1
|
Esfandiarinezhad F, Zhan X, Tan SL, Li J, Tsang BK. A primary insight into gut microbiome, MicroRNA and stemness, in a PCOS rat model. J Ovarian Res 2025; 18:66. [PMID: 40170042 PMCID: PMC11959994 DOI: 10.1186/s13048-025-01648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/15/2025] [Indexed: 04/03/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with reproductive and metabolic dysfunctions, including gut microbiome dysbiosis. This study aimed to examine the alterations in stemness in ovarian surface epithelium (OSE), gut microbiome microRNA expression in granulosa cells and plasma in a dihydrotestosterone (DHT)-induced rat model of PCOS. Female rats were administered DHT to induce PCOS, and the expression of stem cell markers in OSE was assessed to evaluate the impact on stemness. Alterations in the gut microbiome composition were assessed using 16S rRNA gene Long-Read sequencing and changes in the microRNA profile of granulosa cells and plasma were analyzed using qPCR. Our results demonstrated alterations in stemness markers and, a significant alteration in gut microbiome composition in DHT-induced rats compared to controls, characterized by shifts in the relative abundance of specific bacterial taxa, particularly Akkermansia muciniphila. Elevated levels of miR-574 and miR-378 were observed in plasma, whereas miR-21 and miR-574 showed increased expression in ovarian granulosa cells. Concurrently, increased expression of stem cell markers was observed in OSE, suggesting an enhancement of stemness in response to PCOS-like conditions. These findings imply a potential link between gut microbiome dysbiosis and increased ovarian stemness in PCOS, suggesting that the gut microbiome may contribute to ovarian dysfunction through modulation of stem cell activity. Understanding this interaction could provide novel insights into therapeutic targets in restoring ovarian function in PCOS patients.
Collapse
Affiliation(s)
- Fereshteh Esfandiarinezhad
- Inflammation and Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology & Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- OriginElle Fertility Clinic and Women's Health Center, Ottawa, Canada
| | - Xiaoshu Zhan
- Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, Canada
- School of Animal Science and Technology, Foshan University, Foshan, Guangdong, China
| | - Seang Lin Tan
- OriginElle Fertility Clinic and Women's Health Center, Ottawa, Canada
- Department of Obstetrics & Gynecology, McGill University, Montreal, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, Canada.
| | - Benjamin K Tsang
- Inflammation and Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Departments of Obstetrics and Gynecology & Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Yan B, Lu Q, Gao T, Xiao K, Zong Q, Lv H, Lv G, Wang L, Liu C, Yang W, Jiang G. CD146 regulates the stemness and chemoresistance of hepatocellular carcinoma via JAG2-NOTCH signaling. Cell Death Dis 2025; 16:150. [PMID: 40032820 DOI: 10.1038/s41419-025-07470-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/29/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
CD146 plays a key role in cancer progression and metastasis. Cancer stem cells (CSCs) are responsible for tumor initiation, drug resistance, metastasis, and recurrence. In this study, we explored the role of CD146 in the regulation of liver CSCs. Here, we demonstrated that CD146 was highly expressed in liver CSCs. CD146 overexpression promoted the self-renewal ability and chemoresistance of Hepatocellular Carcinoma (HCC) cells in vitro and tumorigenicity in vivo. Inversely, knockdown of CD146 restrained these abilities. Mechanistically, CD146 activated the NF-κB signaling to up-regulate JAG2 expression and activated the Notch signaling, which resulted in increased stemness of HCC. Furthermore, JAG2 overexpression restored the Notch signaling activity, the stemness, and chemotherapeutic resistance caused by CD146 knockdown. These results demonstrated that CD146 positively regulates HCC stemness by activating the JAG2-NOTCH signaling. Combined targeting of CD146 and JAG2 may represent a novel therapeutic strategy for HCC treatment.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/drug therapy
- Humans
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Jagged-2 Protein/metabolism
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Signal Transduction
- Drug Resistance, Neoplasm
- Animals
- Receptors, Notch/metabolism
- CD146 Antigen/metabolism
- CD146 Antigen/genetics
- Cell Line, Tumor
- Mice, Nude
- Mice
- Gene Expression Regulation, Neoplastic
- NF-kappa B/metabolism
- Mice, Inbred BALB C
- Male
Collapse
Affiliation(s)
- Bing Yan
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China
- Department of General Surgery, Pingxiang People's Hospital, Pingxiang, 337000, China
| | - QiuYu Lu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - TianMing Gao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China
| | - KunQing Xiao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China
| | - QianNi Zong
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - HongWei Lv
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - GuiShuai Lv
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Liang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - ChunYing Liu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| | - Wen Yang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| | - GuoQing Jiang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225000, China.
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China.
| |
Collapse
|
3
|
Ulhe A, Sharma N, Mahajan A, Patil R, Hegde M, Bhalerao S, Mali A. Decoding the therapeutic landscape of alpha-linolenic acid: a network pharmacology and bioinformatics investigation against cancer-related epigenetic modifiers. J Biomol Struct Dyn 2025; 43:1929-1954. [PMID: 38088751 DOI: 10.1080/07391102.2023.2293267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/29/2023] [Indexed: 02/01/2025]
Abstract
Omega-3 (n - 3) and omega-6 (n - 6) polyunsaturated fatty acids (PUFAs) are vital for human health, but an imbalance between these types is associated with chronic diseases, including cancer. Alpha-linolenic acid (ALA), a n - 3 PUFA, shows promise as an anticancer agent in both laboratory and animal studies. However, the precise molecular mechanisms underlying ALA's actions against cancer-related epigenetic modifiers (CaEpM) remain unclear. To understand this, we employed network pharmacology (NP) and molecular docking techniques. Our study identified 51 potential ALA targets and GO and KEGG pathway analysis revealed possible molecular targets and signaling pathways of ALA against CaEpM. From PPI analysis, EZH2, KAT2B, SIRT1, KAT2A, KDM6B, EHMT2, WDR5, SETD7, SIRT2, and HDAC3 emerged as the top 10 potential targets. Additionally, GeneMANIA functional association (GMFA) network analysis of these top 10 targets was performed to enhance NP insights and explore ALA's multi-target approach. After an exhaustive analysis of the core FGN subnetwork, it became evident that 9 out of the 15 targets-namely EZH2, SUZ12, EED, PARP1, HDAC3, DNMT1, NCOR2, KAT2B, and TRRAP-manifested evidently strong and abundant interconnections among each other. Molecular docking of both top 10 targets and core FGN targets confirmed strong binding affinity between ALA and SIRT2, WDR5, KDM6B, EHMT2, HDAC3, EZH2, PARP1, and KAT2B, underscoring their roles in ALA's anti-CaEpM mechanism. Our findings suggest that ALA may target key signaling pathways related to transcriptional regulation, microRNA involvement, stem cell pluripotency and cellular senescence in cancer epigenetics. These findings illuminate ALA's potential as a multi-target agent against CaEpM.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amrita Ulhe
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Nidhi Sharma
