. Recognizing the periosteum's vital physiological roles, the fabrication of a biomimetic periosteum has risen as an auspicious strategy for addressing extensive bone defects. In the study, we obtained such biomimetic periosteum by utilizing periosteum-derived stem cells (PDSCs) spheroids. These spheroids are induced to spontaneously generate a bioactive membrane on a delicate 3D-printed polycaprolactone (PCL) substrate. This process yields a biomimetic periosteum rich in the resources needed for bone repair. The in vitro evaluations demonstrated that this membrane can act as a repository for growth factors and stem cells. The release kinetics confirmed a sustained delivery of BMP-2 and VEGF, which promoted enhanced osteogenesis and angiogenesis in vitro, respectively. The in vivo results further highlighted robust bone regeneration from critical cranial defects upon the application of this biomimetic periosteum. The biomimetic periosteum, easily harvested and potent in bioactivity, presents substantial clinical potential, particularly for the treatment of critical-sized bone defects. STATEMENT OF SIGNIFICANCE: PDSC theoretically demonstrates substantial potential in membrane construction, a value we've harnessed in this pioneering application. By employing cell spheroids, we've successfully integrated a substantial number of cells into the membrane framework. PDSC spheroids exhibit the remarkable ability to self-assemble into functional membranes, endowing them with robust biological capabilities that enhance their performance in biological systems. The in vitro evaluations demonstrated that this membrane can act as a repository for growth factors and stem cells. The in vivo bone repair facilitated by this membrane is notably effective, characterized by superior bone quality and accelerated formation rates. This process mirrors the natural intramembrane ossification, offering a promising approach to bone integration and regeneration.
Collapse
Affiliation(s)
- Jintao Zhong
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510000, PR China.
| | - Wenhua Li
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510000, PR China.
| | - Hetong Li
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China.
| | - Jin Zhang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510000, PR China.
| | - Zuoxu Hou
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China.
| | - Xiao Wang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China.
| | - Enhui Zhou
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China.
| | - Ke Lu
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China.
| | - Weida Zhuang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China.
| | - Hongxun Sang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, PR China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510000, PR China.
| |
Collapse
|
12
|
Nunes OBDS, Buranello TW, Farias FDA, Rosero J, Recchia K, Bressan FF. Can cell-cultured meat from stem cells pave the way for sustainable alternative protein? Curr Res Food Sci 2025; 10:100979. [PMID: 40040753 PMCID: PMC11878651 DOI: 10.1016/j.crfs.2025.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/09/2025] [Accepted: 01/18/2025] [Indexed: 03/06/2025] Open
Abstract
As the global population grows, the demand for food and animal-derived products rises significantly, posing a notable challenge to the progress of society in general. Alternative protein production may adequately address such a challenge, and cell-based meat production emerges as a promising solution. This review investigates methodologies for in vitro myogenesis and adipogenesis from stem cells (adult, embryonic, or induced pluripotent stem cells - iPSCs) across different animal species, as well as the remaining challenges for scalability, the possibility of genetic modification, along with safety concerns regarding the commercialization of cell-cultured meat. Regarding such complexities, interdisciplinary approaches will be vital for assessing the potential of cell-cultured meat as a sustainable protein source, mimicking the sensory and nutritional attributes of conventional livestock meat whilst meeting the demands of a growing global population while mitigating environmental impacts.
Collapse
Affiliation(s)
- Octavio Bignardi da Silva Nunes
- Department of Food Engineering, Faculty of Animal Sciences and Food Engineering, University of São Paulo 13635-000, Pirassununga, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo 13635-000, Pirassununga, SP, Brazil
| | - Tiago Willian Buranello
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo 13635-000, Pirassununga, SP, Brazil
- Postgraduate Program in Anatomy of Domestic and Wils Species, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, SP, Brazil
| | - Fabiana de Andrade Farias
- Department of Food Engineering, Faculty of Animal Sciences and Food Engineering, University of São Paulo 13635-000, Pirassununga, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo 13635-000, Pirassununga, SP, Brazil
| | - Jenyffer Rosero
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo 13635-000, Pirassununga, SP, Brazil
- Postgraduate Program in Anatomy of Domestic and Wils Species, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, SP, Brazil
| | - Kaiana Recchia
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo 13635-000, Pirassununga, SP, Brazil
- Postgraduate Program in Anatomy of Domestic and Wils Species, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, SP, Brazil
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo 13635-000, Pirassununga, SP, Brazil
- Postgraduate Program in Anatomy of Domestic and Wils Species, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, SP, Brazil
| |
Collapse
|
13
|
Park CH, Park JH, Suh YJ. Perspective of 3D culture in medicine: transforming disease research and therapeutic applications. Front Bioeng Biotechnol 2024; 12:1491669. [PMID: 39749112 PMCID: PMC11693738 DOI: 10.3389/fbioe.2024.1491669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
3D cell culture is gaining momentum in medicine due to its ability to mimic real tissues (in vivo) and provide more accurate biological data compared to traditional methods. This review explores the current state of 3D cell culture in medicine and discusses future directions, including the need for standardization and simpler protocols to facilitate wider use in research. Purpose 3D cell culture develops life sciences by mimicking the natural cellular environment. Cells in 3D cultures grow in three dimensions and interact with a matrix, fostering realistic cell behavior and interactions. This enhanced model offers significant advantages for diverse research areas. Methods By mimicking the cellular organization and functionalities found in human tissues, 3D cultures provide superior platforms for studying complex diseases like cancer and neurodegenerative disorders. This enables researchers to gain deeper insights into disease progression and identify promising therapeutic targets with greater accuracy. 3D cultures also play a crucial role in drug discovery by allowing researchers to effectively assess potential drugs' safety and efficacy. Results 3D cell culture's impact goes beyond disease research. It holds promise for tissue engineering. By replicating the natural tissue environment and providing a scaffold for cell growth, 3D cultures pave the way for regenerating damaged tissues, offering hope for treating burns, organ failure, and musculoskeletal injuries. Additionally, 3D cultures contribute to personalized medicine. Researchers can use patient-derived cells to create personalized disease models and identify the most effective treatment for each individual. Conclusion With ongoing advancements in cell imaging techniques, the development of novel biocompatible scaffolds and bioreactor systems, and a deeper understanding of cellular behavior within 3D environments, 3D cell culture technology stands poised to revolutionize various aspects of healthcare and scientific discovery.
Collapse
Affiliation(s)
- Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Departments of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jung Ho Park
- Department of Breast and Endocrine Surgery, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Yong Joon Suh
- Department of Breast and Endocrine Surgery, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| |
Collapse
|
14
|
Sun Z, Ding C, Wang Y, Lu T, Song W. Plasma-Activated Medium Inhibited the Proliferation and Migration of Non-Small Cell Lung Cancer A549 Cells in 3D Culture. Int J Mol Sci 2024; 25:13262. [PMID: 39769029 PMCID: PMC11676436 DOI: 10.3390/ijms252413262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Lung cancer is the most common type of malignant tumor worldwide. Plasma-activated medium (PAM) is an innovative cancer treatment method that has received considerable scientific attention. The objective of this study is to evaluate the effects of PAM on the anti-tumor characteristics of non-small cell lung cancer (NSCLC) cells in two-dimensional (2D) and three-dimensional (3D) cultures. The effects of PAM treatment on the proliferative and migratory capabilities of A549 cells in 2D and 3D cultures were assessed using MTT, migration, invasion assays, and cell cycle, respectively. The study also investigated the impact of PAM treatment on the changes in the content of intracellular and extracellular reactive species and analyzed protein expression using the Western Blot method. PAM treatment inhibited the viability, migration, and invasion abilities of A549 cells in both 2D and 3D cultures, suppressed the epithelial-mesenchymal transition (EMT) process, and downregulated the expression of the RAS/ERK signaling pathway, which effectively inhibited tumor spheroid formation. Additionally, the effect of PAM on A549 cells was mediated through ROS-induced oxidative reactions, and PAM treatment exhibited greater cytotoxicity in 2D culture compared to 3D culture. As compared to 2D, the 3D cell culture model provides a viable in vitro cell model for studying the mechanisms of PAM treatment in lung cancer. PAM represents an effective new treatment for NSCLC.
Collapse
Affiliation(s)
- Zhidan Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Z.S.); (C.D.); (Y.W.)
- College of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Chenglong Ding
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Z.S.); (C.D.); (Y.W.)
- College of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Yuhan Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Z.S.); (C.D.); (Y.W.)
- College of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Tingting Lu
- Key Laboratory for the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wencheng Song
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Z.S.); (C.D.); (Y.W.)
- College of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
- Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
15
|
Markandan K, Tiong YW, Sankaran R, Subramanian S, Markandan UD, Chaudhary V, Numan A, Khalid M, Walvekar R. Emergence of infectious diseases and role of advanced nanomaterials in point-of-care diagnostics: a review. Biotechnol Genet Eng Rev 2024; 40:3438-3526. [PMID: 36243900 DOI: 10.1080/02648725.2022.2127070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
Infectious outbreaks are the foremost global public health concern, challenging the current healthcare system, which claims millions of lives annually. The most crucial way to control an infectious outbreak is by early detection through point-of-care (POC) diagnostics. POC diagnostics are highly advantageous owing to the prompt diagnosis, which is economical, simple and highly efficient with remote access capabilities. In particular, utilization of nanomaterials to architect POC devices has enabled highly integrated and portable (compact) devices with enhanced efficiency. As such, this review will detail the factors influencing the emergence of infectious diseases and methods for fast and accurate detection, thus elucidating the underlying factors of these infections. Furthermore, it comprehensively highlights the importance of different nanomaterials in POCs to detect nucleic acid, whole pathogens, proteins and antibody detection systems. Finally, we summarize findings reported on nanomaterials based on advanced POCs such as lab-on-chip, lab-on-disc-devices, point-of-action and hospital-on-chip. To this end, we discuss the challenges, potential solutions, prospects of integrating internet-of-things, artificial intelligence, 5G communications and data clouding to achieve intelligent POCs.
Collapse
Affiliation(s)
- Kalaimani Markandan
- Temasek Laboratories, Nanyang Technological University, Nanyang Drive, Singapore
- Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia
| | - Yong Wei Tiong
- NUS Environmental Research Institute, National University of Singapore, Engineering Drive, Singapore
| | - Revathy Sankaran
- Graduate School, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Sakthinathan Subramanian
- Department of Materials & Mineral Resources Engineering, National Taipei University of Technology (NTUT), Taipei, Taiwan
| | | | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Arshid Numan
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | - Rashmi Walvekar
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| |
Collapse
|
16
|
Yang S, Chen P, Mao X, Lin K, Li W, He T, Huang H, Wu A, Luo W, Ye G, Yao G, Zhou D. Differential Response to Cisplatin between Co-cultured Cells and Pure Cultured Cells Based on Single-cell RNA Sequencing of Three-dimensional-cultured Breast Cancer Cells. FRONT BIOSCI-LANDMRK 2024; 29:406. [PMID: 39735986 DOI: 10.31083/j.fbl2912406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/03/2024] [Accepted: 09/23/2024] [Indexed: 12/31/2024]
Abstract
OBJECTIVE The current study aimed to develop an experimental approach for the direct co-culture of three-dimensional breast cancer cells using single-cell RNA sequencing (scRNA-seq). METHODS The following four cell culture groups were established in the Matrigel matrix: the untreated Michigan Cancer Foundation (MCF)-7 cell culture group, the MCF-7 cell culture plus cisplatin group, the untreated co-culture group, and the cell co-culture plus cisplatin group. For cell co-culture, MCF-7 cells, human mammary fibroblasts, and human umbilical vein endothelial cells were mixed at a ratio of 1:1:1. Cisplatin was applied at a concentration of 1.25 μg/mL, and the cells were harvested after 2 days and subjected to scRNA-seq. Data were analyzed using a single-cell RNA sequencing data analysis pipeline with R language. RESULTS The response of MCF-7 cells to cisplatin differed among the four groups. The transcriptomic response of MCF-7 cells to cisplatin in the co-culture model was not as significant as that in the mono-culture model. Moreover, the pathways related to apoptosis, DNA damage, hypoxia, and metastasis in the co-culture groups were enriched in the genes that were differentially expressed based on cisplatin treatment. CONCLUSION scRNA-seq analysis revealed that the response of MCF-7 cells to cisplatin in the co-culture model was lower than that in the mono-culture model. Therefore, the three-dimensional cell co-culture model can be applied to tumor research to better mimic the pathophysiological environment in vivo and can be a well-modified research method.
