1
|
Qiu T, Hou L, Zhao L, Wang X, Zhou Z, Yang C, Zhang H, Jiang D, Jiao B, Chen C. SGCE promotes breast cancer stemness by promoting the transcription of FGF-BP1 by Sp1. J Biol Chem 2023; 299:105351. [PMID: 37838174 PMCID: PMC10641673 DOI: 10.1016/j.jbc.2023.105351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/16/2023] Open
Abstract
Breast cancer stem cells are mainly responsible for poor prognosis, especially in triple-negative breast cancer (TNBC). In a previous study, we demonstrated that ε-Sarcoglycan (SGCE), a type Ⅰ single-transmembrane protein, is a potential oncogene that promotes TNBC stemness by stabilizing EGFR. Here, we further found that SGCE depletion reduces breast cancer stem cells, partially through inhibiting the transcription of FGF-BP1, a secreted oncoprotein. Mechanistically, we demonstrate that SGCE could interact with the specific protein 1 transcription factor and translocate into the nucleus, which leads to an increase in the transcription of FGF-BP1, and the secreted FBF-BP1 activates FGF-FGFR signaling to promote cancer cell stemness. The novel SGCE-Sp1-FGF-BP1 axis provides novel potential candidate diagnostic markers and therapeutic targets for TNBC.
Collapse
Affiliation(s)
- Ting Qiu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China; Kunming College of Life sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China
| | - Lei Hou
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Lina Zhao
- Kunming College of Life sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xinye Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Huifeng Zhang
- Department of Clinical Pharmacy, The First People's Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China; Kunming College of Life sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China.
| | - Baowei Jiao
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, China; Academy of Biomedical Engineering, Kunming Medical University, Kunming, China; The Third Affiliated Hospital, Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Krushkal J, Vural S, Jensen TL, Wright G, Zhao Y. Increased copy number of imprinted genes in the chromosomal region 20q11-q13.32 is associated with resistance to antitumor agents in cancer cell lines. Clin Epigenetics 2022; 14:161. [PMID: 36461044 PMCID: PMC9716673 DOI: 10.1186/s13148-022-01368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Parent of origin-specific allelic expression of imprinted genes is epigenetically controlled. In cancer, imprinted genes undergo both genomic and epigenomic alterations, including frequent copy number changes. We investigated whether copy number loss or gain of imprinted genes in cancer cell lines is associated with response to chemotherapy treatment. RESULTS We analyzed 198 human imprinted genes including protein-coding genes and noncoding RNA genes using data from tumor cell lines from the Cancer Cell Line Encyclopedia and Genomics of Drug Sensitivity in Cancer datasets. We examined whether copy number of the imprinted genes in 35 different genome locations was associated with response to cancer drug treatment. We also analyzed associations of pretreatment expression and DNA methylation of imprinted genes with drug response. Higher copy number of BLCAP, GNAS, NNAT, GNAS-AS1, HM13, MIR296, MIR298, and PSIMCT-1 in the chromosomal region 20q11-q13.32 was associated with resistance to multiple antitumor agents. Increased expression of BLCAP and HM13 was also associated with drug resistance, whereas higher methylation of gene regions of BLCAP, NNAT, SGK2, and GNAS was associated with drug sensitivity. While expression and methylation of imprinted genes in several other chromosomal regions was also associated with drug response and many imprinted genes in different chromosomal locations showed a considerable copy number variation, only imprinted genes at 20q11-q13.32 had a consistent association of their copy number with drug response. Copy number values among the imprinted genes in the 20q11-q13.32 region were strongly correlated. They were also correlated with the copy number of cancer-related non-imprinted genes MYBL2, AURKA, and ZNF217 in that chromosomal region. Expression of genes at 20q11-q13.32 was associated with ex vivo drug response in primary tumor samples from the Beat AML 1.0 acute myeloid leukemia patient cohort. Association of the increased copy number of the 20q11-q13.32 region with drug resistance may be complex and could involve multiple genes. CONCLUSIONS Copy number of imprinted and non-imprinted genes in the chromosomal region 20q11-q13.32 was associated with cancer drug resistance. The genes in this chromosomal region may have a modulating effect on tumor response to chemotherapy.