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Akanksha Mahajan
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Rajesh Patil
- Sinhgad Technical Education Society's, Sinhgad College of Pharmacy, Department of Pharmaceutical Chemistry, Vadgaon (BK), Pune, Maharashtra, India
| | - Mahabaleshwar Hegde
- Center for Innovation in Nutrition, Health, Disease (CINHD), Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Supriya Bhalerao
- Obesity and Diabetes Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Aniket Mali
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| |
Collapse
|
4
|
Kalogirou EM, Tosiou A, Vrachnos S, Zogopoulos VL, Michalopoulos I, Tzanavari T, Tosios KI. The Immunoexpression and Prognostic Significance of Stem Cell Markers in Malignant Salivary Gland Tumors: A Systematic Review and Meta-Analysis. Genes (Basel) 2024; 16:37. [PMID: 39858584 PMCID: PMC11764928 DOI: 10.3390/genes16010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/14/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Salivary gland carcinomas encompass a broad group of malignant lesions characterized by varied prognoses. Stem cells have been associated with the potential for self-renewal and differentiation to various subpopulations, resulting in histopathological variability and diverse biological behavior, features that characterize salivary gland carcinomas. This study aims to provide a thorough systematic review of immunohistochemical studies regarding the expression and prognostic significance of stem cell markers between different malignant salivary gland tumors (MSGTs). Methods: The English literature was searched via the databases MEDLINE/PubMed, EMBASE via OVID, Web of Science, Scopus, and CINHAL via EBSCO. The Joanna Briggs Institute Critical Appraisal Tool was used for risk of bias (RoB) assessment. Meta-analysis was conducted for markers evaluated in the same pair of diseases in at least two studies. Results: Fifty-four studies reported the expression of stem cell markers, e.g., c-KIT, CD44, CD133, CD24, ALDH1, BMI1, SOX2, OCT4, and NANOG, in various MSGTs. Low, moderate, and high RoB was observed in twenty-five, eleven, and eighteen studies, respectively. Meta-analysis revealed an outstanding discriminative ability of c-KIT for adenoid cystic carcinoma (AdCC) over polymorphous adenocarcinoma [P(LG)A] but did not confirm the prognostic significance of stem cell markers in MSGTs. Conclusions: This study indicated a possible link between stem cells and the histopathological heterogeneity and diverse biological behavior that characterize the MSGTs. c-KIT might be of diagnostic value in discriminating between AdCC and P(LG)A.
Collapse
Affiliation(s)
| | - Athina Tosiou
- UFR d’Odontologie, Université Paris Cité, 75006 Paris, France;
| | | | - Vasileios L. Zogopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (V.L.Z.); (I.M.)
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (V.L.Z.); (I.M.)
| | | | - Konstantinos I. Tosios
- School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
5
|
Etzi F, Griñán-Lisón C, Fenu G, González-Titos A, Pisano A, Farace C, Sabalic A, Picon-Ruiz M, Marchal JA, Madeddu R. The Role of miR-486-5p on CSCs Phenotypes in Colorectal Cancer. Cancers (Basel) 2024; 16:4237. [PMID: 39766136 PMCID: PMC11674241 DOI: 10.3390/cancers16244237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third diagnosed cancer worldwide. Forty-four percent of metastatic colorectal cancer patients were diagnosed at an early stage. Despite curative resection, approximately 40% of patients will develop metastases within a few years. Previous studies indicate the presence of cancer stem cells (CSCs) and their contribution to CRC progression and metastasis. miRNAs deregulation plays a role in CSCs formation and in tumor development. In light of previous studies, we investigated the role of miR-486-5p to understand its role in CSC better. METHODS The expression of miR-486-5p was assessed in adherent cells and spheres generated from two CRC cell lines to observe the difference in expression in CSC-enriched spheroids. Afterward, we overexpressed and underexpressed this miRNA in adherent and sphere cultures through the transfection of a miR-486-5p mimic and a mimic inhibitor. RESULTS The results demonstrated that miR-486-5p exhibited a notable downregulation in CSC models, and its overexpression led to a significant decrease in colony size. CONCLUSIONS In this study, we confirmed that miR-486-5p plays an oncosuppressive role in CRC, thereby advancing our understanding of the role of this microRNA in the CSC phenotype.
Collapse
Affiliation(s)
- Federica Etzi
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Carmen Griñán-Lisón
- Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (A.G.-T.); (M.P.-R.); (J.A.M.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
| | - Grazia Fenu
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Aitor González-Titos
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (A.G.-T.); (M.P.-R.); (J.A.M.)
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Andrea Pisano
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Cristiano Farace
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Angela Sabalic
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Manuel Picon-Ruiz
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (A.G.-T.); (M.P.-R.); (J.A.M.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Juan Antonio Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (A.G.-T.); (M.P.-R.); (J.A.M.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Roberto Madeddu
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| |
Collapse
|
6
|
Masciale V, Banchelli F, Grisendi G, Samarelli AV, Raineri G, Rossi T, Zanoni M, Cortesi M, Bandini S, Ulivi P, Martinelli G, Stella F, Dominici M, Aramini B. The molecular features of lung cancer stem cells in dedifferentiation process-driven epigenetic alterations. J Biol Chem 2024; 300:107994. [PMID: 39547513 PMCID: PMC11714729 DOI: 10.1016/j.jbc.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer stem cells (CSCs) may be dedifferentiated somatic cells following oncogenic processes, representing a subpopulation of cells able to promote tumor growth with their capacities for proliferation and self-renewal, inducing lineage heterogeneity, which may be a main cause of resistance to therapies. It has been shown that the "less differentiated process" may have an impact on tumor plasticity, particularly when non-CSCs may dedifferentiate and become CSC-like. Bidirectional interconversion between CSCs and non-CSCs has been reported in other solid tumors, where the inflammatory stroma promotes cell reprogramming by enhancing Wnt signaling through nuclear factor kappa B activation in association with intracellular signaling, which may induce cells' pluripotency, the oncogenic transformation can be considered another important aspect in the acquisition of "new" development programs with oncogenic features. During cell reprogramming, mutations represent an initial step toward dedifferentiation, in which tumor cells switch from a partially or terminally differentiated stage to a less differentiated stage that is mainly manifested by re-entry into the cell cycle, acquisition of a stem cell-like phenotype, and expression of stem cell markers. This phenomenon typically shows up as a change in the form, function, and pattern of gene and protein expression, and more specifically, in CSCs. This review would highlight the main epigenetic alterations, major signaling pathways and driver mutations in which CSCs, in tumors and specifically, in lung cancer, could be involved, acting as key elements in the differentiation/dedifferentiation process. This would highlight the main molecular mechanisms which need to be considered for more tailored therapies.
