1
|
Nguyen TK, Pham DV, Park PH. Leptin impairs the therapeutic efficacy of adipose-derived mesenchymal stem cells by inducing apoptosis through NLRP3 inflammasomes activation. Biochem Pharmacol 2025; 236:116868. [PMID: 40081766 DOI: 10.1016/j.bcp.2025.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/11/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Mesenchymal stem cells (MSC) have been widely applied for regenerative medicine and the treatment of immune-disorders due to their multilineage differentiation and potent immunomodulatory properties. The therapeutic application of MSC post transplantation are influenced by various endogenous modulators. Leptin, a hormone primarily derived from adipose tissue, exerts a variety of physiological functions, in addition to the metabolic effects. In this study, we examined the effects of leptin on the viability of adipose-derived mesenchymal stem cells (ADSC) and its underlying molecular mechanisms with a particular focus on NLRP3 inflammasomes, which serve as signaling platform of the innate immune system. Leptin significantly decreased the viability of ADSC and induced apoptosis. Mechanistically, NLRP3 inflammasomes signaling critically contributes to leptin-induced apoptosis of ADSC by upregulating p53 and Puma. In addition, NLRP3 inflammasomes activation by leptin is mediated via ER stress induction and ROS accumulation. Finally, suppression of ADSC therapeutic efficacy by leptin and the critical role of NLRP3 inflammasomes in this phenomenon were confirmed in DSS-induced colitis model. Pre-conditioning with leptin before transplantation impaired the therapeutic efficacy and immunomodulatory function of ADSC, which were restored by treatment with a pharmacological inhibitor of NLRP3 inflammasomes. Taken together, the results suggest that leptin induces apoptotic cell death in ADSC and impairs the therapeutic effectiveness of ADSC by activating NLRP3 inflammasomes.
Collapse
Affiliation(s)
- Thi-Kem Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Duc-Vinh Pham
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea; Department of Pharmacology, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, South Korea.
| |
Collapse
|
2
|
de Oliveira Filho FJ, Rodrigues LDS, do Amaral SMB, Mellucci Filho PL, Medolago NB, de Carvalho Bovolato AL, Alvarado RDC, Bertanha M. Study protocol for a randomized clinical trial evaluating the safety and efficacy of autologous adipose-derived stem cell therapy for ulcers in patients with critical limb ischemia. PLoS One 2025; 20:e0318922. [PMID: 40202953 PMCID: PMC11981164 DOI: 10.1371/journal.pone.0318922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Peripheral artery disease (PAD) can develop into critical limb ischemia (CLI), which is characterized by resting pain at rest, ulcerations, or gangrene, with a high risk of amputation. The optimum course of treatment at this point is arterial revascularization, although this has a significant financial cost and is not always feasible or successful in reducing pain, healing ulcers, or preventing amputations. In situations where traditional alternatives for treating PAD have been exhausted, recent developments in cell therapy may offer a viable substitute. OBJECTIVE The purpose of this study is to assess the safety and effectiveness of using expanded autologous adipose-derived stem cells (ASCs) in cellular therapy for the treatment of PAD patients who developed chronic artery ulcers. METHODS An open randomized clinical trial will be carried out with two groups of twenty patients with CLI: In group 1, 2g of abdominal adipose tissue will be taken to produce ASCs. These cells will then be expanded in a lab (cell processing center) for 14-21 days before being applied to the lesion using bio-dressings and perilesional subcutaneous injections. Group 2 will receive conventional treatment with hydrogel-based dressing. There will be regular clinical assessments, supplementary tests, and photo documentation. The main efficacy outcome will be partial or complete healing of the wound. Safety outcomes will be monitored for infections, gangrene, amputations, and death. Participants will be monitored for 90 days. Cases of major amputation of the studied limb will not be included. The results will be evaluated by an independent external evaluator who is blind to the groups. Considering the high prevalence and socioeconomic consequences related to CLI and limb amputation, this study is expected to provide a positive social and financial impact on the Brazilian Unified Health System. ClinicalTrials.gov: NCT06326203.
Collapse
Affiliation(s)
- Francisco José de Oliveira Filho
- Department of Surgery and Orthopedics, São Paulo State University – UNESP, Botucatu Medical School, Botucatu, São Paulo, Brazil
- Applied Biotechnology Laboratory, Research Nucleus of Clinical Hospital, São Paulo State University – UNESP, Botucatu Medical School, Botucatu, São Paulo, Brazil
- Clinical Hospital of the Botucatu Medical School, São Paulo State University – UNESP, Botucatu, São Paulo, Brazil
| | - Lenize da Silva Rodrigues
- Department of Surgery and Orthopedics, São Paulo State University – UNESP, Botucatu Medical School, Botucatu, São Paulo, Brazil
- Applied Biotechnology Laboratory, Research Nucleus of Clinical Hospital, São Paulo State University – UNESP, Botucatu Medical School, Botucatu, São Paulo, Brazil
- Clinical Hospital of the Botucatu Medical School, São Paulo State University – UNESP, Botucatu, São Paulo, Brazil
| | | | - Pedro Luciano Mellucci Filho
- Department of Surgery and Orthopedics, São Paulo State University – UNESP, Botucatu Medical School, Botucatu, São Paulo, Brazil
- Applied Biotechnology Laboratory, Research Nucleus of Clinical Hospital, São Paulo State University – UNESP, Botucatu Medical School, Botucatu, São Paulo, Brazil
| | - Natália Bronzatto Medolago
- Clinical Research Unit, São Paulo State University – UNESP, Botucatu Medical School, Botucatu, São Paulo, Brazil
| | - Ana Lívia de Carvalho Bovolato
- Applied Biotechnology Laboratory, Research Nucleus of Clinical Hospital, São Paulo State University – UNESP, Botucatu Medical School, Botucatu, São Paulo, Brazil
| | - Rita de Cássia Alvarado
- Applied Biotechnology Laboratory, Research Nucleus of Clinical Hospital, São Paulo State University – UNESP, Botucatu Medical School, Botucatu, São Paulo, Brazil
- Clinical Hospital of the Botucatu Medical School, São Paulo State University – UNESP, Botucatu, São Paulo, Brazil
| | - Matheus Bertanha
- Department of Surgery and Orthopedics, São Paulo State University – UNESP, Botucatu Medical School, Botucatu, São Paulo, Brazil
- Applied Biotechnology Laboratory, Research Nucleus of Clinical Hospital, São Paulo State University – UNESP, Botucatu Medical School, Botucatu, São Paulo, Brazil
- Clinical Hospital of the Botucatu Medical School, São Paulo State University – UNESP, Botucatu, São Paulo, Brazil
| |
Collapse
|
3
|
Har-Shai L, Lagziel T, Grubstein A, Shay T, Ad-El D, Meshulam-Derazon S, Sharon E, Icekson M. Immediate Oncoplastic Breast Reconstruction with Fat Grafting: Preliminary Radiological, Aesthetic, and Patient Satisfaction Outcomes. Aesthetic Plast Surg 2025:10.1007/s00266-025-04790-3. [PMID: 40195131 DOI: 10.1007/s00266-025-04790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025]
Abstract
INTRODUCTION Fat grafting is a valuable tool for oncologic breast reconstruction, as it enhances aesthetic outcomes. However, concerns regarding oncologic safety and challenges in postoperative imaging have limited the adoption of immediate oncoplastic breast reconstruction (IOBR) with fat grafting. This approach can reduce the need for additional surgeries, shorten recovery time, improve aesthetics, and help mitigate the adverse effects of adjuvant radiation therapy. This study evaluates postoperative, radiological, aesthetic, and patient-reported outcomes of immediate fat grafting in oncoplastic breast reconstruction following lumpectomy. METHODS We conducted a retrospective study of patients undergoing IOBR with immediate fat grafting following lumpectomy (2020-2022). The plastic surgery team performed reconstruction simultaneously with lumpectomy by breast surgeons. Patient satisfaction was assessed using the Breast-Q questionnaire, while expert surgeons evaluated aesthetic outcomes. Lesion characteristics, specimen weight, and postoperative radiation details were recorded. Postoperative breast imaging was reviewed for fat grafting-related abnormalities. RESULTS Fifteen patients were included, with 87% undergoing postoperative radiotherapy. No major complications or readmissions occurred within 30 days. Breast imaging follow-up showed 91.1% had benign post-surgical changes, while 8.9% required short-term radiologic follow-up. Post-lipoid injection findings appeared in 37.8% of cases, none with calcifications. Patient satisfaction was high (average Breast-Q Score was 74.5), with only one patient requesting additional fat grafting post-radiation. Expert assessments confirmed improved aesthetic outcomes. CONCLUSION IOBR with immediate fat grafting is a useful technique for lumpectomy defects across all breast quadrants, demonstrating low complication rates, high patient satisfaction, and positive aesthetic outcomes. Postoperative imaging follow-up revealed no adverse effects related to fat grafting, supporting its potential role as an additional tool in oncoplastic breast reconstruction. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Lior Har-Shai
- Department of Plastic Surgery and Burns, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel.
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Tomer Lagziel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New-York, NY, USA
| | - Ahuva Grubstein
- Department of Imaging, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Tamir Shay
- Department of Plastic Surgery and Burns, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dean Ad-El
- Department of Plastic Surgery and Burns, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sagit Meshulam-Derazon
- Department of Plastic Surgery and Burns, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Eran Sharon
- Department of Breast Surgery, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michael Icekson
- Department of Plastic Surgery and Burns, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
4
|
Li Y, Wang W, Liu Z, Liu G, Li X. Blockade of ITGA2/3/5 Promotes Adipogenic Differentiation of Human Adipose-derived Mesenchymal Stem Cells. Cell Biochem Biophys 2025; 83:1105-1111. [PMID: 39316261 DOI: 10.1007/s12013-024-01545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
The integrin α (ITGA) subfamily genes play a fundamental role in various cancers. However, the potential mechanism and application values of ITGA genes in adipogenic differentiation of human adipose-derived stem cells (hADSCs) remain elusive. This study confirmed that ITGA2/3/5 mRNA expressions were repressed during adipogenesis. Blockade of ITGA2/3/5 enhanced adipogenic differentiation of hADSCs. Oil red O staining found that more lipid droplets were apparent in the ITGA2/3/5 inhibition group following 14 d adipogenic induction than in the control group. In addition, inhibition of ITGA2/3/5 promoted the expression of adipogenesis-related genes (PPAR-γ, C/EBPα, FABP4). Mechanistically, ITGA2/3/5 functioned by regulating the Rac1 signaling pathway, which reasonably explains ITGA2/3/5's role in adipogenic differentiation of hADSCs. Our studies suggest that blockades of ITGA2/3/5 promote the adipogenic differentiation of hADSCs.
Collapse
Affiliation(s)
- Ying Li
- Department of Plastic and Burn Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Wendi Wang
- Department of Plastic and Burn Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Zijian Liu
- Department of Plastic and Burn Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Guangjing Liu
- Department of Plastic and Burn Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Xiaobing Li
- Department of Plastic and Burn Surgery, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
5
|
Koczkowska M, Kostecka A, Zawrzykraj M, Myszczyński K, Skoniecka A, Deptuła M, Tymińska A, Czerwiec K, Jąkalski M, Zieliński J, Crossman DK, Crowley MR, Cichorek M, Skowron PM, Pikuła M, Piotrowski A. Identifying differentiation markers between dermal fibroblasts and adipose-derived mesenchymal stromal cells (AD-MSCs) in human visceral and subcutaneous tissues using single-cell transcriptomics. Stem Cell Res Ther 2025; 16:64. [PMID: 39934849 DOI: 10.1186/s13287-025-04185-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Adipose-derived mesenchymal stromal cells (AD-MSCs) and fibroblasts are both widely used in regenerative medicine, demonstrating significant potential for personalized cell therapy. A major challenge in their use lies in their high biological similarity, encompassing morphology, differentiation capabilities, and flow cytometric markers, making their distinction difficult. METHODS In our study, we aimed to compare AD-MSCs obtained from two types of adipose tissue, subcutaneous and visceral, alongside skin fibroblasts. Notably, all tissue samples were sourced from the same donors. We analyzed the cells for surface antigens via flow cytometry and conducted single-cell RNA sequencing, followed by verification with quantitative PCR (qPCR). RESULTS Our results revealed phenotypic similarities between the isolated AD-MSCs and dermal fibroblasts, particularly in the expression of markers characteristic of AD-MSCs. However, through in-depth analyses, we identified distinct differences between these cell types. Specifically, we pinpointed 30 genes exhibiting the most significant variations in expression between AD-MSCs and fibroblasts. These genes are associated with biological processes such as tissue remodeling, cell movement, and activation in response to external stimuli. Among them, MMP1, MMP3, S100A4, CXCL1, PI16, IGFBP5, COMP were further validated using qPCR, clearly demonstrating their potential to differentiate between AD-MSCs and fibroblasts. CONCLUSIONS Our scRNA-seq analysis elucidates the transcriptional landscape of AD-MSCs and fibroblasts with unprecedented resolution, highlighting both the population-specific markers and the intrapopulation heterogeneity. Our findings underscore the importance of employing high-resolution techniques for cell identification.