Collapse
Affiliation(s)
- Shuqing Yang
- Department of Breast Surgery, The First People's Hospital of Foshan, 528100 Foshan, Guangdong, China
- Breast Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, Guangdong, China
| | - Peixian Chen
- Department of Breast Surgery, The First People's Hospital of Foshan, 528100 Foshan, Guangdong, China
| | - Xiaofan Mao
- Clinical Research Institute, The First People's Hospital of Foshan, 528100 Foshan, Guangdong, China
| | - KaiRong Lin
- Clinical Research Institute, The First People's Hospital of Foshan, 528100 Foshan, Guangdong, China
| | - Wei Li
- Department of Breast Surgery, The First People's Hospital of Foshan, 528100 Foshan, Guangdong, China
| | - Tiancheng He
- Department of Breast Surgery, The First People's Hospital of Foshan, 528100 Foshan, Guangdong, China
| | - Huiqi Huang
- Department of Breast Surgery, The First People's Hospital of Foshan, 528100 Foshan, Guangdong, China
| | - AiGuo Wu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, 51000 Guangzhou, Guangdong, China
| | - Wei Luo
- Clinical Research Institute, The First People's Hospital of Foshan, 528100 Foshan, Guangdong, China
| | - Guolin Ye
- Department of Breast Surgery, The First People's Hospital of Foshan, 528100 Foshan, Guangdong, China
| | - Guangyu Yao
- Breast Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, Guangdong, China
| | - Dan Zhou
- Department of Breast Surgery, The First People's Hospital of Foshan, 528100 Foshan, Guangdong, China
| |
Collapse
|
17
|
Cordeiro S, Oliveira BB, Valente R, Ferreira D, Luz A, Baptista PV, Fernandes AR. Breaking the mold: 3D cell cultures reshaping the future of cancer research. Front Cell Dev Biol 2024; 12:1507388. [PMID: 39659521 PMCID: PMC11628512 DOI: 10.3389/fcell.2024.1507388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Despite extensive efforts to unravel tumor behavior and develop anticancer therapies, most treatments fail when advanced to clinical trials. The main challenge in cancer research has been the absence of predictive cancer models, accurately mimicking the tumoral processes and response to treatments. The tumor microenvironment (TME) shows several human-specific physical and chemical properties, which cannot be fully recapitulated by the conventional 2D cell cultures or the in vivo animal models. These limitations have driven the development of novel in vitro cancer models, that get one step closer to the typical features of in vivo systems while showing better species relevance. This review introduces the main considerations required for developing and exploiting tumor spheroids and organoids as cancer models. We also detailed their applications in drug screening and personalized medicine. Further, we show the transition of these models into novel microfluidic platforms, for improved control over physiological parameters and high-throughput screening. 3D culture models have provided key insights into tumor biology, more closely resembling the in vivo TME and tumor characteristics, while enabling the development of more reliable and precise anticancer therapies.
Collapse
Affiliation(s)
- Sandra Cordeiro
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Beatriz B. Oliveira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ruben Valente
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Daniela Ferreira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - André Luz
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
18
|
Son KH, Kim DH, Park S, Kim HJ, Park M, Kim SJ, Lee SJ, Ahn K, Lee JW. Spherical Shell Bioprinting to Produce Uniform Spheroids with Controlled Sizes. J Funct Biomater 2024; 15:350. [PMID: 39590553 PMCID: PMC11595458 DOI: 10.3390/jfb15110350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Conventional cell spheroid production methods are largely manual, leading to variations in size and shape that compromise consistency and reliability for use in cell-based therapeutic applications. To enhance spheroid production, a spherical shell bioprinting system was implemented, enabling the high-throughput generation of uniform cell spheroids with precisely controlled sizes. The system encapsulates cells within thin alginate hydrogel shells formed through bioprinting and ion crosslinking reactions. Alginate-calcium ion crosslinking created alginate shells that contained gelatin-based bioinks with embedded cells, facilitating spontaneous cell aggregation within the shells and eliminating the need for plastic wells. By adjusting cell concentrations in the alginate-gelatin bioink, we achieved precise control over spheroid size, maintaining a sphericity above 0.94 and size deviations within ±10 µm. This method has been successfully applied to various cell types including cancer cells, fibroblasts, chondrocytes, and epithelial cells, demonstrating its versatility. This scalable approach enhances the reliability of cell therapy and drug screening, offering a robust platform for future biomedical applications.
Collapse
Affiliation(s)
- Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gil Medical Center, College of Medicine, Gachon University, 21, Namdong-daero 774 Beon-gil, Namdong-gu, Incheon 21565, Republic of Korea;
| | - Dong-Ha Kim
- Research Institute, Sphebio Co., Ltd., 501-ho, 3, Achasan-ro 11ga-gil, Seongdong-gu, Seoul 04796, Republic of Korea; (D.-H.K.); (H.J.K.); (M.P.); (S.-J.K.)
| | - Seunghye Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, 155, Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Republic of Korea;
| | - Hyun Jae Kim
- Research Institute, Sphebio Co., Ltd., 501-ho, 3, Achasan-ro 11ga-gil, Seongdong-gu, Seoul 04796, Republic of Korea; (D.-H.K.); (H.J.K.); (M.P.); (S.-J.K.)
| | - Mira Park
- Research Institute, Sphebio Co., Ltd., 501-ho, 3, Achasan-ro 11ga-gil, Seongdong-gu, Seoul 04796, Republic of Korea; (D.-H.K.); (H.J.K.); (M.P.); (S.-J.K.)
| | - Seung-Jin Kim
- Research Institute, Sphebio Co., Ltd., 501-ho, 3, Achasan-ro 11ga-gil, Seongdong-gu, Seoul 04796, Republic of Korea; (D.-H.K.); (H.J.K.); (M.P.); (S.-J.K.)
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA;
| | - Keunsun Ahn
- Research Institute, Sphebio Co., Ltd., 501-ho, 3, Achasan-ro 11ga-gil, Seongdong-gu, Seoul 04796, Republic of Korea; (D.-H.K.); (H.J.K.); (M.P.); (S.-J.K.)
| | - Jin Woo Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, 155, Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Republic of Korea;
- Department of Molecular Medicine, College of Medicine, Gachon University, 155, Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Republic of Korea
| |
Collapse
|
19
|
Lee HY, Lee JW. Spheroid-Exosome-Based Bioprinting Technology in Regenerative Medicine. J Funct Biomater 2024; 15:345. [PMID: 39590549 PMCID: PMC11595066 DOI: 10.3390/jfb15110345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Since the discovery that exosomes can exchange genes, their potential use as tools for tissue regeneration, disease diagnosis, and therapeutic applications has drawn significant attention. Emerging three-dimensional (3D) printing technologies, such as bioprinting, which allows the printing of cells, proteins, DNA, and other biological materials, have demonstrated the potential to create complex body tissues or personalized 3D models. The use of 3D spheroids in bioprinting facilitates volumetric tissue reconstruction and accelerates tissue regeneration via exosome secretion. In this review, we discussed a convergence approach between two promising technologies for bioprinting and exosomes in regenerative medicine. Among the various 3D cell culture methods used for exosome production, we focused on spheroids, which are suitable for mass production by bioprinting. We then summarized the research results on cases of bioprinting applications using the spheroids and exosomes produced. If a large number of spheroids can be supplied through bioprinting, the spheroid-exosome-based bioprinting technology will provide new possibilities for application in tissue regeneration, disease diagnosis, and treatment.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- Division of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Jin Woo Lee
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
20
|
Yadav P, Singh S, Jaiswal S, Kumar R. Synthetic and natural polymer hydrogels: A review of 3D spheroids and drug delivery. Int J Biol Macromol 2024; 280:136126. [PMID: 39349080 DOI: 10.1016/j.ijbiomac.2024.136126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
This review centers on the synthesis and characterization of both natural and synthetic hydrogels, highlighting their diverse applications across various fields. We will delve into the evolution of hydrogels, focusing on the importance of polysaccharide-based and synthetic variants, which have been particularly chosen for 3D spheroid development in cancer research and drug delivery. A detailed background on the research and specific methodologies, including the in-situ free radical polymerization used for synthesizing these hydrogels, will be extensively discussed. Additionally, the review will explore various applications of these hydrogels, such as their self-healing properties, swelling ratios, pH responsiveness, and cell viability. A comprehensive literature review will support this investigation. Ultimately, this review aims to clearly outline the objectives and significance of hydrogel synthesis and their applications.
Collapse
Affiliation(s)
- Paramjeet Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shiwani Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Sheetal Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Rajesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
21
|
Padmanaban AM, Ganesan K, Ramkumar KM. A Co-Culture System for Studying Cellular Interactions in Vascular Disease. Bioengineering (Basel) 2024; 11:1090. [PMID: 39593750 PMCID: PMC11591305 DOI: 10.3390/bioengineering11111090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) are leading causes of morbidity and mortality globally, characterized by complications such as heart failure, atherosclerosis, and coronary artery disease. The vascular endothelium, forming the inner lining of blood vessels, plays a pivotal role in maintaining vascular homeostasis. The dysfunction of endothelial cells contributes significantly to the progression of CVDs, particularly through impaired cellular communication and paracrine signaling with other cell types, such as smooth muscle cells and macrophages. In recent years, co-culture systems have emerged as advanced in vitro models for investigating these interactions and mimicking the pathological environment of CVDs. This review provides an in-depth analysis of co-culture models that explore endothelial cell dysfunction and the role of cellular interactions in the development of vascular diseases. It summarizes recent advancements in multicellular co-culture models, their physiological and therapeutic relevance, and the insights they provide into the molecular mechanisms underlying CVDs. Additionally, we evaluate the advantages and limitations of these models, offering perspectives on how they can be utilized for the development of novel therapeutic strategies and drug testing in cardiovascular research.
