1
|
Xie Y, Yi Q, Xu C, Wang Y, Jiang Y, Feng Y, Wang L, Yang H, Zhang Y, Wang B. Identifying TNFSF4 low-MSCs superiorly treating idiopathic pulmonary fibrosis through Tregs differentiation modulation. Stem Cell Res Ther 2025; 16:194. [PMID: 40254578 PMCID: PMC12010539 DOI: 10.1186/s13287-025-04313-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/04/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis is a progressive lung disorder, presenting clinically with symptoms such as shortness of breath and hypoxemia. Despite its severe prognosis and limited treatment options, the pathogenesis of idiopathic pulmonary fibrosis remains poorly understood. This study aims to investigate the therapeutic potential of mesenchymal stromal cells in treating idiopathic pulmonary fibrosis, focusing on their ability to modulate regulatory T cells through the low tumor necrosis factor superfamily member 4 (TNFSF4) pathway. The goal is to identify mesenchymal stromal cells subtypes with optimal immunomodulatory effects to enhance regulatory T cells functions and ameliorate fibrosis. METHODS We identified the immune characteristics of idiopathic pulmonary fibrosis by mining and analyzing multiple public datasets and detecting regulatory T cells in the blood and lung tissues of idiopathic pulmonary fibrosis patients. An extensive examination followed, including assessing the impact of mesenchymal stromal cells on regulatory T cells proportions in peripheral blood and lung tissue, and exploring the specific role of TNFSF4 expression in regulatory T cells modulation. Whole-genome sequencing and cluster analysis were used to identify mesenchymal stromal cells subtypes with low TNFSF4 expression. RESULTS Mesenchymal stromal cells characterized by TNFSF4 expression (TNFSF4low-MSCs) demonstrated enhanced ability to regulate regulatory T cells subpopulations and exhibited pronounced anti-fibrotic effects in the bleomycin-induced idiopathic pulmonary fibrosis mouse model. These mesenchymal stromal cells increased regulatory T cells proportions, reduced lung fibrosis, and improved survival rates. TNFSF4-tumor necrosis factor receptor superfamily member 4 (TNFRSF4) signaling was identified as a critical pathway influencing regulatory T cells generation and function. CONCLUSIONS Our findings underscore the pivotal role of TNFSF4 in mesenchymal stromal cells mediated regulatory T cells modulation and highlight the therapeutic potential of selecting mesenchymal stromal cells subtypes based on their TNFSF4 expression for treating idiopathic pulmonary fibrosis. This approach may offer a novel avenue for the development of targeted therapies aimed at modulating immune responses and ameliorating fibrosis in idiopathic pulmonary fibrosis. TRIAL REGISTRATION Our study involved collecting 10 mL of peripheral blood from idiopathic pulmonary fibrosis patients, and the Medical Ethics Committee of Nanjing Drum Tower Hospital approved our study protocol with the approval number 2023-675-01.
Collapse
Affiliation(s)
- Yuanyuan Xie
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210009, China
| | - Qing Yi
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210000, China
| | - Congwang Xu
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210009, China
| | - Yaping Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210009, China
| | - Yue Jiang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210009, China
| | - Yirui Feng
- School of Life Science, Nanjing University, Nanjing, Jiangsu, China
| | - Liudi Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210009, China
| | - Hui Yang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210009, China
| | - Yingwei Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210000, China.
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210009, China.
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210009, China.
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Cassiano Ferraz D, Garuba Rahhal J, Paz Dotto ME, Alberti Ferreira L, Sipert CR, Letra A, Menezes Silva R, Chaves de Souza L. Physicochemical and Biological Properties of Biodentine XP, Endosequence RRM, and Bio-C Repair Cements. J Endod 2025:S0099-2399(25)00186-4. [PMID: 40204119 DOI: 10.1016/j.joen.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
INTRODUCTION This study evaluated the physicochemical and biological properties of calcium silicate-based cements used in vital pulp therapy (VPT). METHODS Setting time, solubility, and pH of Biodentine XP (BD-XP), Bio-C Repair (BC), and Endosequence RRM Fast Set Putty (ES) were evaluated following ISO guidelines. Human dental pulp stem cells were challenged with lipoteichoic acid and then exposed to the cement's eluates. Cell viability was evaluated with XTT assay and messenger RNA (mRNA) expression analysis of relevant genes using quantitative reverse-transcript polymerase chain reaction. Statistical significance levels were set at 5%. RESULTS The initial and final setting time of BD-XP was shorter than BC (P ≤ .0005), and ES and BC (P ≤ .0001), respectively. BD-XP and ES showed significantly lower solubility levels in comparison to BC (P ≤ .05). All materials were alkaline for up to 7 days and exhibited significantly higher cell viability than the positive control (P ≤ .0001). RANKL mRNA expression was higher at 6 hours in the ES and BD-XP groups when compared to BC, however it decreased to low levels at 24h. ES and BD-XP groups exhibited a significant upregulation of COL1A1 mRNA expression. ALP expression was significantly higher in all tested groups, with the BD-XP group exhibiting the highest levels. BC and BD-XP groups had significantly increased RUNX2 expression after 24 hours. CONCLUSION BD-XP, ES, and BC appear suitable materials for VPT, despite higher solubility. The gene expression pattern may suggest a potential pathway for pulp healing.
Collapse
Affiliation(s)
- Danilo Cassiano Ferraz
- Department of Endodontics, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania; Department of Endodontics and Dental Materials, Federal University of Uberlândia School of Dentistry, Uberlândia, Minas Gerais, Brazil
| | - Juliana Garuba Rahhal
- Department of Endodontics, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania; Department of Restorative Dentistry, University of São Paulo School of Dentistry, São Paulo, São Paulo, Brazil
| | - Maria Eduarda Paz Dotto
- Department of Endodontics, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania; Department of Endodontics, Federal University of Santa Catarina Health Sciences Center, Florianópolis, Santa Catarina, Brazil
| | - Lais Alberti Ferreira
- Department of Endodontics, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania
| | - Carla Renata Sipert
- Department of Restorative Dentistry, University of São Paulo School of Dentistry, São Paulo, São Paulo, Brazil
| | - Ariadne Letra
- Department of Endodontics, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania; Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania
| | - Renato Menezes Silva
- Department of Endodontics, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania
| | - Letícia Chaves de Souza
- Department of Endodontics, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
3
|
Liu Y, Ren L, Li M, Zheng B, Liu Y. The Effects of Hypoxia-Preconditioned Dental Stem Cell-Derived Secretome on Tissue Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2025; 31:44-60. [PMID: 38613806 DOI: 10.1089/ten.teb.2024.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
Mesenchymal stroma cells derived from oral tissues are known as dental stem cells (DSCs). Owing to their unique therapeutic niche and clinical accessibility, DSCs serve as a promising treatment option for bone defects and oral tissue regeneration. DSCs exist in a hypoxic microenvironment in vivo, which is far lower than the current 20% oxygen concentration used in in vitro culture. It has been widely reported that the application of an oxygen concentration less than 5% in the culture of DSCs is beneficial for preserving stemness and promoting proliferation, migration, and paracrine activity. The paracrine function of DSCs involves the secretome, which includes conditioned media (CM) and soluble bioactive molecules, as well as extracellular vesicles extracted from CM. Hypoxia can play a role in immunomodulation and angiogenesis by altering the protein or nucleic acid components in the secretory group, which enhances the therapeutic potential of DSCs. This review summarizes the biological characteristics of DSCs, the influence of hypoxia on DSCs, the impact of hypoxia on the secretory group of DSCs, and the latest progress on the use of DSCs secretory group in tissue regeneration based on hypoxia pretreatment. We highlighted the multifunctional biological effect of hypoxia culture on tissue regeneration and provided a summary of the current mechanism of hypoxia in the pretreatment of DSCs.
Collapse
Affiliation(s)
- Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Shenyang Clinical Medical Research Center of Orthodontic Disease, China Medical University, Shenyang, China
| | - Ling Ren
- Department of Orthodontics, School and Hospital of Stomatology, Shenyang Clinical Medical Research Center of Orthodontic Disease, China Medical University, Shenyang, China
| | - Mengyao Li
- Department of Orthodontics, School and Hospital of Stomatology, Shenyang Clinical Medical Research Center of Orthodontic Disease, China Medical University, Shenyang, China
| | - Bowen Zheng
- Department of Orthodontics, School and Hospital of Stomatology, Shenyang Clinical Medical Research Center of Orthodontic Disease, China Medical University, Shenyang, China
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Shenyang Clinical Medical Research Center of Orthodontic Disease, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Carvalho IF, Veloso BS, da Cunha Filho JF, da Silva Cavalcante SK, Ferreira MRS, de Souza ML, Bueno DF. Alveolar Bone Tissue Engineering Using Deciduous Dental Pulp Stem Cells in a Patient with Cleft Lip and Palate. Stem Cell Rev Rep 2025; 21:593-595. [PMID: 39641877 DOI: 10.1007/s12015-024-10832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
The use of tissue bioengineering strategies in dentistry has gained relevance. Many studies indicate that stem cells associated with biomaterials can regenerate intraoral tissues and have been applied to patients with cleft lip and palate (CLP). One of the treatments is alveolar bone reconstruction through bone grafts, where the bone is removed from the donor site and placed in the alveolar cleft. The use of stem cells from deciduous dental pulp, associated with a hydroxyapatite and collagen scaffold, can eliminate the need for autologous bone grafts, reducing pain and morbidity at the donor site. This study presents a case report in which a patient with cleft lip and palate was treated using this technique, resulting in complete filling of the alveolar cleft after 12 months.
Collapse
Affiliation(s)
- Isabella Fernandes Carvalho
- Centro Universitário Christus - UNICHRISTUS, Rua João Adolfo Gurgel, 133, Cocó, Fortaleza, Ceará, ZC-60190-180, Brazil.
| | - Brenda Santos Veloso
- Centro Universitário Christus - UNICHRISTUS, Rua João Adolfo Gurgel, 133, Cocó, Fortaleza, Ceará, ZC-60190-180, Brazil
| | | | | | - Milena Regia Sousa Ferreira
- Centro Universitário Christus - UNICHRISTUS, Rua João Adolfo Gurgel, 133, Cocó, Fortaleza, Ceará, ZC-60190-180, Brazil
| | - Maysa Luna de Souza
- Centro Universitário Christus - UNICHRISTUS, Rua João Adolfo Gurgel, 133, Cocó, Fortaleza, Ceará, ZC-60190-180, Brazil
| | - Daniela Franco Bueno
- Faculdade Israelita de Ciencias da Saúde Albert Einstein (FICSAE), São Paulo, Brazil
| |
Collapse
|
5
|
Kim JH, Irfan M, Sreekumar S, Kim S, Phimon A, Chung S. CRISPR-Edited DPSCs, Constitutively Expressing BDNF Enhance Dentin Regeneration in Injured Teeth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627879. [PMID: 39713307 PMCID: PMC11661210 DOI: 10.1101/2024.12.11.627879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Dental caries is one of the most common health issues worldwide arising from the complex interactions of bacteria. In response to harmful stimuli, desirable outcome for the tooth is the formation of tertiary dentin, a protective reparative process that generates new hard tissue. This reparative dentinogenesis is associated with significant inflammation, which triggers the recruitment and differentiation of dental pulp stem cells (DPSCs). Previously, we have shown that brain-derived neurotrophic factor (BDNF) and its receptor TrkB, key mediators of neural functions, are activated during the DPSC-mediated dentin regeneration process. In this study, we further define the role of inflammation in this process and apply stem cell engineering to enhance dentin regeneration in injured teeth. Our data show that TrkB expression and activation in DPSCs rapidly increase during odontogenic differentiation, further amplified by inflammatory inducers and mediators such as TNFα, LTA, and LPS. An in vivo dentin formation assessment was conducted using a mouse pulp-capping/caries model, where CRISPR-engineered DPSCs overexpressing BDNF were transplanted into inflamed pulp tissue. This transplantation significantly enhanced dentin regeneration in injured teeth. To further explore potential downstream pathways, we conducted transcriptomic profiling of TNFα-treated DPSCs, both with and without TrkB antagonist CTX-B. The results revealed significant changes in gene expression related to immune response, cytokine signaling, and extracellular matrix interactions. Taken together, our study advances our understanding of the role of BDNF in dental tissue engineering using DPSCs and identifies potential therapeutic avenues for improving dental tissue repair and regeneration strategies.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Sreelekshmi Sreekumar
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Stephanie Kim
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Atsawasuwan Phimon
- Department of Orthodontics, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Seung Chung
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA
| |
Collapse
|
6
|
Stefańska K, Volponi AA, Kulus M, Waśko J, Farzaneh M, Grzelak J, Azizidoost S, Mozdziak P, Bukowska D, Antosik P, Zabel M, Podhorska-Okołów M, Dzięgiel P, Szcześniak M, Woszczyk M, Kempisty B. Dental pulp stem cells - A basic research and future application in regenerative medicine. Biomed Pharmacother 2024; 178:116990. [PMID: 39024839 DOI: 10.1016/j.biopha.2024.116990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Dental pulp is a valuable and accessible source of stem cells (DPSCs) with characteristics similar to mesenchymal stem cells. DPSCs can regenerate a range of tissues and their potential for clinical application in regenerative medicine is promising. DPSCs have been found to express low levels of Class II HLA-DR (MHC) molecules, making them potential candidates for allogeneic transplantation without matching the donor's tissue. Research on the correlation between non-coding RNAs (ncRNAs) and human dental pulp stem cells (DPSCs) provides promising insights into the use of these cells in clinical settings for a wide range of medical conditions. It is possible to use a number of ncRNAs in order to restore the functional role of downregulated ncRNAs that are correlated with osteoblastogenesis, or to suppress the functional role of overexpressed ncRNAs associated with osteoclast differentiation in some cases.
