1
|
Zhang WY, Wang HB, Deng CY. Advances in human umbilical cord mesenchymal stem cells-derived extracellular vesicles and biomaterial assemblies for endometrial injury treatment. World J Stem Cells 2025; 17:97905. [DOI: 10.4252/wjsc.v17.i1.97905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/06/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
Endometrial injury caused by repeated uterine procedures, infections, inflammation, or uterine artery dysfunction can deplete endometrial stem/progenitor cells and impair regeneration, thereby diminishing endometrial receptivity and evidently lowering the live birth, clinical pregnancy, and embryo implantation rates. Currently, safe and effective clinical treatment methods or gene-targeted therapies are unavailable, especially for severe endometrial injury. Umbilical cord mesenchymal stem cells and their extracellular vesicles are characterized by their simple collection, rapid proliferation, low immunogenicity, and tumorigenicity, along with their involvement in regulating angiogenesis, immune response, cell apoptosis and proliferation, inflammatory response, and fibrosis, Therefore, these cells and vesicles hold broad potential for application in endometrial repair. This article reviewed recent research on human umbilical cord mesenchymal stem cells as well as their extracellular vesicles in repairing endometrial injury.
Collapse
Affiliation(s)
- Wan-Yu Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Han-Bi Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Cheng-Yan Deng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing 100730, China
| |
Collapse
|
2
|
Rasouli M, Alavi M, D'Angelo A, Sobhani N, Roudi R, Safari F. Exploring the dichotomy of the mesenchymal stem cell secretome: Implications for tumor modulation via cell-signaling pathways. Int Immunopharmacol 2024; 143:113265. [PMID: 39353385 DOI: 10.1016/j.intimp.2024.113265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Current cancer therapeutic strategies for the treatment of cancer are often unsuccessful due to unwanted side effects and drug resistance. Therefore, the design and development of potent, new anticancer platforms, such as stem-cell treatments, have attracted much attention. Distinctive biological properties of stem cells include their capacity to secrete bioactive factors, their limited immunogenicity, and their capacity for renewing themselves. Mesenchymal stem cells (MSCs) are one of several kinds of stem cells that are conveniently extracted and are able to be cultivated in vitro utilizing various sources. The secretome of stem cells contains many trophic factors, including cytokines, chemokines, growth factors, and microRNA molecules that can either promote or inhibit the formation of tumors, based on the cell environment. In the current review, we focused on the secretome of mesenchymal stem cells. These stem cells act as a double-edged sword in the regulation of cell signal transduction pathways in that they can either suppress or promote tumors.
Collapse
Affiliation(s)
- Mohammad Rasouli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Mana Alavi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Alberto D'Angelo
- Oncology Department, Royal United Hospital, Bath BA1 3NG, United Kingdom
| | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA 94305, USA.
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| |
Collapse
|
3
|
Li X, Feng J, Cheng H, Jin N, Jin S, Liu Z, Xu J, Xie J. Human umbilical cord mesenchymal stem cells enhance liver regeneration and decrease collagen content in fibrosis mice after partial hepatectomy by activating Wnt/β-catenin signaling. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39716885 DOI: 10.3724/abbs.2024207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Liver fibrosis is a critical stage in the progression of various chronic liver diseases to cirrhosis and liver cancer. Early inhibition of liver fibrosis is crucial for the treatment of liver disease. Hepatectomy, a common treatment for liver-related diseases, promotes liver regeneration. However, in the context of liver fibrosis, liver regeneration is hindered. Many studies have shown that mesenchymal stem cells (MSCs) can promote liver regeneration after partial hepatectomy (PH). However, there are few reports on the impact of MSC therapy on liver regeneration post-PH in the context of hepatic fibrosis. The objective of this study is to examine the impact of MSCs on liver regeneration following PH in the fibrotic liver and uncover the related molecular mechanisms. This study reveals that MSC therapy significantly enhances liver function and mitigates liver inflammation after PH in the context of hepatic fibrosis. MSCs also significantly promote liver regeneration and alleviate liver fibrosis. In addition, this study identifies the role of MSCs in promoting liver regeneration and alleviating liver fibrosis via the activation of Wnt/β-catenin signaling. The combination of MSCs with hepatectomy may offer a novel approach for the treatment of liver fibrotic diseases.
