1
|
Ozkan S, Isildar B, Koyuturk M. Comparative analysis of the effects of different hypoxia mimetic agents on the secretome contents of conditioned medium obtained from mesenchymal stem/stromal cells cultured in 2 or 3-dimensional cell culture systems. Cytotechnology 2025; 77:11. [PMID: 39654545 PMCID: PMC11625095 DOI: 10.1007/s10616-024-00659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
Paracrine factors secreted by mesenchymal stem/stromal cells (MSCs) have been demonstrated to have significant therapeutic potential. The secretome profiles of MSCs variate depending on culture conditions. Generally, the effects of a single preconditioning strategy on secretome profiles of MSCs were investigated. However, until now, there has been no study examining the combinatory effects of different preconditioning strategies in a comparative manner. This study aimed to evaluate the secretome contents of conditioned media obtained from human umbilical cord-derived MSCs cultured in 2- or 3-dimensional (D) culture systems preconditioned with deferoxamine (DFS) or dimethyloxalylglycine (DMOG). Immunocytochemical analysis showed that MSCs preconditioned with DFS or DMOG have increased nuclear hypoxia-inducible factor-1α expression. Transmission electron microscopic analysis showed that cells preconditioned with DFS or DMOG have increased autophagic vesicles, which could be attributed to altered energy metabolism under hypoxic conditions. It was revealed that hypoxia-mimetic agents added to the 2D-, or 3D-culture environment raised total protein concentrations per cell along with vascular endothelial growth factor. The concentrations of glial cell-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) were differentially regulated in 2D-, and 3D-culture system, that the secretions of GDNF and NGF per cell were more prominent in 3D- and 2D-culture systems, respectively. These findings indicate that hypoxic conditions alone significantly elevate total protein concentrations, while the contribution of the 3D environment is more modest than initially anticipated. However, concentrations of secreted growth factors may be affected differently depending on the topography of the culture condition and the types of hypoxia mimetic agents.
Collapse
Affiliation(s)
- Serbay Ozkan
- Faculty of Medicine, Histology and Embryology Department, Izmir Katip Çelebi University, Izmir, Turkey
| | - Basak Isildar
- Faculty of Medicine, Histology and Embryology Department, Balıkesir University, Balikesir, Turkey
| | - Meral Koyuturk
- Cerrahpaşa Faculty of Medicine, Histology and Embryology Department, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
2
|
Paton MCB, Benders M, Blatch-Williams R, Dallimore E, Edwards A, Elwood N, Facer K, Finch-Edmondson M, Garrity N, Gordon A, Hunt RW, Jenkin G, McDonald CA, Moore J, Nold MF, Novak I, Popat H, Salomon C, Sato Y, Tolcos M, Wixey JA, Yawno T, Zhou L, Malhotra A. Updates on neonatal cell and novel therapeutics: Proceedings of the Second Neonatal Cell Therapies Symposium (2024). Pediatr Res 2025:10.1038/s41390-025-03856-x. [PMID: 39815092 DOI: 10.1038/s41390-025-03856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/31/2024] [Indexed: 01/18/2025]
Abstract
Cell therapies as treatments for neonatal conditions have attracted significant research and parent interest over the last two decades. Mesenchymal stromal cells, umbilical cord blood cells and neural stem cells translate from lab, to preclinical and into clinical trials, with contributions being made from all over the world. Effective and timely translation involves frequent reflection and consultation from research-adjacent fields (i.e. cell therapies for cerebral palsy, adult neurology, companies, and regulatory bodies) as well as meaningful involvement of people with lived experience. Progress to date suggests that aligning outcome and data reporting in later phase clinical trials will support our sector, as well as involving industry partners for streamlined solutions in cell manufacturing, commercialisation and regulatory processes. Importantly, our field can also benefit from resource sharing and research collaboration in novel drug therapies, small molecules and extracellular vesicles as we attempt to bridge preclinical and clinical research. In this review, we present highlights and learnings from the second Neonatal Cell Therapies Symposium (2024), held in Sydney, Australia. IMPACT: Multiple cell therapy candidates have advanced through preclinical and clinical trials in neonatology, showing promising feasibility, safety and efficacy. Effective and timely translation is enabled by collaboration across research-adjacent fields, commercial partnerships, harmonising research outcomes and meaningful involvement of people with lived experience. Progress on the potential utility of cell therapies for neonatal conditions and further translational considerations are discussed in this paper.