Collapse
Affiliation(s)
| | - Anna Kostecka
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Małgorzata Zawrzykraj
- Division of Clinical Anatomy, Department of Anatomy, Medical University of Gdansk, Gdansk, Poland
| | - Kamil Myszczyński
- Centre of Biostatistics and Bioinformatics Analysis, Medical University of Gdansk, Gdansk, Poland
| | - Aneta Skoniecka
- Division of Embryology, Department of Anatomy, Medical University of Gdansk, Gdansk, Poland
| | - Milena Deptuła
- Division of Embryology, Department of Anatomy, Medical University of Gdansk, Gdansk, Poland
| | - Agata Tymińska
- Division of Embryology, Department of Anatomy, Medical University of Gdansk, Gdansk, Poland
| | - Katarzyna Czerwiec
- Division of Clinical Anatomy, Department of Anatomy, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Jąkalski
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Jacek Zieliński
- Department of Surgical Oncology, Transplant Surgery and General Surgery, Medical University of Gdansk, Gdansk, Poland
| | - David K Crossman
- Genomic Core Facility, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael R Crowley
- Genomic Core Facility, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mirosława Cichorek
- Division of Embryology, Department of Anatomy, Medical University of Gdansk, Gdansk, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Michał Pikuła
- Division of Embryology, Department of Anatomy, Medical University of Gdansk, Gdansk, Poland.
| | - Arkadiusz Piotrowski
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
6
|
Mohan SP, Priya SP, Tawfig N, Padmanabhan V, Babiker R, Palaniappan A, Prabhu S, Chaitanya NCSK, Rahman MM, Islam MS. The Potential Role of Adipose-Derived Stem Cells in Regeneration of Peripheral Nerves. Neurol Int 2025; 17:23. [PMID: 39997654 PMCID: PMC11858299 DOI: 10.3390/neurolint17020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Peripheral nerve injuries are common complications in surgical and dental practices, often resulting in functional deficiencies and reduced quality of life. Current treatment choices, such as autografts, have limitations, including donor site morbidity and suboptimal outcomes. Adipose-derived stem cells (ADSCs) have shown assuring regenerative potential due to their accessibility, ease of harvesting and propagation, and multipotent properties. This review investigates the therapeutic potential of ADSCs in peripheral nerve regeneration, focusing on their use in bioengineered nerve conduits and supportive microenvironments. The analysis is constructed on published case reports, organized reviews, and clinical trials from Phase I to Phase III that investigate ADSCs in managing nerve injuries, emphasizing both peripheral and orofacial applications. The findings highlight the advantages of ADSCs in promoting nerve regeneration, including their secretion of angiogenic and neurotrophic factors, support for cellular persistence, and supplementing scaffold-based tissue repair. The regenerative capabilities of ADSCs in peripheral nerve injuries offer a novel approach to augmenting nerve repair and functional recovery. The accessibility of adipose tissue and the minimally invasive nature of ADSC harvesting further encourage its prospective application as an autologous cell source in regenerative medicine. Future research is needed to ascertain standardized protocols and optimize clinical outcomes, paving the way for ADSCs to become a mainstay in nerve regeneration.
Collapse
Affiliation(s)
- Sunil P. Mohan
- Department of Oral and Maxillofacial Pathology, Sree Anjaneya Institute of Dental Sciences, Kozhikode 673323, Kerala, India
- Centre for Stem Cells and Regenerative Medicine, Malabar Medical College, Kozhikode 673315, Kerala, India
| | - Sivan P. Priya
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Nada Tawfig
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Vivek Padmanabhan
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Rasha Babiker
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 11172, United Arab Emirates;
| | - Arunkumar Palaniappan
- Human Organ Manufacturing Engineering (HOME) Lab., Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India;
| | - Srinivasan Prabhu
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683104, Kerala, India;
| | - Nallan CSK Chaitanya
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Muhammed Mustahsen Rahman
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Md Sofiqul Islam
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| |
Collapse
|
7
|
Nan N, Yang N, Liu Y, Hao HQ. Chinese Medicine Combined with Adipose Tissue-Derived Mesenchymal Stem Cells: A New Promising Aspect of Integrative Medicine. Chin J Integr Med 2025:10.1007/s11655-025-4208-z. [PMID: 39809966 DOI: 10.1007/s11655-025-4208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 01/16/2025]
Abstract
Adipose tissue-derived mesenchymal stem cells (ADSCs) are crucially involved in various biological processes because of their self-renewal, multi-differentiation, and immunomodulatory activities. Some ADSC's characteristics have been associated with the basic theory of Chinese medicine (CM), especially the Meridian theory. CM can improve the biological properties of ADSCs to facilitate their use in injury treatment, restore immune homeostasis, and inhibit inflammatory responses. Therefore, the combination of CM and ADSCs may be a new promising research direction in integrative medicine of China. This review summarizes the association between CM and ADSCs to assess the potential application value of their combination against various diseases.
Collapse
Affiliation(s)
- Nan Nan
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, Shanxi Province, 030619, China
| | - Na Yang
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, Shanxi Province, 030619, China
| | - Yang Liu
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, Shanxi Province, 030619, China
| | - Hui-Qin Hao
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, Shanxi Province, 030619, China.
| |
Collapse
|
8
|
Min K, Jung M, Tae G. Enhanced secretion of growth factors from ADSCs using an enzymatic antioxidant hydrogel in inflammatory environments and its therapeutic effect. J Control Release 2025; 377:301-314. [PMID: 39571654 DOI: 10.1016/j.jconrel.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/20/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
A catalytic ROS-scavenging hydrogel (HGel) was developed to enhance the growth factor secretion and the therapeutic efficacy of human adipose-derived stem cells (hADSCs) in inflammatory environments. The HGel is composed of heparin and hyaluronic acid, further functionalized with hemin to endow superoxide dismutase and catalase activities. The functionalization of hemin enables the HGel to effectively scavenge ROS (superoxide and H2O2), thereby protecting encapsulated hADSCs from oxidative stress and maintaining their metabolic activities. As a result, the HGel enhanced growth factor secretion of hADSCs in inflammatory conditions compared to non-functionalized, bare heparin/hyaluronic acid hydrogel (Gel). The therapeutic efficacy of the hADSC-encapsulated HGel (C/HGel) was evaluated in a diabetic wound model. The C/HGel significantly accelerated wound closure, reduced ROS levels, mitigated inflammation, and promoted angiogenesis compared to the hADSC-encapsulated Gel (C/Gel) as well as the HGel itself. The HGel has the potential to be utilized as an excellent cell carrier for stem cell therapy in various inflammatory diseases. Overall, this study demonstrated a strategy of enhancing growth factor secretion from stem cells using catalytic antioxidant hydrogels for superior regenerative effects in cell therapy.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Myeongseok Jung
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
9
|
Baniameri S, Aminianfar H, Gharehdaghi N, Yousefi-Koma AA, Mohaghegh S, Nokhbatolfoghahaei H, Khojasteh A. Tissue Engineering 3D-Printed Scaffold Using Allograft/Alginate/Gelatin Hydrogels Coated With Platelet-Rich Fibrin or Adipose Stromal Vascular Fraction Induces Osteogenesis In Vitro. J Cell Physiol 2025; 240:e31497. [PMID: 39702943 DOI: 10.1002/jcp.31497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/16/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
Incorporating autologous patient-derived products has become imperative to enhance the continually improving outcomes in bone tissue engineering. With this objective in mind, this study aimed to evaluate the osteogenic potential of 3D-printed allograft-alginate-gelatin scaffolds coated with stromal vascular fraction (SVF) and platelet-rich fibrin (PRF). The primary goal was to develop a tissue-engineered construct capable of facilitating efficient bone regeneration through the utilization of biomaterials with advantageous properties and patient-derived products. To achieve this goal, 3D-printed gelatin, allograft, and alginate scaffolds were utilized, along with stem cells derived from the buccal fat pad and human-derived components (PRF, SVF). Cells were seeded onto scaffolds, both with and without SVF/PRF, and subjected to comprehensive assessments including adhesion, proliferation, differentiation (gene expression and protein secretion levels), penetration, and gene expression analysis over 14 days. The data was reported as mean ± standard deviation (SD). Two-way or one-way analysis of variance (ANOVA) was performed, followed by a Tukey post hoc test for multiple comparisons. Statistical significance was determined as a p value below 0.05. The scaffolds demonstrated structural integrity, and the addition of PRF coatings significantly enhanced cellular adhesion, proliferation, and differentiation compared to other groups. Gene expression analysis showed increased expression of osteogenic and angiogenic markers in the PRF-coated scaffolds. These findings highlight the promising role of PRF-coated scaffolds in promoting osteogenesis and facilitating bone tissue regeneration. This study emphasizes the development of patient-specific tissue-engineered constructs as a valuable approach for effective bone regeneration.
Collapse
Affiliation(s)
- Sahar Baniameri
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Aminianfar
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Niusha Gharehdaghi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Ali Yousefi-Koma
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadra Mohaghegh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Pandey K, Srivastava P, Pandey SK, Johari S, Bhatnagar P, Sonane M, Mishra A. Stem Cells as a Novel Source for Regenerative Medicinal Applications in Alzheimer's Disease: An Update. Curr Mol Med 2025; 25:146-166. [PMID: 39318206 DOI: 10.2174/0115665240334785240913071442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder characterized by loss of the neurons, excessive accumulation of misfolded Aβ and Tau proteins, and degeneration of neural synapses, primarily occurring in the neocortex and the hippocampus regions of the brain. AD Progression is marked by cognitive deterioration, memory decline, disorientation, and loss of problem-solving skills, as well as language. Due to limited comprehension of the factors contributing to AD and its severity due to neuronal loss, even today, the medications approved by the U.S. Food and Drug Administration (FDA) are not precisely efficient and curative. Stem cells possess great potential in aiding AD due to their self-renewal, proliferation, and differentiation properties. Stem cell therapy can aid by replacing the lost neurons, enhancing neurogenesis, and providing an enriched environment to the pre-existing neural cells. Stem cell therapy has provided us with promising results in regard to the animal AD models, and even pre-clinical studies have shown rather positive results. Cell replacement therapies are potential curative means to treat AD, and there are a number of undergoing human clinical trials to make Stem Cell therapy accessible for AD patients. In this review, we aim to discuss the AD pathophysiology and varied stem cell types and their application.
Collapse
Affiliation(s)
- Kratika Pandey
- School of Biosciences, Institute of Management Studies Ghaziabad 9 (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India
| | - Priyanka Srivastava
- School of Biosciences, Institute of Management Studies Ghaziabad 9 (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India
| | - Swaroop Kumar Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Surabhi Johari
- School of Biosciences, Institute of Management Studies Ghaziabad 9 (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India
| | - Priyanka Bhatnagar
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, Delhi, 110029, India
| | - Madhavi Sonane
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Anuja Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| |
Collapse
|
11
|
Rasouli M, Alavi M, D'Angelo A, Sobhani N, Roudi R, Safari F. Exploring the dichotomy of the mesenchymal stem cell secretome: Implications for tumor modulation via cell-signaling pathways. Int Immunopharmacol 2024; 143:113265. [PMID: 39353385 DOI: 10.1016/j.intimp.2024.113265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Current cancer therapeutic strategies for the treatment of cancer are often unsuccessful due to unwanted side effects and drug resistance. Therefore, the design and development of potent, new anticancer platforms, such as stem-cell treatments, have attracted much attention. Distinctive biological properties of stem cells include their capacity to secrete bioactive factors, their limited immunogenicity, and their capacity for renewing themselves. Mesenchymal stem cells (MSCs) are one of several kinds of stem cells that are conveniently extracted and are able to be cultivated in vitro utilizing various sources. The secretome of stem cells contains many trophic factors, including cytokines, chemokines, growth factors, and microRNA molecules that can either promote or inhibit the formation of tumors, based on the cell environment. In the current review, we focused on the secretome of mesenchymal stem cells. These stem cells act as a double-edged sword in the regulation of cell signal transduction pathways in that they can either suppress or promote tumors.
Collapse
Affiliation(s)
- Mohammad Rasouli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Mana Alavi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Alberto D'Angelo
- Oncology Department, Royal United Hospital, Bath BA1 3NG, United Kingdom
| | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA 94305, USA.
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| |
Collapse
|
12
|
Da Silva D, Crous A, Abrahamse H. Synergistic Effects of Photobiomodulation and Differentiation Inducers on Osteogenic Differentiation of Adipose-Derived Stem Cells in Three-Dimensional Culture. Int J Mol Sci 2024; 25:13350. [PMID: 39769115 PMCID: PMC11678880 DOI: 10.3390/ijms252413350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Osteoporosis, a common metabolic bone disorder, leads to increased fracture risk and significant morbidity, particularly in postmenopausal women and the elderly. Traditional treatments often fail to fully restore bone health and may cause side effects, prompting the exploration of regenerative therapies. Adipose-derived stem cells (ADSCs) offer potential for osteoporosis treatment, but their natural inclination toward adipogenic rather than osteogenic differentiation poses a challenge. This study investigates a novel approach combining differentiation inducers (DIs), three-dimensional (3D) hydrogel scaffolds, and photobiomodulation (PBM) to promote osteogenic differentiation of immortalised ADSCs. A dextran-based 3D hydrogel matrix, supplemented with a DI cocktail of dexamethasone, β-glycerophosphate disodium, and ascorbic acid, was used to foster osteogenesis. PBM was applied using near-infrared (825 nm), green (525 nm), and combined wavelengths at fluences of 3 J/cm2, 5 J/cm2, and 7 J/cm2 to enhance osteogenic potential. Flow cytometry identified osteoblast-specific markers, while inverted light microscopy evaluated cellular morphology. Reactive oxygen species assays measured oxidative stress, and quantitative polymerase chain reaction (qPCR) revealed upregulated gene expression linked to osteogenesis. The findings demonstrate that integrating DIs, 3D hydrogels, and PBM effectively drives osteogenic differentiation in immortalised ADSCs. The PBM enhanced osteogenic marker expression, induced morphological changes, and upregulated gene activity, presenting a promising framework for bone regeneration. Future research should assess the stability and functionality of these differentiated cells and explore their applicability in preclinical models of bone injury or degeneration. This integrative approach demonstrated specific efficacy in promoting the osteogenic differentiation of ADSCs, highlighting its potential application in developing targeted treatments for osteoporosis.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa; (D.D.S.); (A.C.)
| |
Collapse
|
13
|
Tainio JM, Vanhatupa S, Miettinen S, Massera J. Borosilicate bioactive glasses with added Mg/Sr enhances human adipose-derived stem cells osteogenic commitment and angiogenic properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:71. [PMID: 39614975 PMCID: PMC11608307 DOI: 10.1007/s10856-024-06830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/06/2024] [Indexed: 12/22/2024]
Abstract
Bioactive glasses are one of the most promising materials for applications in bone tissue engineering. In this study, the focus was on borosilicate bioactive glasses with composition 47.12 SiO2 - 6.73 B2O3 - 21.77-x-y CaO - 22.65 Na2O - 1.72 P2O5 - x MgO - y SrO (mol%). These compositions are based on silicate S53P4 bioactive glass, from where 12.5% of SiO2 is replaced with B2O3, and additionally, part of CaO is substituted for MgO and/or SrO. The impact of ion release, both as extract and in direct contact, on human adipose-derived stem cells' (hADSCs) viability, proliferation, ECM maturation, osteogenic commitment and endothelial marker expression was assessed. Osteogenic media supplements were utilized with the extracts, and in part of the direct cell/material culturing conditions. While it has been reported in other studies that boron release can induce cytotoxicity, the glasses in this study supported cells viability and proliferation. Moreover, borosilicate's, especially with further Mg/Sr substitutions, upregulated several osteogenic markers (such as RUNX2a, OSTERIX, DLX5, OSTEOPONTIN), as well as angiogenic factors (e.g., vWF and PECAM-1). Furthermore, the studied glasses supported collagen-I production even in the absence of osteogenic supplements, when hADSCs were cultured in contact with the glasses, suggesting that while the bioactive glass degradation products are beneficial for osteogenesis, the glasses surface physico-chemical properties play a significant role on hADSCs differentiation. This study brings critical information on the impact of bioactive glass compositional modification to control glass dissolution and the subsequent influence on stem cells proliferation and differentiation. Furthermore, the role of the material surface chemistry on promoting cell differentiation is reported.