Collapse
Affiliation(s)
- Valentina Masciale
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Federico Banchelli
- Department of Statistical Sciences "Paolo Fortunati", Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Franco Stella
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy; Division of Oncology, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy.
| |
Collapse
|
7
|
Yoon SH, Lee S, Kim HS, Song J, Baek M, Ryu S, Lee HB, Moon HG, Noh DY, Jon S, Han W. NSDHL contributes to breast cancer stem-like cell maintenance and tumor-initiating capacity through TGF-β/Smad signaling pathway in MCF-7 tumor spheroid. BMC Cancer 2024; 24:1370. [PMID: 39516821 PMCID: PMC11549796 DOI: 10.1186/s12885-024-13143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND NAD(P)-dependent steroid dehydrogenase-like protein (NSDHL), which is involved in breast tumor growth and metastasis, has been implicated in the maintenance of cancer stem cells. However, its role in regulating breast cancer stem-like cells (BCSCs) remains unclear. We have previously reported the clinical significance of NSDHL in patients with estrogen receptor-positive (ER +) breast cancer. This study aimed to elucidate the molecular mechanisms by which NSDHL regulates the capacity of BCSCs in the ER + human breast cancer cell line, MCF-7. METHODS NSDHL knockdown suppressed tumor spheroid formation in MCF-7 human breast cancer cells grown on ultralow-attachment plates. RNA sequencing revealed that NSDHL knockdown induced widespread transcriptional changes in the MCF-7 spheroids. TGF-β signaling pathway was the most significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (fold change ≥ 2, P ≤ 0.05) identified in NSDHL-knockdown MCF-7 spheroids compared with the control. In orthotopic tumor models injected with NSDHL-knockdown MCF-7 spheroids, tumor initiation and growth were strongly suppressed compared with those in the control. RESULTS BCSC populations with CD44+/CD24- and CD49f+/EpCAM + phenotypes and high ALDH activity were decreased in NSDHL-knockdown MCF-7 spheroids and xenograft tumors relative to controls, along with decreased secretion of TGF-β1 and 3, phosphorylation of Smad2/3, and expression of SOX2. In RNA-sequencing data from The (TCGA) database, a positive correlation between the expression of NSDHL and SOX2 was found in luminal-type breast cancer specimens (n = 998). Our findings revealed that NSDHL plays an important role in maintaining the BCSC population and tumor-initiating capacity of ER-positive MCF-7 spheroids, suggesting that NSDHL is an attractive therapeutic target for eliminating BCSCs, thus preventing breast cancer initiation and progression. CONCLUSIONS Our findings suggest that NSDHL regulates the BCSC/tumor-initiating cell population in MCF-7 spheroids and xenograft tumors.
Collapse
Affiliation(s)
- So-Hyun Yoon
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Sangeun Lee
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Hoe Suk Kim
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Junhyuk Song
- Center for Precision Bio-Nanomedicine, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Moonjou Baek
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Seungyeon Ryu
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Hyeong-Gon Moon
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Dong-Young Noh
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Sangyong Jon
- Center for Precision Bio-Nanomedicine, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wonshik Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea.
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea.
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
8
|
Almarza C, Villalobos-Nova K, Toro MA, González M, Niechi I, Brown-Brown DA, López-Muñoz RA, Silva-Pavez E, Gaete-Ramírez B, Varas-Godoy M, Burzio VA, Jara L, Aguayo F, Tapia JC. Cisplatin-resistance and aggressiveness are enhanced by a highly stable endothelin-converting enzyme-1c in lung cancer cells. Biol Res 2024; 57:74. [PMID: 39443981 PMCID: PMC11515556 DOI: 10.1186/s40659-024-00551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Lung cancer constitutes the leading cause of cancer mortality. High levels of endothelin-1 (ET-1), its cognate receptor ETAR and its activating enzyme, the endothelin-converting enzyme-1 (ECE-1), have been reported in several cancer types, including lung cancer. ECE-1 comprises four isoforms, which only differ in their cytoplasmic N-terminus. Protein kinase CK2 phosphorylates the N-terminus of isoform ECE-1c, increasing its stability and leading to enhanced invasiveness in glioblastoma and colorectal cancer cells, which is believed to be mediated by the amino acid residue Lys-6, a conserved putative ubiquitination site neighboring the CK2-phosphorylated residues Ser-18 and Ser-20. Whether Lys-6 is linked to the acquisition of a cancer stem cell (CSC)-like phenotype and aggressiveness in human non-small cell lung cancer (NSCLC) cells has not been studied. METHODS In order to establish the role of Lys-6 in the stability of ECE-1c and its involvement in lung cancer aggressiveness, we mutated this residue to a non-ubiquitinable arginine and constitutively expressed the wild-type (ECE-1cWT) and mutant (ECE-1cK6R) proteins in A549 and H1299 human NSCLC cells by lentiviral transduction. We determined the protein stability of these clones alone or in the presence of the CK2 inhibitor silmitasertib, compared to ECE-1cWT and mock-transduced cells. In addition, the concentration of secreted ET-1 in the growth media was determined by ELISA. Expression of stemness genes were determined by Western blot and RT-qPCR. Chemoresistance to cisplatin was studied by MTS viability assay. Migration and invasion were measured through transwell and Matrigel assays, respectively, and the side-population was determined using flow cytometry. RESULTS ECE-1cK6R displayed higher stability in NSCLC cells compared to ECE-1cWT-expressing cells, but ET-1 secreted levels showed no difference up to 48 h. Most importantly, ECE-1cK6R promoted expression of the stemness genes c-Myc, Sox-2, Oct-4, CD44 and CD133, which enhance cellular self-renewal capability. Also, the ECE-1cK6R-expressing cells showed higher cisplatin chemoresistance, correlating with an augmented side-population abundance due to the increased expression of the ABCG2 efflux pump. Finally, the ECE-1cK6R-expressing cells showed enhanced invasiveness, which correlated with the regulated expression of known EMT markers. CONCLUSIONS Our findings suggest an important role of ECE-1c in lung cancer. ECE-1c is key in a non-canonical ET-1-independent mechanism which triggers a CSC-like phenotype, leading to enhanced lung cancer aggressiveness. Underlying this mechanism, ECE-1c is stabilized upon phosphorylation by CK2, which is upregulated in many cancers. Thus, phospho-ECE-1c may be considered as a novel prognostic biomarker of recurrence, as well as the CK2 inhibitor silmitasertib as a potential therapy for lung cancer patients.