Collapse
Affiliation(s)
- Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD, 20850, USA.
| | - Suleyman Vural
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD, 20850, USA.,Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | | | - George Wright
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD, 20850, USA
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD, 20850, USA
| |
Collapse
|
3
|
López-Garrido MP, Carrascosa-Romero MC, Montero-Hernández M, Serrano-Martínez CM, Sánchez-Sánchez F. Case Report: Precision genetic diagnosis in a case of Dyggve-Melchior-Clausen syndrome reveals paternal isodisomy and heterodisomy of chromosome 18 with imprinting clinical implications. Front Genet 2022; 13:1005573. [PMID: 36468000 PMCID: PMC9716064 DOI: 10.3389/fgene.2022.1005573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/02/2022] [Indexed: 02/19/2024] Open
Abstract
A twelve-year-old patient with a previous clinical diagnosis of spondylocostal skeletal dysplasia and moderate intellectual disability was genetically analyzed through next generation sequencing of a targeted gene panel of 179 genes associated to skeletal dysplasia and mucopolysaccharidosis in order to stablish a precision diagnosis. A homozygous nonsense [c.62C>G; p.(Ser21Ter)] mutation in DYM gene was identified in the patient. Null mutations in DYM have been associated to Dyggve-Melchior-Clausen syndrome, which is a rare autosomal-recessive disorder characterized by skeletal dysplasia and mental retardation, compatible with the patient´s phenotype. To confirm the pathogenicity of this mutation, a segregation analysis was carried out, revealing that the mutation p(Ser21Ter) was solely inherited from the father, who is a carrier of the mutation, while the mother does not carry the mutation. With the suspicion that a paternal disomy could be causing the disease, a series of microsatellite markers in chromosome 18, where the DYM gene is harbored, was analyzed in all the members of the family. Haplotype analysis provided strong evidence of paternal isodisomy and heterodisomy in that chromosome, confirming the pathological effect of this mutation. Furthermore, the patient may have a compromised expression of the ELOA3 gene due to modifications in the genomic imprinting that may potentially increase the risk of digestive cancer. All these results highlight the importance of obtaining a precision diagnosis in rare diseases.
Collapse
Affiliation(s)
- María-Pilar López-Garrido
- Laboratorio de Genética Médica, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Albacete, Spain
| | | | - Minerva Montero-Hernández
- Laboratorio de Genética Médica, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha (UCLM), Spain
| | - Caridad-María Serrano-Martínez
- Laboratorio de Genética Médica, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha (UCLM), Spain
| | - Francisco Sánchez-Sánchez
- Laboratorio de Genética Médica, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha (UCLM), Spain
| |
Collapse
|
4
|
The Impact of Epigenetic Signatures on Amniotic Fluid Stem Cell Fate. Stem Cells Int 2018; 2018:4274518. [PMID: 30627172 PMCID: PMC6304862 DOI: 10.1155/2018/4274518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023] Open
Abstract
Epigenetic modifications play a significant role in determining the fate of stem cells and in directing the differentiation into multiple lineages. Current evidence indicates that mechanisms involved in chromatin regulation are essential for maintaining stable cell identities. There is a tight correlation among DNA methylation, histone modifications, and small noncoding RNAs during the epigenetic control of stem cells' differentiation; however, to date, the precise mechanism is still not clear. In this context, amniotic fluid stem cells (AFSCs) represent an interesting model due to their unique features and the possible advantages of their use in regenerative medicine. Recent studies have elucidated epigenetic profiles involved in AFSCs' lineage commitment and differentiation. In order to use these cells effectively for therapeutic purposes, it is necessary to understand the basis of multiple-lineage potential and elaborate in detail how cell fate decisions are made and memorized. The present review summarizes the most recent findings on epigenetic mechanisms of AFSCs with a focus on DNA methylation, histone modifications, and microRNAs (miRNAs) and addresses how their unique signatures contribute to lineage-specific differentiation.