Collapse
Affiliation(s)
- Abirami M. Padmanaban
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India;
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong 999077, China;
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India;
| |
Collapse
|
22
|
Pérez-Cova M, Bedia C, Checa A, Meister I, Tauler R, Wheelock CE, Jaumot J. Metabolomic and sphingolipidomic profiling of human hepatoma cells exposed to widely used pharmaceuticals. J Pharm Biomed Anal 2024; 249:116378. [PMID: 39074424 DOI: 10.1016/j.jpba.2024.116378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/08/2024] [Accepted: 07/21/2024] [Indexed: 07/31/2024]
Abstract
Pharmaceutical compounds have become one of the main contaminants of emerging concern (CECs) due to their high usage and increased release into the environment. This study aims to assess the effects caused by three widely consumed hepatotoxic pharmaceutical compounds: an antibiotic (amoxicillin), an antiepileptic (carbamazepine), and an antidepressant (trazodone), on human health when indirectly exposed to toxicologically relevant concentrations (30, 15, and 7.5 μM for amoxicillin and carbamazepine, and 4, 2, and 1 μM for trazodone). A combination of semi-targeted metabolomic and targeted sphingolipid analyses was chosen to unravel the metabolic alterations in human hepatic cells exposed to these CECs at three concentrations for 24 h. HepG2 hepatoma cells were encapsulated in sodium alginate spheroids to improve the physiological relevance of this in vitro approach. Statistical analysis was used to identify the most affected metabolites and sphingolipids for each drug exposure. The results revealed small but significant changes in response to carbamazepine and trazodone exposures, affecting sphingolipid, glycerophospholipid precursors, and amino acid metabolism. Under both drug treatments, a decrease in various ceramide species (related to cell signaling) was observed, along with reduced taurine levels (related to the biosynthesis of bile acid conjugates) and carnitine levels (suggesting an impact on energy production). These and other drug-specific changes indicate that cellular functions in liver cells might be altered under low doses of these CECs, potentially affecting the health of other organs.
Collapse
Affiliation(s)
- Miriam Pérez-Cova
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona E08034, Spain; Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Diagonal 647, Barcelona, Barcelona E08028, Spain
| | - Carmen Bedia
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona E08034, Spain
| | - Antonio Checa
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Isabel Meister
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; Gunma University Initiative for Advanced Research (GIAR), Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Romà Tauler
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona E08034, Spain
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; Gunma University Initiative for Advanced Research (GIAR), Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm 141-86, Sweden
| | - Joaquim Jaumot
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona E08034, Spain.
| |
Collapse
|
23
|
Kim SE, Yun S, Doh J, Kim HN. Imaging-Based Efficacy Evaluation of Cancer Immunotherapy in Engineered Tumor Platforms and Tumor Organoids. Adv Healthc Mater 2024; 13:e2400475. [PMID: 38815251 DOI: 10.1002/adhm.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Cancer immunotherapy is used to treat tumors by modulating the immune system. Although the anticancer efficacy of cancer immunotherapy has been evaluated prior to clinical trials, conventional in vivo animal and endpoint models inadequately replicate the intricate process of tumor elimination and reflect human-specific immune systems. Therefore, more sophisticated models that mimic the complex tumor-immune microenvironment must be employed to assess the effectiveness of immunotherapy. Additionally, using real-time imaging technology, a step-by-step evaluation can be applied, allowing for a more precise assessment of treatment efficacy. Here, an overview of the various imaging-based evaluation platforms recently developed for cancer immunotherapeutic applications is presented. Specifically, a fundamental technique is discussed for stably observing immune cell-based tumor cell killing using direct imaging, a microwell that reproduces a confined space for spatial observation, a droplet assay that facilitates cell-cell interactions, and a 3D microphysiological system that reconstructs the vascular environment. Furthermore, it is suggested that future evaluation platforms pursue more human-like immune systems.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Suji Yun
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, South Korea
| | - Junsang Doh
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, South Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Institute of Engineering Research, Bio-MAX institute, Soft Foundry Institute, Seoul National University, Seoul, 08826, South Korea
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
24
|
Surendran V, Safarulla S, Griffith C, Ali R, Madan A, Polacheck W, Chandrasekaran A. Magnetically Integrated Tumor-Vascular Interface System to Mimic Pro-angiogenic Endothelial Dysregulations for On-Chip Drug Testing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47075-47088. [PMID: 39196896 PMCID: PMC11403600 DOI: 10.1021/acsami.4c01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The tumor-vascular interface is a critical component of the tumor microenvironment that regulates all of the dynamic interactions between a growing tumor and the endothelial lining of the surrounding vasculature. In this paper, we report the design and development of a custom-engineered tumor-vascular interface system for investigating the early stage tumor-mediated pro-angiogenic dysfunctional behavior of the endothelium. Using representative endothelial cells and triple negative breast cancer cell lines, we established a biomimetic interface between a three-dimensional tumor tissue across a mature, functional endothelial barrier using a magnetically hybrid-integrated tumor-vascular interface system, wherein vasculature-like features containing a monolayer of endothelial cell culture on porous microfluidic channel surfaces were magnetically attached to tumor spheroids generated on a composite polymer-hydrogel microwell plate and embedded in a collagen matrix. Tumor-mediated endothelial microdynamics were characterized by their hallmark behavior such as loss of endothelial adherens junctions, increased cell density, proliferation, and changes in cell spreading and corroborated with endothelial YAP/TAZ nuclear translocation. We further confirm the feasibility of drug-mediated reversal of this pro-angiogenic endothelial organization through two different signaling mechanisms, namely, inhibition of the vascular endothelial growth factor pathway and the Notch signaling pathway, thereby demonstrating the utility of the tumor-vascular interface platform for rapid, early stage prediction of antiangiogenic drug efficacy. Overall, our work emphasizes the importance of our strategic engineering approach for identifying some unique, physiologically relevant aspects of the tumor-vascular interface, which are otherwise difficult to implement using standard in vitro approaches.
Collapse
Affiliation(s)
- Vikram Surendran
- Bioinspired Microengineering (BIOME) Laboratory, Department of Chemical, Biological and Bio Engineering, North Carolina A&T State University, Greensboro, North Carolina 27265, United States
| | - Simrit Safarulla
- Bioinspired Microengineering (BIOME) Laboratory, Department of Chemical, Biological and Bio Engineering, North Carolina A&T State University, Greensboro, North Carolina 27265, United States
| | - Christian Griffith
- Joint Department of Biomedical Engineering, UNC Chapel Hill─NC State University, Chapel Hill, North Carolina 27599, United States
| | - Reem Ali
- Bioinspired Microengineering (BIOME) Laboratory, Department of Chemical, Biological and Bio Engineering, North Carolina A&T State University, Greensboro, North Carolina 27265, United States
| | - Ankit Madan
- MedStar Southern Maryland Hospital Center, MedStar Georgetown Cancer Institute, Clinton, Maryland 20735, United States
| | - William Polacheck
- Joint Department of Biomedical Engineering, UNC Chapel Hill─NC State University, Chapel Hill, North Carolina 27599, United States
| | - Arvind Chandrasekaran
- Bioinspired Microengineering (BIOME) Laboratory, Department of Chemical, Biological and Bio Engineering, North Carolina A&T State University, Greensboro, North Carolina 27265, United States
| |
Collapse
|
25
|
Dortaj H, Amani AM, Tayebi L, Azarpira N, Ghasemi Toudeshkchouei M, Hassanpour-Dehnavi A, Karami N, Abbasi M, Najafian-Najafabadi A, Zarei Behjani Z, Vaez A. Droplet-based microfluidics: an efficient high-throughput portable system for cell encapsulation. J Microencapsul 2024; 41:479-501. [PMID: 39077800 DOI: 10.1080/02652048.2024.2382744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
One of the goals of tissue engineering and regenerative medicine is restoring primary living tissue function by manufacturing a 3D microenvironment. One of the main challenges is protecting implanted non-autologous cells or tissues from the host immune system. Cell encapsulation has emerged as a promising technique for this purpose. It involves entrapping cells in biocompatible and semi-permeable microcarriers made from natural or synthetic polymers that regulate the release of cellular secretions. In recent years, droplet-based microfluidic systems have emerged as powerful tools for cell encapsulation in tissue engineering and regenerative medicine. These systems offer precise control over droplet size, composition, and functionality, allowing for creating of microenvironments that closely mimic native tissue. Droplet-based microfluidic systems have extensive applications in biotechnology, medical diagnosis, and drug discovery. This review summarises the recent developments in droplet-based microfluidic systems and cell encapsulation techniques, as well as their applications, advantages, and challenges in biology and medicine. The integration of these technologies has the potential to revolutionise tissue engineering and regenerative medicine by providing a precise and controlled microenvironment for cell growth and differentiation. By overcoming the immune system's challenges and enabling the release of cellular secretions, these technologies hold great promise for the future of regenerative medicine.
Collapse
Affiliation(s)
- Hengameh Dortaj
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ashraf Hassanpour-Dehnavi
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Karami
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Najafian-Najafabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Zarei Behjani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
26
|
Rahman M, Sahoo A, Almalki WH, Salman Almujri S, Aodah A, Alnofei AA, Alhamyani A. Three-dimensional cell culture: Future scope in cancer vaccine development. Drug Discov Today 2024; 29:104114. [PMID: 39067612 DOI: 10.1016/j.drudis.2024.104114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Three-dimensional (3D) cell culture techniques, which are superior to 2D methods in viability and functionality, are being used to develop innovative cancer vaccines. Tumor spheroids, which are structurally and functionally similar to actual tumors, can be developed using 3D cell culture. These spheroid vaccines have shown superior antitumor immune responses to 2D cell-based vaccines. Dendritic cell vaccines can also be produced more efficiently using 3D cell culture. Personalized cancer vaccines are being developed using 3D cell culture, providing substantial benefits over 2D methods. The more natural conditions of 3D cell culture might promote the expression of tumor antigens not expressed in 2D culture, potentially allowing for more targeted vaccines by co-culturing tumor cells with other cell types. Advanced cancer vaccines using 3D cell cultures are expected soon.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, Uttar Pradesh, India.
| | - Ankit Sahoo
- College of Pharmacy, J.S. University, Shikohabad, Firozabad, Uttar Pradesh, 283135, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Alhussain Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Abdulrahman A Alnofei
- Psychological Measurement and Evaluation, Department of Psychology, Faculty of Education, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulrahman Alhamyani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| |
Collapse
|
27
|
Shishparenok AN, Furman VV, Dobryakova NV, Zhdanov DD. Protein Immobilization on Bacterial Cellulose for Biomedical Application. Polymers (Basel) 2024; 16:2468. [PMID: 39274101 PMCID: PMC11397966 DOI: 10.3390/polym16172468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
New carriers for protein immobilization are objects of interest in various fields of biomedicine. Immobilization is a technique used to stabilize and provide physical support for biological micro- and macromolecules and whole cells. Special efforts have been made to develop new materials for protein immobilization that are non-toxic to both the body and the environment, inexpensive, readily available, and easy to modify. Currently, biodegradable and non-toxic polymers, including cellulose, are widely used for protein immobilization. Bacterial cellulose (BC) is a natural polymer with excellent biocompatibility, purity, high porosity, high water uptake capacity, non-immunogenicity, and ease of production and modification. BC is composed of glucose units and does not contain lignin or hemicellulose, which is an advantage allowing the avoidance of the chemical purification step before use. Recently, BC-protein composites have been developed as wound dressings, tissue engineering scaffolds, three-dimensional (3D) cell culture systems, drug delivery systems, and enzyme immobilization matrices. Proteins or peptides are often added to polymeric scaffolds to improve their biocompatibility and biological, physical-chemical, and mechanical properties. To broaden BC applications, various ex situ and in situ modifications of native BC are used to improve its properties for a specific application. In vivo studies showed that several BC-protein composites exhibited excellent biocompatibility, demonstrated prolonged treatment time, and increased the survival of animals. Today, there are several patents and commercial BC-based composites for wounds and vascular grafts. Therefore, further research on BC-protein composites has great prospects. This review focuses on the major advances in protein immobilization on BC for biomedical applications.