Collapse
Affiliation(s)
- Madison C B Paton
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Manon Benders
- Wilhemina Children's Hospital, Neonatology Department, Utrecht Brain Center, University Medical Centre, University Utrecht, Utrecht, The Netherlands
| | - Remy Blatch-Williams
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | | | - Adam Edwards
- Argenica Therapeutics LTD, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA, Australia
| | - Ngaire Elwood
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- BMDI Cord Blood Bank, Melbourne, VIC, Australia
| | - Kylie Facer
- Parent with Lived Experience, Sydney, Australia
| | - Megan Finch-Edmondson
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Natasha Garrity
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Adrienne Gordon
- Discipline of Obstetrics, Gynaecology, and Neonatology, The University of Sydney, Sydney, NSW, Australia
| | - Rod W Hunt
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Justin Moore
- Department of Neurosurgery, Monash Health, Melbourne, VIC, Australia
| | - Marcel F Nold
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Iona Novak
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Himanshu Popat
- The Children's Hospital at Westmead, Sydney, NSW, Australia
- NHMRC Clinical Trial Centre, University of Sydney, Camperdown, VIC, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Julie A Wixey
- Perinatal Research Centre, University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Tamara Yawno
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Lindsay Zhou
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia.
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Cañas-Arboleda M, Galindo CC, Cruz-Barrera M, Herrera K, Beltrán K, Rodríguez A, Rotter B, Camacho B, Salguero G. Comprehensive analysis of secretome and transcriptome stability of Wharton jelly mesenchymal stromal cells during good manufacturing practice-compliant production. Cytotherapy 2025; 27:107-120. [PMID: 39306795 DOI: 10.1016/j.jcyt.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) hold promise for cell-based therapies due to their ability to stimulate tissue repair and modulate immune responses. Umbilical cord-derived MSCs from Wharton jelly (WJ) offer advantages such as low immunogenicity and potent immune modulatory effects. However, ensuring consistent quality and safety throughout their manufacturing process remains critical. RNA sequencing (RNA-seq) emerges as a crucial tool for assessing genetic stability and expression dynamics in cell-based therapeutic products. METHODS We examined the secretome and transcriptome of WJ-MSC signatures throughout Good Manufacturing Practice (GMP) production, focusing on the performance of total RNA or Massive Analysis of cDNA Ends (MACE) sequencing. RESULTS Through extensive transcriptomic analysis, we demonstrated consistent stability of WJ-MSC expression signatures across different manufacturing stages. Notably, MACE-seq showed improved identification of key expression patterns related to senescence and immunomodulation. CONCLUSIONS These findings highlight the potential of MACE-seq as a quality assessment tool for WJ-MSC-based therapies, ensuring their efficacy and safety in clinical applications. Importantly, MACE-seq demonstrated its value in characterizing WJ-MSC-derived products, offering insights that traditional assays cannot provide.
Collapse
Affiliation(s)
- Mariana Cañas-Arboleda
- Advanced Therapy Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá, Colombia
| | - Cristian Camilo Galindo
- Advanced Therapy Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá, Colombia
| | - Monica Cruz-Barrera
- Advanced Therapy Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá, Colombia
| | - Katherine Herrera
- Advanced Therapy Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá, Colombia
| | - Karl Beltrán
- Advanced Therapy Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá, Colombia
| | | | | | - Bernardo Camacho
- Advanced Therapy Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá, Colombia
| | - Gustavo Salguero
- Advanced Therapy Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá, Colombia.
| |
Collapse
|
4
|
Da Silva K, Kumar P, Choonara YE. The paradigm of stem cell secretome in tissue repair and regeneration: Present and future perspectives. Wound Repair Regen 2025; 33:e13251. [PMID: 39780313 PMCID: PMC11711308 DOI: 10.1111/wrr.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
As the number of patients requiring organ transplants continues to rise exponentially, there is a dire need for therapeutics, with repair and regenerative properties, to assist in alleviating this medical crisis. Over the past decade, there has been a shift from conventional stem cell treatments towards the use of the secretome, the protein and factor secretions from cells. These components may possess novel druggable targets and hold the key to profoundly altering the field of regenerative medicine. Despite the progress in this field, clinical translation of secretome-containing products is limited by several challenges including but not limited to ensuring batch-to-batch consistency, the prevention of further heterogeneity, production of sufficient secretome quantities, product registration, good manufacturing practice protocols and the pharmacokinetic/pharmacodynamic profiles of all the components. Despite this, the secretome may hold the key to unlocking the regenerative blockage scientists have encountered for years. This review critically analyses the secretome derived from different cell sources and used in several tissues for tissue regeneration. Furthermore, it provides an overview of the current delivery strategies and the future perspectives for the secretome as a potential therapeutic. The success and possible shortcomings of the secretome are evaluated.