Collapse
Affiliation(s)
- Xuewei Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China
| | - Jinghui Feng
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Haiqin Cheng
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China
| | - Ning Jin
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China
| | - Shanshan Jin
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China
| | - Jun Xu
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplant Center, the First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
4
|
AlOraibi S, Taurin S, Alshammary S. Advancements in Umbilical Cord Biobanking: A Comprehensive Review of Current Trends and Future Prospects. Stem Cells Cloning 2024; 17:41-58. [PMID: 39655226 PMCID: PMC11626973 DOI: 10.2147/sccaa.s481072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024] Open
Abstract
Biobanking has emerged as a transformative concept in advancing the medical field, particularly with the exponential growth of umbilical cord (UC) biobanking in recent decades. UC blood and tissue provide a rich source of primitive hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) for clinical transplantation, offering distinct advantages over alternative adult stem cell sources. However, to fully realize the therapeutic potential of UC-derived stem cells and establish a comprehensive global UC-biobanking network, it is imperative to optimize and standardize UC processing, cryopreservation methods, quality control protocols, and regulatory frameworks, alongside developing effective consent provisions. This review aims to comprehensively explore recent advancements in UC biobanking, focusing on the establishment of rigorous safety and quality control procedures, the standardization of biobanking operations, and the optimization and automation of UC processing and cryopreservation techniques. Additionally, the review examines the expanded clinical applications of UC stem cells, addresses the challenges associated with umbilical cord biobanking and UC-derived stem cell therapies, and discusses the promising role of artificial intelligence (AI) in enhancing various operational aspects of biobanking, streamlining data processing, and improving data analysis accuracy while ensuring compliance with safety and quality standards. By addressing these critical areas, this review seeks to provide insights into the future direction of UC biobanking and its potential to significantly impact regenerative medicine.
Collapse
Affiliation(s)
- Sahar AlOraibi
- Molecular Medicine Department, Princess Al Jawhara Center for Molecular Medicine, Genetics, and Hereditary Diseases, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Bahrain
| | - Sebastien Taurin
- Molecular Medicine Department, Princess Al Jawhara Center for Molecular Medicine, Genetics, and Hereditary Diseases, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Bahrain
| | - Sfoug Alshammary
- Molecular Medicine Department, Princess Al Jawhara Center for Molecular Medicine, Genetics, and Hereditary Diseases, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
5
|
Timimi ZA. The impact of 980nm diode laser irradiation on the proliferation of mesenchymal stem cells derived from the umbilical cord's. Tissue Cell 2024; 91:102568. [PMID: 39303440 DOI: 10.1016/j.tice.2024.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Various cell types can have their growth accelerated by using low-intensity laser radiation. The study is intended to look at the impacts of laser radiation at low energy intensity on the ability of mesenchymal stem cells (MSCs) generated from umbilical cords to proliferate as well as survive in low-nutrient conditions. The study applied two different energy densities, 2.5 j/cm2 and 5 j/cm2, using a 980 nm diode laser radiation. This allowed for the observation of the effects of these specific elements on the behavior of the cells in a controlled environment at various concentrations of fetal bovine (7.5 %, 10 %, 12.5 %, and 15 %). The cells were grown in a medium lacking in nutrients and were enriched with varying quantities of serum from fetal bovines. The MTT test was used to evaluate the mitochondrial activity of the cell. Following 72 hours, it was shown that cells treated with 2.5 j/cm2 and 10 % fetal bovine serum had significantly higher MTT test activity than cells treated with 5 j/cm2.The results of this study show that even in the presence of dietary deficiencies, low-intensity laser radiation therapy can stimulate the growth of mesenchymal stem cells isolated from umbilical cords.
Collapse
Affiliation(s)
- Zahra Al Timimi
- Laser Physics Department, College of Science for Women, University of Babylon, Hillah, Iraq.
| |
Collapse
|
6
|
Dao HH, Nguyen TH, Hoang DH, Vu BD, Tran MA, Le MT, Hoang NTM, Bui AV, Than UTT, Nguyen XH. Manufacturing exosomes for wound healing: Comparative analysis of culture media. PLoS One 2024; 19:e0313697. [PMID: 39541412 PMCID: PMC11563385 DOI: 10.1371/journal.pone.0313697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Mesenchymal stem cell (MSC)-derived exosomes (EXs) have emerged as promising therapeutic agents for wound healing. However, the optimal conditions for manufacturing MSC-derived EXs that maximize their wound-healing potential have yet to be established. Hence, we compared the efficacy of five different MSC culture media, including three different serum-free, a platelet-supplemented, and a fetal bovine serum-supplemented media, in exosome manufacturing for wound healing applications. Although umbilical cord-derived MSCs (UCMSCs) cultured in these media exhibited similar proliferation, morphology, MSC surface marker expression, and stemness, EXs derived from UCMSCs cultured in different culture media displayed varying levels of growth factors and cytokines. Notably, EXs derived from platelet-supplemented media (DM-PLT_EXs) exhibited significantly higher concentrations of keratinocyte growth factor (KGF), vascular endothelial growth factor (VEGF-A), platelet-derived growth factor (PDGF-BB), interleukin 6 (IL-6), interleukin 7 (IL-7), and interleukin 8 (IL-8) than EXs from other media. These differences correlated with the superior capability of DM-PLT_EXs to promote human skin fibroblast proliferation and stimulate angiogenesis of human umbilical vein endothelial cells, making them a more suitable choice for wound healing applications. Our findings emphasize the significance of the culture medium selection in tailoring the therapeutic potential of UCMSC-derived EXs for wound healing.