Collapse
Affiliation(s)
- Katarzyna Stefańska
- Cellivia 3 S.A., Poznan 60-529, Poland; Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan 60-781, Poland.
| | - Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King's College London, London WC2R 2LS, UK.
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland.
| | | | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Joanna Grzelak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland.
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Paul Mozdziak
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland.
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland.
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland; Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra 65-046, Poland.
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw 50-368, Poland.
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland.
| | - Marta Szcześniak
- Department of Diagnostics, Poznan University of Medical Sciences, Bukowska 70, Poznań 60-812, Poland; Department of Maxillofacial Surgery, Poznan University of Medical Sciences, Przybyszewskiego 49, Poznań 60-355, Poland.
| | | | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland; Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland; College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic
| |
Collapse
|
7
|
Cao M, Sheng R, Sun Y, Cao Y, Wang H, Zhang M, Pu Y, Gao Y, Zhang Y, Lu P, Teng G, Wang Q, Rui Y. Delivering Microrobots in the Musculoskeletal System. NANO-MICRO LETTERS 2024; 16:251. [PMID: 39037551 PMCID: PMC11263536 DOI: 10.1007/s40820-024-01464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/16/2024] [Indexed: 07/23/2024]
Abstract
Disorders of the musculoskeletal system are the major contributors to the global burden of disease and current treatments show limited efficacy. Patients often suffer chronic pain and might eventually have to undergo end-stage surgery. Therefore, future treatments should focus on early detection and intervention of regional lesions. Microrobots have been gradually used in organisms due to their advantages of intelligent, precise and minimally invasive targeted delivery. Through the combination of control and imaging systems, microrobots with good biosafety can be delivered to the desired area for treatment. In the musculoskeletal system, microrobots are mainly utilized to transport stem cells/drugs or to remove hazardous substances from the body. Compared to traditional biomaterial and tissue engineering strategies, active motion improves the efficiency and penetration of local targeting of cells/drugs. This review discusses the frontier applications of microrobotic systems in different tissues of the musculoskeletal system. We summarize the challenges and barriers that hinder clinical translation by evaluating the characteristics of different microrobots and finally point out the future direction of microrobots in the musculoskeletal system.
Collapse
Affiliation(s)
- Mumin Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Renwang Sheng
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Yimin Sun
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 210009, People's Republic of China
| | - Ying Cao
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 210009, People's Republic of China
| | - Hao Wang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Ming Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Yunmeng Pu
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yucheng Gao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Yuanwei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Panpan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Gaojun Teng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Qianqian Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China.
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
8
|
Wang X, He W, Huang H, Han J, Wang R, Li H, Long Y, Wang G, Han X. Recent Advances in Hydrogel Technology in Delivering Mesenchymal Stem Cell for Osteoarthritis Therapy. Biomolecules 2024; 14:858. [PMID: 39062572 PMCID: PMC11274544 DOI: 10.3390/biom14070858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoarthritis (OA), a chronic joint disease affecting over 500 million individuals globally, is characterized by the destruction of articular cartilage and joint inflammation. Conventional treatments are insufficient for repairing damaged joint tissue, necessitating novel therapeutic approaches. Mesenchymal stem cells (MSCs), with their potential for differentiation and self-renewal, hold great promise as a treatment for OA. However, challenges such as MSC viability and apoptosis in the ischemic joint environment hinder their therapeutic effectiveness. Hydrogels with biocompatibility and degradability offer a three-dimensional scaffold that support cell viability and differentiation, making them ideal for MSC delivery in OA treatment. This review discusses the pathological features of OA, the properties of MSCs, the challenges associated with MSC therapy, and methods for hydrogel preparation and functionalization. Furthermore, it highlights the advantages of hydrogel-based MSC delivery systems while providing insights into future research directions and the clinical potential of this approach.
Collapse
Affiliation(s)
- Xiangjiang Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Wentao He
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Hao Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collage of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Jiali Han
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Ruren Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Hongyi Li
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Ying Long
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Guiqing Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Xianjing Han
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| |
Collapse
|
9
|
El-Akabawy G, El-Kersh SOF, El-Kersh AOFO, Amin SN, Rashed LA, Abdel Latif N, Elshamey A, Abdallah MAAEM, Saleh IG, Hein ZM, El-Serafi I, Eid N. Dental pulp stem cells ameliorate D-galactose-induced cardiac ageing in rats. PeerJ 2024; 12:e17299. [PMID: 38799055 PMCID: PMC11127642 DOI: 10.7717/peerj.17299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/03/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Ageing is a key risk factor for cardiovascular disease and is linked to several alterations in cardiac structure and function, including left ventricular hypertrophy and increased cardiomyocyte volume, as well as a decline in the number of cardiomyocytes and ventricular dysfunction, emphasizing the pathological impacts of cardiomyocyte ageing. Dental pulp stem cells (DPSCs) are promising as a cellular therapeutic source due to their minimally invasive surgical approach and remarkable proliferative ability. AIM This study is the first to investigate the outcomes of the systemic transplantation of DPSCs in a D-galactose (D-gal)-induced rat model of cardiac ageing. Methods. Thirty 9-week-old Sprague-Dawley male rats were randomly assigned into three groups: control, ageing (D-gal), and transplanted groups (D-gal + DPSCs). D-gal (300 mg/kg/day) was administered intraperitoneally daily for 8 weeks. The rats in the transplantation group were intravenously injected with DPSCs at a dose of 1 × 106 once every 2 weeks. RESULTS The transplanted cells migrated to the heart, differentiated into cardiomyocytes, improved cardiac function, upregulated Sirt1 expression, exerted antioxidative effects, modulated connexin-43 expression, attenuated cardiac histopathological alterations, and had anti-senescent and anti-apoptotic effects. CONCLUSION Our results reveal the beneficial effects of DPSC transplantation in a cardiac ageing rat model, suggesting their potential as a viable cell therapy for ageing hearts.
Collapse
Affiliation(s)
- Gehan El-Akabawy
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | | | | | - Shaimaa Nasr Amin
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Ahmed Rashed
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noha Abdel Latif
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Pharmacology, Armed Forces College of Medicine, Cairo, Egypt
| | - Ahmed Elshamey
- Samanoud General Hospital, Samannoud City, Samanoud, Gharbia, Egypt
| | | | - Ibrahim G. Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Sinai University, Kantra, Ismailia, Egypt
| | - Zaw Myo Hein
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Ibrahim El-Serafi
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
| | - Nabil Eid
- Department of Anatomy, Division of Human Biology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Kiarashi M, Bayat H, Shahrtash SA, Etajuri EA, Khah MM, Al-Shaheri NA, Nasiri K, Esfahaniani M, Yasamineh S. Mesenchymal Stem Cell-based Scaffolds in Regenerative Medicine of Dental Diseases. Stem Cell Rev Rep 2024; 20:688-721. [PMID: 38308730 DOI: 10.1007/s12015-024-10687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
Biomedical engineering breakthroughs and increased patient expectations and requests for more comprehensive care are propelling the field of regenerative dentistry forward at a fast pace. Stem cells (SCs), bioactive compounds, and scaffolds are the mainstays of tissue engineering, the backbone of regenerative dentistry. Repairing damaged teeth and gums is a significant scientific problem at present. Novel therapeutic approaches for tooth and periodontal healing have been inspired by tissue engineering based on mesenchymal stem cells (MSCs). Furthermore, as a component of the MSC secretome, extracellular vesicles (EVs) have been shown to contribute to periodontal tissue repair and regeneration. The scaffold, made of an artificial extracellular matrix (ECM), acts as a supporting structure for new cell development and tissue formation. To effectively promote cell development, a scaffold must be non-toxic, biodegradable, biologically compatible, low in immunogenicity, and safe. Due to its promising biological characteristics for cell regeneration, dental tissue engineering has recently received much attention for its use of natural or synthetic polymer scaffolds with excellent mechanical properties, such as small pore size and a high surface-to-volume ratio, as a matrix. Moreover, as a bioactive material for carrying MSC-EVs, the combined application of scaffolds and MSC-EVs has a better regenerative effect on dental diseases. In this paper, we discuss how MSCs and MSC-derived EV treatment may be used to regenerate damaged teeth, and we highlight the role of various scaffolds in this process.
Collapse
Affiliation(s)
- Mohammad Kiarashi
- College of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | | | - Enas Abdalla Etajuri
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Meysam Mohammadi Khah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran.
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
11
|
Escobar LM, Grajales M, Bendahan Z, Jaimes S, Baldión P. Osteoblastic differentiation and changes in the redox state in pulp stem cells by laser treatment. Lasers Med Sci 2024; 39:87. [PMID: 38443654 PMCID: PMC10914891 DOI: 10.1007/s10103-024-04016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
The aim of this study was to determine the effect of low-level laser therapy (LLLT) on cell proliferation, mitochondrial membrane potential changes (∆Ψm), reactive oxygen species (ROS), and osteoblast differentiation of human dental pulp stem cells (hDPSCs). These cells were irradiated with 660- and 940-nm lasers for 5 s, 50 s, and 180 s. Cell proliferation was assessed using the resazurin assay, cell differentiation by RUNX2 and BMP2 expression, and the presence of calcification nodules using alizarin-red S staining. ROS was determined by the dichlorofluorescein-diacetate technique and changes in ∆Ψm by the tetramethylrhodamine-ester assay. Data were analyzed by a Student's t-test and Mann-Whitney U test. The 940-nm wavelength for 5 and 50 s increased proliferation at 4 days postirradiation. After 8 days, a significant decrease in proliferation was observed in all groups. Calcification nodules were evident in all groups, with a greater staining intensity in cells treated with a 940-nm laser for 50 s, an effect that correlated with increased RUNX2 and BMP2 expression. ROS production and Δψm increased independently of irradiation time. In conclusion, photobiomodulation (PBM) with LLLT induced morphological changes and reduced cell proliferation rate, which was associated with osteoblastic differentiation and increased ROS and Δψm, independent of wavelength and time.
Collapse
Affiliation(s)
- Lina M Escobar
- Grupo de Investigaciones Básicas y Aplicadas en Odontología, IBAPO Facultad de Odontología, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bloque 210, 111321, Bogotá, Colombia.
| | - Marggie Grajales
- Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Zita Bendahan
- Unidad de Manejo Integral de Malformaciones Craneofaciales UMIMC, Facultad de Odontología, Universidad El Bosque, Bogotá, Colombia
| | - Sully Jaimes
- Grupo de Investigaciones Básicas y Aplicadas en Odontología, IBAPO Facultad de Odontología, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bloque 210, 111321, Bogotá, Colombia
| | - Paula Baldión
- Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
12
|
Salar Amoli M, Yang H, Anand R, EzEldeen M, Aktan MK, Braem A, Jacobs R, Bloemen V. Development and characterization of colloidal pNIPAM-methylcellulose microgels with potential application for drug delivery in dentoalveolar tissue engineering strategies. Int J Biol Macromol 2024; 262:129684. [PMID: 38307741 DOI: 10.1016/j.ijbiomac.2024.129684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/28/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Incorporation of growth factors, signaling molecules and drugs can be vital for the success of tissue engineering in complex structures such as the dentoalveolar region. This has led to the development of a variety of drug release systems. This study aimed to develop pNIPAM-methylcellulose microgels with different synthesis parameters based on a 23 full factorial design of experiments for this application. Microgel properties, including volume phase transition temperature (VPTT), hydrodynamic size, drug loading and release, and cytocompatibility were systematically evaluated. The results demonstrated successful copolymerization and development of the microgels, a hydrodynamic size ranging from ∼200 to ∼500 nm, and VPTT in the range of 34-39 °C. Furthermore, loading of genipin, capable of inducing odontoblastic differentiation, and its sustained release over a week was shown in all formulations. Together, this can serve as a solid basis for the development of tunable drug-delivering pNIPAM-methylcellulose microgels for specific tissue engineering applications.