Collapse
Affiliation(s)
- Kate Da Silva
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
5
|
Nguyen PT, Seo Y, Ahn JS, Oh SJ, Park HJ, Yu JH, Kim SH, Lee Y, Yang JW, Cho J, Kang MJ, Park JH, Kim HS. De novo interleukin-10 production primed by Lactobacillus sakei CVL-001 amplifies the immunomodulatory abilities of mesenchymal stem cells to alleviate colitis. Biomed Pharmacother 2025; 182:117745. [PMID: 39705909 DOI: 10.1016/j.biopha.2024.117745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024] Open
Abstract
Mesenchymal stem cells (MSCs) hold therapeutic promise for treating inflammatory bowel disease (IBD) owing to their immunomodulatory properties. Currently, pre-conditioning strategies with several beneficial agents have been applied to enhance the efficacy of MSCs in treating IBDs. Probiotics are increasingly acknowledged as supplemental therapy for IBD; however, their potential benefits in MSCs-based therapy remain largely unexplored. In this study, we hypothesized that pretreating MSCs with Lactobacillus sakei CVL-001 (L. sakei CVL-001), a representative probiotic strain, could improve their therapeutic effectiveness for IBD. In line with this hypothesis, we noted that pretreatment with L. sakei CVL-001 significantly induced IL-10 secretion in MSCs via the activation of the STAT3 signaling pathway. These primed MSCs reduced pro-inflammatory cytokine production in LPS/IFN-γ-treated macrophages and promoted an M2 phenotype, associated with immunoregulation and tissue repair, in undifferentiated macrophages. In addition, their conditioned media significantly reduced the proliferation capacity of Jurkat T cells and splenocytes, while the neutralization of IL-10 reversed these phenomena. Furthermore, MSCs treated with L. sakei CVL-001 mitigated inflammatory responses and promoted epithelial regeneration, leading to accelerated recovery from disease symptoms and improved survival rates compared to naive MSCs in a DSS-induced colitis mouse model. In conclusion, our findings suggest that probiotics, such as L. sakei CVL-001, can improve the therapeutic efficacy of MSCs for treating IBD.
Collapse
Affiliation(s)
- Phuong Thao Nguyen
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yoojin Seo
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ji-Su Ahn
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Su-Jeong Oh
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hee-Jeong Park
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jeong Hyun Yu
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Seong Hui Kim
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yunji Lee
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ji Won Yang
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jaejin Cho
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea; Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Min-Jung Kang
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea.
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea; NODCURE, Inc, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| | - Hyung-Sik Kim
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea.
| |
Collapse
|
6
|
Jammes M, Tabasi A, Bach T, Ritter T. Healing the Cornea: Exploring the Therapeutic Solutions Offered by MSCs and MSC-derived EVs. Prog Retin Eye Res 2024:101325. [PMID: 39709150 DOI: 10.1016/j.preteyeres.2024.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Affecting a large proportion of the population worldwide, corneal disorders constitute a concerning health hazard associated to compromised eyesight or blindness for most severe cases. In the last decades, mesenchymal stem/stromal cells (MSCs) demonstrated promising abilities in improving symptoms associated to corneal diseases or alleviating these affections, especially through their anti-inflammatory, immunomodulatory and pro-regenerative properties. More recently, MSC therapeutic potential was shown to be mediated by the molecules they release, and particularly by their extracellular vesicles (EVs; MSC-EVs). Consequently, using MSC-EVs emerged as a pioneering strategy to mitigate the risks related to cell therapy while providing MSC therapeutic benefits. Despite the promises given by MSC- and MSC-EV-based approaches, many improvements are considered to optimize the therapeutic significance of these therapies. This review aspires to provide a comprehensive and detailed overview of current knowledge on corneal therapies involving MSCs and MSC-EVs, the strategies currently under evaluation, and the gaps remaining to be addressed for clinical implementation. From encapsulating MSCs or their EVs into biomaterials to enhance the ocular retention time to loading MSC-EVs with therapeutic drugs, a wide range of ground-breaking strategies are currently contemplated to lead to the safest and most effective treatments. Promising research initiatives also include diverse gene therapies and the targeting of specific cell types through the modification of the EV surface, paving the way for future therapeutic innovations. As one of the most important challenges, MSC-EV large-scale production strategies are extensively investigated and offer a wide array of possibilities to meet the needs of clinical applications.