Collapse
Affiliation(s)
- Huy Hoang Dao
- Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | | | | - Bach Duong Vu
- Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Minh-Anh Tran
- Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Mai Thi Le
- Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Nhung Thi My Hoang
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Anh Viet Bui
- Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Uyen Thi Trang Than
- Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Xuan-Hung Nguyen
- Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
| |
Collapse
|
7
|
Deng Z, Zeng X, Lin B, Chen L, Wu J, Zheng J, Ma Y, Lyu FJ, Zheng Q. Human umbilical cord mesenchymal stem cells on treating osteoarthritis in a rabbit model: Injection strategies. Heliyon 2024; 10:e38384. [PMID: 39430502 PMCID: PMC11489144 DOI: 10.1016/j.heliyon.2024.e38384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Human umbilical cord mesenchymal stem cells (UCMSCs) are a novel stem-cell source to treat osteoarthritis (OA). Here we investigated the therapeutic effects of UCMSCs injection strategies on knee OA in a rabbit model. Thirty OA rabbits randomly received normal saline, a single dose of 1 × 106 UCMSCs, or three injections of 1 × 106 UCMSCs at 2, 4, 6 weeks. Articular cartilages were collected after 8 weeks. Macroscopic and histological assessments indicated that intra-articular injection of UCMSCs, both single and multiple injection, significantly reduced the formation of periarticular osteophytes and articular cartilage degeneration when compared with the control. Furthermore, both UCMSCs injections increased the expression of chondrogenic markers in the articular cartilage, and reduced the levels of TNF-α and IL-6 in synovium. Micro-CT showed significant reduction of sub-chondral bone degeneration and osteophytes in the multiple-injection group compared to the control and single-injection group. Taken together, intra-articular injection of UCMSCs for OA treatment is safe and effective. Single and multiple injection of UCMSCs had comparable reparative effect on cartilage lesions, while multiple injection of UCMSCs further exerted effect on enhancing subchondral bone volume.
Collapse
Affiliation(s)
- Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiaoli Zeng
- Guangdong Xiangxue Stem Cell Regenerative Medicine Technology Co., Ltd, Guangzhou, China
| | - Bofu Lin
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lixuan Chen
- Guangdong Xiangxue Stem Cell Regenerative Medicine Technology Co., Ltd, Guangzhou, China
| | - Jiwei Wu
- Guangdong Xiangxue Stem Cell Regenerative Medicine Technology Co., Ltd, Guangzhou, China
| | - Jie Zheng
- Guangdong Xiangxue Stem Cell Regenerative Medicine Technology Co., Ltd, Guangzhou, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Feng-Juan Lyu
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Buitrago JC, Morris SL, Backhaus A, Kaltenecker G, Kaipa JM, Girard C, Schneider S, Gruber J. Unveiling the Immunomodulatory and regenerative potential of iPSC-derived mesenchymal stromal cells and their extracellular vesicles. Sci Rep 2024; 14:24098. [PMID: 39407038 PMCID: PMC11480492 DOI: 10.1038/s41598-024-75956-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived mesenchymal stromal cells (iMSCs) offer a promising alternative to primary mesenchymal stromal cells (MSCs) and their derivatives, particularly extracellular vesicles (EVs), for use in advanced therapy medicinal products. In this study we evaluated the immunomodulatory and regenerative potential of iMSCs as well as iMSC-EVs, alongside primary human umbilical cord-derived mesenchymal stromal cells (hUCMSCs). Our findings demonstrate that iMSCs exhibit comparable abilities to hUCMSCs in regulating lymphocyte proliferation and inducing an anti-inflammatory phenotype in monocytes. We also observed decreased TNFα levels and increased IL-10 induction, indicating a potential mechanism for their immunomodulatory effects. Furthermore, iMSC-EVs also showed effective immunomodulation by inhibiting T cell proliferation and inducing macrophage polarization similar to their parental cells. Additionally, iMSC-EVs exhibited pro-regenerative potential akin to hUCMSC-EVs in in vitro scratch assays. Notably, priming iMSCs with pro-inflammatory cytokines significantly enhanced the immunomodulatory potential of iMSC-EVs. These results underscore the considerable promise of iMSCs and iMSCs-EVs as an alternate source for MSC-derived therapeutics, given their potent immunomodulatory and regenerative properties.
Collapse
Affiliation(s)
- July Constanza Buitrago
- Curexsys GmbH, Göttingen, Germany.