Collapse
Affiliation(s)
- Mehdi Salar Amoli
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium; Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium
| | - Huimin Yang
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
| | - Resmi Anand
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Mostafa EzEldeen
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium; Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Merve Kübra Aktan
- Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium
| | - Annabel Braem
- Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium; Department of Dental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Veerle Bloemen
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Setiawan J, Rizal DM, Sofyantoro F, Priyono DS, Septriani NI, Mafiroh WU, Kotani T, Matozaki T, Putri WA. Bibliometric analysis of organoids in regenerative medicine-related research worldwide over two decades (2002-2022). Regen Med 2024; 19:119-133. [PMID: 38449425 DOI: 10.2217/rme-2023-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Aim: This study aimed to evaluate the trends in organoid culture research within the field of regenerative medicine from 2002 to 2022. Methods: The worldwide distribution of organoid research in regenerative medicine articles indexed in the Scopus database was analyzed. Result: A total of 840 documents were analyzed, averaging 42 publications annually. The USA (n = 296) led in publications, followed by China (n = 127), Japan (n = 91) and the UK (n = 75). Since 2011, research has surged, particularly in China, which emerged as a prominent center. Conclusion: The findings highlight significant growth in organoid research, promising future organ transplantation. Research trends integrate tissue engineering, gene modification and induced pluripotent stem cell technologies, reflecting a move toward personalized medicine.
Collapse
Affiliation(s)
- Jajar Setiawan
- Department of Physiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dicky Moch Rizal
- Department of Physiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Fajar Sofyantoro
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi Sendi Priyono
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nur Indah Septriani
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Wulan Usfi Mafiroh
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry & Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry & Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Biosignal Regulation, Department of Biochemistry & Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Wahyu Aristyaning Putri
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
14
|
Montenegro Raudales JL, Okuwa Y, Honda M. Dental Pulp Cell Transplantation Combined with Regenerative Endodontic Procedures Promotes Dentin Matrix Formation in Mature Mouse Molars. Cells 2024; 13:348. [PMID: 38391961 PMCID: PMC10886544 DOI: 10.3390/cells13040348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024] Open
Abstract
Regenerative endodontic procedures (REPs) are promising for dental pulp tissue regeneration; however, their application in permanent teeth remains challenging. We assessed the potential combination of an REP and local dental pulp cell (DPC) transplantation in the mature molars of C57BL/6 mice with (REP + DPC group) or without (REP group) transplantation of DPCs from green fluorescent protein (GFP) transgenic mice. After 4 weeks, the regenerated tissue was evaluated by micro-computed tomography and histological analyses to detect odontoblasts, vasculogenesis, and neurogenesis. DPCs were assessed for mesenchymal and pluripotency markers. Four weeks after the REP, the molars showed no signs of periapical lesions, and both the REP and REP + DPC groups exhibited a pulp-like tissue composed of a cellular matrix with vessels surrounded by an eosin-stained acellular matrix that resembled hard tissue. However, the REP + DPC group had a broader cellular matrix and uniquely contained odontoblast-like cells co-expressing GFP. Vasculogenesis and neurogenesis were detected in both groups, with the former being more prominent in the REP + DPC group. Overall, the REP was achieved in mature mouse molars and DPC transplantation improved the outcomes by inducing the formation of odontoblast-like cells and greater vasculogenesis.
Collapse
Affiliation(s)
- Jorge Luis Montenegro Raudales
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Aichi, Japan; (Y.O.); (M.H.)
| | | | | |
Collapse
|
15
|
Abdolahinia ED, Golestani S, Seif S, Afra N, Aflatoonian K, Jalalian A, Valizadeh N, Abdollahinia ED. A review of the therapeutic potential of dental stem cells as scaffold-free models for tissue engineering application. Tissue Cell 2024; 86:102281. [PMID: 38070384 DOI: 10.1016/j.tice.2023.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 01/21/2024]
Abstract
In the realm of regenerative medicine, tissue engineering has introduced innovative approaches to facilitate tissue regeneration. Specifically, in pulp tissue engineering, both scaffold-based and scaffold-free techniques have been applied. Relevant articles were meticulously chosen from PubMed, Scopus, and Google Scholar databases through a comprehensive search spanning from October 2022 to December 2022. Despite the inherent limitations of scaffolding, including inadequate mechanical strength for hard tissues, insufficient vents for vessel penetration, immunogenicity, and suboptimal reproducibility-especially with natural polymeric scaffolds-scaffold-free tissue engineering has garnered significant attention. This methodology employs three-dimensional (3D) cell aggregates such as spheroids and cell sheets with extracellular matrix, facilitating precise regeneration of target tissues. The choice of technique aside, stem cells play a pivotal role in tissue engineering, with dental stem cells emerging as particularly promising resources. Their pluripotent nature, non-invasive extraction process, and unique properties render them highly suitable for scaffold-free tissue engineering. This study delves into the latest advancements in leveraging dental stem cells and scaffold-free techniques for the regeneration of various tissues. This paper offers a comprehensive summary of recent developments in the utilization of dental stem cells and scaffold-free methods for tissue generation. It explores the potential of these approaches to advance tissue engineering and their effectiveness in therapies aimed at tissue regeneration.
Collapse
Affiliation(s)
- Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States.
| | - Shayan Golestani
- Department of Oral and Maxillofacial Surgery, Dental School, Islamic Azad University, Isfahan ( Khorasgan) Branch, Isfahan, Iran
| | - Sepideh Seif
- Faculty of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Afra
- Faculty of Dentistry, Hormozgan University of Medical Sciences, Bandarabbas, Iran
| | - Khotan Aflatoonian
- Department of Restorative Dentistry, Dental School, Shahed University of Medical Sciences, Tehran, Iran
| | - Ali Jalalian
- Faculty of Dentistry, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Nasrin Valizadeh
- Chemistry Department, Sciences Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Elham Dalir Abdollahinia
- Fellowship of Endocrinology, Endocrinology Department, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
16
|
Sadeghi Ghadi Z, Asadi A, Pilehvar Y, Abasi M, Ebrahimnejad P. Enhancing osteogenic differentiation of dental pulp stem cells through rosuvastatin loaded niosomes optimized by Box-Behnken design and modified by hyaluronan: a novel strategy for improved efficiency. J Biol Eng 2024; 18:13. [PMID: 38279117 PMCID: PMC10821563 DOI: 10.1186/s13036-024-00406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024] Open
Abstract
Bone tissue engineering necessitates a stem cell source capable of osteoblast differentiation and mineralized matrix production. Dental pulp stem cells (DPSCs), a subtype of mesenchymal stem cells from human teeth, present such potential but face challenges in osteogenic differentiation. This research introduces an innovative approach to bolster DPSCs' osteogenic potential using niosomal and hyaluronan modified niosomal systems enriched with rosuvastatin. While rosuvastatin fosters bone formation by regulating bone morphogenetic proteins and osteoblasts, its solubility, permeability, and bioavailability constraints hinder its bone regeneration application. Using a Box-Behnken design, optimal formulation parameters were ascertained. Both niosomes were analyzed for size, polydispersity, zeta potential, and other parameters. They displayed average sizes under 275 nm and entrapment efficiencies exceeding 62%. Notably, niosomes boosted DPSCs' cell viability and osteogenic marker expression, suggesting enhanced differentiation and bone formation. Conclusively, the study underscores the potential of both niosomal systems in ameliorating DPSCs' osteogenic differentiation, offering a promising avenue for bone tissue engineering and regeneration.
Collapse
Affiliation(s)
- Zaynab Sadeghi Ghadi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amin Asadi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mozhgan Abasi
- Immunogenetics Research Center, Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, PO Box: 48175/861, Sari, Iran.
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Pedram Ebrahimnejad
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, 17th Kilometer of Sea Street, PO Box: 48175/861, Sari, Iran.
| |
Collapse
|
17
|
Wu S, Xu X, Gao S, Huo S, Wan M, Zhou X, Zhou X, Zheng L, Zhou Y. MicroRNA-93-5p regulates odontogenic differentiation and dentin formation via KDM6B. J Transl Med 2024; 22:54. [PMID: 38218880 PMCID: PMC10787997 DOI: 10.1186/s12967-024-04862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/06/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Epigenetic factors influence the odontogenic differentiation of dental pulp stem cells and play indispensable roles during tooth development. Some microRNAs can epigenetically regulate other epigenetic factors like DNA methyltransferases and histone modification enzymes, functioning as epigenetic-microRNAs. In our previous study, microarray analysis suggested microRNA-93-5p (miR-93-5p) was differentially expressed during the bell stage in human tooth germ. Prediction tools indicated that miR-93-5p may target lysine-specific demethylase 6B (KDM6B). Therefore, we explored the role of miR-93-5p as an epi-miRNA in tooth development and further investigated the underlying mechanisms of miR-93-5p in regulating odontogenic differentiation and dentin formation. METHODS The expression pattern of miR-93-5p and KDM6B of dental pulp stem cells (DPSCs) was examined during tooth development and odontogenic differentiation. Dual luciferase reporter and ChIP-qPCR assay were used to validate the target and downstream regulatory genes of miR-93-5p in human DPSCs (hDPSCs). Histological analyses and qPCR assays were conducted for investigating the effects of miR-93-5p mimic and inhibitor on odontogenic differentiation of hDPSCs. A pulpotomy rat model was further established, microCT and histological analyses were performed to explore the effects of KDM6B-overexpression and miR-93-5p inhibition on the formation of tertiary dentin. RESULTS The expression level of miR-93-5p decreased as odontoblast differentiated, in parallel with elevated expression of histone demethylase KDM6B. In hDPSCs, miR-93-5p overexpression inhibited the odontogenic differentiation and vice versa. MiR-93-5p targeted 3' untranslated region (UTR) of KDM6B, thereby inhibiting its protein translation. Furthermore, KDM6B bound the promoter region of BMP2 to demethylate H3K27me3 marks and thus upregulated BMP2 transcription. In the rat pulpotomy model, KDM6B-overexpression or miR-93-5p inhibition suppressed H3K27me3 level in DPSCs and consequently promoted the formation of tertiary dentin. CONCLUSIONS MiR-93-5p targets epigenetic regulator KDM6B and regulates H3K27me3 marks on BMP2 promoters, thus modulating the odontogenic differentiation of DPSCs and dentin formation.
Collapse
Affiliation(s)
- Si Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Shiqi Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Sibei Huo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Mian Wan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Xin Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China.
| | - Yachuan Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
18
|
Omerkić Dautović D, Hodžić B, Omerkić S. Application of Stem Cells in Dentistry: A Review Article. IFMBE PROCEEDINGS 2024:726-745. [DOI: 10.1007/978-3-031-49068-2_75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
19
|
He Y, Li R, She W, Ai Y, Li K, Kumeria T, Jiang Z, Shao Q, Zou C, Albashari AA, Duan X, Ye Q. Inhibitory effects of the nanoscale lysate derived from xenogenic dental pulp stem cells in lung cancer models. J Nanobiotechnology 2023; 21:488. [PMID: 38105218 PMCID: PMC10726628 DOI: 10.1186/s12951-023-02218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Lung cancer is a highly prevalent malignancy and has the highest mortality rate among all tumors due to lymph node metastasis. Bone marrow and umbilical cord-derived mesenchymal stem cells (MSCs) have demonstrated tumor-suppressive effects on lung cancer. This study investigated the effects of DPSC lysate on proliferation, apoptosis, migration and invasion of cancer cells were studied in vivo and in vitro. METHODS The proliferation, apoptosis, and migration/metastasis were evaluated by cell counting kit-8 assay, Annexin-V and propidium iodide staining, and the transwell assay, respectively. The expression levels of apoptosis-, cell cycle-, migration-, and adhesion-related mRNA and proteins were measured by qRT-PCR and western blot. The level and mRNA expression of tumor markers carcino embryonic antigen (CEA), neuron-specific enolase (NSE), and squamous cell carcinoma (SCC) were measured by Enzyme-linked immunosorbent assay (ELISA) and qRT-PCR. Finally, a tumor-bearing mouse model was constructed to observe the tumor-suppressive effect of DPSC lysate after intraperitoneal injection. RESULTS DPSC lysate decreased the viability of A549 cells and induced apoptosis in lung cancer cells. Western blot confirmed that levels of Caspase-3, Bax, and Bad were increased, and Bcl-2 protein levels were decreased in A549 cells treated with DPSC lysate. In addition, DPSC lysate inhibited the migration and invasion of A549 cells; downregulated key genes of the cell cycle, migration, and adhesion; and significantly suppressed tumor markers. Xenograft results showed that DPSC lysate inhibited tumor growth and reduced tumor weight. CONCLUSIONS DPSC lysate inhibited proliferation, invasion, and metastasis; promoted apoptosis in lung cancer cells; and suppressed tumor growth- potentially providing a cell-based alternative therapy for lung cancer treatment.