Collapse
Affiliation(s)
- Manon Jammes
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Abbas Tabasi
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Trung Bach
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
7
|
Erol Bozkurt A, Sel FA, Suleymanoğlu M, Demirayak G, Kuruca DS, Oğuz FS. The Cytokine Levels of Cord Blood- and Wharton's Jelly-Derived Mesenchymal Stem Cells from Early to Late Passages. Cell Biochem Biophys 2024; 82:3345-3350. [PMID: 39018006 DOI: 10.1007/s12013-024-01416-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 07/18/2024]
Abstract
Mesenchymal stem cells (MSCs) are promising for clinical studies owing to their self-renewal, multipotency, trophic, and immunomodulatory properties. This study aimed to investigate the cytokine levels of human umbilical cord blood (CB) and Wharton's Jelly-(WJ) derived MSCs relevant to immune modulation on different passage levels in vitro. Umbilical CB MSCs were isolated using the ficoll-paque gradient method, and WJ-MSCs were isolated by the explant method. After isolation, the MSCs were characterized using flow cytometry. The supernatant cytokine levels (interferon-gamma (IFN-γ), interleukin 4 (IL-4), interleukin 17 (IL-17)) of MSCs at each passage were evaluated using the ELISA assay. MSCs exhibited different cytokine levels with each passage number. In WJ-MSC culture supernatants, IL-17 levels significantly increased at P4 and P5 compared to the first passage (p < 0.005), while the other passages showed a decrease. IFN-γ levels increased at passage P1 and P4 and decreased at other passages (p < 0.005). IL-4 levels significantly increased only at passage P3 (p < 0.005). In CB-MSC culture supernatants, IL-17 and IL-4 cytokines decreased compared to P0, while IFN-γ cytokine increased from P0 (p < 0.005). The changing ratio of cytokine levelsfor both CB-MSCs and WJ-MSCs were similarly maintained from early to late passages. More research is needed to understand the immunomodulatory functions of MSCs.
Collapse
Affiliation(s)
- Ayşe Erol Bozkurt
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Biology, Istanbul, Türkiye.
| | - Figen Abatay Sel
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Biology, Istanbul, Türkiye
| | - Mediha Suleymanoğlu
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Biology, Istanbul, Türkiye
| | - Gökhan Demirayak
- University of Health Sciences, Bakırköy Sadi Konuk Education and Research Hospital, Department of Gynecologic Oncology, Istanbul, Türkiye
| | - Dürdane Serap Kuruca
- Istanbul University, Istanbul Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Fatma Savran Oğuz
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Biology, Istanbul, Türkiye
| |
Collapse
|
8
|
Wu KC, Chang YH, Ding DC, Lin SZ. Mesenchymal Stromal Cells for Aging Cartilage Regeneration: A Review. Int J Mol Sci 2024; 25:12911. [PMID: 39684619 PMCID: PMC11641625 DOI: 10.3390/ijms252312911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cartilage degeneration is a key feature of aging and osteoarthritis, characterized by the progressive deterioration of joint function, pain, and limited mobility. Current treatments focus on symptom relief, not cartilage regeneration. Mesenchymal stromal cells (MSCs) offer a promising therapeutic option due to their capability to differentiate into chondrocytes, modulate inflammation, and promote tissue regeneration. This review explores the potential of MSCs for cartilage regeneration, examining their biological properties, action mechanisms, and applications in preclinical and clinical settings. MSCs derived from bone marrow, adipose tissue, and other sources can self-renew and differentiate into multiple cell types. In aging cartilage, they aid in tissue regeneration by secreting growth factors and cytokines that enhance repair and modulate immune responses. Recent preclinical studies show that MSCs can restore cartilage integrity, reduce inflammation, and improve joint function, although clinical translation remains challenging due to limitations such as cell viability, scalability, and regulatory concerns. Advancements in MSC delivery, including scaffold-based approaches and engineered exosomes, may improve therapeutic effectiveness. Potential risks, such as tumorigenicity and immune rejection, are also discussed, emphasizing the need for optimized treatment protocols and large-scale clinical trials to develop effective, minimally invasive therapies for cartilage regeneration.