- PhD Biomedical and Biological Sciences Program, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
- Life Science Factory, Curexsys GmbH, Annastraβe 27, Göttingen, Germany, D-37075.
| | | | | | | | | | | | | | - Jens Gruber
- Curexsys GmbH, Göttingen, Germany.
- Life Science Factory, Curexsys GmbH, Annastraβe 27, Göttingen, Germany, D-37075.
| |
Collapse
|
9
|
Vakili S, Jafarinia M. Advances in Mesenchymal Stem Cell Research Applications for Female Infertility-Mechanisms, Efficacy Parameters, Challenges and Future Roadmap. Galen Med J 2024; 13:1-10. [PMID: 39483858 PMCID: PMC11525105 DOI: 10.31661/gmj.v13i.3632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/29/2024] [Accepted: 09/24/2024] [Indexed: 11/03/2024] Open
Abstract
Infertility affects approximately 15-20% of couples globally, with female factors contributing to nearly half of cases. Conditions such as polycystic ovary syndrome, endometriosis, tubal damage and premature ovarian failure are leading causes of female infertility. Current treatments like in vitro fertilization (IVF) have limitations and risks. Mesenchymal stem cells (MSCs) have shown therapeutic potential due to their ability to differentiate, secrete trophic factors, and exhibit immunomodulatory and anti-inflammatory properties. They have been demonstrated to repair and regenerate reproductive organs in various preclinical models of infertility related conditions. MSCs have reduced endometriotic lesions, regenerated lost follicles in premature ovarian failure (POF) models, and promoted tubal repair in damage models. Some clinical and preclinical studies have reported improved outcomes with MSC therapy in endometriosis and premature ovarian failure patients. This review discusses the properties and sources of MSCs, their mechanisms of action, preclinical evidence for applications in conditions like POF, polycystic ovary syndrome (PCOS), endometriosis, Asherman syndrome, and preeclampsia, and preliminary clinical data on MSC therapy for female infertility management.
Collapse
Affiliation(s)
- Sina Vakili
- Infertility Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz,
Iran
| |
Collapse
|
10
|
García-Guerrero CA, Fuentes P, Araya MJ, Djouad F, Luz-Crawford P, Vega-Letter AM, Altamirano C. How to enhance MSCs therapeutic properties? An insight on potentiation methods. Stem Cell Res Ther 2024; 15:331. [PMID: 39334487 PMCID: PMC11438163 DOI: 10.1186/s13287-024-03935-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have emerged as a promising tool in the field of regenerative medicine due to their unique therapeutic properties as they can differentiate into multiple cell types and exert paracrine effects. However, despite encouraging results obtained in preclinical studies, clinical trials have not achieved the same levels of efficacy. To improve the therapeutic properties of MSCs, several strategies have been explored. Therefore, in this review, the therapeutic properties of MSCs will be analyzed, and an update and overview of the most prominent approaches used to enhance their therapeutic capabilities will be provided. These approaches include using drugs, molecules, strategies based on biomaterials, and modification parameters in culture. The strategy described shows several common factors among those affected by these strategies that lead to an enhancement of the MSCs therapeutic properties such as the activation of the PI3K/AKT pathway and the increased expression of Heat Shock Proteins and Hypoxia-Inducible Factor. The combined effect of these elements shift MSCs towards a glycolytic state, suggesting this shift is essential for their enhancement.
Collapse
Affiliation(s)
- Cynthia Aylín García-Guerrero
- Doctorado en Biomedicina, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Paloma Fuentes
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - María Jesús Araya
- Doctorado en Biomedicina, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de La Santé Et de La Recherche Médicale, Montpellier, France
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| | - Ana María Vega-Letter
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Claudia Altamirano
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
- Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Curauma-Placilla, Valparaíso, Chile.