Collapse
Affiliation(s)
- Jenna M Tainio
- Bioceramics, Bioglasses and Biocomposites Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33720, Finland.
| | - Sari Vanhatupa
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520, Tampere, Finland
| | - Jonathan Massera
- Bioceramics, Bioglasses and Biocomposites Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33720, Finland
| |
Collapse
|
14
|
Somasundaram S, D F, Genasan K, Kamarul T, Raghavendran HRB. Implications of Biomaterials and Adipose-Derived Stem Cells in the Management of Calvarial Bone Defects. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024. [DOI: 10.1007/s40883-024-00358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/25/2024] [Accepted: 09/13/2024] [Indexed: 01/03/2025]
|
15
|
Bang S, Qamar AY, Yun SH, Gu NY, Kim H, Han A, Kang H, Park HS, Kim SI, Saadeldin IM, Lee S, Cho J. Embryotrophic effect of exogenous protein contained adipose-derived stem cell extracellular vesicles. J Anim Sci Biotechnol 2024; 15:145. [PMID: 39488683 PMCID: PMC11531693 DOI: 10.1186/s40104-024-01106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) regulate cell metabolism and various biological processes by delivering specific proteins and nucleic acids to surrounding cells. We aimed to investigate the effects of the cargo contained in EVs derived from adipose-derived stem cells (ASCs) on the porcine embryonic development. METHODS ASCs were isolated from porcine adipose tissue and characterized using ASC-specific markers via flow cytometry. EVs were subsequently extracted from the conditioned media of the established ASCs. These EVs were added to the in vitro culture environment of porcine embryos to observe qualitative improvements in embryonic development. Furthermore, the proteins within the EVs were analyzed to investigate the underlying mechanisms. RESULTS We observed a higher blastocyst development rate and increased mitochondrial activity in early stage embryos in the ASC-EVs-supplemented group than in the controls (24.8% ± 0.8% vs. 28.6% ± 1.1%, respectively). The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay of blastocysts also revealed significantly reduced apoptotic cells in the ASC-EVs-supplemented group. Furthermore, through proteomics, we detected the proteins in ASC-EVs and blastocysts from each treatment group. This analysis revealed a higher fraction of proteins in the ASC-EVs-supplemented group than in the controls (1,547 vs. 1,495, respectively). Gene analysis confirmed that ASC-EVs showed a high expression of tyrosine-protein kinase (SRC), whereas ASC-EVs supplemented blastocysts showed a higher expression of Cyclin-dependent kinase 1 (CDK1). SRC is postulated to activate protein kinase B (AKT), which inhibits the forkhead box O signaling pathway and activates CDK1. Subsequently, CDK1 activation influences the cell cycle, thereby affecting in vitro embryonic development. CONCLUSION ASC-EVs promote mitochondrial activity, which is crucial for the early development of blastocysts and vital in the downregulation of apoptosis. Additionally, ASC-EVs supply SRC to porcine blastocysts, thereby elongating the cell cycle.
Collapse
Affiliation(s)
- Seonggyu Bang
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ahmad Yar Qamar
- College of Veterinary and Animal Sciences, Jhang Sub-campus of University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Sung Ho Yun
- Korea Basic Science Institute (KBSI), Ochang, Chungcheongbuk-Do, 28119, Republic of Korea
| | - Na-Yeon Gu
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-Do, 39660, Republic of Korea
| | - Heyyoung Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Ayeong Han
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Heejae Kang
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hye Sun Park
- Korea Basic Science Institute (KBSI), Ochang, Chungcheongbuk-Do, 28119, Republic of Korea
| | - Seung Ii Kim
- Korea Basic Science Institute (KBSI), Ochang, Chungcheongbuk-Do, 28119, Republic of Korea
| | - Islam M Saadeldin
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
- Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia
| | - Sanghoon Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
16
|
Gu C, Tang Q, Li L, Chen Y. Optimization and Implication of Adipose-Derived Stem Cells in Craniofacial Bone Regeneration and Repair. Bioengineering (Basel) 2024; 11:1100. [PMID: 39593759 PMCID: PMC11592193 DOI: 10.3390/bioengineering11111100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/17/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) have emerged as a promising resource for craniofacial bone regeneration due to their high abundance and easy accessibility, significant osteogenic potential, versatile applications, and potential for personalized medicine, which underscore their importance in this field. This article reviews the current progress of preclinical studies that describe the careful selection of specific ADSC subpopulations, key signaling pathways involved, and usage of various strategies to enhance the osteogenic potential of ADSCs. Additionally, clinical case reports regarding the application of ADSCs in the repair of calvarial defects, cranio-maxillofacial defects, and alveolar bone defects are also discussed.
Collapse
Affiliation(s)
- Cong Gu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; (Q.T.); (L.L.); (Y.C.)
| | - Qinghuang Tang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; (Q.T.); (L.L.); (Y.C.)
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | - Liwen Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; (Q.T.); (L.L.); (Y.C.)
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; (Q.T.); (L.L.); (Y.C.)
| |
Collapse
|
17
|
Ahmed AF, Madi MA, Ali AH, Mokhemer SA. The ameliorating effects of adipose-derived stromal vascular fraction cells on blue light-induced rat retinal injury via modulation of TLR4 signaling, apoptosis, and glial cell activity. Cell Tissue Res 2024:10.1007/s00441-024-03925-3. [PMID: 39441358 DOI: 10.1007/s00441-024-03925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Blue light (BL)-induced retinal injury has become a very common problem due to over exposure to blue light-emitting sources. This study aimed to investigate the possible ameliorating impact of stromal vascular fraction cells (SVFCs) on BL-induced retinal injury. Forty male albino rats were randomly allocated into four groups. The control group rats were kept in 12-h light/12-h dark. Rats of SVFC-control as the control group, but rats were intravenously injected once by SVFCs. Rats of both the BL-group and BL-SVFC group were exposed to BL for 2 weeks; then rats of the BL-SVFC group were intravenously injected once by SVFCs. Following the BL exposure, rats were kept for 8 weeks. Physical and physiological studies were performed; then retinal tissues were collected for biochemical and histological studies. The BL-group showed physical and physiological changes indicating affection of the visual function. Biochemical marker assessment showed a significant increase in MDA, TLR4 and MYD88 tissue levels with a significant decrease in TAC levels. Histological and ultrastructural assessment showed disruption of the normal histological architecture with retinal pigment epithelium, photoreceptors, and ganglion cell deterioration. A significant increase in NF-κB, caspase-3, and GFAP immunoreactivity was also detected. BL-SVFC group showed a significant improvement in physical, physiological, and biochemical parameters. Retinal tissues revealed amelioration of retinal structural and ultrastructural deterioration and a significant decrease in NF-κB and caspase-3 immunoreactivity with a significant increase in GFAP immunoreaction. This study concluded that SVFCs could ameliorate the BL-induced retinal injury through TLR-4/MYD-88/NF-κB signaling inhibition, regenerative, anti-oxidative, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Amira Fathy Ahmed
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Maha Ahmed Madi
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Azza Hussein Ali
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Sahar A Mokhemer
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt.
| |
Collapse
|
18
|
Irwin-Huston JM, Bourebaba L, Bourebaba N, Tomal A, Marycz K. Sex hormone-binding globulin promotes the osteogenic differentiation potential of equine adipose-derived stromal cells by activating the BMP signaling pathway. Front Endocrinol (Lausanne) 2024; 15:1424873. [PMID: 39483986 PMCID: PMC11524885 DOI: 10.3389/fendo.2024.1424873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Background Musculoskeletal injuries and chronic degenerative diseases pose significant challenges in equine health, impacting performance and overall well-being. Sex Hormone-Binding Globulin (SHBG) is a glycoprotein determining the bioavailability of sex hormones in the bloodstream, and exerting critical metabolic functions, thus impacting the homeostasis of many tissues including the bone. Methods In this study, we investigated the potential role of SHBG in promoting osteogenesis and its underlying mechanisms in a model of equine adipose-derived stromal cells (ASCs). An SHBG-knocked down model has been established using predesigned siRNA, and cells subjected to osteogenic induction medium in the presence of exogenous SHBG protein. Changes in differentiation events where then screened using various analytical methods. Results We demonstrated that SHBG treatment enhances the expression of key osteoconductive regulators in equine ASCs CD34+ cells, suggesting its therapeutic potential for bone regeneration. Specifically, SHBG increased the cellular expression of BMP2/4, osteocalcin (OCL), alkaline phosphatase (ALP), and osteopontin (OPN), crucial factors in early osteogenesis. Furthermore, SHBG treatment maintained adequate apoptosis and enhanced autophagy during osteogenic differentiation, contributing to bone formation and remodeling. SHBG further targeted mitochondrial dynamics, and promoted the reorganization of the mitochondrial network, as well as the expression of dynamics mediators including PINK, PARKIN and MFN1, suggesting its role in adapting cells to the osteogenic milieu, with implications for osteoblast maturation and differentiation. Conclusion Overall, our findings provide novel insights into SHBG's role in bone formation and suggest its potential therapeutic utility for bone regeneration in equine medicine.
Collapse
Affiliation(s)
- Jennifer M. Irwin-Huston
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Nabila Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Artur Tomal
- International Institute of Translational Medicine, Wisznia Mała, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- International Institute of Translational Medicine, Wisznia Mała, Poland
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
19
|
Khandia R, Gurjar P, Priyanka, Romashchenko V, Al-Hussain SA, Zaki MEA. Recent advances in stem cell therapy: efficacy, ethics, safety concerns, and future directions focusing on neurodegenerative disorders - a review. Int J Surg 2024; 110:6367-6381. [PMID: 39705668 DOI: 10.1097/js9.0000000000001609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/29/2024] [Indexed: 12/22/2024]
Abstract
Neurodegeneration refers to the gradual loss of neurons and extensive changes in glial cells like tau inclusions in astrocytes and oligodendrocytes, α-synuclein inclusions in oligodendrocytes and SOD1 aggregates in astrocytes along with deterioration in the motor, cognition, learning, and behavior. Common neurodegenerative disorders are Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), spinocerebellar ataxia (SCA), and supranuclear palsy. There is a lack of effective treatment for neurodegenerative diseases, and scientists are putting their efforts into developing therapies against them. Stem cell therapy has emerged as a hope for neurodegenerative disorders since it is not only the damaged neurons that might be replaced, but other neuromodulators and neuroprotectors are secreted. Stem cell terminal differentiation before implantation ensures the implantation of correct cells and molecular markers like carbonic anhydrase II, CNPase (2',3'-cyclic nucleotide 3'-phosphohydrolase), myelin basic protein (MBP), and myelin oligodendrocyte glycoprotein (MOG) elucidate the differentiation. Secretion of various growth factors like epidermal growth factor (EGF), keratinocyte growth factor (KGF), vascular endothelial growth factor-α (VEGF-α), transforming growth factor (TGF), and macrophage inflammatory protein (MIP) supports cell survival, cell proliferation, blood vessel formation, axon regeneration, and neuroglial functional connection formation at the site of degeneration. Adverse effects of stem cell therapy, like teratogenicity and differentiation in different cells other than the desired one under the influence of microenvironment, are a few key concerns. Post-transplantation improved synaptic plasticity, apoptosis inhibition, and reduction in tau-phosphorylation and amyloid beta (Aβ) production has been observed in Alzheimer's patients. A large number of experimental, preclinical, and clinical studies have been conducted, and encouraging results have been obtained. The present review exhaustively discusses various kinds of stem cells, their usage in treating neurodegenerative disorders, limitations and challenges, and ethical issues related to stem cell therapy.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh
| | - Pankaj Gurjar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
| | - Priyanka
- Department of Veterinary Microbiology, College of Veterinary Science, Guru AngadDev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| | | | - Sami A Al-Hussain
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Zacharovová K, Berková Z, Girman P, Saudek F. Adipose tissue-derived mesenchymal stem cells promote the vascularization of pancreatic islets transplanted into decellularized pancreatic skeletons. Transpl Immunol 2024; 86:102106. [PMID: 39128811 DOI: 10.1016/j.trim.2024.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
We have recently developed a model of pancreatic islet transplantation into a decellularized pancreatic tail in rats. As the pancreatic skeletons completely lack endothelial cells, we investigated the effect of co-transplantation of mesenchymal stem cells and endothelial cells to promote revascularization. Decellularized matrix of the pancreatic tail was prepared by perfusion with Triton X-100, sodium dodecyl sulfate and DNase solution. Isolated pancreatic islets were infused into the skeletons via the splenic vein either alone, together with adipose tissue-derived mesenchymal stem cells (adMSCs), or with a combination of adMSCs and rat endothelial cells (rat ECs). Repopulated skeletons were transplanted into the subcutaneous tissue and explanted 9 days later for histological examination. Possible immunomodulatory effects of rat adMSCs on the survival of highly immunogenic green protein-expressing human ECs were also tested after their transplantation beneath the renal capsule. The immunomodulatory effects of adMSCs were also tested in vitro using the Invitrogen Click-iT EdU system. In the presence of adMSCs, the proliferation of splenocytes as a response to phytohaemagglutinin A was reduced by 47% (the stimulation index decreased from 1.7 to 0.9, P = 0.008) and the reaction to human ECs was reduced by 58% (the stimulation index decreased from 1.6 to 0.7, P = 0.03). Histological examination of the explanted skeletons seeded only with the islets showed their partial disintegration and only a rare presence of CD31-positive cells. However, skeletons seeded with a combination of islets and adMSCs showed preserved islet morphology and rich vascularity. In contrast, the addition of syngeneic rat ECs resulted in islet-cell necrosis with only few endothelial cells present. Live green fluorescence-positive endothelial cells transplanted either alone or with adMSCs were not detected beneath the renal capsule. Though the adMSCs significantly reduced in vitro proliferation stimulated by either phytohaemagglutinin A or by xenogeneic human ECs, in vivo co-transplanted adMSCs did not suppress the post-transplant immune response to xenogeneic ECs. Even in the syngeneic model, ECs co-transplantation did not lead to sufficient vascularization in the transplant area. In contrast, islet co-transplantation together with adMSCs successfully promoted the revascularization of extracellular matrix in the subcutaneous tissue.