Collapse
Affiliation(s)
- Kun-Chi Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
| | - Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
9
|
Yordanova A, Ivanova M, Tumangelova-Yuzeir K, Angelov A, Kyurkchiev S, Belemezova K, Kurteva E, Kyurkchiev D, Ivanova-Todorova E. Umbilical Cord Mesenchymal Stem Cell Secretome: A Potential Regulator of B Cells in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:12515. [PMID: 39684227 DOI: 10.3390/ijms252312515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Autoimmune diseases represent a severe personal and healthcare problem that seeks novel therapeutic solutions. Mesenchymal stem cells (MSCs) are multipotent cells with interesting cell biology and promising therapeutic potential. The immunoregulatory effects of secretory factors produced by umbilical cord mesenchymal stem cells (UC-MSCs) were assessed on B lymphocytes from 17 patients with systemic lupus erythematosus (SLE), as defined by the 2019 European Alliance of Associations for Rheumatology (EULAR)/American College of Rheumatology (ACR) classification criteria for SLE, and 10 healthy volunteers (HVs). Peripheral blood mononuclear cells (PBMCs) from patients and HVs were cultured in a UC-MSC-conditioned medium (UC-MSCcm) and a control medium. Flow cytometry was used to detect the surface expression of CD80, CD86, BR3, CD40, PD-1, and HLA-DR on CD19+ B cells and assess the percentage of B cells in early and late apoptosis. An enzyme-linked immunosorbent assay (ELISA) quantified the production of BAFF, IDO, and PGE2 in PBMCs and UC-MSCs. Under UC-MSCcm influence, the percentage and mean fluorescence intensity (MFI) of CD19+BR3+ cells were reduced in both SLE patients and HVs. Regarding the effects of the MSC secretome on B cells in lupus patients, we observed a decrease in CD40 MFI and a reduced percentage of CD19+PD-1+ and CD19+HLA-DR+ cells. In contrast, in the B cells of healthy participants, we found an increased percentage of CD19+CD80+ cells and decreased CD80 MFI, along with a decrease in CD40 MFI and the percentage of CD19+PD-1+ cells. The UC-MSCcm had a minimal effect on B-cell apoptosis. The incubation of patients' PBMCs with the UC-MSCcm increased PGE2 levels compared to the control medium. This study provides new insights into the impact of the MSC secretome on the key molecules involved in B-cell activation and antigen presentation and survival, potentially guiding the development of future SLE treatments.
Collapse
Affiliation(s)
- Adelina Yordanova
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Mariana Ivanova
- University Hospital St. Ivan Rilski, Clinic of Rheumatology, Department of Rheumatology, Medical Faculty, Medical University of Sofia, 13 Urvich St., 1612 Sofia, Bulgaria
| | - Kalina Tumangelova-Yuzeir
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Alexander Angelov
- University Hospital St. Ivan Rilski, Clinic of Rheumatology, Department of Rheumatology, Medical Faculty, Medical University of Sofia, 13 Urvich St., 1612 Sofia, Bulgaria
| | | | | | - Ekaterina Kurteva
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Dobroslav Kyurkchiev
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Ekaterina Ivanova-Todorova
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| |
Collapse
|
10
|
Dairov A, Sekenova A, Alimbek S, Nurkina A, Shakhatbayev M, Kumasheva V, Kuanysh S, Adish Z, Issabekova A, Ogay V. Psoriasis: The Versatility of Mesenchymal Stem Cell and Exosome Therapies. Biomolecules 2024; 14:1351. [PMID: 39595528 PMCID: PMC11591958 DOI: 10.3390/biom14111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multilineage differentiating stromal cells with extensive immunomodulatory and anti-inflammatory properties. MSC-based therapy is widely used in the treatment of various pathologies, including bone and cartilage diseases, cardiac ischemia, diabetes, and neurological disorders. Along with MSCs, it is promising to study the therapeutic properties of exosomes derived from MSCs (MSC-Exo). A number of studies report that the therapeutic properties of MSC-Exo are superior to those of MSCs. In particular, MSC-Exo are used for tissue regeneration in various diseases, such as healing of skin wounds, cancer, coronary heart disease, lung injury, liver fibrosis, and neurological, autoimmune, and inflammatory diseases. In this regard, it is not surprising that the scientific community is interested in studying the therapeutic properties of MSCs and MSC-Exo in the treatment of psoriasis. This review summarizes the recent advancements from preclinical and clinical studies of MSCs and MSC-Exo in the treatment of psoriasis, and it also discusses their mechanisms of therapeutic action involved in the treatment of this disease.