Collapse
Affiliation(s)
- Yan He
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 460030, Hubei, China
- Institute for Regenerative and Translational Research, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, 460030, Hubei, China
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 324025, Zhejiang, China
| | - Ruohan Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 460030, Hubei, China
| | - Wenting She
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 460030, Hubei, China
| | - Yilong Ai
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, 528000, Guangdong, China
| | - Kesheng Li
- Institute for Regenerative and Translational Research, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, 460030, Hubei, China
| | - Tushar Kumeria
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Ziran Jiang
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, 528000, Guangdong, China
| | - Qing Shao
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, 528000, Guangdong, China
| | - Chen Zou
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, 528000, Guangdong, China.
| | | | - Xingxiang Duan
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 460030, Hubei, China.
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, 460030, Hubei, China.
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 324025, Zhejiang, China.
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 460030, Hubei, China.
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
20
|
Nasiri K, Jahri M, Kolahdouz S, Soleimani M, Makiya A, Saini RS, Merza MS, Yasamineh S, Banakar M, Yazdanpanah MH. MicroRNAs Function in Dental Stem Cells as a Promising Biomarker and Therapeutic Target for Dental Diseases. Mol Diagn Ther 2023; 27:703-722. [PMID: 37773247 DOI: 10.1007/s40291-023-00675-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/01/2023]
Abstract
Undifferentiated, highly proliferative, clonogenic, and self-renewing dental stem cells have paved the way for novel approaches to mending cleft palates, rebuilding lost jawbone and periodontal tissue, and, most significantly, recreating lost teeth. New treatment techniques may be guided by a better understanding of these cells and their potential in terms of the specificity of the regenerative response. MicroRNAs have been recognized as an essential component in stem cell biology due to their role as epigenetic regulators of the processes that determine stem cell destiny. MicroRNAs have been proven to be crucial in a wide variety of molecular and biological processes, including apoptosis, cell proliferation, migration, and necrocytosis. MicroRNAs have been recognized to control protein translation, messenger RNA stability, and transcription and have been reported to play essential roles in dental stem cell biology, including the differentiation of dental stem cells, the immunological response, apoptosis, and the inflammation of the dental pulp. Because microRNAs increase dental stem cell differentiation, they may be used in regenerative medicine to either preserve the stem cell phenotype or to aid in the development of tooth tissue. The development of novel biomarkers and therapies for dental illnesses relies heavily on progress made in our knowledge of the roles played by microRNAs in regulating dental stem cells. In this article, we discuss how dental stem cells and their associated microRNAs may be used to cure dental illness.
Collapse
Affiliation(s)
- Kamyar Nasiri
- Department of Dentistry, Islamic Azad University, Tehran, Iran
| | - Mohammad Jahri
- Dental Research Center, School of Dentistry, Shahid Beheshti, Research Institute of Dental Sciences, University of Medical Sciences, Tehran, Iran
| | | | | | - Ali Makiya
- Student Research Committee, Faculty of Dentistry, Mashhad University of Medical Science, Mashhad, Iran
| | - Ravinder S Saini
- COAMS, King Khalid University, Abha, 62529, Kingdom of Saudi Arabia
| | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Morteza Banakar
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pediatric Dentistry, Faculty of Dentistry, Shahed University, Tehran, Iran.
| | | |
Collapse
|
21
|
Yu F, Yao L, Li F, Wang C, Ye L. Releasing YAP dysfunction-caused replicative toxicity rejuvenates mesenchymal stem cells. Aging Cell 2023; 22:e13913. [PMID: 37340571 PMCID: PMC10497818 DOI: 10.1111/acel.13913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
Hippo-independent YAP dysfunction has been demonstrated to cause chronological aging of stromal cells by impairing the integrity of nuclear envelope (NE). In parallel with this report, we uncover that YAP activity also controls another type of cellular senescence, the replicative senescence in in vitro expansion of mesenchymal stromal cells (MSCs), but this event is Hippo phosphorylation-dependent, and there exist another NE integrity-independent downstream mechanisms of YAP. Specifically, Hippo phosphorylation causes reduced nuclear/active YAP and then decreases the level of YAP protein in the proceeding of replicative senescence. YAP/TEAD governs RRM2 expression to release replicative toxicity (RT) via licensing G1/S transition. Besides, YAP controls the core transcriptomics of RT to delay the onset of genome instability and enhances DNA damage response/repair. Hippo-off mutations of YAP (YAPS127A/S381A ) satisfactorily release RT via maintaining cell cycle and reducing genome instability, finally rejuvenating MSCs and restoring their regenerative capabilities without risks of tumorigenesis.
Collapse
Affiliation(s)
- Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina
- Department of Endodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Lin Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina
- Department of Endodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina
- Department of Endodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina
- Department of Endodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
22
|
Lee DM, Lee SH, Hong TH, Lee JC, Nam H, Joo KM. Effects of ethanol washing and storage duration on primary culture of stem cells from human exfoliated deciduous teeth. J Oral Biol Craniofac Res 2023; 13:598-603. [PMID: 37576800 PMCID: PMC10415792 DOI: 10.1016/j.jobcr.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/07/2023] [Accepted: 06/19/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose Since the oral environment harbors various microorganisms, the removal of contaminants during the primary culture process of stem cells from human exfoliated deciduous teeth (SHEDs) is very important. We investigated optimal methods for primary culture of SHEDs with minimal contamination rates. Materials and methods Three different storage conditions for deciduous teeth were utilized:1) storing teeth in Hank's Balanced Salt Solution (HBSS) with 3% penicillin and streptomycin (P/S), 2) storing teeth in HBSS with 3% antibiotics and antimycotics (A-A), and 3) storing teeth in HBSS with A-A, and additional washing with 70% ethanol just before primary culture of dental pulp. In addition, the storage time from the extraction of teeth to the primary culture was measured. Results The contamination rates were about 70% for HBSS with P/S, 40% for HBSS with A-A, and less than 10% for HBSS with A-A and additional washing with 70% ethanol. When the primary culture was conducted within 12 h after teeth extraction, the contamination rate was the lowest in all conditions. Furthermore, when the teeth were delivered in HBSS with A-A and an additional 70% ethanol washing was performed, the contamination rate was 0% until 48 h after teeth extraction. Ethanol washing had little effect on the cellular characteristics and stemness of SHEDs, including their morphology, growth rate, expression of surface markers, and differentiation potential. Conclusions We suggested that both delivering teeth in HBSS with A-A and additional 70% ethanol washing are critical considerations for the successful culture of SHEDs without contamination.
Collapse
Affiliation(s)
- Du-man Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Sun Haeng Lee
- Department of Preventive Dentistry & Public Oral Health, School of Dentistry, Seoul National University, Seoul, 08826, South Korea
- Children's Dental Center, Seoul, 06072, South Korea
- DUDA Inc., Seoul, 06072, South Korea
| | - Tae Hee Hong
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul, 08513, South Korea
| | - Jae Cheoun Lee
- Children's Dental Center, Seoul, 06072, South Korea
- DUDA Inc., Seoul, 06072, South Korea
| | - Hyun Nam
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul, 08513, South Korea
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Kyeung Min Joo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
- Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul, 08513, South Korea
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
23
|
Adnan N, Umer F, Malik S. Implementation of transfer learning for the segmentation of human mesenchymal stem cells-A validation study. Tissue Cell 2023; 83:102149. [PMID: 37429132 DOI: 10.1016/j.tice.2023.102149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION Stem cell therapy has been gaining interest in the regeneration rather than repair of lost human tissues. However, the manual analysis of stem cells prior to implantation is a cumbersome task that can be automated to improve the efficiency and accuracy of this process. OBJECTIVE To develop a Deep Learning (DL) algorithm for segmentation of human mesenchymal stem cells (MSCs) on micrographic images and to validate its performance relative to the ground truth laid down via annotation. METHODOLOGY Pre-trained DeepLab algorithms were trained on annotated images of human MSCs obtained from the open-source EVICAN dataset. This dataset comprises of partially annotated images; a limitation that is overcome by blurring backgrounds of these images which consequently blurs the unannotated cells. Two algorithms were trained on the two different kinds of images from this dataset; with blurred and normal backgrounds, respectively. Algorithm 1 was trained on 139 images with blurred backgrounds and algorithm 2 was trained on 37 images from the same dataset with normal backgrounds to replicate real-life scenarios. RESULTS The performance metrics of algorithm 1 included accuracy of 99.22%, dice co-efficient of 99.66% and Intersection over Union (IoU) score of 0.84. Algorithm 2 was 96.34% accurate with dice co-efficient and IoU scores of 98.39% and 0.48, respectively. CONCLUSION Both algorithms showed adequate performance in the segmentation of human MSCs with performance metrics close to the ground truth. However, algorithm 2 has better clinical applicability, even with smaller dataset and relatively lower performance metrics.
Collapse
Affiliation(s)
- Niha Adnan
- Operative Dentistry and Endodontics, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Fahad Umer
- Operative Dentistry and Endodontics, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan.
| | | |
Collapse
|
24
|
Cheng Q, Liu C, Chen Q, Luo W, He TC, Yang D. Establishing and characterizing human stem cells from the apical papilla immortalized by hTERT gene transfer. Front Cell Dev Biol 2023; 11:1158936. [PMID: 37283947 PMCID: PMC10239932 DOI: 10.3389/fcell.2023.1158936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Stem cells from the apical papilla (SCAPs) are promising candidates for regenerative endodontic treatment and tissue regeneration in general. However, harvesting enough cells from the limited apical papilla tissue is difficult, and the cells lose their primary phenotype over many passages. To get over these challenges, we immortalized human SCAPs with lentiviruses overexpressing human telomerase reverse transcriptase (hTERT). Human immortalized SCAPs (hiSCAPs) exhibited long-term proliferative activity without tumorigenic potential. Cells also expressed mesenchymal and progenitor biomarkers and exhibited multiple differentiation potentials. Interestingly, hiSCAPs gained a stronger potential for osteogenic differentiation than the primary cells. To further investigate whether hiSCAPs could become prospective seed cells in bone tissue engineering, in vitro and in vivo studies were performed, and the results indicated that hiSCAPs exhibited strong osteogenic differentiation ability after infection with recombinant adenoviruses expressing BMP9 (AdBMP9). In addition, we revealed that BMP9 could upregulate ALK1 and BMPRII, leading to an increase in phosphorylated Smad1 to induce the osteogenic differentiation of hiSCAPs. These results support the application of hiSCAPs in tissue engineering/regeneration schemes as a stable stem cell source for osteogenic differentiation and biomineralization, which could be further used in stem cell-based clinical therapies.
Collapse
Affiliation(s)
- Qianyu Cheng
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Chang Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuman Chen
- Department of Stomatology, Hainan Women and Children’s Medical Center, Haikou, China
| | - Wenping Luo
- Laboratory Animal Center, Southwest University, Chongqing, China
| | - Tong-Chuan He
- Department of Orthopaedic Surgery and Rehabilitation Medicine, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL, United States
| | - Deqin Yang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Maru V, Madkaikar M, Gada A, Pakhmode V, Padawe D, Bapat S. Response of stem cells derived from human exfoliated deciduous teeth to Bio-C Repair and Mineral Trioxide Aggregate Repair HP: Cytotoxicity and gene expression assessment. Dent Res J (Isfahan) 2023; 20:55. [PMID: 37304416 PMCID: PMC10247870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 12/25/2022] [Accepted: 03/02/2023] [Indexed: 06/13/2023] Open
Abstract
Background The aim of this study was to investigate and compare the cytotoxicity and gene expression of Bio-C Repair, Mineral Trioxide Aggregate (MTA) HP Repair, and Biodentine on stem cells derived from exfoliated deciduous teeth. Materials and Methods In this in vitro study MTT assay was used to assess the cellular viability at three different dilutions. The gene expression of Runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), osteocalcin [OCN], and dentin matrix protein-1 (DMP-1) was measured with real-time polymerase chain reaction after 7 days, 14 days, and 21 days of incubation. One-way analysis of variance and Bonferroni posttest were used for statistical analysis (p=o.o5). Results After 72 h of incubation at dilution 1:4, stem cells derived from human exfoliated deciduous teeth (SHEDs) cultivated in Biodentine, followed by Bio-C Repair and MTA Repair HP reported with highest cellular viability. The highest mRNA expression of Runx2, ALP, OCN, and DMP-1 was reported in SHEDs cultured in Biodentine (after 21 days of incubation). Conclusion Bio-C Repair and MTA HP Repair are biocompatible and capable of odontogenic differentiation similar to Biodentine when cultured in stem cells derived from exfoliated primary teeth.