Collapse
Affiliation(s)
- Klára Zacharovová
- Laboratory of Pancreatic Islets, Experimental Medicine Center, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021 Prague, Czech Republic.
| | - Zuzana Berková
- Laboratory of Pancreatic Islets, Experimental Medicine Center, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021 Prague, Czech Republic.
| | - Peter Girman
- Laboratory of Pancreatic Islets, Experimental Medicine Center, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021 Prague, Czech Republic; Diabetes Center, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021 Prague, Czech Republic.
| | - František Saudek
- Laboratory of Pancreatic Islets, Experimental Medicine Center, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021 Prague, Czech Republic; Diabetes Center, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021 Prague, Czech Republic.
| |
Collapse
|
21
|
Maloney J, Strand N, Wie C, Pew S, Dawodu A, Dunn T, Johnson B, Eells A, Viswanath O, Freeman J, Covington S. Current Review of Regenerative Medicine Therapies for Spine-Related Pain. Curr Pain Headache Rep 2024; 28:949-955. [PMID: 38112985 DOI: 10.1007/s11916-023-01194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE OF REVIEW Persistent spinal pain syndromes are pervasive and lead to functional impairment, increased healthcare utilization, potential disability, and high societal costs. Spinal (cervical, thoracic, lumbar, and sacroiliac joint) pain includes mechanical, degenerative, inflammatory, oncologic, and infectious etiologies. Regenerative medicine is a novel biotechnology targeting mechanical, degenerative, and inflammatory conditions believed to cause pain. Preparations including platelet-rich plasma, mesenchymal stem cells (adipose tissue and bone marrow aspirate concentrates), and growth factors are derived from an autologous donor. The goal of intervention through guided injection of the regenerative media is to reduce inflammation and reverse the degenerative cascade in hopes of restoring normal cellular composition (physiologic homeostasis) and anatomical function to improve pain and function. The authors review limited research supporting the use of platelet-rich plasma injections for facet joint arthropathy and sacroiliac joint pain compared to traditional steroid treatments, as well as the use of platelet rich plasma or mesenchymal stem cells for lumbar discogenic and radicular pain. RECENT FINDINGS Current evidence to support regenerative medicine for spine-related pain is limited. Although several studies demonstrated a reduction in pain, many of these studies had a small number of participants and were case series or prospective trials. Regenerative medicine treatments lack evidence for the treatment of spine-related pain. Large randomized controlled trials are needed with consistent study protocols to make further recommendations.
Collapse
Affiliation(s)
- Jillian Maloney
- Mayo Clinic Arizona, Department of Anesthesiology, Division of Pain Medicine, Phoenix, AZ, USA.
| | - N Strand
- Mayo Clinic Arizona, Department of Anesthesiology, Division of Pain Medicine, Phoenix, AZ, USA
| | - C Wie
- Mayo Clinic Arizona, Department of Anesthesiology, Division of Pain Medicine, Phoenix, AZ, USA
| | - S Pew
- Mayo Clinic Arizona, Department of Anesthesiology, Division of Pain Medicine, Phoenix, AZ, USA
| | - A Dawodu
- Mayo Clinic Arizona, Department of Anesthesiology, Division of Pain Medicine, Phoenix, AZ, USA
| | - T Dunn
- Mayo Clinic Arizona, Department of Anesthesiology, Division of Pain Medicine, Phoenix, AZ, USA
| | - B Johnson
- Mayo Clinic Arizona, Department of Anesthesiology and Perioperative Medicine, Phoenix, AZ, USA
| | - A Eells
- Mayo Clinic Arizona, Department of Anesthesiology and Perioperative Medicine, Phoenix, AZ, USA
| | - O Viswanath
- Innovative Pain and Wellness, LSU Health Sciences Center School of Medicine, Creighton University School of Medicine, Phoenix, AZ, USA
| | - J Freeman
- Mayo Clinic Arizona, Department of Anesthesiology, Division of Pain Medicine, Phoenix, AZ, USA
| | - S Covington
- Mayo Clinic Arizona, Department of Anesthesiology, Division of Pain Medicine, Phoenix, AZ, USA
| |
Collapse
|
22
|
Kim DH, Han SG, Lim SJ, Hong SJ, Kwon HC, Jung HS, Han SG. Comparison of Soy and Pea Protein for Cultured Meat Scaffolds: Evaluating Gelation, Physical Properties, and Cell Adhesion. Food Sci Anim Resour 2024; 44:1108-1125. [PMID: 39246534 PMCID: PMC11377198 DOI: 10.5851/kosfa.2024.e46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 09/10/2024] Open
Abstract
Cultured meat is under investigation as an environmentally sustainable substitute for conventional animal-derived meat. Employing a scaffolding technique is one approach to developing cultured meat products. The objective of this research was to compare soy and pea protein in the production of hydrogel scaffolds intended for cultured meat. We examined the gelation process, physical characteristics, and the ability of scaffolds to facilitate cell adhesion using mesenchymal stem cells derived from porcine adipose tissue (ADSCs). The combination of soy and pea proteins with agarose and agar powders was found to generate solid hydrogels with a porous structure. Soy protein-based scaffolds exhibited a higher water absorption rate, whereas scaffolds containing agarose had a higher compressive strength. Based on Fourier transform infrared spectroscopy analysis, the number of hydrophobic interactions increased between proteins and polysaccharides in the scaffolds containing pea proteins. All scaffolds were nontoxic toward ADSCs, and soy protein-based scaffolds displayed higher cell adhesion and proliferation properties. Overall, the soy protein-agarose scaffold was found to be optimal for cultured meat production.
Collapse
Affiliation(s)
- Do Hyun Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Seo Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Su Jin Lim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Seong Joon Hong
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Hyuk Cheol Kwon
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Hyun Su Jung
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
23
|
Jeyaraman N, Shrivastava S, Ravi VR, Nallakumarasamy A, Pundkar A, Jeyaraman M. Understanding and controlling the variables for stromal vascular fraction therapy. World J Stem Cells 2024; 16:784-798. [PMID: 39219728 PMCID: PMC11362852 DOI: 10.4252/wjsc.v16.i8.784] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 08/26/2024] Open
Abstract
In regenerative medicine, the isolation of mesenchymal stromal cells (MSCs) from the adipose tissue's stromal vascular fraction (SVF) is a critical area of study. Our review meticulously examines the isolation process of MSCs, starting with the extraction of adipose tissue. The choice of liposuction technique, anatomical site, and immediate processing are essential to maintain cell functionality. We delve into the intricacies of enzymatic digestion, emphasizing the fine-tuning of enzyme concentrations to maximize cell yield while preventing harm. The review then outlines the filtration and centrifugation techniques necessary for isolating a purified SVF, alongside cell viability assessments like flow cytometry, which are vital for confirming the efficacy of the isolated MSCs. We discuss the advantages and drawbacks of using autologous vs allogeneic SVF sources, touching upon immunocompatibility and logistical considerations, as well as the variability inherent in donor-derived cells. Anesthesia choices, the selection between hypodermic needles vs liposuction cannulas, and the role of adipose tissue lysers in achieving cellular dissociation are evaluated for their impact on SVF isolation. Centrifugation protocols are also analyzed for their part in ensuring the integrity of the SVF. The necessity for standardized MSC isolation protocols is highlighted, promoting reproducibility and successful clinical application. We encourage ongoing research to deepen the understanding of MSC biology and therapeutic action, aiming to further the field of regenerative medicine. The review concludes with a call for rigorous research, interdisciplinary collaboration, and strict adherence to ethical and regulatory standards to safeguard patient safety and optimize treatment outcomes with MSCs.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Sandeep Shrivastava
- Department of Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
| | - V R Ravi
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Aditya Pundkar
- Department of Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
| | - Madhan Jeyaraman
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
24
|
Ahmad N, Anker A, Klein S, Dean J, Knoedler L, Remy K, Pagani A, Kempa S, Terhaag A, Prantl L. Autologous Fat Grafting-A Panacea for Scar Tissue Therapy? Cells 2024; 13:1384. [PMID: 39195271 PMCID: PMC11352477 DOI: 10.3390/cells13161384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Scars may represent more than a cosmetic concern for patients; they may impose functional limitations and are frequently associated with the sensation of itching or pain, thus impacting both psychological and physical well-being. From an aesthetic perspective, scars display variances in color, thickness, texture, contour, and their homogeneity, while the functional aspect encompasses considerations of functionality, pliability, and sensory perception. Scars located in critical anatomic areas have the potential to induce profound impairments, including contracture-related mobility restrictions, thereby significantly impacting daily functioning and the quality of life. Conventional approaches to scar management may suffice to a certain extent, yet there are cases where tailored interventions are warranted. Autologous fat grafting emerges as a promising therapeutic avenue in such instances. Fundamental mechanisms underlying scar formation include chronic inflammation, fibrogenesis and dysregulated wound healing, among other contributing factors. These mechanisms can potentially be alleviated through the application of adipose-derived stem cells, which represent the principal cellular component utilized in the process of lipofilling. Adipose-derived stem cells possess the capacity to secrete proangiogenic factors such as fibroblast growth factor, vascular endothelial growth factor and hepatocyte growth factor, as well as neurotrophic factors, such as brain-derived neurotrophic factors. Moreover, they exhibit multipotency, remodel the extracellular matrix, act in a paracrine manner, and exert immunomodulatory effects through cytokine secretion. These molecular processes contribute to neoangiogenesis, the alleviation of chronic inflammation, and the promotion of a conducive milieu for wound healing. Beyond the obvious benefit in restoring volume, the adipose-derived stem cells and their regenerative capacities facilitate a reduction in pain, pruritus, and fibrosis. This review elucidates the regenerative potential of autologous fat grafting and its beneficial and promising effects on both functional and aesthetic outcomes when applied to scar tissue.
Collapse
Affiliation(s)
- Nura Ahmad
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Alexandra Anker
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Silvan Klein
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Jillian Dean
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Katya Remy
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Andrea Pagani
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Sally Kempa
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Amraj Terhaag
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| |
Collapse
|
25
|
Dowker-Key PD, Jadi PK, Gill NB, Hubbard KN, Elshaarrawi A, Alfatlawy ND, Bettaieb A. A Closer Look into White Adipose Tissue Biology and the Molecular Regulation of Stem Cell Commitment and Differentiation. Genes (Basel) 2024; 15:1017. [PMID: 39202377 PMCID: PMC11353785 DOI: 10.3390/genes15081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
White adipose tissue (WAT) makes up about 20-25% of total body mass in healthy individuals and is crucial for regulating various metabolic processes, including energy metabolism, endocrine function, immunity, and reproduction. In adipose tissue research, "adipogenesis" is commonly used to refer to the process of adipocyte formation, spanning from stem cell commitment to the development of mature, functional adipocytes. Although, this term should encompass a wide range of processes beyond commitment and differentiation, to also include other stages of adipose tissue development such as hypertrophy, hyperplasia, angiogenesis, macrophage infiltration, polarization, etc.… collectively, referred to herein as the adipogenic cycle. The term "differentiation", conversely, should only be used to refer to the process by which committed stem cells progress through distinct phases of subsequent differentiation. Recognizing this distinction is essential for accurately interpreting research findings on the mechanisms and stages of adipose tissue development and function. In this review, we focus on the molecular regulation of white adipose tissue development, from commitment to terminal differentiation, and examine key functional aspects of WAT that are crucial for normal physiology and systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Presley D. Dowker-Key
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Praveen Kumar Jadi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Nicholas B. Gill
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Katelin N. Hubbard
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Elshaarrawi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Naba D. Alfatlawy
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| |
Collapse
|
26
|
Vitale F, Cacciottola L, Camboni A, Houeis L, Donnez J, Dolmans MM. Assessing the effect of adipose-tissue-derived stem cell conditioned medium on follicles and stromal cells in bovine ovarian tissue culture. Reprod Biomed Online 2024; 49:103938. [PMID: 38759499 DOI: 10.1016/j.rbmo.2024.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 05/19/2024]
Abstract
RESEARCH QUESTION Does adipose-tissue-derived stem cell conditioned medium (ASC-CM) supplementation enhance follicle and stromal cell outcomes in vitro? DESIGN Bovine ovaries (n = 8) were sectioned and cultured in vitro for 8 days in two different groups: (i) standard culture (OT Ctrl D8); and (ii) culture with ASC-CM supplementation (OT + CM D8). Half of the culture medium was replaced every other day, and stored to measure the production of oestradiol. Follicle classification was established using haematoxylin and eosin staining. Follicle and stromal cell DNA fragmentation was assessed by TUNEL assays, while growth differentiation factor-9 (GDF-9) staining served as a marker of follicle quality. Additionally, three factors, namely vascular endothelial growth factor (VEGF), interleukin 6 (IL-6) and transforming growth factor beta 1 (TGF-β1), were evaluated in ASC-CM in order to appraise the potential underlying mechanisms of action of ASC. RESULTS The OT + CM D8 group showed a significantly higher proportion of secondary follicles (P = 0.02) compared with the OT Ctrl D8 group. The OT + CM D8 group also demonstrated significantly lower percentages of TUNEL-positive follicles (P = 0.014) and stromal cells (P = 0.001) compared with the OT Ctrl D8 group. Furthermore, follicles in the OT + CM D8 group exhibited a significant increase (P = 0.002) in expression of GDF-9 compared with those in the OT Ctrl D8 group, and oestradiol production was significantly higher (P = 0.04) in the OT + CM D8 group. All studied factors were found to be present in ASC-CM. VEGF and IL-6 were the most widely expressed factors, while TGF-β1 showed the lowest expression. CONCLUSIONS Addition of ASC-CM to culture medium enhances follicle survival, development and oestradiol production, and promotes the viability of stromal cells. VEGF, IL-6 and TGF-β1 could be paracrine mediators underlying the beneficial effects.