Collapse
Affiliation(s)
| | - Vitalina V Furman
- The Center for Chemical Engineering, ITMO University, 197101 Saint Petersburg, Russia
| | | | - Dmitry D Zhdanov
- Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia
- Department of Biochemistry, People's Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
28
|
Moreno Valtierra M, Urue Corral A, Jiménez-Avalos JA, Barbosa Avalos E, Dávila-Rodríguez J, Morales Hernández N, Comas-García M, Toriz González G, Oceguera-Villanueva A, Cruz-Ramos JA, Hernández Gutiérrez R, Martínez Velázquez M, García Carvajal ZY. Patterned PVA Hydrogels with 3D Petri Dish ® Micro-Molds of Varying Topography for Spheroid Formation of HeLa Cancer Cells: In Vitro Assessment. Gels 2024; 10:518. [PMID: 39195047 DOI: 10.3390/gels10080518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Cell spheroids are an important three-dimensional (3D) model for in vitro testing and are gaining interest for their use in clinical applications. More natural 3D cell culture environments that support cell-cell interactions have been created for cancer drug discovery and therapy applications, such as the scaffold-free 3D Petri Dish® technology. This technology uses reusable and autoclavable silicone micro-molds with different topographies, and it conventionally uses gelled agarose for hydrogel formation to preserve the topography of the selected micro-mold. The present study investigated the feasibility of using a patterned Poly(vinyl alcohol) hydrogel using the circular topography 12-81 (9 × 9 wells) micro-mold to form HeLa cancer cell spheroids and compare them with the formed spheroids using agarose hydrogels. PVA hydrogels showed a slightly softer, springier, and stickier texture than agarose hydrogels. After preparation, Fourier transform infrared (FTIR) spectra showed chemical interactions through hydrogen bonding in the PVA and agarose hydrogels. Both types of hydrogels favor the formation of large HeLa spheroids with an average diameter of around 700-800 µm after 72 h. However, the PVA spheroids are more compact than those from agarose, suggesting a potential influence of micro-mold surface chemistry on cell behavior and spheroid formation. This was additionally confirmed by evaluating the spheroid size, morphology, integrity, as well as E-cadherin and Ki67 expression. The results suggest that PVA promotes stronger cell-to-cell interactions in the spheroids. Even the integrity of PVA spheroids was maintained after exposure to the drug cisplatin. In conclusion, the patterned PVA hydrogels were successfully prepared using the 3D Petri Dish® micro-molds, and they could be used as suitable platforms for studying cell-cell interactions in cancer drug therapy.
Collapse
Affiliation(s)
- Maira Moreno Valtierra
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas # 800, Col. Colinas de la Normal, Guadalajara 44270, Mexico
| | - Adriana Urue Corral
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas # 800, Col. Colinas de la Normal, Guadalajara 44270, Mexico
| | - Jorge Armando Jiménez-Avalos
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas # 800, Col. Colinas de la Normal, Guadalajara 44270, Mexico
- Centro de Investigación y Desarrollo Oncológico, S.A. de C.V. (CIDO), Av. Palmira # 600-A, Col. Villas del Pedregal, San Luis Potosí 78218, Mexico
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec # 1570, San Luis Potosí 78210, Mexico
| | - Erika Barbosa Avalos
- Laboratorio de Anatomía Patológica, Hospital Civil Viejo Fray Antonio Alcalde, Coronel Calderón #777, El Retiro, Guadalajara 44280, Mexico
| | - Judith Dávila-Rodríguez
- Laboratorio de Anatomía Patológica, Hospital Civil Viejo Fray Antonio Alcalde, Coronel Calderón #777, El Retiro, Guadalajara 44280, Mexico
| | - Norma Morales Hernández
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Camino Arenero # 1227, Col. El Bajío del Arenal, Zapopan 45019, Mexico
| | - Mauricio Comas-García
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec # 1570, San Luis Potosí 78210, Mexico
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Sierra Leona # 550 Lomas de San Luis, San Luis Potosí 78210, Mexico
| | - Guillermo Toriz González
- Departamento de Madera, Celulosa y Papel, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Carretera Guadalajara-Nogales km 15.5, Zapopan 45220, Mexico
| | - Antonio Oceguera-Villanueva
- Instituto Jalisciense de Cancerología, Secretaría de Salud Jalisco, 715 Coronel Calderón St., El Retiro, Guadalajara 44280, Mexico
| | - José Alfonso Cruz-Ramos
- Instituto Jalisciense de Cancerología, Secretaría de Salud Jalisco, 715 Coronel Calderón St., El Retiro, Guadalajara 44280, Mexico
| | - Rodolfo Hernández Gutiérrez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas # 800, Col. Colinas de la Normal, Guadalajara 44270, Mexico
| | - Moisés Martínez Velázquez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas # 800, Col. Colinas de la Normal, Guadalajara 44270, Mexico
| | - Zaira Yunuen García Carvajal
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas # 800, Col. Colinas de la Normal, Guadalajara 44270, Mexico
| |
Collapse
|
29
|
Kim D, Lee MJ, Arai Y, Ahn J, Lee GW, Lee SH. Ultrasound-triggered three dimensional hyaluronic acid hydrogel promotes in vitro and in vivo reprogramming into induced pluripotent stem cells. Bioact Mater 2024; 38:331-345. [PMID: 38764447 PMCID: PMC11101682 DOI: 10.1016/j.bioactmat.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024] Open
Abstract
Cellular reprogramming technologies have been developed with different physicochemical factors to improve the reprogramming efficiencies of induced pluripotent stem cells (iPSCs). Ultrasound is a clinically applied noncontact biophysical factor known for regulating various cellular behaviors but remains uninvestigated for cellular reprogramming. Here, we present a new reprogramming strategy using low-intensity ultrasound (LIUS) to improve cellular reprogramming of iPSCs in vitro and in vivo. Under 3D microenvironment conditions, increased LIUS stimulation shows enhanced cellular reprogramming of the iPSCs. The cellular reprogramming process facilitated by LIUS is accompanied by increased mesenchymal to epithelial transition and histone modification. LIUS stimulation transiently modulates the cytoskeletal rearrangement, along with increased membrane fluidity and mobility to increase HA/CD44 interactions. Furthermore, LIUS stimulation with HA hydrogel can be utilized in application of both human cells and in vivo environment, for enhanced reprogrammed cells into iPSCs. Thus, LIUS stimulation with a combinatorial 3D microenvironment system can improve cellular reprogramming in vitro and in vivo environments, which can be applied in various biomedical fields.
Collapse
Affiliation(s)
| | | | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Jinsung Ahn
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Gun Woo Lee
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| |
Collapse
|
30
|
Zivko C, Hahm TH, Tressler C, Brown D, Glunde K, Mahairaki V. Mass Spectrometry Imaging of Organoids to Improve Preclinical Research. Adv Healthc Mater 2024; 13:e2302499. [PMID: 38247228 DOI: 10.1002/adhm.202302499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/18/2023] [Indexed: 01/23/2024]
Abstract
Preclinical models are essential research tools before novel therapeutic or diagnostic methods can be applied to humans. These range from in vitro cell monocultures to vastly more complex animal models, but clinical translation to humans often fails to deliver significant results. Three-dimensional (3D) organoid systems are being increasingly studied to establish physiologically relevant in vitro platforms in a trade-off between the complexity of the research question and the complexity of practical experimental setups. The sensitivity and precision of analytical tools are yet another limiting factors in what can be investigated, and mass spectrometry (MS) is one of the most powerful analytical techniques available to the scientific community. Its innovative use to spatially resolve biological samples has opened many research avenues in the field of MS imaging (MSI). Here, this work aims to explore the current scientific landscape in the application of MSI on organoids, with an emphasis on their combined potential to facilitate and improve preclinical studies.
Collapse
Affiliation(s)
- Cristina Zivko
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Tae-Hun Hahm
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Cay Tressler
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Dalton Brown
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vasiliki Mahairaki
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
31
|
Moldaschl J, Chariyev-Prinz F, Toegel S, Keck M, Hiden U, Egger D, Kasper C. Spheroid trilineage differentiation model of primary mesenchymal stem/stromal cells under hypoxia and serum-free culture conditions. Front Bioeng Biotechnol 2024; 12:1444363. [PMID: 39144480 PMCID: PMC11321963 DOI: 10.3389/fbioe.2024.1444363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/12/2024] [Indexed: 08/16/2024] Open
Abstract
Due to their unique properties, human mesenchymal stem/stromal cells (MSCs) possess tremendous potential in regenerative medicine, particularly in cell-based therapies where the multipotency and immunomodulatory characteristics of MSCs can be leveraged to address a variety of disease states. Although MSC-based cell therapeutics have emerged as one of the most promising medical treatments, the clinical translation is hampered by the variability of MSC-based cellular products caused by tissue source-specific differences and the lack of physiological cell culture approaches that closely mimic the human cellular microenvironment. In this study, a model for trilineage differentiation of primary adipose-, bone marrow-, and umbilical cord-derived MSCs into adipocytes, chondrocytes and osteoblasts was established and characterized. Differentiation was performed in spheroid culture, using hypoxic conditions and serum-free and antibiotics-free medium. This platform was characterized for spheroid diameter and trilineage differentiation capacity reflecting functionality of differentiated cells, as indicated by lineage-specific extracellular matrix (ECM) accumulation and expression of distinct secreted markers. The presented model shows spheroid growth during the course of differentiation and successfully supports trilineage differentiation for MSCs from almost all tissue sources except for osteogenesis of umbilical cord-derived MSCs. These findings indicate that this platform provides a suitable and favorable environment for trilineage differentiation of MSCs from various tissue sources. Therefore, it poses a promising model to generate highly relevant biological data urgently required for clinical translation and therefore might be used in the future to generate in vitro microtissues, building blocks for tissue engineering or as disease models.
Collapse
Affiliation(s)
- Julia Moldaschl
- Institute of Cell and Tissue Culture Technologies, BOKU University, Vienna, Austria
| | | | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Maike Keck
- Department of Plastic, Reconstructive and Aesthetic Surgery, Agaplesion Diakonieklinikum Hamburg, Hamburg, Germany
- Klinik für Plastische Chirurgie, Universität zu Lübeck, Lübeck, Germany
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Dominik Egger
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Cornelia Kasper
- Institute of Cell and Tissue Culture Technologies, BOKU University, Vienna, Austria
| |
Collapse
|
32
|
Petrescu DI, Yustein JT, Dasgupta A. Preclinical models for the study of pediatric solid tumors: focus on bone sarcomas. Front Oncol 2024; 14:1388484. [PMID: 39091911 PMCID: PMC11291195 DOI: 10.3389/fonc.2024.1388484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Sarcomas comprise between 10-15% of all pediatric malignancies. Osteosarcoma and Ewing sarcoma are the two most common pediatric bone tumors diagnosed in children and young adults. These tumors are commonly treated with surgery and/or radiation therapy and combination chemotherapy. However, there is a strong need for the development and utilization of targeted therapeutic methods to improve patient outcomes. Towards accomplishing this goal, pre-clinical models for these unique malignancies are of particular importance to design and test experimental therapeutic strategies prior to being introduced to patients due to their origination site and propensity to metastasize. Pre-clinical models offer several advantages for the study of pediatric sarcomas with unique benefits and shortcomings dependent on the type of model. This review addresses the types of pre-clinical models available for the study of pediatric solid tumors, with special attention to the bone sarcomas osteosarcoma and Ewing sarcoma.