Collapse
Affiliation(s)
- Aidar Dairov
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Aliya Sekenova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Symbat Alimbek
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Assiya Nurkina
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Miras Shakhatbayev
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Venera Kumasheva
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Sandugash Kuanysh
- Obstetrics and Gynecology, Astana Medical University, Astana 010000, Kazakhstan
| | - Zhansaya Adish
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, Astana 010000, Kazakhstan;
- Department of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Assel Issabekova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Vyacheslav Ogay
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| |
Collapse
|
11
|
Ma D, Feng Y, Lin X. Immune and non-immune mediators in the fibrosis pathogenesis of salivary gland in Sjögren's syndrome. Front Immunol 2024; 15:1421436. [PMID: 39469708 PMCID: PMC11513355 DOI: 10.3389/fimmu.2024.1421436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Sjögren's syndrome (SS) or Sjögren's disease (SjD) is a systemic autoimmune disease clinically manifested as sicca symptoms. This disease primarily impacts the functionality of exocrine glands, specifically the lacrimal and salivary glands (SG). SG fibrosis, an irreversible morphological change, is a severe consequence that occurs in the later stages of the disease due to sustained inflammation. However, the mechanism underlying SG fibrosis in SS remains under-investigated. Glandular fibrosis may arise from chronic sialadenitis, in which the interactions between infiltrating lymphocytes and epithelial cells potentially contributes to fibrotic pathogenesis. Thus, both immune and non-immune cells are closely involved in this process, while their interplays are not fully understood. The molecular mechanism of tissue fibrosis is partly associated with an imbalance of immune responses, in which the transforming growth factor-beta (TGF-β)-dependent epithelial-mesenchymal transition (EMT) and extracellular matrix remodeling are recently investigated. In addition, viral infection has been implicated in the pathogenesis of SS. Viral-specific innate immune response could exacerbate the autoimmune progression, resulting in overt inflammation in SG. Notably, post-COVID patients exhibit typical SS symptoms and severe inflammatory sialadenitis, which are positively correlated with SG damage. In this review, we discuss the immune and non-immune risk factors in SG fibrosis and summarize the evidence to understand the mechanisms upon autoimmune progression in SS.
Collapse
Affiliation(s)
- Danbao Ma
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Xiang Lin
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Chinese Medicine, the University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| |
Collapse
|
12
|
Galhom RA, Ali SNS, El-Fark MMO, Ali MHM, Hussein HH. Assessment of therapeutic efficacy of adipose tissue-derived mesenchymal stem cells administration in hyperlipidemia-induced aortic atherosclerosis in adult male albino rats. Tissue Cell 2024; 90:102498. [PMID: 39079452 DOI: 10.1016/j.tice.2024.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024]
Abstract
Atherosclerosis (AS) is a common disease seriously detrimental to human health. AS is a chronic progressive disease related to inflammatory reactions. The present study aimed to characterize and evaluate the effects of adipose tissue stem cells (ADSCs) in high-fat diet-induced atherosclerosis in a rat model. The present study comprises thirty-six rats and they were divided into three groups: the control group, the high-fat diet (HFD) group; which received a high-fat diet, and the high-fat diet + stem cells (HFD+SC) group; which was fed with a high-fat diet along with the administration of intravenous ADSCs. Food was given to the animals for 20 weeks to establish dyslipidemia models. After 20 weeks, animals were sacrificed by cervical dislocation; blood was collected to measure total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL); aortae were collected to detect morphologic changes. Rats of the HFD group showed a significant increase in body weight (B.Wt), altered lipid profile increased expression of inducible nitric oxide synthase (iNOS), and decreased expression of endothelial nitric oxide synthase (eNOS). However, in HFD+SC there was a significant decrease in body weight gain and an improvement in lipid profile. Histopathological and ultrastructural variations observed in the aorta of the HFD group when treated with ADSCs showed preserved normal histological architecture and reduced atherosclerosis compared with the HFD group. This was evidenced by laboratory, histological, immunohistochemical, and morphometric studies. Thus, ADSCs reduced TC, TG, and LDL, reduced the expression of iNOS, and increased the expression of eNOS. The high-fat diet was likely to cause damage to the wall of blood vessels. Systemically transplanted ADSCs could home to the aorta, and further protect the aorta from HFD-induced damage.