Collapse
Affiliation(s)
- Francisco Vitale
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Luciana Cacciottola
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Alessandra Camboni
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Pathology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Lara Houeis
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jacques Donnez
- Société de Recherche pour l'Infertilité, Brussels, Belgium; Professor Em, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Gynaecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
27
|
Badr OI, Anter A, Magdy I, Chukueggu M, Khorshid M, Darwish M, Farrag M, Elsayed M, Amr Y, Amgad Y, Mahmoud T, Kamal MM. Adipose-Derived Mesenchymal Stem Cells and Their Derived Epidermal Progenitor Cells Conditioned Media Ameliorate Skin Aging in Rats. Tissue Eng Regen Med 2024; 21:915-927. [PMID: 38913224 PMCID: PMC11286614 DOI: 10.1007/s13770-024-00643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Skin alterations are among the most prominent signs of aging, and they arise from both intrinsic and extrinsic factors that interact and mutually influence one another. The use of D-galactose as an aging model in animals has been widely employed in anti-aging research. Adipose tissue-derived mesenchymal stem cells (Ad-MSCs) are particularly promising for skin anti-aging therapy due to their capacity for effective re-epithelization and secretion of various growth factors essential for skin regeneration. Accordingly, we aimed to examine the potential utility of Ad-MSCs as a therapy for skin anti-aging. METHODS In this study, we isolated and characterized adipose-derived mesenchymal stem cells (Ad-MSCs) from the epididymal fat of male Sprague Dawley rats. We assessed the in vitro differentiation of Ad-MSCs into epidermal progenitor cells (EPCs) using ascorbic acid and hydrocoritsone. Additionally, we induced skin aging in female Sprague Dawley rats via daily intradermal injection of D-galactose over a period of 8 weeks. Then we evaluated the therapeutic potential of intradermal transplantation of Ad-MSCs and conditioned media (CM) derived from differentiated EPCs in the D-galactose-induced aging rats. Morphological assessments, antioxidant assays, and histopathological examinations were performed to investigate the effects of the treatments. RESULTS Our findings revealed the significant capability of Ad-MSCs to differentiate into EPCs. Notably, compared to the group that received CM treatment, the Ad-MSCs-treated group exhibited a marked improvement in morphological appearance, antioxidant levels and histological features. CONCLUSIONS These results underscore the effectiveness of Ad-MSCs in restoring skin aging as a potential therapy for skin aging.
Collapse
Affiliation(s)
- Omar I Badr
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Aya Anter
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Ihab Magdy
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Marvellous Chukueggu
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Moamen Khorshid
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed Darwish
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed Farrag
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Menna Elsayed
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Youmna Amr
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Yomna Amgad
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Tasnim Mahmoud
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed M Kamal
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.
- Drug Research and Development Group, Faculty of Pharmacy, Health Research Center of Excellence, The British University in Egypt, Cairo, Egypt.
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
28
|
Lai HC, Chen PH, Tang CH, Chen LW. IL-10 Enhances the Inhibitory Effect of Adipose-Derived Stromal Cells on Insulin Resistance/Liver Gluconeogenesis by Treg Cell Induction. Int J Mol Sci 2024; 25:8088. [PMID: 39125659 PMCID: PMC11311376 DOI: 10.3390/ijms25158088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The modulation of cellular phenotypes within adipose tissue provides a potential means for therapeutic intervention for diabetes. Endogenous interleukin-10 (IL-10) protects against diet-induced insulin resistance. We examined the effects and mechanisms of action of IL-10-treated adipose-derived stromal cells on diabetes-induced insulin resistance and liver gluconeogenesis. We harvested stromal vascular fractions (SVFs) from the adipose tissue of diabetic (Leprdb/db) mice and treated them with IL-10 in vitro. SVFs treated with 10 or 100 ng of IL-10 were injected into the inguinal adipose tissue of Leprdb/db mice. IL-10 treatment suppressed the mRNA expression of IL-6, IL-33, CCL2, TNF-α, and IL-1β. Additionally, it suppressed the protein expression of IL-6, pmTOR, pJNK, and pNF-κB but enhanced Foxp3 mRNA expression in SVFs from diabetic mice. Meanwhile, IL-10 treatment repressed CCL2 and PDGFRα expression in adipose tissue macrophages (ATMs) and IL-6 expression in non-ATMs but increased the Foxp3 and IL-10 mRNA expression of ATMs from diabetic mice. Injection of IL-10-treated SVFs decreased the IL-6, IL-33, CCL2, IL-1β, and CCL2 but enhanced the Foxp3 and IL-10 mRNA expression of adipose tissue from Leprdb/db mice. Furthermore, injection of IL-10-treated SVFs increased CD4+ regulatory T cells (Tregs) in SVFs and adipose IL-10 levels and suppressed plasma adiponectin levels and DPP4 activity in diabetic mice. Injection of IL-10-treated SVFs decreased hepatic G6PC and PCK1 mRNA expression and increased Akt activation, STAT3 phosphorylation in the liver, and glucose tolerance in diabetic mice. Our data suggest that IL-10 treatment decreases inflammation in adipose SVFs of diabetic mice. Injection of IL-10-treated SVFs into the adipose tissue decreased diabetes-induced gluconeogenesis gene expression, DPP4 activity, and insulin resistance by enhancing Treg cells in diabetic mice. These data suggest that IL-10-treated adipose stromal vascular cells could be a promising therapeutic strategy for diabetes mellitus.
Collapse
Affiliation(s)
- Hsiao-Chi Lai
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (H.-C.L.); (P.-H.C.); (C.-H.T.)
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Pei-Hsuan Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (H.-C.L.); (P.-H.C.); (C.-H.T.)
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chia-Hua Tang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (H.-C.L.); (P.-H.C.); (C.-H.T.)
| | - Lee-Wei Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (H.-C.L.); (P.-H.C.); (C.-H.T.)
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
29
|
Bhattacharjee A, Pereira B, Soares P, Popat KC. Titania (TiO 2) nanotube surfaces doped with zinc and strontium for improved cell compatibility. NANOSCALE 2024; 16:12510-12522. [PMID: 38874593 PMCID: PMC11223589 DOI: 10.1039/d4nr01123f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Titanium-based orthopedic implants are gaining popularity in recent years due to their excellent biocompatibility, superior corrosion resistance and lightweight properties. However, these implants often fail to perform effectively due to poor osseointegration. Nanosurface modification approaches may help to resolve this problem. In this work, TiO2 nanotube (NT) arrays were fabricated on commercially available pure titanium (Ti) surfaces by anodization and annealing. Then, zinc (Zn) and strontium (Sr), important for cell signaling, were doped on the NT surface by hydrothermal treatment. This very simple method of Zn and Sr doping takes less time and energy compared to other complicated techniques. Different surface characterization tools such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), static water contact angle, X-ray diffraction (XRD) and nanoindentation techniques were used to evaluate the modified surfaces. Then, adipose derived stem cells (ADSCs) were cultured with the surfaces to evaluate cell adhesion, proliferation, and growth on the surfaces. After that, the cells were differentiated towards osteogenic lineage to evaluate alkaline phosphatase (ALP) activity, osteocalcin expression, and calcium phosphate mineralization. Results indicate that NT surfaces doped with Zn and Sr had significantly enhanced ADSC adhesion, proliferation, growth, and osteogenic differentiation compared to an unmodified surface, thus confirming the enhanced performance of these surfaces.
Collapse
Affiliation(s)
- Abhishek Bhattacharjee
- School of Advanced Materials Discovery, Colorado State University, Department of Bioengineering, George Mason University, Fort Collins, CO, USA, Fairfax, VA, USA.
| | - Bruno Pereira
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Paraná, PR, Brazil
| | - Paulo Soares
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Paraná, PR, Brazil
| | - Ketul C Popat
- School of Advanced Materials Discovery, Colorado State University, Department of Bioengineering, George Mason University, Fort Collins, CO, USA, Fairfax, VA, USA.
- Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- Department of Bioengineering, George Mason University, Fairfax, VA, USA
| |
Collapse
|
30
|
Doherty-Boyd WS, Donnelly H, Tsimbouri MP, Dalby MJ. Building bones for blood and beyond: the growing field of bone marrow niche model development. Exp Hematol 2024; 135:104232. [PMID: 38729553 DOI: 10.1016/j.exphem.2024.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
The bone marrow (BM) niche is a complex microenvironment that provides the signals required for regulation of hematopoietic stem cells (HSCs) and the process of hematopoiesis they are responsible for. Bioengineered models of the BM niche incorporate various elements of the in vivo BM microenvironment, including cellular components, soluble factors, a three-dimensional environment, mechanical stimulation of included cells, and perfusion. Recent advances in the bioengineering field have resulted in a spate of new models that shed light on BM function and are approaching precise imitation of the BM niche. These models promise to improve our understanding of the in vivo microenvironment in health and disease. They also aim to serve as platforms for HSC manipulation or as preclinical models for screening novel therapies for BM-associated disorders and diseases.
Collapse
Affiliation(s)
- W Sebastian Doherty-Boyd
- The Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, United Kingdom.
| | - Hannah Donnelly
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Monica P Tsimbouri
- The Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, United Kingdom
| | - Matthew J Dalby
- The Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
31
|
Da Silva D, Crous A, Abrahamse H. Enhancing Osteoblast Differentiation from Adipose-Derived Stem Cells Using Hydrogels and Photobiomodulation: Overcoming In Vitro Limitations for Osteoporosis Treatment. Curr Issues Mol Biol 2024; 46:6346-6365. [PMID: 39057021 PMCID: PMC11276038 DOI: 10.3390/cimb46070379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoporosis represents a widespread and debilitating chronic bone condition that is increasingly prevalent globally. Its hallmark features include reduced bone density and heightened fragility, which significantly elevate the risk of fractures due to the decreased presence of mature osteoblasts. The limitations of current pharmaceutical therapies, often accompanied by severe side effects, have spurred researchers to seek alternative strategies. Adipose-derived stem cells (ADSCs) hold considerable promise for tissue repair, albeit they encounter obstacles such as replicative senescence in laboratory conditions. In comparison, employing ADSCs within three-dimensional (3D) environments provides an innovative solution, replicating the natural extracellular matrix environment while offering a controlled and cost-effective in vitro platform. Moreover, the utilization of photobiomodulation (PBM) has emerged as a method to enhance ADSC differentiation and proliferation potential by instigating cellular stimulation and facilitating beneficial performance modifications. This literature review critically examines the shortcomings of current osteoporosis treatments and investigates the potential synergies between 3D cell culture and PBM in augmenting ADSC differentiation towards osteogenic lineages. The primary objective of this study is to assess the efficacy of combined 3D environments and PBM in enhancing ADSC performance for osteoporosis management. This research is notably distinguished by its thorough scrutiny of the existing literature, synthesis of recent advancements, identification of future research trajectories, and utilization of databases such as PubMed, Scopus, Web of Science, and Google Scholar for this literature review. Furthermore, the exploration of biomechanical and biophysical stimuli holds promise for refining treatment strategies. The future outlook suggests that integrating PBM with ADSCs housed within 3D environments holds considerable potential for advancing bone regeneration efforts. Importantly, this review aspires to catalyse further advancements in combined therapeutic strategies for osteoporosis regeneration.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (D.D.S.); (A.C.)