Collapse
Affiliation(s)
- D. Isabel Petrescu
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - Jason T. Yustein
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - Atreyi Dasgupta
- The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Texas Children’s Cancer and Hematology Centers, Houston, TX, United States
| |
Collapse
|
33
|
Wan S, Aregueta Robles U, Poole-Warren L, Esrafilzadeh D. Advances in 3D tissue models for neural engineering: self-assembled versus engineered tissue models. Biomater Sci 2024; 12:3522-3549. [PMID: 38829222 DOI: 10.1039/d4bm00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Neural tissue engineering has emerged as a promising field that aims to create functional neural tissue for therapeutic applications, drug screening, and disease modelling. It is becoming evident in the literature that this goal requires development of three-dimensional (3D) constructs that can mimic the complex microenvironment of native neural tissue, including its biochemical, mechanical, physical, and electrical properties. These 3D models can be broadly classified as self-assembled models, which include spheroids, organoids, and assembloids, and engineered models, such as those based on decellularized or polymeric scaffolds. Self-assembled models offer advantages such as the ability to recapitulate neural development and disease processes in vitro, and the capacity to study the behaviour and interactions of different cell types in a more realistic environment. However, self-assembled constructs have limitations such as lack of standardised protocols, inability to control the cellular microenvironment, difficulty in controlling structural characteristics, reproducibility, scalability, and lengthy developmental timeframes. Integrating biomimetic materials and advanced manufacturing approaches to present cells with relevant biochemical, mechanical, physical, and electrical cues in a controlled tissue architecture requires alternate engineering approaches. Engineered scaffolds, and specifically 3D hydrogel-based constructs, have desirable properties, lower cost, higher reproducibility, long-term stability, and they can be rapidly tailored to mimic the native microenvironment and structure. This review explores 3D models in neural tissue engineering, with a particular focus on analysing the benefits and limitations of self-assembled organoids compared with hydrogel-based engineered 3D models. Moreover, this paper will focus on hydrogel based engineered models and probe their biomaterial components, tuneable properties, and fabrication techniques that allow them to mimic native neural tissue structures and environment. Finally, the current challenges and future research prospects of 3D neural models for both self-assembled and engineered models in neural tissue engineering will be discussed.
Collapse
Affiliation(s)
- Shuqian Wan
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ulises Aregueta Robles
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Laura Poole-Warren
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
- Tyree Foundation Institute of Health Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
34
|
Da Silva D, Crous A, Abrahamse H. Enhancing Osteoblast Differentiation from Adipose-Derived Stem Cells Using Hydrogels and Photobiomodulation: Overcoming In Vitro Limitations for Osteoporosis Treatment. Curr Issues Mol Biol 2024; 46:6346-6365. [PMID: 39057021 PMCID: PMC11276038 DOI: 10.3390/cimb46070379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoporosis represents a widespread and debilitating chronic bone condition that is increasingly prevalent globally. Its hallmark features include reduced bone density and heightened fragility, which significantly elevate the risk of fractures due to the decreased presence of mature osteoblasts. The limitations of current pharmaceutical therapies, often accompanied by severe side effects, have spurred researchers to seek alternative strategies. Adipose-derived stem cells (ADSCs) hold considerable promise for tissue repair, albeit they encounter obstacles such as replicative senescence in laboratory conditions. In comparison, employing ADSCs within three-dimensional (3D) environments provides an innovative solution, replicating the natural extracellular matrix environment while offering a controlled and cost-effective in vitro platform. Moreover, the utilization of photobiomodulation (PBM) has emerged as a method to enhance ADSC differentiation and proliferation potential by instigating cellular stimulation and facilitating beneficial performance modifications. This literature review critically examines the shortcomings of current osteoporosis treatments and investigates the potential synergies between 3D cell culture and PBM in augmenting ADSC differentiation towards osteogenic lineages. The primary objective of this study is to assess the efficacy of combined 3D environments and PBM in enhancing ADSC performance for osteoporosis management. This research is notably distinguished by its thorough scrutiny of the existing literature, synthesis of recent advancements, identification of future research trajectories, and utilization of databases such as PubMed, Scopus, Web of Science, and Google Scholar for this literature review. Furthermore, the exploration of biomechanical and biophysical stimuli holds promise for refining treatment strategies. The future outlook suggests that integrating PBM with ADSCs housed within 3D environments holds considerable potential for advancing bone regeneration efforts. Importantly, this review aspires to catalyse further advancements in combined therapeutic strategies for osteoporosis regeneration.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (D.D.S.); (A.C.)
| |
Collapse
|
35
|
Coelho LL, Vianna MM, da Silva DM, Gonzaga BMDS, Ferreira RR, Monteiro AC, Bonomo AC, Manso PPDA, de Carvalho MA, Vargas FR, Garzoni LR. Spheroid Model of Mammary Tumor Cells: Epithelial-Mesenchymal Transition and Doxorubicin Response. BIOLOGY 2024; 13:463. [PMID: 39056658 PMCID: PMC11273983 DOI: 10.3390/biology13070463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 07/28/2024]
Abstract
Breast cancer is the most prevalent cancer among women worldwide. Therapeutic strategies to control tumors and metastasis are still challenging. Three-dimensional (3D) spheroid-type systems more accurately replicate the features of tumors in vivo, working as a better platform for performing therapeutic response analysis. This work aimed to characterize the epithelial-mesenchymal transition and doxorubicin (dox) response in a mammary tumor spheroid (MTS) model. We evaluated the doxorubicin treatment effect on MCF-7 spheroid diameter, cell viability, death, migration and proteins involved in the epithelial-mesenchymal transition (EMT) process. Spheroids were also produced from tumors formed from 4T1 and 67NR cell lines. MTSs mimicked avascular tumor characteristics, exhibited adherens junction proteins and independently produced their own extracellular matrix. Our spheroid model supports the 3D culturing of cells isolated from mice mammary tumors. Through the migration assay, we verified a reduction in E-cadherin expression and an increase in vimentin expression as the cells became more distant from spheroids. Dox promoted cytotoxicity in MTSs and inhibited cell migration and the EMT process. These results suggest, for the first time, that this model reproduces aspects of the EMT process and describes the potential of dox in inhibiting the metastatic process, which can be further explored.
Collapse
Affiliation(s)
- Laura Lacerda Coelho
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| | - Matheus Menezes Vianna
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| | - Debora Moraes da Silva
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| | - Beatriz Matheus de Souza Gonzaga
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| | - Roberto Rodrigues Ferreira
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| | - Ana Carolina Monteiro
- Laboratory of Osteo and Tumor Immunology, Department of Immunobiology, Fluminense Federal University (UFF), Rio de Janeiro 24020-150, Brazil;
- Thymus Research Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil;
| | - Adriana Cesar Bonomo
- Thymus Research Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil;
| | - Pedro Paulo de Abreu Manso
- Laboratory of Pathology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil;
| | | | - Fernando Regla Vargas
- Laboratory of Epidemiology of Congenital Malformations, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil;
| | - Luciana Ribeiro Garzoni
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| |
Collapse
|
36
|
Petcov TE, Straticiuc M, Iancu D, Mirea DA, Trușcă R, Mereuță PE, Savu DI, Mogoșanu GD, Mogoantă L, Popescu RC, Kopatz V, Jinga SI. Unveiling Nanoparticles: Recent Approaches in Studying the Internalization Pattern of Iron Oxide Nanoparticles in Mono- and Multicellular Biological Structures. J Funct Biomater 2024; 15:169. [PMID: 38921542 PMCID: PMC11204647 DOI: 10.3390/jfb15060169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Nanoparticle (NP)-based solutions for oncotherapy promise an improved efficiency of the anticancer response, as well as higher comfort for the patient. The current advancements in cancer treatment based on nanotechnology exploit the ability of these systems to pass biological barriers to target the tumor cell, as well as tumor cell organelles. In particular, iron oxide NPs are being clinically employed in oncological management due to this ability. When designing an efficient anti-cancer therapy based on NPs, it is important to know and to modulate the phenomena which take place during the interaction of the NPs with the tumor cells, as well as the normal tissues. In this regard, our review is focused on highlighting different approaches to studying the internalization patterns of iron oxide NPs in simple and complex 2D and 3D in vitro cell models, as well as in living tissues, in order to investigate the functionality of an NP-based treatment.
Collapse
Affiliation(s)
- Teodora Eliana Petcov
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University for Science and Technology Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (T.E.P.); (S.I.J.)
| | - Mihai Straticiuc
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Decebal Iancu
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Dragoș Alexandru Mirea
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Roxana Trușcă
- National Research Center for Micro and Nanomaterials, National University for Science and Technology Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| | - Paul Emil Mereuță
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Diana Iulia Savu
- Department of Life and Environmental Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania
| | - George Dan Mogoșanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, 200349 Craiova, Romania;
| | - Laurențiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, 200349 Craiova, Romania;
| | - Roxana Cristina Popescu
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University for Science and Technology Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (T.E.P.); (S.I.J.)
- Department of Life and Environmental Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania
| | - Verena Kopatz
- Department of Radiation Oncology, Medical University of Vienna, 18–20 Waehringer Guertel Street, 1090 Vienna, Austria;
| | - Sorin Ion Jinga
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University for Science and Technology Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (T.E.P.); (S.I.J.)
| |
Collapse
|
37
|
Bloise N, Giannaccari M, Guagliano G, Peluso E, Restivo E, Strada S, Volpini C, Petrini P, Visai L. Growing Role of 3D In Vitro Cell Cultures in the Study of Cellular and Molecular Mechanisms: Short Focus on Breast Cancer, Endometriosis, Liver and Infectious Diseases. Cells 2024; 13:1054. [PMID: 38920683 PMCID: PMC11201503 DOI: 10.3390/cells13121054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Over the past decade, the development of three-dimensional (3D) models has increased exponentially, facilitating the unravelling of fundamental and essential cellular mechanisms by which cells communicate with each other, assemble into tissues and organs and respond to biochemical and biophysical stimuli under both physiological and pathological conditions. This section presents a concise overview of the most recent updates on the significant contribution of different types of 3D cell cultures including spheroids, organoids and organ-on-chip and bio-printed tissues in advancing our understanding of cellular and molecular mechanisms. The case studies presented include the 3D cultures of breast cancer (BC), endometriosis, the liver microenvironment and infections. In BC, the establishment of 3D culture models has permitted the visualization of the role of cancer-associated fibroblasts in the delivery of exosomes, as well as the significance of the physical properties of the extracellular matrix in promoting cell proliferation and invasion. This approach has also become a valuable tool in gaining insight into general and specific mechanisms of drug resistance. Given the considerable heterogeneity of endometriosis, 3D models offer a more accurate representation of the in vivo microenvironment, thereby facilitating the identification and translation of novel targeted therapeutic strategies. The advantages provided by 3D models of the hepatic environment, in conjunction with the high throughput characterizing various platforms, have enabled the elucidation of complex molecular mechanisms underlying various threatening hepatic diseases. A limited number of 3D models for gut and skin infections have been developed. However, a more profound comprehension of the spatial and temporal interactions between microbes, the host and their environment may facilitate the advancement of in vitro, ex vivo and in vivo disease models. Additionally, it may pave the way for the development of novel therapeutic approaches in diverse research fields. The interested reader will also find concluding remarks on the challenges and prospects of using 3D cell cultures for discovering cellular and molecular mechanisms in the research areas covered in this review.