| |
Collapse
|
11
|
Sourugeon Y, Boffa A, Perucca Orfei C, de Girolamo L, Magalon J, Sánchez M, Tischer T, Filardo G, Laver L. Cell-based therapies have disease-modifying effects on osteoarthritis in animal models: A systematic review by the ESSKA Orthobiologic Initiative. Part 3: Umbilical cord, placenta, and other sources for cell-based injectable therapies. Knee Surg Sports Traumatol Arthrosc 2024. [PMID: 39302089 DOI: 10.1002/ksa.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE This systematic review aimed to investigate in animal models the presence of disease-modifying effects driven by non-bone marrow-derived and non-adipose-derived products, with a particular focus on umbilical cord and placenta-derived cell-based therapies for the intra-articular injective treatment of osteoarthritis (OA). METHODS A systematic review was performed on three electronic databases (PubMed, Web of Science and Embase) according to PRISMA guidelines. The results were synthesised to investigate disease-modifying effects in preclinical animal studies comparing injectable umbilical cord, placenta, and other sources-derived products with OA controls. The risk of bias was assessed using the SYRCLE tool. RESULTS A total of 80 studies were included (2314 animals). Cell therapies were most commonly obtained from the umbilical cord in 33 studies and placenta/amniotic tissue in 18. Cell products were xenogeneic in 61 studies and allogeneic in the remaining 19 studies. Overall, 25/27 (92.6%) of studies on umbilical cord-derived products documented better results compared to OA controls in at least one of the following outcomes: macroscopic, histological and/or immunohistochemical findings, with 19/22 of studies (83.4%) show positive results at the cartilage level and 4/6 of studies (66.7%) at the synovial level. Placenta-derived injectable products documented positive results in 13/16 (81.3%) of the studies, 12/15 (80.0%) at the cartilage level, and 2/4 (50.0%) at the synovial level, but 2/16 studies (12.5%) found overall worse results than OA controls. Other sources (embryonic, synovial, peripheral blood, dental pulp, cartilage, meniscus and muscle-derived products) were investigated in fewer preclinical studies. The risk of bias was low in 42% of items, unclear in 49%, and high in 9% of items. CONCLUSION Interest in cell-based injectable therapies for OA treatment is soaring, particularly for alternatives to bone marrow and adipose tissue. While expanded umbilical cord mesenchymal stem cells reported auspicious disease-modifying effects in preventing OA progression in animal models, placenta/amniotic tissue also reported deleterious effects on OA joints. Lower evidence has been found for other cellular sources such as embryonic, synovial, peripheral blood, dental-pulp, cartilage, meniscus, and muscle-derived products. LEVEL OF EVIDENCE Level II.
Collapse
Affiliation(s)
- Yosef Sourugeon
- Division of Surgery, Orthopaedics Department, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - Angelo Boffa
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Jeremy Magalon
- INSERM, NRA, C2VN, Aix Marseille University, Marseille, France
- SAS Remedex, Marseille, France
- Cell Therapy Laboratory, Hôpital De La Conception, AP-HM, Marseille, France
| | - Mikel Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria‑Gasteiz, Spain
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | - Thomas Tischer
- Department of Orthopaedic and Trauma Surgery, Malteser Waldkrankenhaus, Erlangen, Germany
- Department of Orthopaedic Surgery, University of Rostock, Rostock, Germany
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Surgery, Service of Orthopaedics and Traumatology, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Lior Laver
- Arthrosport Clinic, Tel‑Aviv, Israel
- Rappaport Faculty of Medicine, Technion University Hospital (IsraelInstitute of Technology), Haifa, Israel
- Department of Orthopaedics, Hillel Yaffe Medical Center (HYMC), Hadera, Israel
| |
Collapse
|
12
|
Wang H, Zhang Q, Wu S, Pan D, Ning Y, Wang C, Guo J, Gu Y. Mesenchymal stem cell therapy in eosinophilic granulomatosis with polyangiitis-related lower limb gangrene: a case report. Stem Cell Res Ther 2024; 15:307. [PMID: 39285456 PMCID: PMC11406883 DOI: 10.1186/s13287-024-03924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Eosinophilic granulomatosis with polyangiitis (EGPA), a rare but life-threatening systemic vasculitis, is distinguished by marked eosinophilia and presents with diverse symptoms, including asthma, cutaneous purpura, ecchymosis, skin necrosis, cardiac lesions, peripheral neuropathy, and necrotizing vasculitis. The etiology of EGPA involves a complex interaction among humoral, adaptive, innate, and allergic immune responses. Standard treatment employs prolonged high-dose glucocorticoid therapy, which is critical for survival; however, some patients' symptoms cannot be relieved. CASE REPORT This case report details the medical management of an 11-year-old patient with EGPA, who was at risk of bilateral lower limb amputation due to differential arterial occlusion and severe, necrotizing vasculitis-induced gangrene in both feet. Treatment modalities administered included systemic infusion of Umbilical Cord Mesenchymal Stem Cells (UC-MSCs), targeted gastrocnemius muscle injections, and application of a Placenta-Derived Mesenchymal Stem Cells (PD-MSCs) hydrogel. RESULTS After receiving a four-month regimen of allogeneic mesenchymal stem cell therapy via intravenous and local administration, the patient showed normalized eosinophil counts, reestablished blood flow in the dorsal arteries, and marked improvement in foot ulcerations. CONCLUSION Mesenchymal stem cell therapy is a promising option for severe EGPA cases refractory to glucocorticoids.
Collapse
Affiliation(s)
- Hui Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing, 100053, China
- ShangRao Jingkai Health-Biotech United Hospital, ShangRao, 334000, Jiangxi, China
| | - Qian Zhang
- ShangRao Jingkai Health-Biotech United Hospital, ShangRao, 334000, Jiangxi, China
- Shangrao Normal University, ShangRao, 334000, Jiangxi, China
| | - Sensen Wu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing, 100053, China
| | - Dikang Pan
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing, 100053, China
| | - Yachan Ning
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing, 100053, China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing, 100053, China
| | - Jianming Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing, 100053, China.