| |
Collapse
|
32
|
Lau CS, Park SY, Ethiraj LP, Singh P, Raj G, Quek J, Prasadh S, Choo Y, Goh BT. Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration. Int J Mol Sci 2024; 25:6805. [PMID: 38928517 PMCID: PMC11204188 DOI: 10.3390/ijms25126805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Bone regeneration involves multiple factors such as tissue interactions, an inflammatory response, and vessel formation. In the event of diseases, old age, lifestyle, or trauma, bone regeneration can be impaired which could result in a prolonged healing duration or requiring an external intervention for repair. Currently, bone grafts hold the golden standard for bone regeneration. However, several limitations hinder its clinical applications, e.g., donor site morbidity, an insufficient tissue volume, and uncertain post-operative outcomes. Bone tissue engineering, involving stem cells seeded onto scaffolds, has thus been a promising treatment alternative for bone regeneration. Adipose-derived mesenchymal stem cells (AD-MSCs) are known to hold therapeutic value for the treatment of various clinical conditions and have displayed feasibility and significant effectiveness due to their ease of isolation, non-invasive, abundance in quantity, and osteogenic capacity. Notably, in vitro studies showed AD-MSCs holding a high proliferation capacity, multi-differentiation potential through the release of a variety of factors, and extracellular vesicles, allowing them to repair damaged tissues. In vivo and clinical studies showed AD-MSCs favoring better vascularization and the integration of the scaffolds, while the presence of scaffolds has enhanced the osteogenesis potential of AD-MSCs, thus yielding optimal bone formation outcomes. Effective bone regeneration requires the interplay of both AD-MSCs and scaffolds (material, pore size) to improve the osteogenic and vasculogenic capacity. This review presents the advances and applications of AD-MSCs for bone regeneration and bone tissue engineering, focusing on the in vitro, in vivo, and clinical studies involving AD-MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Chau Sang Lau
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - So Yeon Park
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Lalith Prabha Ethiraj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Priti Singh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Grace Raj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Jolene Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Somasundaram Prasadh
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Yen Choo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Bee Tin Goh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
33
|
Perez OF, Warburton C, Philippon MC, Philippon MJ, Best TM. The Efficacy of Bone Marrow Stem Cell Therapy in Hip Osteoarthritis: A Scoping Review. HSS J 2024:15563316241259035. [PMID: 39564400 PMCID: PMC11572593 DOI: 10.1177/15563316241259035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/07/2024] [Indexed: 11/21/2024]
Abstract
Background Hip osteoarthritis (HOA) is a prevalent degenerative joint disease with various treatment approaches. Biological agents, such as bone-marrow derived stem cells (BM-MSC) therapy, have recently been proposed as a treatment option in the management of HOA. Purpose We sought to further analyze the use of BM-MSC therapy by investigating the following questions. What is the standard preparation and practice? Does a dose response exist between stem cell therapy and clinical outcome? Does BM-MSC therapy alone produce effective clinical outcomes? Methods We conducted a scoping review using the Methodological Expectations of Cochrane Intervention Reviews Manual and the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines for scoping reviews. A comprehensive search of PubMed, Embase, Cochrane CENTRAL, Scopus, SPORTDiscus, Cumulative Index to Nursing and Allied Health Literature, and Web of Science Core Collection was performed in June 2023 of studies using exclusively BM-MSC injections for the treatment of HOA. Study characteristic, injection preparation and dosage, clinical outcome measures, and adverse effect data were extracted and interpreted by 3 reviewers. Results Seven studies with a total of 72 patients met the inclusion criteria. Clinical outcome following intra-articular injection of BM-MSCs was measured using the numerical pain scale, the Western Ontario and McMaster Universities Osteoarthritis Index, the visual analogue scale, and other scores, all of which showed reduction in pain and increase in functional ability across studies. Conclusions This scoping review found that the efficacy of BM-MSC therapy alone in the treatment of HOA appeared beneficial, improving clinical outcomes in each study. All 7 studies used "low-dose" injections with variable follow-up times; thus, a clear dose-response relationship cannot be drawn. Future studies using high doses and analyzing long-term effects of BM-MSC injections in HOA are needed.
Collapse
Affiliation(s)
- Olivia F Perez
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | | | - Marc J Philippon
- Center for Regenerative and Personalized Medicine (CRPM), Steadman Philippon Research Institute, Vail, CO, USA
| | - Thomas M Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
34
|
Malisetyan T, Harrison JL, Shahriari SR, Clarke TN, Rogol EV, Borah GL. Autologous Fat Transfer in Craniofacial Surgery. FACE 2024; 5:279-291. [DOI: 10.1177/27325016241238441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Over the past two decades, autologous fat transfer has garnered significant recognition and widespread adoption within esthetic and reconstructive surgical domains. In craniofacial surgery, fat transplantation is frequently employed to address soft tissue volumetric deficiencies and asymmetries that influence facial contours. While adipose tissue (AT) is widely regarded as an optimal choice for augmentation due to its abundant availability and biocompatibility, the unpredictability and heightened resorption rates observed with traditional lipofilling techniques present a challenge for clinicians. Adipose-derived stem cells (ASCs) housed within the grafted tissue play a pivotal role in graft survival and offer avenues for tissue repair due to their angiogenic, anti-inflammatory, and immunosuppressive properties. Micro Fragmentation of Adipose Tissue (MFAT), utilized in several FDA-approved processing devices, has demonstrated promising outcomes in treating osteoarthritic joints, with success primarily attributed to enhanced paracrine function of ASCs via preservation of the perivascular niche. Currently, its application for treating bone or articular defects in the craniofacial region, including abnormalities of the temporomandibular joint, remains limited. This scarcity underscores the need for further investigation prior to its widespread integration into clinical practice.
Collapse
Affiliation(s)
- Tatevik Malisetyan
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
| | | | | | - Tegan N. Clarke
- University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - Gregory L. Borah
- University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
35
|
Ding Z, Greenberg ZF, Serafim MF, Ali S, Jamieson JC, Traktuev DO, March K, He M. Understanding molecular characteristics of extracellular vesicles derived from different types of mesenchymal stem cells for therapeutic translation. EXTRACELLULAR VESICLE 2024; 3:100034. [PMID: 38957857 PMCID: PMC11218754 DOI: 10.1016/j.vesic.2024.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Mesenchymal stem cells (MSCs) have been studied for decades as candidates for cellular therapy, and their secretome, including secreted extracellular vesicles (EVs), has been identified to contribute significantly to regenerative and reparative functions. Emerging evidence has suggested that MSC-EVs alone, could be used as therapeutics that emulate the biological function of MSCs. However, just as with MSCs, MSC-EVs have been shown to vary in composition, depending on the tissue source of the MSCs as well as the protocols employed in culturing the MSCs and obtaining the EVs. Therefore, the importance of careful choice of cell sources and culture environments is receiving increasing attention. Many factors contribute to the therapeutic potential of MSC-EVs, including the source tissue, isolation technique, and culturing conditions. This review illustrates the molecular landscape of EVs derived from different types of MSC cells along with culture strategies. A thorough analysis of publicly available omic datasets was performed to advance the precision understanding of MSC-EVs with unique tissue source-dependent molecular characteristics. The tissue-specific protein and miRNA-driven Reactome ontology analysis was used to reveal distinct patterns of top Reactome ontology pathways across adipose, bone marrow, and umbilical MSC-EVs. Moreover, a meta-analysis assisted by an AI technique was used to analyze the published literature, providing insights into the therapeutic translation of MSC-EVs based on their source tissues.
Collapse
Affiliation(s)
- Zuo Ding
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Zachary F. Greenberg
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Maria Fernanda Serafim
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Samantha Ali
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Julia C. Jamieson
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Dmitry O. Traktuev
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Keith March
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
36
|
Zhu Y, Yi D, Wang J, Zhang Y, Li M, Ma J, Ji Y, Peng J, Wang Y, Luo Y. Harnessing three-dimensional porous chitosan microsphere embedded with adipose-derived stem cells to promote nerve regeneration. Stem Cell Res Ther 2024; 15:158. [PMID: 38824568 PMCID: PMC11144330 DOI: 10.1186/s13287-024-03753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/05/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Nerve guide conduits are a promising strategy for reconstructing peripheral nerve defects. Improving the survival rate of seed cells in nerve conduits is still a challenge and microcarriers are an excellent three-dimensional (3D) culture scaffold. Here, we investigate the effect of the 3D culture of microcarriers on the biological characteristics of adipose mesenchymal stem cells (ADSCs) and to evaluate the efficacy of chitosan nerve conduits filled with microcarriers loaded with ADSCs in repairing nerve defects. METHODS In vitro, we prepared porous chitosan microspheres by a modified emulsion cross-linking method for loading ADSCs and evaluated the growth status and function of ADSCs. In vivo, ADSCs-loaded microcarriers were injected into chitosan nerve conduits to repair a 12 mm sciatic nerve defect in rats. RESULTS Compared to the conventional two-dimensional (2D) culture, the prepared microcarriers were more conducive to the proliferation, migration, and secretion of trophic factors of ADSCs. In addition, gait analysis, neuro-electrophysiology, and histological evaluation of nerves and muscles showed that the ADSC microcarrier-loaded nerve conduits were more effective in improving nerve regeneration. CONCLUSIONS The ADSCs-loaded chitosan porous microcarrier prepared in this study has a high cell engraftment rate and good potential for peripheral nerve repair.
Collapse
Affiliation(s)
- Yaqiong Zhu
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Chinese PLA General Hospital, Beijing, China
- Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Dan Yi
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jing Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui Province, China
| | - Yongyi Zhang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Rehabilitation Medicine, the Second Medical Centre, Chinese PLA General Hospital, Beijing, China
- No.962 Hospital of the PLA Joint Logistic Support Force, Harbin, China
| | - Molin Li
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jun Ma
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yongjiao Ji
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiang Peng
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Chinese PLA General Hospital, Beijing, China.
- Key Lab of Musculoskeletal Trauma & War Injuries, Chinese PLA General Hospital, Beijing, China.
- Department of Orthopaedics, The Fourth Centre of Chinese PLA General Hospital, Beijing, China.
| | - Yuexiang Wang
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yukun Luo
- Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
37
|
Rolsma JL, Darch W, Higgins NC, Morgan JT. The tardigrade-derived mitochondrial abundant heat soluble protein improves adipose-derived stem cell survival against representative stressors. Sci Rep 2024; 14:11834. [PMID: 38783150 PMCID: PMC11116449 DOI: 10.1038/s41598-024-62693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Human adipose-derived stem cell (ASC) grafts have emerged as a powerful tool in regenerative medicine. However, ASC therapeutic potential is hindered by stressors throughout their use. Here we demonstrate the transgenic expression of the tardigrade-derived mitochondrial abundant heat soluble (MAHS) protein for improved ASC resistance to metabolic, mitochondrial, and injection shear stress. In vitro, MAHS-expressing ASCs demonstrate up to 61% increased cell survival following 72 h of incubation in phosphate buffered saline containing 20% media. Following up to 3.5% DMSO exposure for up to 72 h, a 14-49% increase in MAHS-expressing ASC survival was observed. Further, MAHS expression in ASCs is associated with up to 39% improved cell viability following injection through clinically relevant 27-, 32-, and 34-gauge needles. Our results reveal that MAHS expression in ASCs supports survival in response to a variety of common stressors associated with regenerative therapies, thereby motivating further investigation into MAHS as an agent for stem cell stress resistance. However, differentiation capacity in MAHS-expressing ASCs appears to be skewed in favor of osteogenesis over adipogenesis. Specifically, activity of the early bone formation marker alkaline phosphatase is increased by 74% in MAHS-expressing ASCs following 14 days in osteogenic media. Conversely, positive area of the neutral lipid droplet marker BODIPY is decreased by up to 10% in MAHS-transgenic ASCs following 14 days in adipogenic media. Interestingly, media supplementation with up to 40 mM glucose is sufficient to restore adipogenic differentiation within 14 days, prompting further analysis of mechanisms underlying interference between MAHS and differentiation processes.
Collapse
Affiliation(s)
- Jordan L Rolsma
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA
| | - William Darch
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA
| | - Nicholas C Higgins
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA
| | - Joshua T Morgan
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
38
|
Kamarehei F, Saleh GN. Tissue regeneration therapy by Nano composite scaffolds based on PLGA hydrogel embedded with human dental pulp stem cells: a systematic review. Am J Transl Res 2024; 16:1521-1530. [PMID: 38883345 PMCID: PMC11170567 DOI: 10.62347/qbko6417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/28/2024] [Indexed: 06/18/2024]
Abstract
Tissue regeneration is the procedure of renewal, restoration and growth of injured tissues and defective organs including nerve, bone, tooth, cartilage and blood vessels. Repair process of damaged tissues needs non-invasive methods; so, the scientists have recently focused on alternative treatment pathways. Nano gels based on Poly Lactic-co-Glycolic Acid have been designed for different purposes in medicine. It is a biodegradable and biocompatible polymer composite. Also, human dental pulp stem cells embedded in the Poly Lactic-co-Glycolic Acid scaffold have proliferation ability and differentiation potential. They can differentiate into different cell lineages, including bone, cartilage, nerve, tooth and other tissues. So, this treatment technology can be used for tissue engineering in regenerative medicine. On the other hand, this structure is a promising application for targeted cancer therapy. Therefore, this review studied tissue, especially tooth regeneration based on the new designed Nano composite scaffolds embedded with Poly Lactic-co-Glycolic Acid hydrogel and dental pulp stem cells.
Collapse
Affiliation(s)
- Farideh Kamarehei
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences Hamadan, Iran
| | - Goran Noori Saleh
- Department of Nursing, Tishk International University-Kurdistan Region Iraq
| |
Collapse
|
39
|
Chen Y, Li Y, Li B, Hu D, Dong Z, Lu F. Migrasomes from adipose derived stem cells enrich CXCL12 to recruit stem cells via CXCR4/RhoA for a positive feedback loop mediating soft tissue regeneration. J Nanobiotechnology 2024; 22:219. [PMID: 38698419 PMCID: PMC11067256 DOI: 10.1186/s12951-024-02482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Adipose-derived stem cells (ASCs) represent the most advantageous choice for soft tissue regeneration. Studies proved the recruitment of ASCs post tissue injury was mediated by chemokine CXCL12, but the mechanism by which CXCL12 is generated after tissue injury remains unclear. Migrasomes are newly discovered membrane-bound organelles that could deliver CXCL12 spatially and temporally in vivo. In this study, we sought to investigate whether migrasomes participate ASC-mediated tissue regeneration. METHODS Discrepant and asymmetrical soft tissue regeneration mice model were established, in which HE staining, immunofluorescent staining, western blot and qPCR were conducted to confirm the role of CXCL12 and migrasomes in ASC-mediated tissue regeneration. Characterization of ASC-derived migrasomes were carried out by confocal microscopy, scanning electron microscopy, transmission electron microscopy as well as western blot analysis. The function and mechanism of migrasomes were further testified by assisting tissue regeneration with isolated migrasomes in vivo and by in vitro transwell combined with co-culture system. RESULTS Here, we show for the first time that migrasomes participate in soft tissue regeneration. ASCs generate migrasomes enriched with CXCL12 to mediate tissue regeneration. Migrasomes from ASCs could promote stem cells migration by activating CXCR4/RhoA signaling in vivo and in vitro. Chemoattracted ASCs facilitate regeneration, as demonstrated by the upregulation of an adipogenesis-associated protein. This positive feed-back-loop creates a favorable microenvironment for soft tissue regeneration. Thus, migrasomes represent a new therapeutic target for ASC-mediated tissue regeneration. CONCLUSIONS Our findings reveal a previously unknown function of ASCs in mediating tissue regeneration by generating migrasomes. The ASC-derived migrasomes can restore tissue regeneration by recruiting stem cells, which highlighting the potential application of ASC-derived migrasomes in regenerative medicine.