Collapse
Affiliation(s)
- Viral Maru
- Department of Pediatric Dentistry, Government Dental College and Hospital, Mumbai, Maharashtra, India
| | - Manisha Madkaikar
- Director, ICMR - National Institute of Immunohematology, Mumbai, Maharashtra, India
| | - Ashita Gada
- Director, ICMR - National Institute of Immunohematology, Mumbai, Maharashtra, India
| | - Vivek Pakhmode
- D.M.E.R, Joint Director, SMBT Dental College, Hospital and Research Center, Mumbai, Maharashtra, India
| | - Dimple Padawe
- Department of Pediatric and Preventive Dentistry, Government Dental College and Hospital, Mumbai, Maharashtra, India
| | - Salil Bapat
- Department Public Health Dentistry, SMBT Dental College, Hospital and Research Center, Mumbai, Maharashtra, India
| |
Collapse
|
26
|
Bagio DA, Lestari NA, Putra WA, Alinda SD, Ricardo S, Julianto I. The effect of hyaluronic acid conditioned media on hDPSCs differentiation through CD44 and transforming growth factor-β1 expressions. J Adv Pharm Technol Res 2023; 14:89-93. [PMID: 37255878 PMCID: PMC10226701 DOI: 10.4103/japtr.japtr_649_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/01/2023] [Accepted: 02/16/2023] [Indexed: 06/01/2023] Open
Abstract
Hyaluronic acid (HA) has the capability to influence dentin niche which is important in regenerative process. The CD44 as a specific receptor of HA was found to be related to dentin mineralization process. Meanwhile, transforming growth factor β1 (TGF-β1) has a vital role in the transition from proliferation into the differentiation of human dental pulp stem cell human dental pulp stem cells (hDPSCs) to become odontoblast cells and dentin mineralization. This study aims to analyzed HA's effect on dentin mineralization through CD44 and TGF-β1 expressions. Stem cells were cultured in four different supplemented conditioned media (control, +10 μg/mL, +20 μg/mL, and + 30 μg/mL of HA). Evaluation of CD44 expression was analyzed using flow cytometry and TGF-β1 was analyzed using enzyme-linked immunosorbent assay reader. Qualitative result using Alizarin red test after 21 days was done to confirm the formation of mineralization nodules. It was shown that HA expression of CD44 and TGF-β1 on hDPSCs were higher in AH groups compared to the control group and 30 μg/mL HA induced the highest TGF-β1 expression on hDPSCs. Alizarin red test also showed the highest mineralization nodules in the same group. Therefore, from this study, we found that supplemented 30 μg/mL of HA was proved in initiating hDPSCs differentiation process and promote dentin mineralization.
Collapse
Affiliation(s)
- Dini Asrianti Bagio
- Lecturer of Conservative Dentistry Department, Faculty of Dentistry, Universitas Indonesia, Surakarta Solo, Indonesia
| | - Nia Agung Lestari
- Residency Programme, Conservative Dentistry Department, Faculty of Dentistry, Universitas Indonesia, Surakarta Solo, Indonesia
| | - Wandy Afrizal Putra
- Residency Programme, Conservative Dentistry Department, Faculty of Dentistry, Universitas Indonesia, Surakarta Solo, Indonesia
| | - Sylva Dinie Alinda
- Lecturer of Conservative Dentistry Department, Faculty of Dentistry, Universitas Indonesia, Surakarta Solo, Indonesia
| | - Shalina Ricardo
- Lecturer of Conservative Dentistry Department, Faculty of Dentistry, Universitas Indonesia, Surakarta Solo, Indonesia
| | - Indah Julianto
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta Solo, Indonesia
| |
Collapse
|
27
|
Tian Z, Yu T, Liu J, Wang T, Higuchi A. Introduction to stem cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:3-32. [PMID: 37678976 DOI: 10.1016/bs.pmbts.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Stem cells have self-renewal capability and can proliferate and differentiate into a variety of functionally active cells that can serve in various tissues and organs. This review discusses the history, definition, and classification of stem cells. Human pluripotent stem cells (hPSCs) mainly include embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs). Embryonic stem cells are derived from the inner cell mass of the embryo. Induced pluripotent stem cells are derived from reprogramming somatic cells. Pluripotent stem cells have the ability to differentiate into cells derived from all three germ layers (endoderm, mesoderm, and ectoderm). Adult stem cells can be multipotent or unipotent and can produce tissue-specific terminally differentiated cells. Stem cells can be used in cell therapy to replace and regenerate damaged tissues or organs.
Collapse
Affiliation(s)
- Zeyu Tian
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jun Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China.
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan.
| |
Collapse
|
28
|
Unnisa A, Dua K, Kamal MA. Mechanism of Mesenchymal Stem Cells as a Multitarget Disease- Modifying Therapy for Parkinson's Disease. Curr Neuropharmacol 2023; 21:988-1000. [PMID: 35339180 PMCID: PMC10227913 DOI: 10.2174/1570159x20666220327212414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/10/2022] [Accepted: 03/12/2022] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders, affecting the basal nuclei, causing impairment of motor and cognitive functions. Loss of dopaminergic (DAergic) neurons or their degeneration and the aggregation of Lewy bodies is the hallmark of this disease. The medications used to treat PD relieve the symptoms and maintain quality of life, but currently, there is no cure. There is a need for the development of therapies that can cease or perhaps reverse neurodegeneration effectively. With the rapid advancements in cell replacement therapy techniques, medical professionals are trying to find a cure by which restoration of dopamine neurotransmitters can occur. Researchers have started focusing on cell-based therapies using mesenchymal stem cells (MSCs) due to their abundance in the body, the ability of proliferation, and immunomodulation. Here we review the MSC-based treatment in Parkinson's disease and the various mechanisms it repairs DAergic neurons in parkinsonian patients.
Collapse
Affiliation(s)
- Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Kingdom Saudi Arabia
| | - Kamal Dua
- Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
29
|
Gao X, Liu Z, Wang Z. Dental Pulp Stem Cells Ameliorate Elastase-Induced Pulmonary Emphysema by Regulating Inflammation and Oxidative Stress. J Inflamm Res 2023; 16:1497-1508. [PMID: 37064754 PMCID: PMC10094477 DOI: 10.2147/jir.s402794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/17/2023] [Indexed: 04/18/2023] Open
Abstract
Background Dental pulp stem cells (DPSCs) are considered excellent candidates for stem cell-based tissue regeneration. In this study, we aimed to evaluate the therapeutic effect of DPSCs in a mouse chronic obstructive pulmonary disease (COPD) model and to explore whether DPSCs reduce lung inflammation and oxidative stress by regulating the nuclear factor erythroid-2 related factor-2 (Nrf2) signaling pathway. Methods DPSCs were isolated from dental pulp tissue by the tissue block method. Emphysema of C57BL/6 mice was induced by endotracheal administration of porcine pancreatic elastase (PPE). Then, the DPSCs were injected into the lungs through the trachea, and after 3 weeks of stem cell treatment, various efficacy tests were performed. The AniRes2005 animal lung function analytic system was used to detect lung function. Hematoxylin-eosin staining (H&E) and Victoria blue staining was used to assess emphysema severity. The animal tissues were detected by Western blot, RT‒qPCR, ELISA and oxidative stress related detection. Results In experimental COPD models, DPSCs transplantation improved lung function, body weight, and emphysema-like changes better than bone marrow mesenchyml stem cells (BM-MSCs). Compared with the COPD group, the levels of IL-1β, TNF-α and IL-6 in lung tissue and bronchoalveolar lavage fluid (BALF) were decreased after transplantation of DPSCs. DPSCs may be associated with lower malondialdehyde (MDA) levels, and higher catalase (CAT) and glutathione (GSH) levels. Western blot results showed that the expression of Nrf2 and its downstream factors increased after transplantation of DPSCs. Conclusion The current study showed that DPSCs had good performance in the treatment of a mouse COPD model and could be a promising option for stem cell therapy. DPSCs may play antioxidant and anti-inflammatory roles in COPD by activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Xiaoli Gao
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Zhiqiang Liu
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Zuomin Wang
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
- Correspondence: Zuomin Wang; Zhiqiang Liu, Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongti South Road, Chaoyang District, Beijing, 100020, People’s Republic of China, Tel +86 10 85231492, Email ;
| |
Collapse
|
30
|
Chansaenroj A, Kornsuthisopon C, Roytrakul S, Phothichailert S, Rochanavibhata S, Fournier BPJ, Srithanyarat SS, Nowwarote N, Osathanon T. Indirect Immobilised Jagged-1 Enhances Matrisome Proteins Associated with Osteogenic Differentiation of Human Dental Pulp Stem Cells: A Proteomic Study. Int J Mol Sci 2022; 23:ijms232213897. [PMID: 36430375 PMCID: PMC9694941 DOI: 10.3390/ijms232213897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The indirect immobilisation of Jagged-1 (Jagged-1) promoted osteogenic differentiation of human dental pulp cells (hDPs). Furthermore, the analysis of the Reactome pathway of RNA sequencing data indicates the upregulated genes involved with the extracellular matrix (ECM). Hence, our objective was to investigate the effects of Jagged-1 on proteomic profiles of human dental pulp stem cells (hDPSC). hDPSCs were cultured on the surface coated with human IgG Fc fragment (hFc) and the surface coated with rhJagged1/Fc recombinant protein-coated surface. Cells were differentiated to the osteogenic lineage using an osteogenic differentiation medium (OM) for 14 days, and cells cultured in a growth medium were used as a control. The protein component of the cultured cells was extracted into the cytosol, membrane, nucleus, and cytoskeletal compartment. Subsequently, the proteomic analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS). Metascape gene list analysis reported that Jagged-1 stimulated the expression of the membrane trafficking protein (DOP1B), which can indirectly improve osteogenic differentiation. hDPSCs cultured on Jagged-1 surface under OM condition expressed COL27A1, MXRA5, COL7A1, and MMP16, which played an important role in osteogenic differentiation. Furthermore, common matrisome proteins of all cellular components were related to osteogenesis/osteogenic differentiation. Additionally, the gene ontology categorised by the biological process of cytosol, membrane, and cytoskeleton compartments was associated with the biomineralisation process. The gene ontology of different culture conditions in each cellular component showed several unique gene ontologies. Remarkably, the Jagged-1_OM culture condition showed the biological process related to odontogenesis in the membrane compartment. In conclusion, the Jagged-1 induces osteogenic differentiation could, mainly through the regulation of protein in the membrane compartment.
Collapse
Affiliation(s)
- Ajjima Chansaenroj
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatvadee Kornsuthisopon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Suphalak Phothichailert
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunisa Rochanavibhata
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjamin P. J. Fournier
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR1138, Molecular Oral Pathophysiology, 75006 Paris, France
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, 75006 Paris, France
| | | | - Nunthawan Nowwarote
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR1138, Molecular Oral Pathophysiology, 75006 Paris, France
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, 75006 Paris, France
- Correspondence: (N.N.); (T.O.)
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (N.N.); (T.O.)
| |
Collapse
|
31
|
Li L, Wang Y, Wang Z, Xue D, Dai C, Gao X, Ma J, Hang K, Pan Z. Knockdown of FOXA1 enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells partly via activation of the ERK1/2 signalling pathway. Stem Cell Res Ther 2022; 13:456. [PMID: 36064451 PMCID: PMC9446550 DOI: 10.1186/s13287-022-03133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Background The available therapeutic options for large bone defects remain extremely limited, requiring new strategies to accelerate bone healing. Genetically modified bone mesenchymal stem cells (BMSCs) with enhanced osteogenic capacity are recognised as one of the most promising treatments for bone defects. Methods We performed differential expression analysis of miRNAs between human BMSCs (hBMSCs) and human dental pulp stem cells (hDPSCs) to identify osteogenic differentiation-related microRNAs (miRNAs). Furthermore, we identified shared osteogenic differentiation-related miRNAs and constructed an miRNA-transcription network. The Forkhead box protein A1 (FOXA1) knockdown strategy with a lentiviral vector was used to explore the role of FOXA1 in the osteogenic differentiation of MSCs. Cell Counting Kit-8 was used to determine the effect of the knockdown of FOXA1 on hBMSC proliferation; real-time quantitative reverse transcription PCR (qRT-PCR) and western blotting were used to investigate target genes and proteins; and alkaline phosphatase (ALP) staining and Alizarin Red staining (ARS) were used to assess ALP activity and mineral deposition, respectively. Finally, a mouse model of femoral defects was established in vivo, and histological evaluation and radiographic analysis were performed to verify the therapeutic effects of FOXA1 knockdown on bone healing. Results We identified 22 shared and differentially expressed miRNAs between hDPSC and hBMSC, 19 of which were downregulated in osteogenically induced samples. The miRNA-transcription factor interaction network showed that FOXA1 is the most significant and novel osteogenic differentiation biomarker among more than 300 transcription factors that is directly targeted by 12 miRNAs. FOXA1 knockdown significantly promoted hBMSC osteo-specific genes and increased mineral deposits in vitro. In addition, p-ERK1/2 levels were upregulated by FOXA1 silencing. Moreover, the increased osteogenic differentiation of FOXA1 knockdown hBMSCs was partially rescued by the addition of ERK1/2 signalling inhibitors. In a mouse model of femoral defects, a sheet of FOXA1-silencing BMSCs improved bone healing, as detected by microcomputed tomography and histological evaluation. Conclusion These findings collectively demonstrate that FOXA1 silencing promotes the osteogenic differentiation of BMSCs via the ERK1/2 signalling pathway, and silencing FOXA1 in vivo effectively promotes bone healing, suggesting that FOXA1 may be a novel target for bone healing.