Collapse
Affiliation(s)
- Nora Bloise
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), Unità di Ricerca (UdR) INSTM, University of Pavia, 27100 Pavia, Italy; (M.G.); (E.P.); (E.R.); (S.S.); (C.V.)
- UOR6 Nanotechnology Laboratory, Department of Prevention and Rehabilitation in Occupational Medicine and Specialty Medicine, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), Operative Unit (OU) of University of Pavia, 27100 Pavia, Italy
| | - Marialaura Giannaccari
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), Unità di Ricerca (UdR) INSTM, University of Pavia, 27100 Pavia, Italy; (M.G.); (E.P.); (E.R.); (S.S.); (C.V.)
| | - Giuseppe Guagliano
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano, P.zza L. Da Vinci 32, 20133 Milan, Italy; (G.G.); (P.P.)
| | - Emanuela Peluso
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), Unità di Ricerca (UdR) INSTM, University of Pavia, 27100 Pavia, Italy; (M.G.); (E.P.); (E.R.); (S.S.); (C.V.)
| | - Elisa Restivo
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), Unità di Ricerca (UdR) INSTM, University of Pavia, 27100 Pavia, Italy; (M.G.); (E.P.); (E.R.); (S.S.); (C.V.)
| | - Silvia Strada
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), Unità di Ricerca (UdR) INSTM, University of Pavia, 27100 Pavia, Italy; (M.G.); (E.P.); (E.R.); (S.S.); (C.V.)
- UOR6 Nanotechnology Laboratory, Department of Prevention and Rehabilitation in Occupational Medicine and Specialty Medicine, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| | - Cristina Volpini
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), Unità di Ricerca (UdR) INSTM, University of Pavia, 27100 Pavia, Italy; (M.G.); (E.P.); (E.R.); (S.S.); (C.V.)
- UOR6 Nanotechnology Laboratory, Department of Prevention and Rehabilitation in Occupational Medicine and Specialty Medicine, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| | - Paola Petrini
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano, P.zza L. Da Vinci 32, 20133 Milan, Italy; (G.G.); (P.P.)
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), Operative Unit (OU) of Politecnico di Milano, 20133 Milan, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), Unità di Ricerca (UdR) INSTM, University of Pavia, 27100 Pavia, Italy; (M.G.); (E.P.); (E.R.); (S.S.); (C.V.)
- UOR6 Nanotechnology Laboratory, Department of Prevention and Rehabilitation in Occupational Medicine and Specialty Medicine, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), Operative Unit (OU) of University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
38
|
Nkune NW, Abrahamse H. The phototoxic effect of a gold-antibody-based nanocarrier of phthalocyanine on melanoma monolayers and tumour spheroids. RSC Adv 2024; 14:19490-19504. [PMID: 38895533 PMCID: PMC11184583 DOI: 10.1039/d4ra03858d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, photodynamic therapy (PDT) has garnered significant attention in cancer treatment due to its increased potency and non-invasiveness compared to conventional therapies. Active-targeted delivery of photosensitizers (PSs) is a mainstay strategy to significantly reduce its off-target toxicity and enhance its phototoxic efficacy. The anti-melanoma inhibitory activity (MIA) antibody is a targeting biomolecule that can be integrated into a nanocarrier system to actively target melanoma cells due to its specific binding to MIA antigens that are highly expressed on the surface of melanoma cells. Gold nanoparticles (AuNPs) are excellent nanocarriers due to their ability to encapsulate a variety of therapeutics, such as PSs, and their ability to bind with targeting moieties for improved bioavailability in cancer cells. Hence, we designed a nanobioconjugate (NBC) composed of zinc phthalocyanine tetrasulfonic acid (ZnPcS4), AuNPs and anti-MIA Ab to improve ZnPcS4 bioavailability and phototoxicity in two and three-dimensional tumour models. In summary, we demonstrated that this nanobioconjugate showed significant inhibitory effects on both melanoma models due to increased ROS yields and bioavailability of the melanoma cells compared to free ZnPcS4.
Collapse
Affiliation(s)
- Nkune Williams Nkune
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg P.O. Box 17011 Doornfontein 2028 South Africa +27-11-559-655
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg P.O. Box 17011 Doornfontein 2028 South Africa +27-11-559-655
| |
Collapse
|
39
|
Demir Cevizlidere B, Uysal O, Avci H, Gunes Bagis S, Semerci Sevimli T, Dincer M, Qomi Ekenel E, Kara SG, Soykan MN, Eker Sariboyaci A. Establishment, culture and characterization of gemcitabine hydrochloride‐resistant human non‐small cell lung carcinoma cell line derived cancer stem cells. Cell Biochem Funct 2024; 42. [DOI: 10.1002/cbf.4079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/11/2024] [Indexed: 01/03/2025]
Abstract
AbstractDue to their high expression profile of multi‐drug resistance genes, cancer stem cells (CSCs) are the main source of drug resistance. The aim of this study was to establish a gemcitabine‐hydrochloride‐resistant (rt) human non‐small cell lung cancer (hNSCLC) cell line and their CSC line to be used as disease models in various cancer studies. In the first phase of study, a gemcitabine hydrochloride‐rt hNSCLC line cells was produced by making them rt through periodic exposure to gemcitabine hydrochloride. This acquired gemcitabine‐hydrochloride‐rt hNSCLC cell line was characterized for resistance. Subsequently, a CSC population with a CD326 + CD133 + CD44+ phenotypes was immunoselectively isolated from gemcitabine hydrochloride‐rt hNSCLCs purified from a single cell by colony forming technology. This rt CSC line was characterized for both resistance and stemness. Rt and non‐rt CSCs were analyzed and compared with each other in terms of immunophenotyping the expression profiles of ALDH1, CD90, ABCG2, CD44 and MDR1, which are CSC specific markers, of demonstrating mitotic capacity with growth curve analysis and of their ability to form tumor spheroids in three different 3D cultures. The results of this study demonstrated for the first time the successful generation of both gemcitabine‐hydrochloride‐rt hNSCLC cells and CSCs derived from gemcitabine‐hydrochloride‐rt hNSCLC cells. It was also shown that isolated and characterized rt CSCs could proliferate and form tumor spheres in vitro using three different 3D in vitro techniques. It was shown that the cell surface markers CD326, CD133 and CD44 can serve as an antibody panel for CSCs.
Collapse
Affiliation(s)
- Bahar Demir Cevizlidere
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
| | - Onur Uysal
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
- Department of Medical Laboratory Techniques, Vocational School of Health Services Eskisehir Osmangazi University Eskisehir Turkey
| | - Huseyin Avci
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
- Department of Metallurgical and Materials Engineering, Engineering and Architecture Faculty Eskisehir Osmangazi University Eskisehir Turkey
- Translational Medicine Research and Clinical Center, TATUM Eskisehir Osmangazi University Eskisehir Turkey
| | - Sibel Gunes Bagis
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
- Department of Medical Laboratory Techniques, Vocational School of Health Services Eskisehir Osmangazi University Eskisehir Turkey
| | - Tugba Semerci Sevimli
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
| | - Murat Dincer
- Department of Medicinal Oncology, Faculty of Medicine Eskisehir Osmangazi University Eskisehir Turkey
| | - Emilia Qomi Ekenel
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
| | - Suleyman Gokhan Kara
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
- Department of Emergency Medicine Ministry of Health Eskişehir City Hospital Eskisehir Turkey
| | - Merve Nur Soykan
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
| | - Ayla Eker Sariboyaci
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM Eskisehir Osmangazi University Eskisehir Turkey
- Department of Stem Cell Eskisehir Osmangazi University Eskisehir Turkey
- Department of Medical Laboratory Techniques, Vocational School of Health Services Eskisehir Osmangazi University Eskisehir Turkey
| |
Collapse
|
40
|
Soleimanifar F, Aghapur N, Rezaei-Kiasari Z, Mahboudi H, Kaabi M, Mansour RN, Kehtari M, Abazari M, Enderami SE, Hassannia H. The generation of islet-like insulin-producing cells from Wharton's jelly-derived mesenchymal stem cells on the PES/fish gelatin scaffold. Regen Ther 2024; 26:251-259. [PMID: 38974324 PMCID: PMC11225687 DOI: 10.1016/j.reth.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/12/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Diabetes Mellitus (DM) disrupts the body's capability to control blood glucose statuses. Type 1 diabetes mellitus (T1DM) arises from inadequate insulin production and is treated with insulin replacement therapy. Stem cell therapy is a hopeful treatment for T1DM that involves using adult stem cells to generate insulin-producing cells (IPCs). Mesenchymal stem cells (MSCs) are particularly advantageous for generating IPCs. The islet cells require interactions with the extracellular matrix for survival, which is lacking in conventional 2D culture systems. Natural or synthetic polymers create a supportive 3D microenvironment in tissue engineering. We aim to construct superior differentiation conditions employing polyethersulfone (PES)/Fish gelatin scaffolds to differentiate Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) to IPCs. In this study, the PES/fish gelatin scaffold (3D) was manufactured by electrospinning, and then its biocompatibility and non-toxicity were investigated by MTT assay. After that, scaffold-supportive effects on WJ-MSCs differentiation to IPCs were studied at the gene and protein levels. After exposure to the differentiation media, 2D and 3D (PES/Fish gelatin) cultured cells were slowly aggregated and developed spherical-shaped clusters. The viability of cells was found to be comparable in both 2D and 3D cultures. The gene expression analysis showed that efficiency of differentiation was more elevated in 3D culture. Additionally, ELISA results indicated that C-peptide and insulin release were more significant in 3D than in 2D culture. In conclusion, the PES/fish gelatin scaffold is highly promising for pancreatic tissue engineering because it supports the viability, growth, and differentiation of WJ-MSCs into IPCs.