Collapse
Affiliation(s)
- Rania A Galhom
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Department of Human Anatomy and Embryology, Faculty of Medicine, Badr University in Cairo (BUC), Egypt.
| | - Saleh Nasser Saleh Ali
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Thamar University, Thamar, Yemen.
| | - Magdy Mohamed Omar El-Fark
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Mona Hassan Mohammed Ali
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Hoda Hassan Hussein
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
13
|
Işıldar B, Özkan S, Koyutürk M. Preconditioning of Human Umbilical Cord Mesenchymal Stem Cells with a Histone Deacetylase Inhibitor: Valproic Acid. Balkan Med J 2024; 41:369-376. [PMID: 39239940 PMCID: PMC11588919 DOI: 10.4274/balkanmedj.galenos.2024.2024-6-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Background Mesenchymal stem cells (MSCs) play a key role in regenerative medicine due to their capacity to differentiate into multiple cell lines, regulate the immune system, and exert paracrine effects. The therapeutic impact of MSCs is primarily mediated through their secretome. The secretory and therapeutic potential of MSCs can be improved through preconditioning, which entails the application of hypoxic environments, 3-dimensional cell cultures, and pharmacological agents. Valproic acid (VPA) is a histone deacetylase inhibitor that is employed in medical practice for treating epilepsy and bipolar disorder. Hence, preconditioning MSCs with VPA is expected to induce histone acetylation, enhance gene expression, and beneficially modify the cells' secretomes. Aims To assess the effectiveness of VPA in enhancing and regulating the therapeutic potential of cells as well as its impact on MSC secretome profiles and ultrastructural morphologies. Study Design Expiremental study. Methods Human umbilical cord MSCs were preconditioned with 2 mM VPA for 24 and 48 hours; untreated MSCs served as controls. The secretome secreted by the cells was assessed for its total protein content. Subsequently, interferon-gamma (IFN-γ), interleukin-17 (IL-17), IL-10, vascular endothelial growth factor, nerve growth factor (NGF), glial cell line-derived neurotrophic factor, and brain-derived neurotrophic factor (BDNF) levels in the secretome were analyzed using the ELISA method. The ultrastructural properties of the cells were studied under transmission electron microscopy. Results Ultrastructural examinations revealed that the chromatin content of VPA-treated cells was reduced. VPA-preconditioned cells exhibited a higher density of rough endoplasmic reticulum, autophagic vesicles, and myelin figures on cytoplasmic structure analysis, which was indicative of increased secretion. Protein secretion was elevated in those cells, with notable increases in NGF and BDNF levels. Furthermore, the cytoskeletal rearrangement and elevated autophagic activity observed in the 48-hour preconditioned cells could indicate the initiation of neuronal differentiation. IL-10, IL-17, and IFN-γ were not detected in the secretome. Conclusion This study indicate that preconditioning with VPA enhances MSC activity and subsequently modifies the secretome content.