Collapse
Affiliation(s)
- Cristopher Almarza
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Karla Villalobos-Nova
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María A Toro
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Manuel González
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ignacio Niechi
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - David A Brown-Brown
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Rodrigo A López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Eduardo Silva-Pavez
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Belén Gaete-Ramírez
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Manuel Varas-Godoy
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Verónica A Burzio
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Lilian Jara
- Programa de Genética, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Francisco Aguayo
- Departamento de Biomedicina, Facultad de Medicina, Universidad de Tarapacá, Arica, Chile
| | - Julio C Tapia
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Laboratorio de Transformación Celular, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Santiago, 8380453, Chile.
| |
Collapse
|
9
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
10
|
Saravanan M, Singh Carmelin D, Mohanprasanth A, Arockiaraj J. Comment on "Oral microbiome and risk of incident head and neck cancer: A nested case-control study". Oral Oncol 2024; 156:106911. [PMID: 38943868 DOI: 10.1016/j.oraloncology.2024.106911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 07/01/2024]
Affiliation(s)
- Muthupandian Saravanan
- AMR & Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India.
| | - Durai Singh Carmelin
- AMR & Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Aruchamy Mohanprasanth
- AMR & Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
11
|
Saravanan M, Carmelin DS, Mohanprasanth A, Arockiaraj J. Comment on "Oral microbiome and risk of incident head and neck cancer: A nested case-control study". Oral Oncol 2024; 154:106858. [PMID: 38820887 DOI: 10.1016/j.oraloncology.2024.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/18/2024] [Indexed: 06/02/2024]
Affiliation(s)
- Muthupandian Saravanan
- AMR & Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India.
| | - Durai Singh Carmelin
- AMR & Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Aruchamy Mohanprasanth
- AMR & Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
12
|
Pérez-Moreno P, Riquelme I, Bizama C, Vergara-Gómez L, Tapia JC, Brebi P, García P, Roa JC. LINC00662 Promotes Aggressive Traits by Modulating OCT4 Expression through miR-335-5p in Gallbladder Cancer Cells. Int J Mol Sci 2024; 25:6740. [PMID: 38928444 PMCID: PMC11204134 DOI: 10.3390/ijms25126740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are nucleotide sequences that participate in different biological processes and are associated with different pathologies, including cancer. Long intergenic non-protein-coding RNA 662 (LINC00662) has been reported to be involved in different cancers, including colorectal, prostate, and breast cancer. However, its role in gallbladder cancer has not yet been described. In this article, we hypothesize that LINC00662 has an important role in the acquisition of aggressiveness traits such as a stem-like phenotype, invasion, and chemoresistance in gallbladder cancer. Here, we show that LINC00662 is associated with larger tumor size and lymph node metastasis in patients with gallbladder cancer. Furthermore, we show that the overexpression of LINC00662 promotes an increase in CD133+/CD44+ cell populations and the expression of stemness-associated genes. LINC00662 promotes greater invasive capacity and the expression of genes associated with epithelial-mesenchymal transition. In addition, the expression of LINC00662 promotes resistance to cisplatin and 5-fluorouracil, associated with increased expression of chemoresistance-related ATP-binding cassette (ABC) transporters in gallbladder cancer (GBC) cell lines. Finally, we show that the mechanism by which LINC00662 exerts its function is through a decrease in microRNA 335-5p (miR-335-5p) and an increase in octamer-binding transcription factor 4 (OCT4) in GBC cells. Thus, our data allow us to propose LINC00662 as a biomarker of poor prognosis and a potential therapeutic target for patients with GBC.
Collapse
Affiliation(s)
- Pablo Pérez-Moreno
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile;
| | - Ismael Riquelme
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Temuco 4810101, Chile;
| | - Carolina Bizama
- Millenium Institute on Immunology and Immunotherapy (IMII), Centro de Prevención y Control de Cancer (CECAN), Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380000, Chile; (C.B.); (P.G.)
| | - Luis Vergara-Gómez
- Centre of Excellence in Translational Medicine (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Biomedicine and Translational Research Lab, Universidad de la Frontera, Temuco 4810296, Chile;
| | - Julio C. Tapia
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Priscilla Brebi
- Laboratory of Integrative Biology (LIBi), Millennium Institute on Immunology and Immunotherapy (MIII), Center for Excellence in Translational Medicine—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile;
| | - Patricia García
- Millenium Institute on Immunology and Immunotherapy (IMII), Centro de Prevención y Control de Cancer (CECAN), Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380000, Chile; (C.B.); (P.G.)
| | - Juan Carlos Roa
- Millenium Institute on Immunology and Immunotherapy (IMII), Centro de Prevención y Control de Cancer (CECAN), Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380000, Chile; (C.B.); (P.G.)
| |
Collapse
|
13
|
Li K, Li H, He A, Zhang G, Jin Y, Cai J, Ye C, Qi L, Liu Y. Deciphering the role of transcription factors in glioblastoma cancer stem cells. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1245-1255. [PMID: 38716541 PMCID: PMC11543521 DOI: 10.3724/abbs.2024061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/07/2024] [Indexed: 10/17/2024] Open
Abstract
Glioblastoma (GBM), the most aggressive and fatal brain malignancy, is largely driven by a subset of tumor cells known as cancer stem cells (CSCs). CSCs possess stem cell-like properties, including self-renewal, proliferation, and differentiation, making them pivotal for tumor initiation, invasion, metastasis, and overall tumor progression. The regulation of CSCs is primarily controlled by transcription factors (TFs) which regulate the expressions of genes involved in maintaining stemness and directing differentiation. This review aims to provide a comprehensive overview of the role of TFs in regulating CSCs in GBM. The discussion encompasses the definitions of CSCs and TFs, the significance of glioma stem cells (GSCs) in GBM, and how TFs regulate GSC self-renewal, proliferation, differentiation, and transformation. The potential for developing TF-targeted GSC therapies is also explored, along with future research directions. By understanding the regulation of GSCs by TFs, we may uncover novel diagnostic and therapeutic strategies against this devastating disease of GBM.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery & Medical Research
CenterShunde HospitalSouthern Medical University (The First People’s
Hospital of Shunde Foshan)Foshan528300China
- Department of NeurosurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Haichao Li
- Institute of Digestive DiseaseAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Aonan He
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Gengqiang Zhang
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Yuyao Jin
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Junbin Cai
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Chenle Ye
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Ling Qi
- Institute of Digestive DiseaseAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Yawei Liu
- Department of Neurosurgery & Medical Research
CenterShunde HospitalSouthern Medical University (The First People’s
Hospital of Shunde Foshan)Foshan528300China
| |
Collapse
|
14
|
Sandhya S, Talukdar J, Gogoi G, Dey KS, Das B, Baishya D. Impact of coconut kernel extract on carcinogen-induced skin cancer model: Oxidative stress, C-MYC proto-oncogene and tumor formation. Heliyon 2024; 10:e29385. [PMID: 38665592 PMCID: PMC11043960 DOI: 10.1016/j.heliyon.2024.e29385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed at analysing the effects of coconut (Cocos nucifera L.) kernel extract (CKE) on oxidative stress, C-MYC proto-oncogene, and tumour formation in a skin cancer model. Tumorigenesis was induced by dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA). In vitro antioxidant activity of CKE was assessed using 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2), total phenolic and flavonoid content assays. CKE showed a higher antioxidant activity then ascorbic acid (*P < 0.05, ****P < 0.0001). HPLC and NMR study of the CKE revealed the presence of lauric acid (LA). Following the characterization of CKE, mice were randomly assigned to receive DMBA/TPA Induction and CKE treatment at different doses (50, 100, and 200 mg/kg) of body weight. LA 100 mg/kg of body weight used as standard. Significantly, the CKE200 and control groups' mice did not develop tumors; however, the CKE100 and CKE50 treated groups did develop tumors less frequently than the DMBA/TPA-treated mice. Histopathological analysis revealed that the epidermal layer in DMBA-induced mice was thicker and had squamous pearls along with a hyperplasia/dysplasia lesion, indicating skin squamous cell carcinoma (SCC), whereas the epidermal layers in CKE200-treated and control mice were normal. Additionally, the CKE treatment demonstrated a significant stimulatory effect on the activities of reactive oxygen species (ROS), glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD), as well as an inhibitory effect on lipid peroxidase (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001) and c-MYC protein expression (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). In conclusion, CKE prevents the growth of tumors on mouse skin by reducing oxidative stress and suppressing c-MYC overexpression brought on by DMBA/TPA induction. This makes it an effective dietary antioxidant with anti-tumor properties.