Collapse
|
5
|
Wu D, Gong C, Su C. Genome-wide analysis of differential DNA methylation in Silver-Russell syndrome. SCIENCE CHINA-LIFE SCIENCES 2017. [PMID: 28624953 DOI: 10.1007/s11427-017-9079-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Silver-Russell Syndrome (SRS) is clinically heterogeneous disorder characterized by low birth weight, postnatal growth restriction, and variable dysmorphic features. Current evidence strongly implicates imprinted genes as an important etiology of SRS. Although almost half of the patients showed DNA hypomethylation at the H19/IGF2 imprinted domain, and approximately 7%-10% of SRS patients have maternal uniparental disomy of chromosome 7 (UPD (7) mat); the rest of the SRS patients shows unknown etiology. In this study, we investigate whether there are further DNA methylation defects in SRS patients. We measured DNA methylation in seven SRS patients and five controls at more than 485,000 CpG sites using DNA methylation microarrays. We analyzed methylation changes genome-wide and identified the differentially methylated regions (DMRs) using bisulfite sequencing and digital PCR. Our analysis identifies epimutations at the previously characterized domains of H19/IGF2, providing proof of principle that our methodology can detect the changes in DNA methylation at imprinted loci. In addition, our results showed a novel SRS associated imprinted gene OSBPL5 located on chromosome 11p14 with the probe cg25963939, which is hypomethylated in 4/7 patients (P=0.023, β=-0.243). We also report DMRs in other genes including TGFβ3, HSF1, GAP43, NOTCH4 and MYH14. These DMRs were found to be associated with SRS using GO pathway analysis. In this study, we identified the probe cg25963939, located at the 5'UTR of imprinted gene OSBPL5, as a novel DMR that is associated with SRS. This finding provides new insights into the mechanism of SRS etiology and aid the further stratification of SRS patients by molecular phenotypes.
Collapse
Affiliation(s)
- Di Wu
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, MOE Key Laboratory of Major Diseases in Children, Beijing, 100045, China
| | - Chunxiu Gong
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, MOE Key Laboratory of Major Diseases in Children, Beijing, 100045, China.
| | - Chang Su
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, MOE Key Laboratory of Major Diseases in Children, Beijing, 100045, China
| |
Collapse
|
6
|
Rebuzzini P, Zuccotti M, Redi CA, Garagna S. Achilles' heel of pluripotent stem cells: genetic, genomic and epigenetic variations during prolonged culture. Cell Mol Life Sci 2016; 73:2453-66. [PMID: 26961132 PMCID: PMC11108315 DOI: 10.1007/s00018-016-2171-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/28/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022]
Abstract
Pluripotent stem cells differentiate into almost any specialized adult cell type of an organism. PSCs can be derived either from the inner cell mass of a blastocyst-giving rise to embryonic stem cells-or after reprogramming of somatic terminally differentiated cells to obtain ES-like cells, named induced pluripotent stem cells. The potential use of these cells in the clinic, for investigating in vitro early embryonic development or for screening the effects of new drugs or xenobiotics, depends on capability to maintain their genome integrity during prolonged culture and differentiation. Both human and mouse PSCs are prone to genomic and (epi)genetic instability during in vitro culture, a feature that seriously limits their real potential use. Culture-induced variations of specific chromosomes or genes, are almost all unpredictable and, as a whole, differ among independent cell lines. They may arise at different culture passages, suggesting the absence of a safe passage number maintaining genome integrity and rendering the control of genomic stability mandatory since the very early culture passages. The present review highlights the urgency for further studies on the mechanisms involved in determining (epi)genetic and chromosome instability, exploiting the knowledge acquired earlier on other cell types.
Collapse
Affiliation(s)
- Paola Rebuzzini
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', Università degli Studi di Pavia, Via Ferrata 9, 27100, Pavia, Italy.
- Center for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, Pavia, Italy.
| | - Maurizio Zuccotti
- Unita' di Anatomia, Istologia ed Embriologia, Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali (S.BI.BI.T.), Università degli Studi di Parma, Via Volturno 39, 43100, Parma, Italy.
| | - Carlo Alberto Redi
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', Università degli Studi di Pavia, Via Ferrata 9, 27100, Pavia, Italy
- Center for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, Pavia, Italy
- Fondazione I.R.C.C.S. Policlinico San Matteo, Piazzale Golgi, 19, 27100, Pavia, Italy
| | - Silvia Garagna
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', Università degli Studi di Pavia, Via Ferrata 9, 27100, Pavia, Italy.