Collapse
Affiliation(s)
- Yunzi Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P.R. China
| | - Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P.R. China
| | - Bin Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P.R. China
| | - Delin Hu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P.R. China
| | - Ziqing Dong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P.R. China.
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P.R. China.
| |
Collapse
|
40
|
Zhang Y, Zhang J, Lesani P, Lu Z, Zreiqat H. Osteopontin Rejuvenates Senescent Adipose-Derived Stem Cells and Restores their Bone Tissue Regenerative Function. Stem Cell Rev Rep 2024; 20:1106-1120. [PMID: 38472643 PMCID: PMC11087332 DOI: 10.1007/s12015-024-10707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The regenerative function of stem cells is compromised when the proportion of senescent stem cells increases with ageing advance. Therefore, combating stem cell senescence is of great importance for stem cell-based tissue engineering in the elderly, but remains largely unexplored. Osteopontin (OPN), a glycosylated phosphoprotein, is one of the key extracellular matrix molecules in bone tissue. OPN activates various signalling pathways and modulates cellular activities, including cell senescence. However, the role of OPN in stem cell senescence remains largely unknown. This study aims to investigate if OPN modulates cell senescence and bone regenerative function in human adipose-derived mesenchymal stem cells (ASCs), and to determine the underlying mechanisms. We first developed a senescent ASC model using serial passaging until passage 10 (P10), in which senescent cells were characterised by reduced proliferation and osteogenic differentiation capacity compared to P4 ASCs. The conditioned medium from P10 ASCs exhibited a diminished trophic effect on human osteoblasts (HOBs), compared to that from P4 ASCs. P10 ASCs on OPN-coated surface showed rejuvenated phenotype and enhanced osteogenic differentiation. The conditioned medium from P10 ASCs on OPN-coating improved trophic effects on HOBs. OPN regulated the morphology of senescent ASCs, transforming them from a more rounded and flattened cell shape to an elongated shape with a smaller area. These findings demonstrated the effects of OPN in restoring senescent ASCs functions, possibly through a mechanism that involves the modulation of cell morphology, indicating that OPN might hold a great potential for rejuvenating senescent stem cells and could potentially open a new venue for regenerating bone tissue in age-related diseases.
Collapse
Affiliation(s)
- Yiran Zhang
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, Faculty of Engineering and IT, The University of Sydney, Darlington, NSW, 2006, Australia
| | - Junni Zhang
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, Faculty of Engineering and IT, The University of Sydney, Darlington, NSW, 2006, Australia
| | - Pooria Lesani
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, Faculty of Engineering and IT, The University of Sydney, Darlington, NSW, 2006, Australia
| | - Zufu Lu
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, Faculty of Engineering and IT, The University of Sydney, Darlington, NSW, 2006, Australia.
| | - Hala Zreiqat
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, Faculty of Engineering and IT, The University of Sydney, Darlington, NSW, 2006, Australia.
| |
Collapse
|
41
|
Tangporncharoen R, Silathapanasakul A, Tragoonlugkana P, Pruksapong C, Tawonsawatruk T, Supokawej A. The extracts of osteoblast developed from adipose-derived stem cell and its role in osteogenesis. J Orthop Surg Res 2024; 19:255. [PMID: 38650022 PMCID: PMC11034088 DOI: 10.1186/s13018-024-04747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Cell-based therapy has become an achievable choice in regenerative medicines, particularly for musculoskeletal disorders. Adipose-derived stem cells (ASCs) are an outstanding resource because of their ability and functions. Nevertheless, the use of cells for treatment comes with difficulties in operation and safety. The immunological barrier is also a major limitation of cell therapy, which can lead to unexpected results. Cell-derived products, such as cell extracts, have gained a lot of attention to overcome these limitations. The goal of this study was to optimize the production of ASC-osteoblast extracts as well as their involvement in osteogenesis. The extracts were prepared using a freeze-thaw method with varying temperatures and durations. Overall, osteogenic-associated proteins and osteoinductive potential of the extracts prepared from the osteogenic-induced ASCs were assessed. Our results demonstrated that the freeze-thaw approach is practicable for cell extracts production, with minor differences in temperature and duration having no effect on protein concentration. The ASC-osteoblast extracts contain a significant level of essential specialized proteins that promote osteogenicity. Hence, the freeze-thaw method is applicable for extract preparation and ASC-osteoblast extracts may be beneficial as an optional facilitating biologics in bone anabolic treatment and bone regeneration.
Collapse
Affiliation(s)
- Rattanawan Tangporncharoen
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Atiruj Silathapanasakul
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Patcharapa Tragoonlugkana
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Chatchai Pruksapong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Pramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Tulyapruek Tawonsawatruk
- Department of Orthopaedics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
42
|
Son TG, Seo Y, Kim WT, Kim M, Choi SJ, Choi SH, Sung BJ, Min JS, Han EC, Kim HS. Characterization of 3D Organotypic Culture of Mouse Adipose-Derived Stem Cells. Int J Mol Sci 2024; 25:3931. [PMID: 38612741 PMCID: PMC11011465 DOI: 10.3390/ijms25073931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/05/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Although stem cells are a promising avenue for harnessing the potential of adipose tissue, conventional two-dimensional (2D) culture methods have limitations. This study explored the use of three-dimensional (3D) cultures to preserve the regenerative potential of adipose-derived stem cells (ADSCs) and investigated their cellular properties. Flow cytometric analysis revealed significant variations in surface marker expressions between the two culture conditions. While 2D cultures showed robust surface marker expressions, 3D cultures exhibited reduced levels of CD44, CD90.2, and CD105. Adipogenic differentiation in 3D organotypic ADSCs faced challenges, with decreased organoid size and limited activation of adipogenesis-related genes. Key adipocyte markers, such as lipoprotein lipase (LPL) and adipoQ, were undetectable in 3D-cultured ADSCs, unlike positive controls in 2D-cultured mesenchymal stem cells (MSCs). Surprisingly, 3D-cultured ADSCs underwent mesenchymal-epithelial transition (MET), evidenced by increased E-cadherin and EpCAM expression and decreased mesenchymal markers. This study highlights successful ADSC organoid formation, notable MSC phenotype changes in 3D culture, adipogenic differentiation challenges, and a distinctive shift toward an epithelial-like state. These findings offer insights into the potential applications of 3D-cultured ADSCs in regenerative medicine, emphasizing the need for further exploration of underlying molecular mechanisms.
Collapse
Affiliation(s)
- Tae Gen Son
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan 46033, Republic of Korea; (W.-T.K.); (M.K.); (S.J.C.); (S.H.C.); (B.-J.S.)
| | - Yoojin Seo
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Won-Tae Kim
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan 46033, Republic of Korea; (W.-T.K.); (M.K.); (S.J.C.); (S.H.C.); (B.-J.S.)
| | - Meesun Kim
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan 46033, Republic of Korea; (W.-T.K.); (M.K.); (S.J.C.); (S.H.C.); (B.-J.S.)
| | - Seon Jeong Choi
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan 46033, Republic of Korea; (W.-T.K.); (M.K.); (S.J.C.); (S.H.C.); (B.-J.S.)
| | - Si Ho Choi
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan 46033, Republic of Korea; (W.-T.K.); (M.K.); (S.J.C.); (S.H.C.); (B.-J.S.)
| | - Byung-Jun Sung
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan 46033, Republic of Korea; (W.-T.K.); (M.K.); (S.J.C.); (S.H.C.); (B.-J.S.)
| | - Jae-Seok Min
- Department of Surgery, Dongnam Institute of Radiological and Medical Science, Busan 46033, Republic of Korea; (J.-S.M.); (E.C.H.)
| | - Eon Chul Han
- Department of Surgery, Dongnam Institute of Radiological and Medical Science, Busan 46033, Republic of Korea; (J.-S.M.); (E.C.H.)
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea;
| |
Collapse
|
43
|
Elzainy A, El Sadik A, Altowayan WM. Comparison between the Regenerative and Therapeutic Impacts of Bone Marrow Mesenchymal Stem Cells and Adipose Mesenchymal Stem Cells Pre-Treated with Melatonin on Liver Fibrosis. Biomolecules 2024; 14:297. [PMID: 38540717 PMCID: PMC10968153 DOI: 10.3390/biom14030297] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND The distinctive feature of liver fibrosis is the progressive replacement of healthy hepatic cells by the extracellular matrix protein, which is abundant in collagen I and III, with impaired matrix remodeling. The activation of myofibroblastic cells enhances the fibrogenic response of complex interactions of hepatic stellate cells, fibroblasts, and inflammatory cells to produce the excessive deposition of the extracellular protein matrix. This process is activated by multiple fibrogenic mediators and cytokines, such as TNF-α and IL-1β, accompanied with a decrease in the anti-fibrogenic factor NF-κβ. Mesenchymal stem cells (MSCs) represent a promising therapy for liver fibrosis, allowing for a more advanced regenerative influence when cultured with extrinsic or intrinsic proliferative factors, cytokines, antioxidants, growth factors, and hormones such as melatonin (MT). However, previous studies showed conflicting findings concerning the therapeutic effects of adipose (AD) and bone marrow (BM) MSCs; therefore, the present work aimed to conduct a comparative and comprehensive study investigating the impact of MT pre-treatment on the immunomodulatory, anti-inflammatory, and anti-apoptotic effects of AD- and BM-MSCs and to critically analyze whether MT-pre-treated AD-MSCs and BM-MSCs reveal equal or different therapeutic and regenerative potentials in a CCl4-injured liver experimental rat model. MATERIALS AND METHODS Six groups of experimental rats were used, with ten rats in each group: group I (control group), group II (CCl4-treated group), group III (CCl4- and BM-MSC-treated group), group IV (CCl4 and MT-pre-treated BM-MSC group), group V (CCl4- and AD-MSC-treated group), and group VI (CCl4 and MT-pre-treated AD-MSC group). Liver function tests and the gene expression of inflammatory, fibrogenic, apoptotic, and proliferative factors were analyzed. Histological and immunohistochemical changes were assessed. RESULTS The present study compared the ability of AD- and BM-MSCs, with and without MT pre-treatment, to reduce hepatic fibrosis. Both types of MSCs improved hepatocyte function by reducing the serum levels of ALT, aspartate aminotransferase (AST), alkaline phosphatase (AKP), and total bilirubin (TBIL). In addition, the changes in the hepatocellular architecture, including the hepatocytes, liver sinusoids, central veins, portal veins, biliary ducts, and hepatic arteries, showed a decrease in hepatocyte injury and cholestasis with a reduction in inflammation, apoptosis, and necrosis of the hepatic cells, together with an inhibition of liver tissue fibrosis. These results were augmented by an analysis of the expression of the pro-inflammatory cytokines TNFα and IL-1β, the anti-fibrogenic factor NF-κβ, the apoptotic factor caspase-3, and the proliferative indicators antigen Ki-67 and proliferating cell nuclear antigen (PCNA). These findings were found to be statistically significant, with the restoration of normal parameters in the rats that received AD-MSCs pre-treated with MT, denoting optimal regenerative and therapeutic effects. CONCLUSIONS AD-MSCs pre-treated with MT are the preferred choice in improving hepatic fibrosis and promoting the therapeutic and regenerative ability of liver tissue. They represent a very significant tool for future stem cell use in the tissue regeneration strategy for the treatment of liver diseases.
Collapse
Affiliation(s)
- Ahmed Elzainy
- Department of Anatomy and Histology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (A.E.); (A.E.S.)
- Department of Anatomy and Embryology, College of Medicine, Cairo University, Cairo 11956, Egypt
| | - Abir El Sadik
- Department of Anatomy and Histology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (A.E.); (A.E.S.)
- Department of Anatomy and Embryology, College of Medicine, Cairo University, Cairo 11956, Egypt
| | - Waleed Mohammad Altowayan
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
44
|
Kim HK, Kim TJ. Current Status and Future Prospects of Stem Cell Therapy for Infertile Patients with Premature Ovarian Insufficiency. Biomolecules 2024; 14:242. [PMID: 38397479 PMCID: PMC10887045 DOI: 10.3390/biom14020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Premature ovarian insufficiency (POI), also known as premature menopause or premature ovarian failure, signifies the partial or complete loss of ovarian endocrine function and fertility before 40 years of age. This condition affects approximately 1% of women of childbearing age. Although 5-10% of patients may conceive naturally, conventional infertility treatments, including assisted reproductive technology, often prove ineffective for the majority. For infertile patients with POI, oocyte donation or adoption exist, although a prevalent desire persists among them to have biological children. Stem cells, which are characterized by their undifferentiated nature, self-renewal capability, and potential to differentiate into various cell types, have emerged as promising avenues for treating POI. Stem cell therapy can potentially reverse the diminished ovarian endocrine function and restore fertility. Beyond direct POI therapy, stem cells show promise in supplementary applications such as ovarian tissue cryopreservation and tissue engineering. However, technological and ethical challenges hinder the widespread clinical application of stem cells. This review examines the current landscape of stem cell therapy for POI, underscoring the importance of comprehensive assessments that acknowledge the diversity of cell types and functions. Additionally, this review scrutinizes the limitations and prospects associated with the clinical implementation of stem cell treatments for POI.