Collapse
Affiliation(s)
- Lijun Li
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang Province, Hangzhou City, People's Republic of China
| | - Yibo Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang Province, Hangzhou City, People's Republic of China
| | - Zhongxiang Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang Province, Hangzhou City, People's Republic of China
| | - Deting Xue
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang Province, Hangzhou City, People's Republic of China
| | - Chengxin Dai
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang Province, Hangzhou City, People's Republic of China
| | - Xiang Gao
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang Province, Hangzhou City, People's Republic of China
| | - Jianfei Ma
- Key Laboratory of Image Information Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kai Hang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China. .,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China. .,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China. .,Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang Province, Hangzhou City, People's Republic of China.
| | - Zhijun Pan
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China. .,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China. .,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China. .,Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang Province, Hangzhou City, People's Republic of China.
| |
Collapse
|
32
|
Pedrosa MDS, Vilela HDS, Rahhal JG, Bueno NP, Lima FS, Nogueira FN, Sipert CR. Exposure to lipopolysaccharide and calcium silicate-based materials affects the behavior of dental pulp cells. Braz Dent J 2022; 33:9-17. [PMID: 36287503 PMCID: PMC9645168 DOI: 10.1590/0103-6440202204990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/23/2022] [Indexed: 12/31/2022] Open
Abstract
This study assessed the cell viability, cytokine production, and mineralization potential of human dental pulp cells (hDPCs) after exposure to lipopolysaccharide (LPS) and application of calcium silicate-based materials (CSBM). Characterization of the CSBM was performed by infrared spectroscopy (n = 3). Extracts of Bio-C Repair, Biodentine, Cimmo HD, and MTA Repair HP were prepared and diluted (1:1, 1:4, and 1:16). Culture of hDPCs was established and treated or not with 1 µg/mL of LPS from Escherichia coli for 7 days. MTT assay was used to assess cell viability at 24, 48, and 72 h (n = 6). Alkaline phosphatase (ALP) activity was assayed on day 7 (n = 4). Il-10 and TNF-α were quantified by ELISA at 24 h (n = 6). Data were analyzed by ANOVA and Tukey's test (α = 0.05). Cell viability of LPS-activated hPDCs was higher than untreated control in 48 and 72 h (p < 0.05). Differences between non-treated and LPS-activated hPDCs were observed for Biodentine and Cimmo HP (p < 0.05). The CSBM influenced the cell viability (p < 0.05). ALP activity was higher in LPS-activated hDPCs (p < 0.05). No changes in the concentration of TNF-α were observed between groups (p > 0.05). The CSBM increased the Il-10 production (p < 0.05). LPS-activated hDPCs presented increased cell viability and ALP activity. The CSBM showed mild toxicity and was able to enhance the cell viability and mineralization potential of untreated and LPS-activated hDPCs. The CSBM also induced anti-inflammatory mechanisms without compromising pro-inflammatory ones.
Collapse
Affiliation(s)
- Marlus da Silva Pedrosa
- University of São Paulo- USP, School of Dentistry, Department of Biomaterials and Oral Biology, São Paulo, SP, Brazil
| | - Handially dos Santos Vilela
- University of São Paulo- USP, School of Dentistry, Department of Biomaterials and Oral Biology, São Paulo, SP, Brazil
| | - Juliana Garuba Rahhal
- University of São Paulo- USP, School of Dentistry, Department of Restorative Dentistry, São Paulo, SP, Brazil
| | - Natália Pieretti Bueno
- University of São Paulo- USP, School of Dentistry, Department of Oral and Maxillofacial Surgery, Prosthesis and Traumatology, São Paulo, SP, Brazil
| | - Fabianne Soares Lima
- University of São Paulo- USP, School of Dentistry, Department of Biomaterials and Oral Biology, São Paulo, SP, Brazil
| | - Fernando Neves Nogueira
- University of São Paulo- USP, School of Dentistry, Department of Restorative Dentistry, São Paulo, SP, Brazil
| | - Carla Renata Sipert
- University of São Paulo- USP, School of Dentistry, Department of Restorative Dentistry, São Paulo, SP, Brazil
| |
Collapse
|
33
|
Abdalla MM, Lung CYK, Bijle MN, Yiu CKY. Physicochemical Properties and Inductive Effect of Calcium Strontium Silicate on the Differentiation of Human Dental Pulp Stem Cells for Vital Pulp Therapies: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5854. [PMID: 36079235 PMCID: PMC9457449 DOI: 10.3390/ma15175854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The development of biomaterials that exhibit profound bioactivity and stimulate stem cell differentiation is imperative for the success and prognosis of vital pulp therapies. The objectives were to (1) synthesize calcium strontium silicate (CSR) ceramic through the sol−gel process (2) investigate its physicochemical properties, bioactivity, cytocompatibility, and its stimulatory effect on the differentiation of human dental pulp stem cells (HDPSC). Calcium silicate (CS) and calcium strontium silicate (CSR) were synthesized by the sol−gel method and characterized by x-ray diffraction (XRD). Setting time, compressive strength, and pH were measured. The in vitro apatite formation was evaluated by SEM-EDX and FTIR. The NIH/3T3 cell viability was assessed using an MTT assay. The differentiation of HDPSC was evaluated using alkaline phosphatase activity (ALP), and Alizarin red staining (ARS). Ion release of Ca, Sr, and Si was measured using inductive coupled plasma optical emission spectroscopy (ICP-OES). XRD showed the synthesis of (CaSrSiO4). The initial and final setting times were significantly shorter in CSR (5 ± 0.75 min, 29 ± 1.9 min) than in CS (8 ± 0.77 min, 31 ± 1.39 min), respectively (p < 0.05). No significant difference in compressive strength was found between CS and CSR (p > 0.05). CSR demonstrated higher apatite formation and cell viability than CS. The ALP activity was significantly higher in CSR 1.16 ± 0.12 than CS 0.92 ± 0.15 after 14 d of culture (p < 0.05). ARS showed higher mineralization in CSR than CS after 14 and 21 d culture times. CSR revealed enhanced differentiation of HDPSC, physicochemical properties, and bioactivity compared to CS.
Collapse
Affiliation(s)
- Mohamed Mahmoud Abdalla
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
- Dental Biomaterials, Faculty of Dental Medicine, Al-Azhar University, Cairo 11651, Egypt
| | - Christie Y. K. Lung
- Dental Materials Science, Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Mohammed Nadeem Bijle
- Paediatric Dentistry, Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Cynthia Kar Yung Yiu
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
34
|
Badodekar N, Mishra S, Telang G, Chougule S, Bennur D, Thakur M, Vyas N. Angiogenic Potential and Its Modifying Interventions in Dental Pulp Stem Cells: a Systematic Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
35
|
Kadkhodazadeh M, Amid R, Gilvari Sarshari M, Mojahedi M, Parhizkar A. A comparison of human dental pulp stem cell activity cultured on sandblasted titanium discs decontaminated with Er:YAG laser and air-powder abrasion: an in vitro study. Lasers Med Sci 2022; 37:3259-3268. [PMID: 35907129 DOI: 10.1007/s10103-022-03615-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
Abstract
Decontamination of implant surfaces is important to the treatment of peri-implantitis. Er:YAG laser and air-powder abrasion system are regarded as the most effective means of decontamination of implant surfaces. The aim of this in vitro study was to compare the activity of human dental pulp stem cells (hDPSCs) cultured on decontaminated sandblasted titanium discs using Er:YAG laser irradiation and air-powder abrasion. Forty-five titanium discs were contaminated with Escherichia coli (E. coli) bacteria and fifteen titanium discs served as sterile control groups. Thirty contaminated titanium discs were decontaminated with Er:YAG laser or air-powder abrasion system and fifteen contaminated discs were used as contaminated control group. Afterwards, hDPSCs were seeded on all sixty experimental titanium discs. The effects of two decontamination tools on hDPSCs viability were evaluated by MTT assay. Alkaline phosphatase (ALP) activity assay, quantitative real-time PCR analysis and alizarin red staining method were performed to assess hDPSCs osteogenic differentiation. Scanning microscope electron (SEM) was also used to evaluate the effects of two different decontaminated methods on cellular morphology. Our study showed that decontamination using Er:YAG laser caused maximum cell viability. However, the ALP activity was not different in laser and air-abrasion groups. The significant expression of an osteoblastic marker and stronger Alizarin red staining were observed in laser irradiation groups. In addition, SEM observation indicated that grown cells were more stretched and more filopodia in Er:YAG-treated discs. In the present study, Er:YAG laser and air-powder abrasion improved the activity of the cells cultured on the decontaminated titanium discs. However, in comparison with air-powder abrasion, Er:YAG laser was more effective.
Collapse
Affiliation(s)
- Mahdi Kadkhodazadeh
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd, Daneshgah Square, Velenjak, Shahid Chamran Highway, Tehran, 19839-69411, Iran
| | - Reza Amid
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd, Daneshgah Square, Velenjak, Shahid Chamran Highway, Tehran, 19839-69411, Iran.,Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd, Daneshgah Square, Velenjak, Shahid Chamran Highway, Tehran, 19839-63113, Iran
| | - Maedeh Gilvari Sarshari
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd, Daneshgah Square, Velenjak, Shahid Chamran Highway, Tehran, 19839-6941, Iran.
| | - Massoud Mojahedi
- Department of Laser, School of Dentistry, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd, Daneshgah Square, Velenjak, Shahid Chamran Highway, Tehran, 19839-69411, Iran
| | - Ardavan Parhizkar
- Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd, Daneshgah Square, Velenjak, Shahid Chamran Highway, Tehran, 19839-63113, Iran
| |
Collapse
|
36
|
Yuan SM, Yang XT, Zhang SY, Tian WD, Yang B. Therapeutic potential of dental pulp stem cells and their derivatives: Insights from basic research toward clinical applications. World J Stem Cells 2022; 14:435-452. [PMID: 36157522 PMCID: PMC9350620 DOI: 10.4252/wjsc.v14.i7.435] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
For more than 20 years, researchers have isolated and identified postnatal dental pulp stem cells (DPSCs) from different teeth, including natal teeth, exfoliated deciduous teeth, healthy teeth, and diseased teeth. Their mesenchymal stem cell (MSC)-like immunophenotypic characteristics, high proliferation rate, potential for multidirectional differentiation and biological features were demonstrated to be superior to those of bone marrow MSCs. In addition, several main application forms of DPSCs and their derivatives have been investigated, including stem cell injections, modified stem cells, stem cell sheets and stem cell spheroids. In vitro and in vivo administration of DPSCs and their derivatives exhibited beneficial effects in various disease models of different tissues and organs. Therefore, DPSCs and their derivatives are regarded as excellent candidates for stem cell-based tissue regeneration. In this review, we aim to provide an overview of the potential application of DPSCs and their derivatives in the field of regenerative medicine. We describe the similarities and differences of DPSCs isolated from donors of different ages and health conditions. The methodologies for therapeutic administration of DPSCs and their derivatives are introduced, including single injections and the transplantation of the cells with a support, as cell sheets, or as cell spheroids. We also summarize the underlying mechanisms of the regenerative potential of DPSCs.