Collapse
Affiliation(s)
- Başak Işıldar
- Department of Histology and Embryology İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, İstanbul, Türkiye
- Department of Histology and Embryology Balıkesir University Faculty of Medicine, Balıkesir, Türkiye
| | - Serbay Özkan
- Department of Histology and Embryology İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, İstanbul, Türkiye
- Department of Histology and Embryology İzmir Katip Çelebi University Faculty of Medicine, İzmir, Türkiye
| | - Meral Koyutürk
- Department of Histology and Embryology İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, İstanbul, Türkiye
| |
Collapse
|
14
|
Lin S, Chang Y, Lee W, Chiang C, Liu S, Lee H, Jeng L, Shyu W. Role of STAT3-FOXO3 Signaling in the Modulation of Neuroplasticity by PD-L1-HGF-Decorated Mesenchymal Stem Cell-Derived Exosomes in a Murine Stroke Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404882. [PMID: 39049677 PMCID: PMC11423231 DOI: 10.1002/advs.202404882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Indexed: 07/27/2024]
Abstract
The limited therapeutic strategies available for stroke leave many patients disabled for life. This study assessed the potential of programmed death-ligand 1 (PD-L1) and hepatocyte growth factor (HGF)-engineered mesenchymal stem cell-derived exosomes (EXO-PD-L1-HGF) in enhancing neurological recovery post-stroke. EXO-PD-L1-HGF, which efficiently endocytosed into target cells, significantly diminishes the H2O2-induced neurotoxicity and increased the antiapoptotic proteins in vitro. EXO-PD-L1-HGF attenuates inflammation by inhibiting T-cell proliferation and increasing the number of CD8+CD122+IL-10+ regulatory T cells. Intravenous injection of EXO-PD-L1-HGF could target stromal cell-derived factor-1α (SDF-1α+) cells over the peri-infarcted area of the ischemic brain through CXCR4 upregulation and accumulation in neuroglial cells post-stroke. EXO-PD-L1-HGF facilitates endogenous nestin+ neural progenitor cell (NPC)-induced neurogenesis via STAT3-FOXO3 signaling cascade, which plays a pivotal role in cell survival and neuroprotection, thereby mitigating infarct size and enhancing neurological recovery in a murine stroke model. Moreover, increasing populations of the immune-regulatory CD19+IL-10+ and CD8+CD122+IL-10+ cells, together with reducing populations of proinflammatory cells, created an anti-inflammatory microenvironment in the ischemic brain. Thus, innovative approaches employing EXO-PD-L1-HGF intervention, which targets SDF-1α+ expression, modulates the immune system, and enhances the activation of resident nestin+ NPCs, might significantly alter the brain microenvironment and create a niche conducive to inducing neuroplastic regeneration post-stroke.
Collapse
Affiliation(s)
- Syuan‐Ling Lin
- Translational Medicine Research Center and Department of NeurologyChina Medical University HospitalTaichung404Taiwan
| | - Yi‐Wen Chang
- Cell Therapy CenterChina Medical University HospitalTaichung404Taiwan
- Department of Medical ResearchNational Taiwan University HospitalTaipei100Taiwan
| | - Wei Lee
- Cell Therapy CenterChina Medical University HospitalTaichung404Taiwan
| | - Chih‐Sheng Chiang
- Cell Therapy CenterChina Medical University HospitalTaichung404Taiwan
- Graduate Institute of Biomedical Sciences and New Drug Development CenterChina Medical UniversityTaichung404Taiwan
| | - Shih‐Ping Liu
- Translational Medicine Research Center and Department of NeurologyChina Medical University HospitalTaichung404Taiwan
- Graduate Institute of Biomedical Sciences and New Drug Development CenterChina Medical UniversityTaichung404Taiwan
| | - Hsu‐Tung Lee
- Graduate Institute of Medical SciencesNational Defense Medical CenterTaipei114Taiwan
- Department of Post‐Baccalaureate Medicine, College of MedicineNational Chung Hsing UniversityTaichung402Taiwan
- Division of neurosurgical Oncology Neurological InstituteTaichung Veterans General HospitalTaichung407Taiwan
| | - Long‐Bin Jeng
- Cell Therapy CenterChina Medical University HospitalTaichung404Taiwan
- Organ Transplantation CenterChina Medical University HospitalTaichung404Taiwan
| | - Woei‐Cherng Shyu
- Translational Medicine Research Center and Department of NeurologyChina Medical University HospitalTaichung404Taiwan
- Graduate Institute of Biomedical Sciences and New Drug Development CenterChina Medical UniversityTaichung404Taiwan
- Department of Occupational TherapyAsia UniversityTaichung413Taiwan
| |
Collapse
|
15
|
Kaundal U, Rakha A. Differential effects of TLR3 and TLR4 activation on MSC-mediated immune regulation. Biochem Biophys Rep 2024; 39:101809. [PMID: 39228386 PMCID: PMC11369377 DOI: 10.1016/j.bbrep.2024.101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] |