Collapse
Affiliation(s)
- Hye Kyeong Kim
- Department of Obstetrics & Gynecology, Infertility Center, CHA University Ilsan Medical Center, Goyang 10414, Republic of Korea;
| | - Tae Jin Kim
- Department of Urology, CHA University Ilsan Medical Center, CHA University School of Medicine, Goyang 10414, Republic of Korea
| |
Collapse
|
45
|
Afshar Hezarkhani L, Veysi K, Rahmani A, Salari N, Hasheminezhad R, Nasr V, Mohammadi M. Safety and Efficacy of Bone Marrow and Adipose Tissue-Derived Mesenchymal Stem Cells for the Treatment of Ischemic Stroke: A Systematic Review. Cardiol Rev 2024:00045415-990000000-00214. [PMID: 38358290 DOI: 10.1097/crd.0000000000000671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Neurological diseases, including ischemic stroke, are considered a big challenge for public health due to their high prevalence and lack of definitive and effective treatments. Addressing these issues requires innovative therapeutic approaches and among the limited methods available, stem cells have shown promise in improving central nervous system repair by enhancing myelin regeneration and neuronal recovery. To advance this field of research, this systematic review aims to assess the safety and effectiveness of mesenchymal stem cells (MSCs) derived from both bone marrow and adipose tissue for the treatment of ischemic stroke. This study conducted a systematic review in the electronic databases PubMed, Scopus, Web of Science, Embase, ScienceDirect, and Google Scholar to assess the efficacy and safety of MSCs generated from bone marrow and adipose tissue for the treatment of ischemic stroke. It was extracted without a time limit until April 2023. The studies were then transferred to the information management program (EndNote) and duplicates were eliminated. The remaining studies were then examined using the entry and exit criteria and the 3 stages of primary, secondary, and qualitative evaluation, and finally, the results of the final studies were extracted. According to the initial search in the desired databases, 1028 possible related articles were identified and transferred to the information management software (EndNote). After removing 390 duplicate studies, 608 studies were excluded based on inclusion and exclusion criteria. Finally, 37 final studies were included in the systematic review process. Based on the investigations, it was evident that the administration of MSCs derived from both bone marrow and adipose tissue holds significant promise as an effective and safe treatment approach for ischemic stroke. The results consistently showed acceptable outcomes in the studies and this evidence can be recommended for the clinical application of this treatment. Also, the findings of this study report that the use of adipose tissue and bone marrow MSCs in the treatment of ischemic stroke can be used as a practical method.
Collapse
Affiliation(s)
- Leila Afshar Hezarkhani
- From the Neuroscience Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kazhal Veysi
- Medical Biology Research Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Adibeh Rahmani
- Center for Musculoskeletal Biomechanics and Regeneration, Julius Wolff Institut, Charité, Berlin, Germany
| | - Nader Salari
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Razie Hasheminezhad
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahideh Nasr
- Department of Neurology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Mohammadi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
46
|
Amiri-Farsani M, Taheri Z, Tirbakhsh Gouran S, Chabok O, Safarpour-Dehkordi M, Kazemi Roudsari M. Cancer stem cells: Recent trends in cancer therapy. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1383-1414. [PMID: 38319997 DOI: 10.1080/15257770.2024.2311789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
Cancer stem cells (CSCs) are a subset of tumor cells that were first identified in blood cancers (leukemia) and are considered promising therapeutic targets in cancer treatment. These cells are the cause of many malignancies including metastasis, heterogeneity, drug resistance, and tumor recurrence. They carry out these activities through multiple transcriptional programs and signaling pathways. This review summarizes the characteristics of cancer stem cells, explains their key signaling pathways and factors, and discusses targeted therapies for cancer stem cells. Investigating these mechanisms and signaling pathways responsible for treatment failure may help identify new therapeutic pathways in cancer.
Collapse
Affiliation(s)
- Maryam Amiri-Farsani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Zahra Taheri
- Department of Biology and Biotechnology, Pavia University, Pavia, Italy
| | - Somayeh Tirbakhsh Gouran
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Omid Chabok
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Maryam Safarpour-Dehkordi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mahsa Kazemi Roudsari
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
47
|
Ertlen C, Seblani M, Bonnet M, Brezun JM, Coyle T, Sabatier F, Fuentes S, Decherchi P, Serratrice N, Marqueste T. Efficacy of the immediate adipose-derived stromal vascular fraction autograft on functional sensorimotor recovery after spinal cord contusion in rats. Stem Cell Res Ther 2024; 15:29. [PMID: 38303017 PMCID: PMC10835949 DOI: 10.1186/s13287-024-03645-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Spinal cord injuries (SCI) lead to functional alteration with important consequences such as motor and sensory disorders. The repair strategies developed to date remain ineffective. The adipose tissue-derived stromal vascular fraction (SVF) is composed of a cocktail of cells with trophic, pro-angiogenic and immunomodulatory effects. Numerous therapeutic benefits were shown for tissue reconstitution, peripheral neuropathy and for the improvement of neurodegenerative diseases. Here, the therapeutic efficacy of SVF on sensorimotor recovery after an acute thoracic spinal cord contusion in adult rats was determined. METHOD Male Sprague Dawley rats (n = 45) were divided into 3 groups: SHAM (without SCI and treatment), NaCl (animals with a spinal lesion and receiving a saline injection through the dura mater) and SVF (animals with a spinal lesion and receiving a fraction of fat removed from adipocytes through the dura mater). Some animals were sacrificed 14 days after the start of the experiment to determine the inflammatory reaction by measuring the interleukin-1β, interleukin-6 and Tumor Necrosis Factor-α in the lesion area. Other animals were followed once a week for 12 weeks to assess functional recovery (postural and locomotor activities, sensorimotor coordination). At the end of this period, spinal reflexivity (rate-dependent depression of the H-reflex) and physiological adjustments (ventilatory response to metabosensitive muscle activation following muscle fatigue) were measured with electrophysiological tools. RESULTS Compared to non-treated animals, results indicated that the SVF reduced the endogenous inflammation and increased the behavioral recovery in treated animals. Moreover, H-reflex depression and ventilatory adjustments to muscle fatigue were found to be comparable between SHAM and SVF groups. CONCLUSION Our results highlight the effectiveness of SVF and its high therapeutic potential to improve sensorimotor functions and to restore the segmental sensorimotor loop and the communication between supra- and sub-lesional spinal cord regions after traumatic contusion.
Collapse
Affiliation(s)
- Céline Ertlen
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Mostafa Seblani
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Maxime Bonnet
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Jean-Michel Brezun
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Thelma Coyle
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Florence Sabatier
- Assistance Publique - Hôpitaux de Marseille (AP-HM), INSERM 1409 Centre d'Investigation Clinique en Biothérapies, Unité de Culture Et Thérapie Cellulaire, Hôpital de La Conception, 147, Boulevard Baille, 13385, Marseille Cedex 05, France
| | - Stéphane Fuentes
- Assistance Publique - Hôpitaux de Marseille (AP-HM), Service de Neurochirurgie, Hôpital de La Timone, 264, Rue Saint-Pierre, 13005, Marseille, France
| | - Patrick Decherchi
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France.
| | - Nicolas Serratrice
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
- Assistance Publique - Hôpitaux de Marseille (AP-HM), Service de Neurochirurgie, Hôpital de La Timone, 264, Rue Saint-Pierre, 13005, Marseille, France
| | - Tanguy Marqueste
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France.
| |
Collapse
|
48
|
Cao S, Yihao W, Qi T, Xiong A, Liu P, Chen Y, Zeng H, Yu F, Weng J. Combination of stem cells and nerve guide conduit for the treatment of peripheral nerve injury: A meta-analysis. Muscle Nerve 2024; 69:227-238. [PMID: 38063327 DOI: 10.1002/mus.28018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024]
Abstract
INTRODUCTION/AIMS Many small-sized, single-center preclinical studies have investigated the benefits of introducing stem cells into the interior of nerve conduit. The aims of this meta-analysis are to review and contrast the effects of various types of stem cells in in vivo models used to reconstruct peripheral nerve injuries (PNIs) and to assess the reliability and stability of the available evidence. METHODS A systematic search was conducted using Cochrane Library, Embase, PubMed, and Web of Science to identify studies conducted from January 1, 2000, to September 21, 2022, and investigate stem cell therapy in peripheral nerve reconstruction animal models. Studies that met the relevant criteria were deemed eligible for this meta-analysis. RESULTS Fifty-five preclinical studies with a total of 1234 animals were incorporated. Stem cells demonstrated a positive impact on peripheral nerve regeneration at different follow-up times in the forest plots of five outcome indicators: compound muscle action potential (CMAP) amplitude, latency, muscle mass ratio, nerve conduction velocity, and sciatic functional index (SFI). In most comparisons, stem cell groups showed substantial differences compared with the control groups. The superior performance of adipose-derived stem cells (ADSCs) in terms of SFI, CMAP amplitude, and latency (p < .001) was identified. DISCUSSION The findings consistently demonstrated a favorable outcome in the reconstruction process when utilizing different groups of stem cells, as opposed to control groups where stem cells were not employed.
Collapse
Affiliation(s)
- Siyang Cao
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Wei Yihao
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Tiantian Qi
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Ao Xiong
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Peng Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Yingqi Chen
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| |
Collapse
|
49
|
Bonnet M, Ertlen C, Seblani M, Brezun JM, Coyle T, Cereda C, Zuccotti G, Colli M, Desouches C, Decherchi P, Carelli S, Marqueste T. Activated Human Adipose Tissue Transplantation Promotes Sensorimotor Recovery after Acute Spinal Cord Contusion in Rats. Cells 2024; 13:182. [PMID: 38247873 PMCID: PMC10814727 DOI: 10.3390/cells13020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Traumatic spinal cord injuries (SCIs) often result in sensory, motor, and vegetative function loss below the injury site. Although preclinical results have been promising, significant solutions for SCI patients have not been achieved through translating repair strategies to clinical trials. In this study, we investigated the effective potential of mechanically activated lipoaspirated adipose tissue when transplanted into the epicenter of a thoracic spinal contusion. Male Sprague Dawley rats were divided into three experimental groups: SHAM (uninjured and untreated), NaCl (spinal cord contusion with NaCl application), and AF (spinal cord contusion with transplanted activated human fat). Pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) were measured to assess endogenous inflammation levels 14 days after injury. Sensorimotor recovery was monitored weekly for 12 weeks, and gait and electrophysiological analyses were performed at the end of this observational period. The results indicated that AF reduced endogenous inflammation post-SCI and there was a significant improvement in sensorimotor recovery. Moreover, activated adipose tissue also reinstated the segmental sensorimotor loop and the communication between supra- and sub-lesional spinal cord regions. This investigation highlights the efficacy of activated adipose tissue grafting in acute SCI, suggesting it is a promising therapeutic approach for spinal cord repair after traumatic contusion in humans.
Collapse
Affiliation(s)
- Maxime Bonnet
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, CEDEX 09, F-13288 Marseille, France (J.-M.B.); (P.D.)
| | - Céline Ertlen
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, CEDEX 09, F-13288 Marseille, France (J.-M.B.); (P.D.)
| | - Mostafa Seblani
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, CEDEX 09, F-13288 Marseille, France (J.-M.B.); (P.D.)
| | - Jean-Michel Brezun
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, CEDEX 09, F-13288 Marseille, France (J.-M.B.); (P.D.)
| | - Thelma Coyle
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, CEDEX 09, F-13288 Marseille, France (J.-M.B.); (P.D.)
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Department of Paediatrics, Buzzi Children’s Hospital, Via Ludovico Castelvetro 32, 20154 Milano, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Clinical Research Center «Romeo ed Enrica Invernizzi», Department of Biomedical and Clinical Sciences, University of Milano (UNIMI), Via G.B. Grassi 74, 20157 Milan, Italy;
- Department of Paediatrics, Buzzi Children’s Hospital, Via Ludovico Castelvetro 32, 20154 Milano, Italy
| | - Mattia Colli
- Podgora7 Clinic, Via Podgora 7, 20122 Milano, Italy
| | - Christophe Desouches
- Clinique Phénicia—CD Esthétique, 5 Boulevard Notre Dame, F-13006 Marseille, France
| | - Patrick Decherchi
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, CEDEX 09, F-13288 Marseille, France (J.-M.B.); (P.D.)
| | - Stephana Carelli
- Center of Functional Genomics and Rare Diseases, Department of Paediatrics, Buzzi Children’s Hospital, Via Ludovico Castelvetro 32, 20154 Milano, Italy
- Pediatric Clinical Research Center «Romeo ed Enrica Invernizzi», Department of Biomedical and Clinical Sciences, University of Milano (UNIMI), Via G.B. Grassi 74, 20157 Milan, Italy;
| | - Tanguy Marqueste
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, CEDEX 09, F-13288 Marseille, France (J.-M.B.); (P.D.)
| |
Collapse
|
50
|
Santa Cruz-Pavlovich FJ, Bolaños-Chang AJ, Del Rio-Murillo XI, Aranda-Preciado GA, Razura-Ruiz EM, Santos A, Navarro-Partida J. Beyond Vision: An Overview of Regenerative Medicine and Its Current Applications in Ophthalmological Care. Cells 2024; 13:179. [PMID: 38247870 PMCID: PMC10814238 DOI: 10.3390/cells13020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Regenerative medicine (RM) has emerged as a promising and revolutionary solution to address a range of unmet needs in healthcare, including ophthalmology. Moreover, RM takes advantage of the body's innate ability to repair and replace pathologically affected tissues. On the other hand, despite its immense promise, RM faces challenges such as ethical concerns, host-related immune responses, and the need for additional scientific validation, among others. The primary aim of this review is to present a high-level overview of current strategies in the domain of RM (cell therapy, exosomes, scaffolds, in vivo reprogramming, organoids, and interspecies chimerism), centering around the field of ophthalmology. A search conducted on clinicaltrials.gov unveiled a total of at least 209 interventional trials related to RM within the ophthalmological field. Among these trials, there were numerous early-phase studies, including phase I, I/II, II, II/III, and III trials. Many of these studies demonstrate potential in addressing previously challenging and degenerative eye conditions, spanning from posterior segment pathologies like Age-related Macular Degeneration and Retinitis Pigmentosa to anterior structure diseases such as Dry Eye Disease and Limbal Stem Cell Deficiency. Notably, these therapeutic approaches offer tailored solutions specific to the underlying causes of each pathology, thus allowing for the hopeful possibility of bringing forth a treatment for ocular diseases that previously seemed incurable and significantly enhancing patients' quality of life. As advancements in research and technology continue to unfold, future objectives should focus on ensuring the safety and prolonged viability of transplanted cells, devising efficient delivery techniques, etc.
Collapse
Affiliation(s)
- Francisco J. Santa Cruz-Pavlovich
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Andres J. Bolaños-Chang
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Ximena I. Del Rio-Murillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | | | - Esmeralda M. Razura-Ruiz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| |
Collapse
|