Collapse
Affiliation(s)
- Sheng-Meng Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xue-Ting Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Si-Yuan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wei-Dong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
37
|
Tayabally SEH, Khan AA, Abdallah SH, Khattak MNK, Jayakumar MN, Rani Samsudin A. Increased strength in the Col-Tgel induces apoptosis in the human dental pulp stem cells: 3D culturing of human dental pulp stem cells at different strengths of collagen. Saudi J Biol Sci 2022; 29:2674-2682. [PMID: 35531240 PMCID: PMC9072883 DOI: 10.1016/j.sjbs.2021.12.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
Human dental pulp stem cells (HDPSCs) have great potential to be used in regenerative medicine. To use these stem cells effectively for this purpose, they should be grown in a 3D cell culture that mimics their natural niches instead of a 2D conventional cell culture. The aim of this study was to grow the HDPSCs in the 3D cell culture created by Transglutaminase-crosslinked collagen hydrogels (Col-Tgel) in two different strengths to find a suitable 3D cell culture environment for these stem cells. Two stiffness of the 3D Col-Tgel were used to grow the HDPSCs: soft and medium matrix with strength of 0.9-1.5 kPa and 14-20 kPa, respectively. HDPSCs express markers similar to MSCs, therefore seven such markers were analyzed in the HDPSCs during their growth in the 2D and in the 3D soft and medium Col-Tgel. The CD105 and CD90 markers were significantly (p < 0.05) downregulated in HDPSCs cultured in both 3D cell culture conditions compared with HDPSCs in 2D cell culture. Furthermore, CD34 marker, a negative marker, expressed by a few cells in HDPSCs culture was upregulated (p < 0.05) in HDPSCs cultured in medium 3D Col-Tgel, indicating cells that expressing the marker grow better in medium 3D Col-Tgel. The apoptosis results revealed that HDPSCs in medium 3D Col-Tgel had the least number of live cells and a significantly (p < 0.05) higher early apoptosis rate compared to HDPSCs in 2D and 3D Col-Tgel medium. MTT analysis also showed a significant difference among the three cell culture conditions. We conclude that HDPSCs cultured on 3D soft Col-Tgel showed better proliferation than cells cultured in 3D medium gel. These results demonstrate that the ideal environment to grow HDPSCs in 3D is the soft Col-Tgel not medium Col-Tgel.
Collapse
Affiliation(s)
| | - Amir Ali Khan
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Human Genetics and Stem Cell Research Group, University of Sharjah, Sharjah, United Arab Emirates
| | - Sallam Hasan Abdallah
- Human Genetics and Stem Cell Research Group, University of Sharjah, Sharjah, United Arab Emirates
| | - Muhammad Nasir Khan Khattak
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Human Genetics and Stem Cell Research Group, University of Sharjah, Sharjah, United Arab Emirates
| | | | - A.B. Rani Samsudin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
38
|
Kulthanaamondhita P, Kornsuthisopon C, Photichailert S, Manokawinchoke J, Limraksasin P, Osathanon T. Specific microRNAs regulate dental pulp stem cell behavior. J Endod 2022; 48:688-698. [PMID: 35271859 DOI: 10.1016/j.joen.2022.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION MicroRNAs (miRNAs), small non-coding RNA, control the translation of messenger RNAs into proteins. miRNAs have a crucial role in regulating the diverse biological processes of many physiological and pathological activities. The aim of this systematic review is to explore various functions of miRNAs in the regulation of dental pulp stem cells (DPSCs) behavior. METHODS The articles were searched in PubMed, SCOPUS and ISI Web of Science database using designated keywords. Full-length manuscripts published in English in peer-reviewed journals relevant to the role of miRNAs in DPSC functions were included and reviewed by 2 independent researchers. RESULTS The original search of the database generated 299 studies. One hundred and two duplicate studies were removed. After their exclusion, 48 studies were selected for review. miRNAs have shown to modulate the stemness and differentiation of various mesenchymal stem cells. The miRNAs expression profiles in DPSCs were differed compared with other cell types and have been demonstrated to regulate the levels of proteins crucial for promoting or inhibiting DPSC proliferation as well as differentiation. Further, miRNAs also modulate inflammatory processes in dental pulp. CONCLUSION miRNAs have various function upon the regulation of DPSCs and understanding these roles of miRNAs is crucial for the development of new therapeutics in regenerative dental medicine. With the advancing technologies, the utilization of miRNA technology could revolutionarily change the future of regenerative endodontics.
Collapse
Affiliation(s)
- Promphakkon Kulthanaamondhita
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chatvadee Kornsuthisopon
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Suphalak Photichailert
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jeeranan Manokawinchoke
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Phoonsuk Limraksasin
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
39
|
Osteogenic differentiation of pulp stem cells from human permanent teeth on an oxygen-releasing electrospun scaffold. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Koh B, Ab Rahman FH, Matlan NA, Rajan M, Musta'ain AY, Mohd Jeffry Lee MR, Ramli R, Mohd Yunus SS, Binti Hj Idrus R, Yazid MD. Potential role of dental pulp stem cells conditioned medium for odontoblastic differentiation. Biol Res 2022; 55:11. [PMID: 35246266 PMCID: PMC8895822 DOI: 10.1186/s40659-022-00380-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 02/17/2022] [Indexed: 12/03/2022] Open
Abstract
Background Functional bioengineered tooth regeneration using autologous or allogeneic alternative differentiated cells sources are thought to have a great potential in replacing conventional dentures. This study investigated the potential of dental pulp stem cells (DPSCs) conditioned medium for odontoblastic differentiation of Wharton’s jelly mesenchymal stem cells (WJMSCs). The DPSCs derived from healthy adult permanent first molars were cultured at high confluence prior to conditioned medium collection. The WJMSCs were cultured in six different treatments, with varying ratios of culture media to DPSCs-conditioned medium. MTT assay was used to measure the rate of proliferation of WJMSCs, while immunocytochemistry staining was utilised to detect the expression of dental matrix protein 1 (DMP-1). The deposited calcium was detected and analysed via Alizarin-Red Staining (ARS). Results It was found that the proliferation of WJMSCs cultured under the mixture of complete medium and DPSCs conditioned medium showed significantly lower than the control; presumably the cells started to exit proliferative state prior differentiation. In 14 days of induction, the cells in all treatments showed osteoblastic-like morphology, calcium compound deposits were observed at day 7, 10 and 14 of differentiation suggested that DPSCs conditioned medium could lead to osteoblastic/odontoblastic differentiation. However, the DMP-1 protein can be seen only expressed minimally at day 14 of conditioned medium induction. Conclusions In conclusion, DPSCs conditioned medium appeared as a potential odontoblastic induction approach for WJMSCs. To further investigate the stimulatory effects by DPSCs conditioned medium, specific signalling pathway need to be elucidated to enhance the differentiation efficiency.
Collapse
Affiliation(s)
- Benson Koh
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Farynna Hana Ab Rahman
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Najwa Amira Matlan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Manissha Rajan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Aimi Yasmin Musta'ain
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Mohamad Ridhwan Mohd Jeffry Lee
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Roszalina Ramli
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Siti Salmiah Mohd Yunus
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Ruszymah Binti Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
41
|
Recent developments of biomaterial scaffolds and regenerative approaches for craniomaxillofacial bone tissue engineering. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02928-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Karimi-Haghighi S, Chavoshinezhad S, Safari A, Razeghian-Jahromi I, Jamhiri I, Khodabandeh Z, Khajeh S, Zare S, Borhani-Haghighi A, Dianatpour M, Pandamooz S, Salehi MS. Preconditioning with secretome of neural crest-derived stem cells enhanced neurotrophic expression in mesenchymal stem cells. Neurosci Lett 2022; 773:136511. [PMID: 35143889 DOI: 10.1016/j.neulet.2022.136511] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/01/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022]
Abstract
During the last 20 years, stem cell therapy has been considered as an effective approach for regenerative medicine. Due to poor ability of stem cells to survive following transplantation, it has been proposed that beneficial effects of stem cells mainly depend on paracrine function. Therefore, the present study was designed to reinforce mesenchymal stem cells (MSCs) to express higher levels of trophic factors especially the ones with the neurotrophic properties. Here, bone marrow (BM)-MSCs and adipose-MSCs were treated with conditioned medium (CM) of dental pulp stem cells (DPSCs) or hair follicle stem cells (HFSCs) for up to three days. The relative expression of five key trophic factors that have critical effects on the central nervous system regeneration were evaluated using qRT-PCR technique. Furthermore, to assess the impacts of conditioned mediums on the fate of MSCs, expression of seven neuronal/glial markers were evaluated 3 days after the treatments. The obtained data revealed priming of BM-MSCs with HFSC-CM or DPSC-CM increases the BDNF expression over time. Such effect was also observed in adipose-MSCs following DPSC-CM treatment. Secretome preconditioning remarkably increased NGF expression in the adipose-MSCs. In addition, although priming of adipose-MSCs with HFSC-CM increased GDNF expression one day after the treatment, DPSC-CM enhanced GDNF mRNA in BM-MSCs at a later time point. It seemed priming of BM-MSCs with HFSC-CM, promoted differentiation into the glial lineage. Our findings showed that MSCs preconditioning with secretome of neural crest-derived stem cells could be a promising approach to enhance the neurotrophic potential of these stem cells.
Collapse
Affiliation(s)
| | - Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Iman Jamhiri
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
43
|
Wang W, Shen Z, Tang Y, Chen B, Chen J, Hou J, Li J, Zhang M, Liu S, Mei Y, Zhang L, Lu S. Astragaloside IV promotes the angiogenic capacity of adipose-derived mesenchymal stem cells in a hindlimb ischemia model by FAK phosphorylation via CXCR2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153908. [PMID: 35026516 DOI: 10.1016/j.phymed.2021.153908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Therapeutic angiogenesis by transplantation of autologous/allogeneic adipose stem cells (ADSCs) is a potential method for the treatment of critical limb ischemia (CLI). However, the therapeutic efficiency is limited by poor viability, adhesion, migration and differentiation after cell transplantation into the target area. Astragaloside IV (AS-IV), one of the main active components of Astragalus, has been widely used in the treatment of ischemic diseases and can promote cell proliferation and angiogenesis. However, there is no report on the effect of AS-IV on ADSCs and its effect on hindlimb ischemia through cell transplantation. PURPOSE The purpose of this study was to elucidate that AS-IV pretreatment enhances the therapeutic effect of ADSC on critical limb ischemia, and to characterize the underlying molecular mechanisms. METHODS ADSCs were obtained and pretreated with the different concentration of AS-IV. In vitro, we analyzed the influence of AS-IV on ADSC proliferation, migration, angiogenesis and recruitment of human umbilical vein endothelial cells (HUVECs) and analyzed the relevant molecular mechanism. In vivo, we injected drug-pretreated ADSCs into a Matrigel or hindlimb ischemia model and evaluated the therapeutic effect by the laser Doppler perfusion index, immunofluorescence, and histopathology. RESULTS In vitro experiments showed that AS-IV improved ADSC migration, angiogenesis and endothelial recruitment. The molecular mechanism may be related to the upregulation of CXC receptor 2 (CXCR2) to promote the phosphorylation of focal adhesion kinase (FAK). In vivo, Matrigel plug assay showed that ADSCs pretreated with AS-IV have stronger angiogenic potential. The laser Doppler perfusion index of the hindlimbs of mice in the ADSC/AS-IV group was significantly higher than the laser Doppler perfusion index of the hindlimbs of mice of the ADSC group and the control group, and the microvessel density was significantly increased. CONCLUSION Our results demonstrate that AS-IV pretreatment of ADSC improves their therapeutic efficacy in ameliorating severe limb exclusion symptomology through CXCR2 induced FAK phosphorylation, which will bring new insights into the treatment of severe limb ischemia.