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Beijing, 100053, China.
| |
Collapse
|
13
|
Younesi FS, Hinz B. The Myofibroblast Fate of Therapeutic Mesenchymal Stromal Cells: Regeneration, Repair, or Despair? Int J Mol Sci 2024; 25:8712. [PMID: 39201399 PMCID: PMC11354465 DOI: 10.3390/ijms25168712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts. Transiently activated myofibroblasts restore tissue integrity after organ injury by producing and contracting extracellular matrix into scar tissue. In contrast, persistent myofibroblasts cause excessive scarring-called fibrosis-that destroys organ function. In this review, we focus on the relevance and molecular mechanisms of myofibroblast activation upon contact with stiff cell culture plastic or recipient scar tissue, such as hypertrophic scars of large skin burns. We discuss cell mechanoperception mechanisms such as integrins and stretch-activated channels, mechanotransduction through the contractile actin cytoskeleton, and conversion of mechanical signals into transcriptional programs via mechanosensitive co-transcription factors, such as YAP, TAZ, and MRTF. We further elaborate how prolonged mechanical stress can create persistent myofibroblast memory by direct mechanotransduction to the nucleus that can evoke lasting epigenetic modifications at the DNA level, such as histone methylation and acetylation. We conclude by projecting how cell culture mechanics can be modulated to generate MSCs, which epigenetically protected against myofibroblast activation and transport desired regeneration potential to the recipient tissue environment in clinical therapies.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
14
|
Česnik AB, Švajger U. The issue of heterogeneity of MSC-based advanced therapy medicinal products-a review. Front Cell Dev Biol 2024; 12:1400347. [PMID: 39129786 PMCID: PMC11310176 DOI: 10.3389/fcell.2024.1400347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Mesenchymal stromal stem cells (MSCs) possess a remarkable potential for numerous clinical applications due to their unique properties including self-renewal, immunomodulation, paracrine actions and multilineage differentiation. However, the translation of MSC-based Advanced Therapy Medicinal Products (ATMPs) into the clinic has frequently met with inconsistent outcomes. One of the suspected reasons for this issue is the inherent and extensive variability that exists among such ATMPs, which makes the interpretation of their clinical efficacy difficult to assess, as well as to compare the results of various studies. This variability stems from numerous reasons including differences in tissue sources, donor attributes, variances in manufacturing protocols, as well as modes of administration. MSCs can be isolated from various tissues including bone marrow, umbilical cord, adipose tissue and others, each with its unique phenotypic and functional characteristics. While MSCs from different sources do share common features, they also exhibit distinct gene expression profiles and functional properites. Donor-specific factors such as age, sex, body mass index, and underlying health conditions can influence MSC phenotype, morphology, differentiation potential and function. Moreover, variations in preparation of MSC products introduces additional heterogeneity as a result of cell culture media composition, presence or absence of added growth factors, use of different serum supplements and culturing techniques. Once MSC products are formulated, storage protocols play a pivotal role in its efficacy. Factors that affect cell viability include cell concentration, delivery solution and importantly, post-thawing protocols where applicable. Ensuing, differences in administration protocols can critically affect the distribution and functionallity of administered cells. As MSC-based therapies continue to advance through numerous clinical trials, implication of strategies to reduce product heterogeneity is imperative. Central to addressing these challenges is the need for precise prediction of clinical responses, which require well-defined MSC populations and harmonized assessment of their specific functions. By addressing these issues by meaningful approaches, such as, e.g., MSC pooling, the field can overcome barriers to advance towards more consistent and effective MSC-based therapies.
Collapse
Affiliation(s)
- Ana Bajc Česnik
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
| | - Urban Švajger
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Kotani T, Saito T, Suzuka T, Matsuda S. Adipose-derived mesenchymal stem cell therapy for connective tissue diseases and complications. Inflamm Regen 2024; 44:35. [PMID: 39026275 PMCID: PMC11264739 DOI: 10.1186/s41232-024-00348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024] Open
Abstract
Mesenchymal stem cells (MSCs) may be effective in treating connective tissue disease and associated organ damage, leveraging their anti-inflammatory and immunoregulatory effects. Moreover, MSCs may possess the ability to produce antiapoptotic, proliferative, growth, angiogenic, and antifibrotic factors. Among MSCs, adipose-derived MSCs (ASCs) stand out for their relative ease of harvesting and abundance. Additionally, studies have indicated that compared with bone marrow-derived MSCs, ASCs have superior immunomodulatory, proangiogenic, antiapoptotic, and antioxidative properties. However, relatively few reviews have focused on the efficacy of ASC therapy in treating connective tissue disease (CTD) and interstitial lung disease (ILD). Therefore, this review aims to evaluate evidence from preclinical studies that investigate the effectiveness of MSC therapy, specifically ASC therapy, in managing CTD and ILD. Moreover, we explore the outcomes of documented clinical trials. We also introduce an innovative approach involving the utilization of pharmacologically primed ASCs in the CTD model to address the current challenges associated with ASC therapy.