Collapse
Affiliation(s)
- Sorra Sandhya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Indian Institute of Technology-Guwahati Research Park, Assam, India
| | - Joyeeta Talukdar
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Indian Institute of Technology-Guwahati Research Park, Assam, India
| | - Gayatri Gogoi
- Department of Pathology, Assam Medical College and Hospital (AMCH), Assam, India
| | | | - Bikul Das
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Indian Institute of Technology-Guwahati Research Park, Assam, India
- Department of Stem Cell and Infection, Thoreau Lab for Global Health, University of Massachusetts, Lowell, MA, USA
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
15
|
Fatma H, Siddique HR. Cancer cell plasticity, stem cell factors, and therapy resistance: how are they linked? Cancer Metastasis Rev 2024; 43:423-440. [PMID: 37796391 DOI: 10.1007/s10555-023-10144-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Cellular plasticity can occur naturally in an organism and is considered an adapting mechanism during the developmental stage. However, abnormal cellular plasticity is observed in different diseased conditions, including cancer. Cancer cell plasticity triggers the stimuli of epithelial-mesenchymal transition (EMT), abnormal epigenetic changes, expression of stem cell factors and implicated signaling pathways, etc., and helps in the maintenance of CSC phenotype. Conversely, CSC maintains the cancer cell plasticity, EMT, and epigenetic plasticity. EMT contributes to increased cell migration and greater diversity within tumors, while epigenetic changes, stem cell factors (OCT4, NANOG, and SOX2), and various signaling pathways allow cancer cells to maintain various phenotypes, giving rise to intra- and inter-tumoral heterogeneity. The intricate relationships between cancer cell plasticity and stem cell factors help the tumor cells adopt drug-tolerant states, evade senescence, and successfully acquire drug resistance with treatment dismissal. Inhibiting molecules/signaling pathways involved in promoting CSCs, cellular plasticity, EMT, and epigenetic plasticity might be helpful for successful cancer therapy management. This review discussed the role of cellular plasticity, EMT, and stem cell factors in tumor initiation, progression, reprogramming, and therapy resistance. Finally, we discussed how the intervention in this axis will help better manage cancers and improve patient survivability.
Collapse
Affiliation(s)
- Homa Fatma
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, UP, 202002, India.
| |
Collapse
|
16
|
BharathwajChetty B, Sajeev A, Vishwa R, Aswani BS, Alqahtani MS, Abbas M, Kunnumakkara AB. Dynamic interplay of nuclear receptors in tumor cell plasticity and drug resistance: Shifting gears in malignant transformations and applications in cancer therapeutics. Cancer Metastasis Rev 2024; 43:321-362. [PMID: 38517618 DOI: 10.1007/s10555-024-10171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/19/2024] [Indexed: 03/24/2024]
Abstract
Recent advances have brought forth the complex interplay between tumor cell plasticity and its consequential impact on drug resistance and tumor recurrence, both of which are critical determinants of neoplastic progression and therapeutic efficacy. Various forms of tumor cell plasticity, instrumental in facilitating neoplastic cells to develop drug resistance, include epithelial-mesenchymal transition (EMT) alternatively termed epithelial-mesenchymal plasticity, the acquisition of cancer stem cell (CSC) attributes, and transdifferentiation into diverse cell lineages. Nuclear receptors (NRs) are a superfamily of transcription factors (TFs) that play an essential role in regulating a multitude of cellular processes, including cell proliferation, differentiation, and apoptosis. NRs have been implicated to play a critical role in modulating gene expression associated with tumor cell plasticity and drug resistance. This review aims to provide a comprehensive overview of the current understanding of how NRs regulate these key aspects of cancer biology. We discuss the diverse mechanisms through which NRs influence tumor cell plasticity, including EMT, stemness, and metastasis. Further, we explore the intricate relationship between NRs and drug resistance, highlighting the impact of NR signaling on chemotherapy, radiotherapy and targeted therapies. We also discuss the emerging therapeutic strategies targeting NRs to overcome tumor cell plasticity and drug resistance. This review also provides valuable insights into the current clinical trials that involve agonists or antagonists of NRs modulating various aspects of tumor cell plasticity, thereby delineating the potential of NRs as therapeutic targets for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
17
|
Neagu AN, Whitham D, Bruno P, Arshad A, Seymour L, Morrissiey H, Hukovic AI, Darie CC. Onco-Breastomics: An Eco-Evo-Devo Holistic Approach. Int J Mol Sci 2024; 25:1628. [PMID: 38338903 PMCID: PMC10855488 DOI: 10.3390/ijms25031628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Known as a diverse collection of neoplastic diseases, breast cancer (BC) can be hyperbolically characterized as a dynamic pseudo-organ, a living organism able to build a complex, open, hierarchically organized, self-sustainable, and self-renewable tumor system, a population, a species, a local community, a biocenosis, or an evolving dynamical ecosystem (i.e., immune or metabolic ecosystem) that emphasizes both developmental continuity and spatio-temporal change. Moreover, a cancer cell community, also known as an oncobiota, has been described as non-sexually reproducing species, as well as a migratory or invasive species that expresses intelligent behavior, or an endangered or parasite species that fights to survive, to optimize its features inside the host's ecosystem, or that is able to exploit or to disrupt its host circadian cycle for improving the own proliferation and spreading. BC tumorigenesis has also been compared with the early embryo and placenta development that may suggest new strategies for research and therapy. Furthermore, BC has also been characterized as an environmental disease or as an ecological disorder. Many mechanisms of cancer progression have been explained by principles of ecology, developmental biology, and evolutionary paradigms. Many authors have discussed ecological, developmental, and evolutionary strategies for more successful anti-cancer therapies, or for understanding the ecological, developmental, and evolutionary bases of BC exploitable vulnerabilities. Herein, we used the integrated framework of three well known ecological theories: the Bronfenbrenner's theory of human development, the Vannote's River Continuum Concept (RCC), and the Ecological Evolutionary Developmental Biology (Eco-Evo-Devo) theory, to explain and understand several eco-evo-devo-based principles that govern BC progression. Multi-omics fields, taken together as onco-breastomics, offer better opportunities to integrate, analyze, and interpret large amounts of complex heterogeneous data, such as various and big-omics data obtained by multiple investigative modalities, for understanding the eco-evo-devo-based principles that drive BC progression and treatment. These integrative eco-evo-devo theories can help clinicians better diagnose and treat BC, for example, by using non-invasive biomarkers in liquid-biopsies that have emerged from integrated omics-based data that accurately reflect the biomolecular landscape of the primary tumor in order to avoid mutilating preventive surgery, like bilateral mastectomy. From the perspective of preventive, personalized, and participatory medicine, these hypotheses may help patients to think about this disease as a process governed by natural rules, to understand the possible causes of the disease, and to gain control on their own health.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Aneeta Arshad