Collapse
Affiliation(s)
- Weiyi Wang
- Department of Vascular surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zekun Shen
- Department of Vascular surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanan Tang
- Department of Vascular surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bingyi Chen
- Department of Vascular surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinxing Chen
- Department of Vascular surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiaxuan Hou
- Department of Vascular surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiayan Li
- Department of Vascular surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengzhao Zhang
- Department of Vascular surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuang Liu
- Department of Vascular surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yifan Mei
- Department of Vascular surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liwei Zhang
- Department of Vascular surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shaoying Lu
- Department of Vascular surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
44
|
Jafari N, Khoradmehr A, Moghiminasr R, Seyed Habashi M. Mesenchymal Stromal/Stem Cells-Derived Exosomes as an Antimicrobial Weapon for Orodental Infections. Front Microbiol 2022; 12:795682. [PMID: 35058912 PMCID: PMC8764367 DOI: 10.3389/fmicb.2021.795682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 11/14/2022] Open
Abstract
The oral cavity as the second most various microbial community in the body contains a broad spectrum of microorganisms which are known as the oral microbiome. The oral microbiome includes different types of microbes such as bacteria, fungi, viruses, and protozoa. Numerous factors can affect the equilibrium of the oral microbiome community which can eventually lead to orodental infectious diseases. Periodontitis, dental caries, oral leukoplakia, oral squamous cell carcinoma are some multifactorial infectious diseases in the oral cavity. In defending against infection, the immune system has an essential role. Depending on the speed and specificity of the reaction, immunity is divided into two different types which are named the innate and the adaptive responses but also there is much interaction between them. In these responses, different types of immune cells are present and recent evidence demonstrates that these cell types both within the innate and adaptive immune systems are capable of secreting some extracellular vesicles named exosomes which are involved in the response to infection. Exosomes are 30-150 nm lipid bilayer vesicles that consist of variant molecules, including proteins, lipids, and genetic materials and they have been associated with cell-to-cell communications. However, some kinds of exosomes can be effective on the pathogenicity of various microorganisms and promoting infections, and some other ones have antimicrobial and anti-infective functions in microbial diseases. These discrepancies in performance are due to the origin of the exosome. Exosomes can modulate the innate and specific immune responses of host cells by participating in antigen presentation for activation of immune cells and stimulating the release of inflammatory factors and the expression of immune molecules. Also, mesenchymal stromal/stem cells (MSCs)-derived exosomes participate in immunomodulation by different mechanisms. Ease of expansion and immunotherapeutic capabilities of MSCs, develop their applications in hundreds of clinical trials. Recently, it has been shown that cell-free therapies, like exosome therapies, by having more advantages than previous treatment methods are emerging as a promising strategy for the treatment of several diseases, in particular inflammatory conditions. In orodental infectious disease, exosomes can also play an important role by modulating immunoinflammatory responses. Therefore, MSCs-derived exosomes may have potential therapeutic effects to be a choice for controlling and treatment of orodental infectious diseases.
Collapse
Affiliation(s)
- Nazanin Jafari
- Department of Endodontics, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Moghiminasr
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mina Seyed Habashi
- Department of Endodontics, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
45
|
Askarizadeh N, Banijamali S, Irani S, Bakhtiar H. Effect of two different concentrations of 1α,25-dihydroxyvitamin D3 on odontogenic differentiation of stem cells from human exfoliated deciduous teeth. Dent Res J (Isfahan) 2022; 19:4. [PMID: 35308448 PMCID: PMC8927951 DOI: 10.4103/1735-3327.336689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/04/2020] [Accepted: 09/19/2020] [Indexed: 11/04/2022] Open
Abstract
Background: Stem cells from human exfoliated deciduous teeth (SHEDs) can transform into odontoblasts in vitro and in vivo. The role of 1α, 25-dihydroxyvitamin D3 (1α,25 vitD3) has been reported in the mineralization of hard tissues and teeth, as well as osteoblastic differentiation. This study aimed to assess the effect of different concentrations of 1α,25 vitD3 on odontogenic differentiation of SHEDs. Materials and Methods: In this experimental study, second-passage SHEDs were exposed to odontogenic medium along with 0, 10, 50, 100, and 150 nmol concentrations of in 1α, 25 vitD3 to determine its optimal concentration for odontogenic differentiation. The methyl thiazolyl tetrazolium (MTT) assay was performed. Odontogenic differentiation was evaluated by QRT- polymerase chain reaction for dentin matrix protein (DMP1) and dentin sialophosphoprotein (DSPP) genes. Morphology of differentiated cells was studied by Scanning Electron Microscopy. Data were analyzed using the Kruskal–Wallis, Mann–Whitney, Friedman, and Chi-square test. P < 0.05 is considered statistically significant. Results: MTT test result showed the two groups of odontogenic medium + 10 nm 1α,25 vitD3 and odontogenic medium + 150 nm 1α,25 vitD3 provided the most suitable conditions for cell viability at 72 h. Expression of both genes significantly increased in the presence of 1α,25 vitD3 (P < 0.001). Expression of both genes was significantly higher at 14 days compared with 7 days (P < 0.01). At both time points, expression of both genes was significantly higher in the presence of 150 nm 1α,25 vitD3 compared with 10 nm (P < 0.01). The accumulation of cells with odontoblastic morphology, cell interactions, and calcifications were evident. Conclusion: 1α,25 vitD3 upregulates DMP1 and DSPP and results in odontogenic differentiation of SHEDs in odontogenic medium. This upregulation increases with time and by an increase in concentration of 1α,25 vitD3.
Collapse
|
46
|
Calabrese EJ, Agathokleous E, Dhawan G, Kapoor R, Calabrese V. Human dental pulp stem cells and hormesis. Ageing Res Rev 2022; 73:101540. [PMID: 34890824 DOI: 10.1016/j.arr.2021.101540] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/26/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023]
Abstract
This paper represents the first assessment of hormetic dose responses by human dental pulp stem cells (hDPSCs) with particular emphasis on cell renewal (proliferation) and differentiation. Hormetic dose responses were commonly reported in this model, encompassing a broad range of chemicals, including principally pharmaceuticals (e.g., metformin and artemisinin), dietary supplements/extracts from medicinal plants (e.g., berberine, N-acetyl-L-cysteine, and ginsenoside Rg1) and endogenous agents (e.g., ATP, TNF-α). The paper assesses mechanistic foundations of the hDPSCs hormetic dose responses for both cell proliferation and cell differentiation, study design considerations, and therapeutic implications.
Collapse
|
47
|
Aryal YP, Yeon CY, Kim TY, Lee ES, Sung S, Pokharel E, Kim JY, Choi SY, Yamamoto H, Sohn WJ, Lee Y, An SY, An CH, Jung JK, Ha JH, Kim JY. Facilitating Reparative Dentin Formation Using Apigenin Local Delivery in the Exposed Pulp Cavity. Front Physiol 2021; 12:773878. [PMID: 34955887 PMCID: PMC8703200 DOI: 10.3389/fphys.2021.773878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023] Open
Abstract
Apigenin, a natural product belonging to the flavone class, affects various cell physiologies, such as cell signaling, inflammation, proliferation, migration, and protease production. In this study, apigenin was applied to mouse molar pulp after mechanically pulpal exposure to examine the detailed function of apigenin in regulating pulpal inflammation and tertiary dentin formation. In vitro cell cultivation using human dental pulp stem cells (hDPSCs) and in vivo mice model experiments were employed to examine the effect of apigenin in the pulp and dentin regeneration. In vitro cultivation of hDPSCs with apigenin treatment upregulated bone morphogenetic protein (BMP)- and osteogenesis-related signaling molecules such as BMP2, BMP4, BMP7, bone sialoprotein (BSP), runt-related transcription factor 2 (RUNX2), and osteocalcin (OCN) after 14 days. After apigenin local delivery in the mice pulpal cavity, histology and cellular physiology, such as the modulation of inflammation and differentiation, were examined using histology and immunostainings. Apigenin-treated specimens showed period-altered immunolocalization patterns of tumor necrosis factor (TNF)-α, myeloperoxidase (MPO), NESTIN, and transforming growth factor (TGF)-β1 at 3 and 5 days. Moreover, the apigenin-treated group showed a facilitated dentin-bridge formation with few irregular tubules after 42 days from pulpal cavity preparation. Micro-CT images confirmed obvious dentin-bridge structures in the apigenin-treated specimens compared with the control. Apigenin facilitated the reparative dentin formation through the modulation of inflammation and the activation of signaling regulations. Therefore, apigenin would be a potential therapeutic agent for regenerating dentin in exposed pulp caused by dental caries and traumatic injury.
Collapse
Affiliation(s)
- Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Chang-Yeol Yeon
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Eui-Seon Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Shijin Sung
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Elina Pokharel
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, College of Health Science, Gachon University, Incheon, South Korea
| | - So-Young Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Wern-Joo Sohn
- Pre-major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan, South Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Seo-Young An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Jae-Kwang Jung
- Department of Oral Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Jung-Hong Ha
- Department of Conservative Dentistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
48
|
Bayarsaihan D, Enkhmandakh B, Vijaykumar A, Robson P, Mina M. Single-cell transcriptome analysis defines mesenchymal stromal cells in the mouse incisor dental pulp. Gene Expr Patterns 2021; 43:119228. [PMID: 34915194 DOI: 10.1016/j.gep.2021.119228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/22/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
The dental pulp is known to be highly heterogenous, comprising distinct cell types including mesenchymal stromal cells (MSCs), which represent neural-crest-derived cells with the ability to differentiate into multiple cell lineages. However, the cellular heterogeneity and the transcriptome signature of different cell clusters within the dental pulp remain to be established. To better understand discrete cell types, we applied a single-cell RNA sequencing strategy to establish the RNA expression profiles of individual dental pulp cells from 5- to 6-day-old mouse incisors. Our study revealed distinct subclasses of cells representing osteoblast, odontoblast, endothelial, pancreatic, neuronal, immune, pericyte and ameloblast lineages. Collectively, our research demonstrates the complexity and diversity of cell subclasses within the incisor dental pulp, thus providing a foundation for uncovering the molecular processes that govern cell fate decisions and lineage commitment in dental pulp-derived MSCs.
Collapse
Affiliation(s)
- Dashzeveg Bayarsaihan
- Center for Regenerative Medicine & Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA; Institute for System Genomics, University of Connecticut, Engineering Science Building Rm. 305, 67 North Eagleville Road, Storrs, CT, 06269, USA.
| | - Badam Enkhmandakh
- Center for Regenerative Medicine & Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Anushree Vijaykumar
- Department of Craniofacial Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA
| | - Mina Mina
- Department of Craniofacial Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| |
Collapse
|
49
|
Zawadzka M, Kwaśniewska A, Miazga K, Sławińska U. Perspectives in the Cell-Based Therapies of Various Aspects of the Spinal Cord Injury-Associated Pathologies: Lessons from the Animal Models. Cells 2021; 10:cells10112995. [PMID: 34831217 PMCID: PMC8616284 DOI: 10.3390/cells10112995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic injury of the spinal cord (SCI) is a devastating neurological condition often leading to severe dysfunctions, therefore an improvement in clinical treatment for SCI patients is urgently needed. The potential benefits of transplantation of various cell types into the injured spinal cord have been intensively investigated in preclinical SCI models and clinical trials. Despite the many challenges that are still ahead, cell transplantation alone or in combination with other factors, such as artificial matrices, seems to be the most promising perspective. Here, we reviewed recent advances in cell-based experimental strategies supporting or restoring the function of the injured spinal cord with a particular focus on the regenerative mechanisms that could define their clinical translation.
Collapse
|
50
|
Ma J, Zhang Z, Wang Y, Shen H. Investigation of miR-126-3p loaded on adipose stem cell-derived exosomes for wound healing of full-thickness skin defects. Exp Dermatol 2021; 31:362-374. [PMID: 34694648 DOI: 10.1111/exd.14480] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 09/01/2021] [Accepted: 10/16/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the function of miR-126-3p loaded on adipose stem cell (ADSC)-derived exosomes (ADSC-Exos) in wound healing of full-thickness skin defects. METHODS ADSCs transfected with miR-126-3p mimic, miR-126-3p inhibitor or pcDNA3.1-PIK3R2, or PKH26-marked ADSC-Exos were cultured with fibroblasts or human umbilical vein endothelial cells (HUVECs). The proliferation and migration rates of fibroblasts and angiogenesis of HUVECs were measured. Rats with full-thickness skin defects were injected with ADSC-Exos or exosomes extracted from ADSCs transfected with miR-126-3p inhibitor and the wound healing rates were measured. The wound bed, collagen deposition and angiogenesis in injured rats were assessed. RESULTS ADSC-Exos could be ingested by fibroblasts and HUVECs. Co-incubation with ADSCs or ADSC-Exos promoted the proliferation and migration of fibroblasts and angiogenesis of HUVECs, which was further enhanced by miR-126-3p overexpression. Inhibition of ADSC-Exos or miR-126-3p or PIK3R2 overexpression suppressed the proliferation and migration of fibroblasts and angiogenesis of HUVECs. ADSC-derived exosomal miR-126-3p increased wound healing rate, collagen deposition and newly formed vessels in injured rats. CONCLUSION ADSC-derived exosomal miR-126-3p promotes wound healing of full-thickness skin defects by targeting PIK3R2.
Collapse
Affiliation(s)
- Jie Ma
- Department of Plastic Surgery, Shanghai General Hospital, Shanghai, 201620, P.R. China
| | - Zhaofeng Zhang
- Department of Plastic Surgery, Shanghai General Hospital, Shanghai, 201620, P.R. China
| | - Yinmin Wang
- Department of Plastic Surgery, Shanghai General Hospital, Shanghai, 201620, P.R. China
| | - Hua Shen
- Department of Plastic Surgery, Shanghai General Hospital, Shanghai, 201620, P.R. China
| |
Collapse
|