Collapse
Affiliation(s)
- Takuya Kotani
- Department of Internal Medicine (IV), Division of Rheumatology, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, 569-8686, Japan.
| | - Takashi Saito
- Department of Legal Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Takayasu Suzuka
- Department of Internal Medicine (IV), Division of Rheumatology, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, 569-8686, Japan
| | - Shogo Matsuda
- Department of Internal Medicine (IV), Division of Rheumatology, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
16
|
He L, Xu J, Huang P, Bai Y, Chen H, Xu X, Hu Y, Liu J, Zhang H. miR-9-5p and miR-221-3p Promote Human Mesenchymal Stem Cells to Alleviate Carbon Tetrachloride-Induced Liver Injury by Enhancing Human Mesenchymal Stem Cell Engraftment and Inhibiting Hepatic Stellate Cell Activation. Int J Mol Sci 2024; 25:7235. [PMID: 39000343 PMCID: PMC11241704 DOI: 10.3390/ijms25137235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have shown great potential for the treatment of liver injuries, and the therapeutic efficacy greatly depends on their homing to the site of injury. In the present study, we detected significant upregulation of hepatocyte growth factor (HGF) in the serum and liver in mice with acute or chronic liver injury. In vitro study revealed that upregulation of miR-9-5p or miR-221-3p promoted the migration of human MSCs (hMSCs) toward HGF. Moreover, overexpression of miR-9-5p or miR-221-3p promoted hMSC homing to the injured liver and resulted in significantly higher engraftment upon peripheral infusion. hMSCs reduced hepatic necrosis and inflammatory infiltration but showed little effect on extracellular matrix (ECM) deposition. By contrast, hMSCs overexpressing miR-9-5p or miR-221-3p resulted in not only less centrilobular necrosis and venous congestion but also a significant reduction of ECM deposition, leading to obvious improvement of hepatocyte morphology and alleviation of fibrosis around central vein and portal triads. Further studies showed that hMSCs inhibited the activation of hepatic stellate cells (HSCs) but could not decrease the expression of TIMP-1 upon acute injury and the expression of MCP-1 and TIMP-1 upon chronic injury, while hMSCs overexpressing miR-9-5p or miR-221-3p led to further inactivation of HSCs and downregulation of all three fibrogenic and proinflammatory factors TGF-β, MCP-1, and TIMP-1 upon both acute and chronic injuries. Overexpression of miR-9-5p or miR-221-3p significantly downregulated the expression of α-SMA and Col-1α1 in activated human hepatic stellate cell line LX-2, suggesting that miR-9-5p and miR-221-3p may partially contribute to the alleviation of liver injury by preventing HSC activation and collagen expression, shedding light on improving the therapeutic efficacy of hMSCs via microRNA modification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huanxiang Zhang
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China; (L.H.); (J.X.)
| |
Collapse
|
17
|
Yi N, Zeng Q, Zheng C, Li S, Lv B, Wang C, Li C, Jiang W, Liu Y, Yang Y, Yan T, Xue J, Xue Z. Functional variation among mesenchymal stem cells derived from different tissue sources. PeerJ 2024; 12:e17616. [PMID: 38952966 PMCID: PMC11216188 DOI: 10.7717/peerj.17616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Background Mesenchymal stem cells (MSCs) are increasingly recognized for their regenerative potential. However, their clinical application is hindered by their inherent variability, which is influenced by various factors, such as the tissue source, culture conditions, and passage number. Methods MSCs were sourced from clinically relevant tissues, including adipose tissue-derived MSCs (ADMSCs, n = 2), chorionic villi-derived MSCs (CMMSCs, n = 2), amniotic membrane-derived MSCs (AMMSCs, n = 3), and umbilical cord-derived MSCs (UCMSCs, n = 3). Passages included the umbilical cord at P0 (UCMSCP0, n = 2), P3 (UCMSCP3, n = 2), and P5 (UCMSCP5, n = 2) as well as the umbilical cord at P5 cultured under low-oxygen conditions (UCMSCP5L, n = 2). Results We observed that MSCs from different tissue origins clustered into six distinct functional subpopulations, each with varying proportions. Notably, ADMSCs exhibited a higher proportion of subpopulations associated with vascular regeneration, suggesting that they are beneficial for applications in vascular regeneration. Additionally, CMMSCs had a high proportion of subpopulations associated with reproductive processes. UCMSCP5 and UCMSCP5L had higher proportions of subpopulations related to female reproductive function than those for earlier passages. Furthermore, UCMSCP5L, cultured under low-oxygen (hypoxic) conditions, had a high proportion of subpopulations associated with pro-angiogenic characteristics, with implications for optimizing vascular regeneration. Conclusions This study revealed variation in the distribution of MSC subpopulations among different tissue sources, passages, and culture conditions, including differences in functions related to vascular and reproductive system regeneration. These findings hold promise for personalized regenerative medicine and may lead to more effective clinical treatments across a spectrum of medical conditions.