- Center for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, Pavia, Italy.
| |
Collapse
|
7
|
Karahan G, Sayar N, Gozum G, Bozkurt B, Konu O, Yulug IG. Relative expression of rRNA transcripts and 45S rDNA promoter methylation status are dysregulated in tumors in comparison with matched-normal tissues in breast cancer. Oncol Rep 2015; 33:3131-45. [PMID: 25962577 DOI: 10.3892/or.2015.3940] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/14/2015] [Indexed: 11/06/2022] Open
Abstract
Ribosomal RNA (rRNA) expression, one of the most important factors regulating ribosome production, is primarily controlled by a CG-rich 45 S rDNA promoter. However, the DNA methylation state of the 45 S rDNA promoter, as well as its effect on rRNA gene expression in types of human cancers is controversial. In the present study we analyzed the methylation status of the rDNA promoter (-380 to +53 bp) as well as associated rRNA expression levels in breast cancer cell lines and breast tumor-normal tissue pairs. We found that the aforementioned regulatory region was extensively methylated (74-96%) in all cell lines and in 68% (13/19 tumor-normal pairs) of the tumors. Expression levels of rRNA transcripts 18 S, 28 S, 5.8 S and 45 S external transcribed spacer (45 S ETS) greatly varied in the breast cancer cell lines regardless of their methylation status. Analyses of rRNA transcript expression levels in the breast tumor and normal matched tissues showed no significant difference when normalized with TBP. On the other hand, using the geometric mean of the rRNA expression values (GM-rRNA) as reference enabled us to identify significant changes in the relative expression of rRNAs in the tissue samples. We propose GM-rRNA normalization as a novel strategy to analyze expression differences between rRNA transcripts. Accordingly, the 18S rRNA/GM-rRNA ratio was significantly higher whereas the 5.8S rRNA/GM-rRNA ratio was significantly lower in breast tumor samples than this ratio in the matched normal samples. Moreover, the 18S rRNA/GM-rRNA ratio was negatively correlated with the 45 S rDNA promoter methylation level in the normal breast tissue samples, yet not in the breast tumors. Significant correlations observed between the expression levels of rRNA transcripts in the normal samples were lost in the tumor samples. We showed that the expression of rRNA transcripts may not be based solely on promoter methylation. Carcinogenesis may cause dysregulation of the correlation between spliced rRNA expression levels, possibly due to changes in rRNA processing, which requires further investigation.
Collapse
Affiliation(s)
- Gurbet Karahan
- Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, TR-06800 Ankara, Turkey
| | - Nilufer Sayar
- Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, TR-06800 Ankara, Turkey
| | - Gokcen Gozum
- Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, TR-06800 Ankara, Turkey
| | - Betul Bozkurt
- Department of General Surgery, Ankara Numune Research and Teaching Hospital, TR-06100 Ankara, Turkey
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, TR-06800 Ankara, Turkey
| | - Isik G Yulug
- Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, TR-06800 Ankara, Turkey
| |
Collapse
|
8
|
Edfeldt K, Ahmad T, Åkerström G, Janson ET, Hellman P, Stålberg P, Björklund P, Westin G. TCEB3C a putative tumor suppressor gene of small intestinal neuroendocrine tumors. Endocr Relat Cancer 2014; 21:275-84. [PMID: 24351681 DOI: 10.1530/erc-13-0419] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small intestinal neuroendocrine tumors (SI-NETs), formerly known as midgut carcinoids, are rare and slow-growing neoplasms. Frequent loss of one copy of chromosome 18 in primary tumors and metastases has been observed. The aim of the study was to investigate a possible role of TCEB3C (Elongin A3), currently the only imprinted gene on chromosome 18, as a tumor suppressor gene in SI-NETs, and whether its expression is epigenetically regulated. Primary tumors, metastases, the human SI-NET cell line CNDT2.5, and two other cell lines were included. Immunohistochemistry, gene copy number determination by PCR, colony formation assay, western blotting, real-time quantitative RT-PCR, RNA interference, and quantitative CpG methylation analysis by pyrosequencing were performed. A large majority of tumors (33/43) showed very low to undetectable Elongin A3 expression and as expected 89% (40/45) displayed one gene copy of TCEB3C. The DNA hypomethylating agent 5-aza-2'-deoxycytidine induced TCEB3C expression in CNDT2.5 cells, in primary SI-NET cells prepared directly after surgery, but not in two other cell lines. Also siRNA to DNMT1 and treatment with the general histone methyltransferase inhibitor 3-deazaneplanocin A induced TCEB3C expression in a cell type-specific way. CpG methylation at the TCEB3C promoter was observed in all analyzed tissues and thus not related to expression. Overexpression of TCEB3C resulted in a 50% decrease in clonogenic survival of CNDT2.5 cells, but not of control cells. The results support a putative role of TCEB3C as a tumor suppressor gene in SI-NETs. Epigenetic repression of TCEB3C seems to be tumor cell type-specific and involves both DNA and histone methylation.