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Angiolina I. Hukovic
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| |
Collapse
|
18
|
Ni T, Chu Z, Tao L, Zhao Y, Lv M, Zhu M, Luo Y, Sunagawa M, Wang H, Liu Y. Celastrus orbiculatus extract suppresses gastric cancer stem cells through the TGF-β/Smad signaling pathway. J Nat Med 2024; 78:100-113. [PMID: 37817006 DOI: 10.1007/s11418-023-01748-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023]
Abstract
Cancer stem cells (CSCs) are the primary source of tumor recurrence and chemoresistance, which complicates tumor treatment and has a significant impact on poor patient prognosis. Therefore, the discovery of inhibitors that specifically target CSCs is warranted. Previous research has established that the TGF-β/Smad signaling pathway is critical for the maintenance of CSCs phenotype, thus facilitating CSCs transformation. In this regard, Celastrus orbiculatus ethyl acetate extract (COE) was shown to exert anticancer properties; however, its therapeutic impact on gastric cancer stem cells (GCSCs) remains unknown. We here demonstrate that COE displayed a strong inhibitory effect on GCSCs growth and CSCs markers. Moreover, COE was shown to efficiently inhibit the development of tumor spheres and accelerate GCSCs apoptosis. Mechanistically, we established that COE could suppress the stemness phenotype of GCSCs by inhibiting the activity of the TGF-β/Smad signaling pathway. To summarize, our data indicate that COE suppresses the malignant biological phenotype of GCSCs via the TGF-β/Smad signaling pathway. These findings shed new light on the anticancer properties of COE and suggest new strategies for the development of efficient GCSCs therapeutics.
Collapse
Affiliation(s)
- Tengyang Ni
- TCM Department, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 136, Jiangyang Middle Road, Yangzhou, 225001, Jiangsu, People's Republic of China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Zewen Chu
- TCM Department, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 136, Jiangyang Middle Road, Yangzhou, 225001, Jiangsu, People's Republic of China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Li Tao
- Department of Pharmacy, College of Medicine, Yangzhou University, Yangzhou, 225001, Jiangsu, People's Republic of China
| | - Yang Zhao
- Department of Pharmacy, College of Medicine, Yangzhou University, Yangzhou, 225001, Jiangsu, People's Republic of China
| | - Mengying Lv
- Department of Pharmacy, College of Medicine, Yangzhou University, Yangzhou, 225001, Jiangsu, People's Republic of China
| | - Miao Zhu
- TCM Department, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 136, Jiangyang Middle Road, Yangzhou, 225001, Jiangsu, People's Republic of China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Yuanyuan Luo
- TCM Department, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 136, Jiangyang Middle Road, Yangzhou, 225001, Jiangsu, People's Republic of China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Tokyo, 142, Japan
| | - Haibo Wang
- TCM Department, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 136, Jiangyang Middle Road, Yangzhou, 225001, Jiangsu, People's Republic of China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China.
| | - Yanqing Liu
- TCM Department, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 136, Jiangyang Middle Road, Yangzhou, 225001, Jiangsu, People's Republic of China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China.
| |
Collapse
|
19
|
Basu B, Kal S, Karmakar S, Basu M, Ghosh MK. E3 ubiquitin ligases in lung cancer: Emerging insights and therapeutic opportunities. Life Sci 2024; 336:122333. [PMID: 38061537 DOI: 10.1016/j.lfs.2023.122333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
Aim In this review, we have attempted to provide the readers with an updated account of the role of a family of proteins known as E3 ligases in different aspects of lung cancer progression, along with insights into the deregulation of expression of these proteins during lung cancer. A detailed account of the therapeutic strategies involving E3 ligases that have been developed or currently under development has also been provided in this review. MATERIALS AND METHODS: The review article employs extensive literature search, along with differential gene expression analysis of lung cancer associated E3 ligases using the DESeq2 package in R, and the Gene Expression Profiling Interactive Analysis (GEPIA) database (http://gepia.cancer-pku.cn/). Protein expression analysis of CPTAC lung cancer samples was carried out using the UALCAN webtool (https://ualcan.path.uab.edu/index.html). Assessment of patient overall survival (OS) in response to high and low expression of selected E3 ligases was performed using the online Kaplan-Meier plotter (https://kmplot.com/analysis/index.php?p=background). KEY FINDINGS: SIGNIFICANCE: The review provides an in-depth understanding of the role of E3 ligases in lung cancer progression and an up-to-date account of the different therapeutic strategies targeting oncogenic E3 ligases for improved lung cancer management.
Collapse
Affiliation(s)
- Bhaskar Basu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Satadeepa Kal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas, PIN -743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
20
|
Chorawala MR, Postwala H, Prajapati BG, Shah Y, Shah A, Pandya A, Kothari N. Impact of the microbiome on colorectal cancer development. COLORECTAL CANCER 2024:29-72. [DOI: 10.1016/b978-0-443-13870-6.00021-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Soleimani A, Saeedi N, Al-Asady AM, Nazari E, Hanaie R, Khazaei M, Ghorbani E, Akbarzade H, Ryzhikov M, Avan A, Mehr SMH. Colorectal Cancer Stem Cell Biomarkers: Biological Traits and Prognostic Insights. Curr Pharm Des 2024; 30:1386-1397. [PMID: 38623972 DOI: 10.2174/0113816128291321240329050945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024]
Abstract
Due to self-renewal, differentiation, and limitless proliferation properties, Cancer Stem Cells (CSCs) increase the probability of tumor development. These cells are identified by using CSC markers, which are highly expressed proteins on the cell surface of CSCs. Recently, the therapeutic application of CSCs as novel biomarkers improved both the prognosis and diagnosis outcome of colorectal Cancer. In the present review, we focused on a specific panel of colorectal CSC markers, including LGR5, ALDH, CD166, CD133, and CD44, which offers a targeted and comprehensive analysis of their functions. The selection criteria for these markers cancer were based on their established significance in Colorectal Cancer (CRC) pathogenesis and clinical outcomes, providing novel insights into the CSC biology of CRC. Through this approach, we aim to elevate understanding and stimulate further research for developing effective diagnostic and therapeutic strategies in CRC.