Collapse
Affiliation(s)
- Fatemeh Soleimanifar
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Zeinab Rezaei-Kiasari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hosein Mahboudi
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Reyhaneh Nassiri Mansour
- Department of Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mousa Kehtari
- Department of Animal Biology, School of Biology, Faculty of Science, University of Tehran, Tehran, Iran
| | - Mohammadfoad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hadi Hassannia
- Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
41
|
Piper AK, Penney C, Holliday J, Tincknell G, Ma Y, Napaki S, Pantel K, Brungs D, Ranson M. EGFR and PI3K Signalling Pathways as Promising Targets on Circulating Tumour Cells from Patients with Metastatic Gastric Adenocarcinoma. Int J Mol Sci 2024; 25:5565. [PMID: 38791602 PMCID: PMC11122469 DOI: 10.3390/ijms25105565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The prognosis for metastatic gastric adenocarcinoma (mGAC) remains poor. Gene alterations in receptor tyrosine kinases (RTKs) such as epidermal growth factor receptor (EGFR) and their downstream effectors including catalytic subunit alpha of the phosphatidylinositol 3-kinase (PIK3CA) are common in mGAC. Targeted RTK and phosphatidylinositol-3-kinase (PI3K) treatments have demonstrated clinical benefits in other solid tumours and are key potential targets for clinical development against mGAC given the presence of recurrent alterations in these pathways. Furthermore, combination RTK/PI3K treatments may overcome compensatory mechanisms that arise using monotherapies, leading to improved patient outcomes. Herein, we investigated RTK/PI3K single and combination drug responses against our unique human mGAC-derived PIK3CA gain-of-function mutant, human epidermal growth factor receptor 2 (HER2)-negative, EGFR-expressing circulating tumour cell line, UWG02CTC, under two- and three-dimensional culture conditions to model different stages of metastasis. UWG02CTCs were highly responsive to the PI3K p110α-subunit targeted drugs PIK-75 (IC50 = 37.0 ± 11.1 nM) or alpelisib (7.05 ± 3.7 µM). Drug sensitivities were significantly increased in 3D conditions. Compensatory MAPK/ERK pathway upregulation by PI3K/Akt suppression was overcome by combination treatment with the EGFR inhibitor gefitinib, which was strongly synergistic. PIK-75 plus gefitinib significantly impaired UWG02CTC invasion in an organotypic assay. In conclusion, UWG02CTCs are a powerful ex vivo mGAC drug responsiveness model revealing EGFR/PI3K-targeted drugs as a promising combination treatment option for HER2-negative, RAS wild-type mGAC patients.
Collapse
Affiliation(s)
- Ann-Katrin Piper
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Chelsea Penney
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jacqueline Holliday
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gary Tincknell
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia
| | - Yafeng Ma
- Centre for Circulating Tumour Cell Diagnostics & Research at the Ingham Institute for Applied Medical Research, South-Western Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
| | - Sarbar Napaki
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Department of Pathology, Wollongong Hospital, Wollongong, NSW 2500, Australia
| | - Klaus Pantel
- Institute for Tumor Biology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Daniel Brungs
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Department of Pathology, Wollongong Hospital, Wollongong, NSW 2500, Australia
| | - Marie Ranson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
42
|
Ahirwar K, Kumar A, Srivastava N, Saraf SA, Shukla R. Harnessing the potential of nanoengineered siRNAs carriers for target responsive glioma therapy: Recent progress and future opportunities. Int J Biol Macromol 2024; 266:131048. [PMID: 38522697 DOI: 10.1016/j.ijbiomac.2024.131048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Past scientific testimonials in the field of glioma research, the deadliest tumor among all brain cancer types with the life span of 10-15 months after diagnosis is considered as glioblastoma multiforme (GBM). Even though the availability of treatment options such as chemotherapy, radiotherapy, and surgery, are unable to completely cure GBM due to tumor microenvironment complexity, intrinsic cellular signalling, and genetic mutations which are involved in chemoresistance. The blood-brain barrier is accountable for restricting drugs entry at the tumor location and related biological challenges like endocytic degradation, short systemic circulation, and insufficient cellular penetration lead to tumor aggression and progression. The above stated challenges can be better mitigated by small interfering RNAs (siRNA) by knockdown genes responsible for tumor progression and resistance. However, siRNA encounters with challenges like inefficient cellular transfection, short circulation time, endogenous degradation, and off-target effects. The novel functionalized nanocarrier approach in conjunction with biological and chemical modification offers an intriguing potential to address challenges associated with the naked siRNA and efficiently silence STAT3, coffilin-1, EGFR, VEGF, SMO, MGMT, HAO-1, GPX-4, TfR, LDLR and galectin-1 genes in GBM tumor. This review highlights the nanoengineered siRNA carriers, their recent advancements, future perspectives, and strategies to overcome the systemic siRNA delivery challenges for glioma treatment.
Collapse
Affiliation(s)
- Kailash Ahirwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Ankit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Shubhini A Saraf
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India.
| |
Collapse
|
43
|
Mathes D, Macedo LB, Pieta TB, Maia BC, Rodrigues OED, Leal JG, Wendt M, Rolim CMB, Mitjans M, Nogueira-Librelotto DR. Co-Delivery of an Innovative Organoselenium Compound and Paclitaxel by pH-Responsive PCL Nanoparticles to Synergistically Overcome Multidrug Resistance in Cancer. Pharmaceutics 2024; 16:590. [PMID: 38794252 PMCID: PMC11124783 DOI: 10.3390/pharmaceutics16050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, we designed the association of the organoselenium compound 5'-Seleno-(phenyl)-3'-(ferulic-amido)-thymidine (AFAT-Se), a promising innovative nucleoside analogue, with the antitumor drug paclitaxel, in poly(ε-caprolactone) (PCL)-based nanoparticles (NPs). The nanoprecipitation method was used, adding the lysine-based surfactant, 77KS, as a pH-responsive adjuvant. The physicochemical properties presented by the proposed NPs were consistent with expectations. The co-nanoencapsulation of the bioactive compounds maintained the antioxidant activity of the association and evidenced greater antiproliferative activity in the resistant/MDR tumor cell line NCI/ADR-RES, both in the monolayer/two-dimensional (2D) and in the spheroid/three-dimensional (3D) assays. Hemocompatibility studies indicated the safety of the nanoformulation, corroborating the ability to spare non-tumor 3T3 cells and human mononuclear cells of peripheral blood (PBMCs) from cytotoxic effects, indicating its selectivity for the cancerous cells. Furthermore, the synergistic antiproliferative effect was found for both the association of free compounds and the co-encapsulated formulation. These findings highlight the antitumor potential of combining these bioactives, and the proposed nanoformulation as a potentially safe and effective strategy to overcome multidrug resistance in cancer therapy.
Collapse
Affiliation(s)
- Daniela Mathes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (D.M.); (L.B.M.); (B.C.M.); (C.M.B.R.)
- Laboratório de Testes e Ensaios Farmacêuticos In Vitro, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| | - Letícia Bueno Macedo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (D.M.); (L.B.M.); (B.C.M.); (C.M.B.R.)
- Laboratório de Engenharia e Processos Químicos, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil
| | - Taís Baldissera Pieta
- Laboratório de Testes e Ensaios Farmacêuticos In Vitro, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| | - Bianca Costa Maia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (D.M.); (L.B.M.); (B.C.M.); (C.M.B.R.)
- Laboratório de Testes e Ensaios Farmacêuticos In Vitro, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| | - Oscar Endrigo Dorneles Rodrigues
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (O.E.D.R.); (J.G.L.); (M.W.)
| | - Julliano Guerin Leal
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (O.E.D.R.); (J.G.L.); (M.W.)
| | - Marcelo Wendt
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (O.E.D.R.); (J.G.L.); (M.W.)
| | - Clarice Madalena Bueno Rolim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (D.M.); (L.B.M.); (B.C.M.); (C.M.B.R.)
- Laboratório de Testes e Ensaios Farmacêuticos In Vitro, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| | - Montserrat Mitjans
- Departament de Bioquimica i Fisiologia, Facultat de Farmacia i Ciències de l’Alimentaciò, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Daniele Rubert Nogueira-Librelotto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (D.M.); (L.B.M.); (B.C.M.); (C.M.B.R.)
- Laboratório de Testes e Ensaios Farmacêuticos In Vitro, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| |
Collapse
|
44
|
Moon SH, Park TY, Cha HJ, Yang YJ. Photo-/thermo-responsive bioink for improved printability in extrusion-based bioprinting. Mater Today Bio 2024; 25:100973. [PMID: 38322663 PMCID: PMC10844750 DOI: 10.1016/j.mtbio.2024.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Extrusion-based bioprinting has demonstrated significant potential for manufacturing constructs, particularly for 3D cell culture. However, there is a greatly limited number of bioink candidates exploited with extrusion-based bioprinting, as they meet the opposing requirements for printability with indispensable rheological features and for biochemical functionality with desirable microenvironment. In this study, a blend of silk fibroin (SF) and iota-carrageenan (CG) was chosen as a cell-friendly printable material. The SF/CG ink exhibited suitable viscosity and shear-thinning properties, coupled with the rapid sol-gel transition of CG. By employing photo-crosslinking of SF, the printability with Pr value close to 1 and structural integrity of the 3D constructs were significantly improved within a matter of seconds. The printed constructs demonstrated a Young's modulus of approximately 250 kPa, making them suitable for keratinocyte and myoblast cell culture. Furthermore, the high cell adhesiveness and viability (maximum >98%) of the loaded cells underscored the considerable potential of this 3D culture scaffold applied for skin and muscle tissues, which can be easily manipulated using an extrusion-based bioprinter.
Collapse
Affiliation(s)
- Seo Hyung Moon
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Tae Yoon Park
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science, Pohang, 37673, Republic of Korea
| | - Yun Jung Yang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
- Inha University Hospital, Incheon, 22332, Republic of Korea
| |
Collapse
|
45
|
Xu R, Chen R, Tu C, Gong X, Liu Z, Mei L, Ren X, Li Z. 3D Models of Sarcomas: The Next-generation Tool for Personalized Medicine. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:171-186. [PMID: 38884054 PMCID: PMC11169319 DOI: 10.1007/s43657-023-00111-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/18/2024]
Abstract
Sarcoma is a complex and heterogeneous cancer that has been difficult to study in vitro. While two-dimensional (2D) cell cultures and mouse models have been the dominant research tools, three-dimensional (3D) culture systems such as organoids have emerged as promising alternatives. In this review, we discuss recent developments in sarcoma organoid culture, with a focus on their potential as tools for drug screening and biobanking. We also highlight the ways in which sarcoma organoids have been used to investigate the mechanisms of gene regulation, drug resistance, metastasis, and immune interactions. Sarcoma organoids have shown to retain characteristics of in vivo biology within an in vitro system, making them a more representative model for sarcoma research. Our review suggests that sarcoma organoids offer a potential path forward for translational research in this field and may provide a platform for developing personalized therapies for sarcoma patients.
Collapse
Affiliation(s)
- Ruiling Xu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011 Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, No. 139 Renmin Road, Changsha, 410011 Hunan China
| | - Ruiqi Chen
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011 Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, No. 139 Renmin Road, Changsha, 410011 Hunan China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011 Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, No. 139 Renmin Road, Changsha, 410011 Hunan China
| | - Xiaofeng Gong
- College of Life Science, Fudan University, Shanghai, 200433 China
| | - Zhongyue Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011 Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, No. 139 Renmin Road, Changsha, 410011 Hunan China
| | - Lin Mei
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011 Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, No. 139 Renmin Road, Changsha, 410011 Hunan China
| | - Xiaolei Ren
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011 Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, No. 139 Renmin Road, Changsha, 410011 Hunan China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011 Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, No. 139 Renmin Road, Changsha, 410011 Hunan China
| |
Collapse
|
46
|
Suryavanshi P, Bodas D. Knockout cancer by nano-delivered immunotherapy using perfusion-aided scaffold-based tumor-on-a-chip. Nanotheranostics 2024; 8:380-400. [PMID: 38751938 PMCID: PMC11093718 DOI: 10.7150/ntno.87818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/20/2024] [Indexed: 05/18/2024] Open
Abstract
Cancer is a multifactorial disease produced by mutations in the oncogenes and tumor suppressor genes, which result in uncontrolled cell proliferation and resistance to cell death. Cancer progresses due to the escape of altered cells from immune monitoring, which is facilitated by the tumor's mutual interaction with its microenvironment. Understanding the mechanisms involved in immune surveillance evasion and the significance of the tumor microenvironment might thus aid in developing improved therapies. Although in vivo models are commonly utilized, they could be better for time, cost, and ethical concerns. As a result, it is critical to replicate an in vivo model and recreate the cellular and tissue-level functionalities. A 3D cell culture, which gives a 3D architecture similar to that found in vivo, is an appropriate model. Furthermore, numerous cell types can be cocultured, establishing cellular interactions between TME and tumor cells. Moreover, microfluidics perfusion can provide precision flow rates, thus simulating tissue/organ function. Immunotherapy can be used with the perfused 3D cell culture technique to help develop successful therapeutics. Immunotherapy employing nano delivery can target the spot and silence the responsible genes, ensuring treatment effectiveness while minimizing adverse effects. This study focuses on the importance of 3D cell culture in understanding the pathophysiology of 3D tumors and TME, the function of TME in drug resistance, tumor progression, and the development of advanced anticancer therapies for high-throughput drug screening.