Collapse
Affiliation(s)
- Katarina Edfeldt
- Departments of Surgical Sciences Medical Sciences, Uppsala University Hospital, Uppsala University, Entrance 70, 3 tr, SE-75185 Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Li SSL. Characterization and gene expression profiling of five human embryonic stem cell lines derived in Taiwan. Methods Mol Biol 2012; 873:127-49. [PMID: 22528352 DOI: 10.1007/978-1-61779-794-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human embryonic stem cell (hESC) lines have been derived from the inner cell mass of blastocysts. Five hESC lines have been derived from 32 discarded blastocysts in Taiwan, and these lines have since been continuously cultured on mitotically inactivated mouse embryonic fibroblasts as feeder in the hESC medium for more than 44 passages and underwent freezing/thawing processes. All of five hESC lines expressed characteristic undifferentiated hESC markers such as SSEA-4, TRA-1-81, alkaline phosphatase, TERT, transcription factors POU5F1 (OCT4), and NANOG. The hESC lines T1 and T3 possess normal female karyotypes, whereas lines T4 and T5 are normal male, but line T2 is male trisomy 12 (47XY,+12). The hESC lines T1, T2, T3, and T5 were able to produce teratomas in SCID mice, and line T4 could only form embryoid bodies in vitro. Global gene expression profiles of single colonies of these five hESC lines were analyzed using Affymetrix human genome U133 plus 2.0 GeneChip. The results showed that 4,145 transcripts, including 19% of unknown functions, were detected in all five hESC lines. Comparison of the 4,145 genes commonly expressed in the five hESC lines with those genes expressed in teratoma produced by hESC line T1 and placenta revealed 40 genes exclusively expressed in all five hESC lines. These 40 genes include the previously reported stemness genes such as POU5F1 (OCT4), NANOG, TDGF1 (CRIPTO), SALL4, LECT1, and BUB1 responsible for self-renewal and pluripotent differentiation. The global gene expression analysis also indicated that the TGFβ/activin branch components inhibin BC, ACVR2A, ACVR1 (ALK2), TGFBR1 (ALK5), and SMAD2 were found to be highly expressed in undifferentiated states of these five hESC lines and decreased upon differentiation. The epigenetic states and expression of 32 known imprinted genes in these five hESC lines and/or differentiated derivatives were also investigated. In short, the hESC nature of these five hESC lines is supported by the undifferentiated state, extensive renewal capacity, and pluripotency, including the ability to form teratomas and/or embryoid bodies; and these cell lines will be useful for research on human embryonic stem cell biology and drug development/toxicity testing. The epigenetic states and expression of imprinted genes in hESC lines should be thoroughly studied after extended culture and upon differentiation in order to understand epigenetic stability in hESC lines before their clinical applications.
Collapse
Affiliation(s)
- Steven Shoei-Lung Li
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
Tolmacheva EN, Kashevarova AA, Skryabin NA, Lebedev IN. DNA methylation profile in human placental tissues. Mol Biol 2011. [DOI: 10.1134/s0026893311030198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|