Collapse
Affiliation(s)
- Atena Soleimani
- Department of Biochemistry, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Nikoo Saeedi
- Medical School, Islamic Azad University, Mashhad, Iran
| | | | - Elnaz Nazari
- Department of Physiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Reyhane Hanaie
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Microbiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Hamed Akbarzade
- Department of Biochemistry, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Mikhail Ryzhikov
- Department of Biochemistry, Saint Louis University, St. Louis, MO 63103, USA
| | - Amir Avan
- Department of Genetics, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | | |
Collapse
|
22
|
Pronoy TUH, Islam F, Gopalan V, Lam AKY. Surface Markers for the Identification of Cancer Stem Cells. Methods Mol Biol 2024; 2777:51-69. [PMID: 38478335 DOI: 10.1007/978-1-0716-3730-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Cancer stem cells have genetic and functional characteristics which can turn them resistant to standard cancer therapeutic targets. Identification of these cells is challenging and is done mainly by detecting the expression of antigens specific to stem cells. Currently, there is a significant number of surface markers available which can detect cancer stem cells by directly targeting the specific antigens present in cells. These markers possess differential expression patterns and sub-localizations in cancer stem cells compared to nonneoplastic and somatic cells. In addition to these biomarkers, multiple analytical methods and techniques, including functional assays, cell sorting, filtration approaches, and xenotransplantation methods, are used to identify cancer stem cells. This chapter will overview the functional significance of cancer stem cells, their biological correlations, specific markers, and detection methods.
Collapse
Affiliation(s)
- Tasfik Ul Haque Pronoy
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
23
|
Wierzbicka A, Pawlina-Tyszko K, Świątkiewicz M, Szmatoła T, Oczkowicz M. Changes in miRNA expression in the lungs of pigs supplemented with different levels and forms of vitamin D. Mol Biol Rep 2023; 51:8. [PMID: 38085380 PMCID: PMC10716066 DOI: 10.1007/s11033-023-08940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Vitamin D is an immunomodulator, and its effects have been linked to many diseases, including the pathogenesis of cancer. However, the effect of vitamin D supplementation on the regulation of gene expression of the lungs is not fully understood. This study aims to determine the effect of the increased dose of cholecalciferol and a combination of cholecalciferol + calcidiol, as well as the replacement of cholecalciferol with calcidiol, on the miRNA profile of healthy swine lungs. METHODS AND RESULTS The swine were long-term (88 days) supplemented with a standard dose (2000IU/kg) of cholecalciferol and calcidiol, the increased dose (3000 IU/kg) of cholecalciferol, and the cholecalciferol + calcidiol combination: grower: 3000 IU/Kg of vitamin D (67% of cholecalciferol and 33% of calcidiol), finisher 2500 IU/Kg of vitamin D (60% of cholecalciferol and 40% of calcidiol). Swine lung tissue was used for Next Generation Sequencing (NGS) of miRNA. Long-term supplementation with the cholecalciferol + calcidiol combination caused significant changes in the miRNA profile. They embraced altered levels of the expression of miR-150, miR-193, miR-145, miR-574, miR-340, miR-381, miR-148 and miR-96 (q-value < 0.05). In contrast, raising the dose of cholecalciferol only changed the expression of miR-215, and the total replacement of cholecalciferol with calcidiol did not significantly affect the miRNAome profile. CONCLUSIONS The functional analysis of differentially expressed miRNAs suggests that the use of the increased dose of the cholecalciferol + calcidiol combination may affect tumorigenesis processes through, inter alia, modulation of gene regulation of the TGF- β pathway and pathways related to metabolism and synthesis of glycan.
Collapse
Affiliation(s)
- Alicja Wierzbicka
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
| | - Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
| | - Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Kraków, Rędzina 1c, Kraków, 30 248, Poland
| | - Maria Oczkowicz
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland.
| |
Collapse
|
24
|
Jiang X, Dong L, Wang S, Wen Z, Chen M, Xu L, Xiao G, Li Q. Reconstructing Spatial Transcriptomics at the Single-cell Resolution with BayesDeep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570715. [PMID: 38106214 PMCID: PMC10723442 DOI: 10.1101/2023.12.07.570715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Spatially resolved transcriptomics (SRT) techniques have revolutionized the characterization of molecular profiles while preserving spatial and morphological context. However, most next-generation sequencing-based SRT techniques are limited to measuring gene expression in a confined array of spots, capturing only a fraction of the spatial domain. Typically, these spots encompass gene expression from a few to hundreds of cells, underscoring a critical need for more detailed, single-cell resolution SRT data to enhance our understanding of biological functions within the tissue context. Addressing this challenge, we introduce BayesDeep, a novel Bayesian hierarchical model that leverages cellular morphological data from histology images, commonly paired with SRT data, to reconstruct SRT data at the single-cell resolution. BayesDeep effectively model count data from SRT studies via a negative binomial regression model. This model incorporates explanatory variables such as cell types and nuclei-shape information for each cell extracted from the paired histology image. A feature selection scheme is integrated to examine the association between the morphological and molecular profiles, thereby improving the model robustness. We applied BayesDeep to two real SRT datasets, successfully demonstrating its capability to reconstruct SRT data at the single-cell resolution. This advancement not only yields new biological insights but also significantly enhances various downstream analyses, such as pseudotime and cell-cell communication.
Collapse
Affiliation(s)
- Xi Jiang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
- Department of Statistics and Data Science, Southern Methodist University, Dallas, Texas, U.S.A
| | - Lei Dong
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Shidan Wang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Zhuoyu Wen
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Mingyi Chen
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Qiwei Li
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, Texas, U.S.A
| |
Collapse
|
25
|
Yoshizumi A, Kuboki S, Takayashiki T, Takano S, Takayanagi R, Sonoda I, Ohtsuka M. Tspan15-ADAM10 signalling enhances cancer stem cell-like properties and induces chemoresistance via Notch1 activation in ICC. Liver Int 2023; 43:2275-2291. [PMID: 37545390 DOI: 10.1111/liv.15691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND & AIMS Notch1 activation promotes ICC progression and is associated with chemoresistance; however, therapies directly targeting Notch1 showed severe adverse effects. Notch1 activation is mediated by ADAM10, a molecular scissor that separates the target protein from its substrates in the cell membrane. Tspan15 regulates ADAM10 function, but the role of Tspan15 in ICC progression is unclear. METHODS Tspan15, ADAM10, and Notch1 expression and activation in fresh surgical specimens from 80 ICC patients and ICC cells were evaluated by immunohistochemistry, RT-PCR, western blotting, and flow cytometry. RESULTS Tspan15 expression was increased in ICC compared with adjacent liver tissue, and high Tspan15 expression was an independent factor for poor prognosis. In ICC with high Tspan15 expression, vascular invasion, lymph node metastasis, and haematogenous recurrence were increased. Tspan15 was co-expressed with ADAM10 in ICC, and associated with the expression of stemness and EMT markers. In ICC cells, Tspan15 induced ADAM10 activation by mediating the translocation of activated m-ADAM10 from the cytoplasm to the surface of the cell membrane, which further activated Notch1 by separating the intracellular domain of Notch1 from its extracellular domain, leading to enhancement of CSC-like properties and EMT. This signalling was associated with enhanced chemoresistance against gemcitabine and cisplatin. Inhibition of Tspan15 or ADAM10 is a promising therapeutic strategy in ICC, as Tspan15 or ADAM10 knockdown or treatment with ADAM10 inhibitor reduced chemoresistance and invasiveness by suppressing Notch1-mediated CSC-like properties and EMT. CONCLUSIONS Tspan15-ADAM10-Notch1 signalling is associated with aggressive tumour progression and poor prognosis in ICC.