Collapse
Affiliation(s)
- Ning Yi
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
- Hunan Jiahui Genetics Hospital, Changsha, China
| | - Qiao Zeng
- Hunan Jiahui Genetics Hospital, Changsha, China
| | - Chunbing Zheng
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Shiping Li
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Bo Lv
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
- Hunan Jiahui Genetics Hospital, Changsha, China
| | - Cheng Wang
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Chanyi Li
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
| | - Wenjiao Jiang
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Yun Liu
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Yuan Yang
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Tenglong Yan
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Jinfeng Xue
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
- Hunan Jiahui Genetics Hospital, Changsha, China
| | - Zhigang Xue
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
- Hunan Jiahui Genetics Hospital, Changsha, China
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| |
Collapse
|
18
|
Nakao M, Nagase K. Harvesting methods of umbilical cord-derived mesenchymal stem cells from culture modulate cell properties and functions. Regen Ther 2024; 26:80-88. [PMID: 38841206 PMCID: PMC11152751 DOI: 10.1016/j.reth.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/11/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) are promising candidates for stem cell therapy. Various methods such as enzymatic treatment, cell scraping, and temperature reduction using temperature-responsive cell culture dishes have been employed to culture and harvest UC-MSCs. However, the effects of different harvesting methods on cell properties and functions in vitro remain unclear. In this study, we investigated the properties and functions of UC-MSC using various cell-harvesting methods. Methods UC-MSC suspensions were prepared using treatments with various enzymes, cell scraping, and temperature reduction in temperature-responsive cell culture dishes. UC-MSC sheets were prepared in a temperature-responsive cell culture dish. The properties and functions of the UC-MSC suspensions and sheets were assessed according to Annexin V staining, lactate dehydrogenase (LDH) assay, re-adhesion behavior, and cytokine secretion analysis via enzyme-linked immunosorbent assay. Results Annexin V staining revealed that accutase induced elevated UC-MSC apoptosis. Physical scraping using a cell scraper induced a relatively high LDH release due to damaged cell membranes. Dispase exhibited relatively low adhesion from initial incubation until 3 h. UC-MSC sheets exhibited rapid re-adhesion at 15 min and cell migration at 6 h. UC-MSC sheets expressed higher levels of cytokines such as HGF, TGF-β1, IL-10, and IL-6 than did UC-MSCs in suspension. Conclusions The choice of enzyme and physical scraping methods for harvesting UC-MSCs significantly influenced their activity and function. Thus, selecting appropriate cell-harvesting methods is important for successful stem cell therapy.
Collapse
Affiliation(s)
- Mitsuyoshi Nakao
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
19
|
Shi L, Chen L, Gao X, Sun X, Jin G, Yang Y, Shao Y, Zhu F, Zhou G. Comparison of different sources of mesenchymal stem cells: focus on inflammatory bowel disease. Inflammopharmacology 2024; 32:1721-1742. [PMID: 38615278 DOI: 10.1007/s10787-024-01468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Inflammatory bowel disease (IBD) poses a significant challenge in modern medicine, with conventional treatments limited by efficacy and associated side effects, necessitating innovative therapeutic approaches. Mesenchymal stem cells (MSC) have emerged as promising candidates for IBD treatment due to their immunomodulatory properties and regenerative potential. This thesis aims to explore and compare various sources of MSC and evaluate their efficacy in treating IBD. This study comprehensively analyses MSC derived from multiple sources, including bone marrow, adipose tissue, umbilical cord, and other potential reservoirs. Core elements of this investigation include assessing differences in cell acquisition, immunomodulatory effects, and differentiation capabilities among these MSC sources, as well as comparing their clinical trial outcomes in IBD patients to their therapeutic efficacy in animal models. Through meticulous evaluation and comparative analysis, this thesis aims to elucidate disparities in the efficacy of different MSC sources for IBD treatment, thereby identifying the most promising therapeutic applications. The findings of this study are intended to advance our understanding of MSC biology and offer valuable insights for selecting the most effective MSC sources for personalized IBD therapy. Ultimately, this research endeavor will optimise therapeutic strategies for managing inflammatory bowel disease through the utilization of MSC.
Collapse
|