Collapse
Affiliation(s)
- Pooja Suryavanshi
- Nanobioscience Group, Agharkar Research Institute, G.G. Agarkar Road, Pune 411 004 India
- Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007 India
| | - Dhananjay Bodas
- Nanobioscience Group, Agharkar Research Institute, G.G. Agarkar Road, Pune 411 004 India
- Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007 India
| |
Collapse
|
47
|
Wubshet NH, Cai G, Chen SJ, Sullivan M, Reeves M, Mays D, Harrison M, Varnado P, Yang B, Arreguin-Martinez E, Qu Y, Lin SS, Duran P, Aguilar C, Giza S, Clements T, Liu AP. Cellular mechanotransduction of human osteoblasts in microgravity. NPJ Microgravity 2024; 10:35. [PMID: 38514677 PMCID: PMC10957960 DOI: 10.1038/s41526-024-00386-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Astronauts experience significant and rapid bone loss as a result of an extended stay in space, making the International Space Station (ISS) the perfect laboratory for studying osteoporosis due to the accelerated nature of bone loss on the ISS. This prompts the question, how does the lack of load due to zero-gravity propagate to bone-forming cells, human fetal osteoblasts (hFOBs), altering their maturation to mineralization? Here, we aim to study the mechanotransduction mechanisms by which bone loss occurs in microgravity. Two automated experiments, microfluidic chips capable of measuring single-cell mechanics via aspiration and cell spheroids incubated in pressure-controlled chambers, were each integrated into a CubeLab deployed to the ISS National Laboratory. For the first experiment, we report protrusion measurements of aspirated cells after exposure to microgravity at the ISS and compare these results to ground control conducted inside the CubeLab. We found slightly elongated protrusions for space samples compared to ground samples indicating softening of hFOB cells in microgravity. In the second experiment, we encapsulated osteoblast spheroids in collagen gel and incubated the samples in pressure-controlled chambers. We found that microgravity significantly reduced filamentous actin levels in the hFOB spheroids. When subjected to pressure, the spheroids exhibited increased pSMAD1/5/9 expression, regardless of the microgravity condition. Moreover, microgravity reduced YAP expression, while pressure increased YAP levels, thus restoring YAP expression for spheroids in microgravity. Our study provides insights into the influence of microgravity on the mechanical properties of bone cells and the impact of compressive pressure on cell signaling in space.
Collapse
Affiliation(s)
- Nadab H Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Samuel J Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | | | | | | | - Benjamin Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Yunjia Qu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shan-Shan Lin
- Applied Physics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pamela Duran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carlos Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Applied Physics Program, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
48
|
Wubshet NH, Cai G, Chen SJ, Sullivan M, Reeves M, Mays D, Harrison M, Varnado P, Yang B, Arreguin-Martinez E, Qu Y, Lin SS, Duran P, Aguilar C, Giza S, Clements T, Liu AP. Cellular mechanotransduction of human osteoblasts in microgravity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583164. [PMID: 38464311 PMCID: PMC10925314 DOI: 10.1101/2024.03.03.583164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Astronauts experience significant and rapid bone loss as a result of an extended stay in space, making the International Space Station (ISS) the perfect laboratory for studying osteoporosis due to the accelerated nature of bone loss on the ISS. This prompts the question, how does the lack of load due to zero-gravity propagate to bone-forming cells, human fetal osteoblasts (hFOBs), altering their maturation to mineralization? Here, we aim to study the mechanotransduction mechanisms by which bone loss occurs in microgravity. Two automated experiments, 4 microfluidic chips capable of measuring single-cell mechanics of hFOBs via aspiration and cell spheroids incubated in pressure-controlled chambers, were each integrated into a CubeLab deployed to the ISS National Laboratory. For the first experiment, we report protrusion measurements of aspirated cells after exposure to microgravity at the ISS and compare these results to ground control conducted inside the CubeLab. Our analysis revealed slightly elongated protrusions for space samples compared to ground samples indicating softening of hFOB cells in microgravity. In the second experiment, we encapsulated osteoblast spheroids in collagen gel and incubated the samples in pressure-controlled chambers. We found that microgravity significantly reduced filamentous actin levels in the hFOB spheroids. When subjected to pressure, the spheroids exhibited increased pSMAD1/5/9 expression, regardless of the microgravity condition. Moreover, microgravity reduced YAP expression, while pressure increased YAP levels, thus restoring YAP expression for spheroids in microgravity. Our study provides insights into the influence of microgravity on the mechanical properties of bone cells and the impact of compressive pressure on cell behavior and signaling in space.
Collapse
Affiliation(s)
- Nadab H. Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Samuel J. Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | - Benjamin Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Yunjia Qu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shan-Shan Lin
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Pamela Duran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Carlos Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
49
|
Hung HC, Mao TL, Fan MH, Huang GZ, Minhalina AP, Chen CL, Liu CL. Enhancement of Tumorigenicity, Spheroid Niche, and Drug Resistance of Pancreatic Cancer Cells in Three-Dimensional Culture System. J Cancer 2024; 15:2292-2305. [PMID: 38495500 PMCID: PMC10937281 DOI: 10.7150/jca.87494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/27/2024] [Indexed: 03/19/2024] Open
Abstract
The three-dimensional (3D) cell culture technique has been applied comprehensively as a variable platform for medical research, biochemical signal pathway analysis, and evaluation of anti-tumor treatment response due to an excellent recapitulation of a tumor microenvironment (TME) in the in vitro cultured cancer cells. Pancreatic cancer (PaC) is one of the toughest malignancies with a complex TME and refractory treatment response. To comprehensively study the TME of PaC, there is an eager need to develop a 3D culture model to decompose the cellular components and their cross interactions. Herein, we establish a 3D PaC culture system with cancer stem cell (CSC) and scalability properties. To validate our model, we tested the individual PaC cell and the combined effects with cancer-associated fibroblasts (CAFs) on cancer tumorigenicity, the cellular interaction through the CXCR3/CXCL10 axis, and cellular responses reflection of anti-cancer treatments. With the help of our 3D technology, a simulated malignant spheroid with important stromal populations and TME physiochemical properties may be successfully recreated. It can be used in a wide range of preclinical research and helpful in advancing basic and translational cancer biology.
Collapse
Affiliation(s)
- Hao-Chien Hung
- Department of General Surgery, Chang-Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Tsui-Lien Mao
- Department of Pathology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Ming-Huei Fan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Guan-Zhi Huang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ainani Priza Minhalina
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Chao-Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
50
|
Zheng K, Ma Y, Chiu C, Xue M, Zhang C, Du D. Enhanced articular cartilage regeneration using costal chondrocyte-derived scaffold-free tissue engineered constructs with ascorbic acid treatment. J Orthop Translat 2024; 45:140-154. [PMID: 38559899 PMCID: PMC10979122 DOI: 10.1016/j.jot.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Background Cartilage tissue engineering faces challenges related to the use of scaffolds and limited seed cells. This study aims to propose a cost-effective and straightforward approach using costal chondrocytes (CCs) as an alternative cell source to overcome these challenges, eliminating the need for special culture equipment or scaffolds. Methods CCs were cultured at a high cell density with and without ascorbic acid treatment, serving as the experimental and control groups, respectively. Viability and tissue-engineered constructs (TEC) formation were evaluated until day 14. Slices of TEC samples were used for histological staining to evaluate the secretion of glycosaminoglycans and different types of collagen proteins within the extracellular matrix. mRNA sequencing and qPCR were performed to examine gene expression related to cartilage matrix secretion in the chondrocytes. In vivo experiments were conducted by implanting TECs from different groups into the defect site, followed by sample collection after 12 weeks for histological staining and scoring to evaluate the extent of cartilage regeneration. Hematoxylin-eosin (HE), Safranin-O-Fast Green, and Masson's trichrome stainings were used to examine the content of cartilage-related matrix components in the in vivo repair tissue. Immunohistochemical staining for type I and type II collagen, as well as aggrecan, was performed to assess the presence and distribution of these specific markers. Additionally, immunohistochemical staining for type X collagen was used to observe any hypertrophic changes in the repaired tissue. Results Viability of the chondrocytes remained high throughout the culture period, and the TECs displayed an enriched extracellular matrix suitable for surgical procedures. In vitro study revealed glycosaminoglycan and type II collagen production in both groups of TEC, while the TEC matrix treated with ascorbic acid displayed greater abundance. The results of mRNA sequencing and qPCR showed that genes related to cartilage matrix secretion such as Sox9, Col2, and Acan were upregulated by ascorbic acid in costal chondrocytes. Although the addition of Asc-2P led to an increase in COL10 expression according to qPCR and RNA-seq results, the immunofluorescence staining results of the two groups of TECs exhibited similar distribution and fluorescence intensity. In vivo experiments showed that both groups of TEC could adhere to the defect sites and kept hyaline cartilage morphology until 12 weeks. TEC treated with ascorbic acid showed superior cartilage regeneration as evidenced by significantly higher ICRS and O'Driscoll scores and stronger Safranin-O and collagen staining mimicking native cartilage when compared to other groups. In addition, the immunohistochemical staining results of Collgan X indicated that, after 12 weeks, the ascorbic acid-treated TEC did not exhibit further hypertrophy upon transplantation into the defect site, but maintained an expression profile similar to untreated TECs, while slightly higher than the sham-operated group. Conclusion These results suggest that CC-derived scaffold-free TEC presents a promising method for articular cartilage regeneration. Ascorbic acid treatment enhances outcomes by promoting cartilage matrix production. This study provides valuable insights and potential advancements in the field of cartilage tissue engineering. The translational potential of this article Cartilage tissue engineering is an area of research with immense clinical potential. The approach presented in this article offers a cost-effective and straightforward solution, which can minimize the complexity of cell culture and scaffold fabrication. This simplification could offer several translational advantages, such as ease of use, rapid scalability, lower costs, and the potential for patient-specific clinical translation. The use of costal chondrocytes, which are easily obtainable, and the scaffold-free approach, which does not require specialized equipment or membranes, could be particularly advantageous in clinical settings, allowing for in situ regeneration of cartilage.
Collapse
Affiliation(s)
- Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Ma
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Chiu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxin Xue
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|