Collapse
Affiliation(s)
- Arihito Yoshizumi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryosuke Takayanagi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Itaru Sonoda
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
26
|
Avendaño-Felix M, Aguilar-Medina M, Romero-Quintana JG, Ayala-Ham A, Beltran AS, Olivares-Quintero JF, López-Camarillo C, Pérez-Plasencia C, Bermúdez M, Lizárraga-Verdugo E, López-Gutierrez J, Sanchez-Schmitz G, Ramos-Payán R. SOX9 knockout decreases stemness properties in colorectal cancer cells. J Gastrointest Oncol 2023; 14:1735-1745. [PMID: 37720443 PMCID: PMC10502562 DOI: 10.21037/jgo-22-1163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/31/2023] [Indexed: 09/19/2023] Open
Abstract
Background Colorectal cancer (CRC) is a leading cause of death worldwide. SRY-box transcription factor 9 (SOX9) participates in organogenesis and cell differentiation in normal tissues but has been involved in carcinogenesis development. Cancer stem cells (CSCs) are a small population of cells present in solid tumors that contribute to increased tumor heterogeneity, metastasis, chemoresistance, and relapse. CSCs have properties such as self-renewal and differentiation, which can be modulated by many factors. Currently, the role of SOX9 in the maintenance of the stem phenotype has not been well elucidated, thus, in this work we evaluated the effect of the absence of SOX9 in the stem phenotype of CRC cells. Methods We knockout (KO) SOX9 in the undifferentiated CRC cell line HCT116 and evaluated their stemness properties using sphere formation assay, differentiation assay, and immunophenotyping. Results SOX9-KO affected the epithelial morphology of HCT116 cells and stemness characteristics such as its pluripotency signature with the increase of SOX2 as a compensatory mechanism to induce SOX9 expression, the increase of KLF4 as a differentiation feature, as well as the inhibition of the stem cell markers CD44 and CD73. In addition, SOX9-KO cells gain the epithelial-mesenchymal transition (EMT) phenotype with a significant upregulation of CDH2. Furthermore, our results showed a remarkable effect on first- and second-sphere formation, being SOX9-KO cells less capable of forming high-size-resistant spheres. Nevertheless, CSCs surface markers were not affected during the differentiation assay. Conclusions Collectively, our findings supply evidence that SOX9 promotes the maintenance of stemness properties in CRC-CSCs.
Collapse
Affiliation(s)
- Mariana Avendaño-Felix
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacan, Sinaloa, Mexico
| | - Maribel Aguilar-Medina
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacan, Sinaloa, Mexico
| | | | - Alfredo Ayala-Ham
- Faculty of Odontology, Autonomous University of Sinaloa, Culiacan, Sinaloa, Mexico
| | - Adriana S. Beltran
- Human Pluripotent Stem Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | - Mercedes Bermúdez
- Faculty of Dentistry, Autonomous University of Chihuahua, Chihuahua, Mexico
| | - Erik Lizárraga-Verdugo
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacan, Sinaloa, Mexico
| | - Jorge López-Gutierrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacan, Sinaloa, Mexico
| | - Guzman Sanchez-Schmitz
- Boston Children’s Hospital and Harvard Medical School, Harvard University, Boston, MA, USA
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacan, Sinaloa, Mexico
| |
Collapse
|
27
|
Kalogirou EM, Lekakis G, Petroulias A, Chavdoulas K, Zogopoulos VL, Michalopoulos I, Tosios KI. The Stem Cell Expression Profile of Odontogenic Tumors and Cysts: A Systematic Review and Meta-Analysis. Genes (Basel) 2023; 14:1735. [PMID: 37761874 PMCID: PMC10531260 DOI: 10.3390/genes14091735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Stem cells have been associated with self-renewing and plasticity and have been investigated in various odontogenic lesions in association with their pathogenesis and biological behavior. We aim to provide a systematic review of stem cell markers' expression in odontogenic tumors and cysts. METHODS The literature was searched through the MEDLINE/PubMed, EMBASE via OVID, Web of Science, and CINHAL via EBSCO databases for original studies evaluating stem cell markers' expression in different odontogenic tumors/cysts, or an odontogenic disease group and a control group. The studies' risk of bias (RoB) was assessed via a Joanna Briggs Institute Critical Appraisal Tool. Meta-analysis was conducted for markers evaluated in the same pair of odontogenic tumors/cysts in at least two studies. RESULTS 29 studies reported the expression of stem cell markers, e.g., SOX2, OCT4, NANOG, CD44, ALDH1, BMI1, and CD105, in various odontogenic lesions, through immunohistochemistry/immunofluorescence, polymerase chain reaction, flow cytometry, microarrays, and RNA-sequencing. Low, moderate, and high RoBs were observed in seven, nine, and thirteen studies, respectively. Meta-analysis revealed a remarkable discriminative ability of SOX2 for ameloblastic carcinomas or odontogenic keratocysts over ameloblastomas. CONCLUSION Stem cells might be linked to the pathogenesis and clinical behavior of odontogenic pathologies and represent a potential target for future individualized therapies.
Collapse
Affiliation(s)
- Eleni-Marina Kalogirou
- Faculty of Health and Rehabilitation Sciences, Metropolitan College, 10672 Athens, Greece
| | - Georgios Lekakis
- School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (A.P.); (K.C.); (K.I.T.)
| | - Aristodimos Petroulias
- School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (A.P.); (K.C.); (K.I.T.)
| | - Konstantinos Chavdoulas
- School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (A.P.); (K.C.); (K.I.T.)
| | - Vasileios L. Zogopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (V.L.Z.); (I.M.)
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (V.L.Z.); (I.M.)
| | - Konstantinos I. Tosios
- School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.L.); (A.P.); (K.C.); (K.I.T.)
| |
Collapse
|
28
|
Wei Y, Zheng X, Huang T, Zhong Y, Sun S, Wei X, Liu Q, Wang T, Zhao Z. Human embryonic stem cells secrete macrophage migration inhibitory factor: A novel finding. PLoS One 2023; 18:e0288281. [PMID: 37616250 PMCID: PMC10449177 DOI: 10.1371/journal.pone.0288281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/23/2023] [Indexed: 08/26/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is expressed in a variety of cells and participates in important biological mechanisms. However, few studies have reported whether MIF is expressed in human Embryonic stem cells (ESCs) and its effect on human ESCs. Two human ESCs cell lines, H1 and H9 were used. The expression of MIF and its receptors CD74, CD44, CXCR2, CXCR4 and CXCR7 were detected by an immunofluorescence assay, RT-qPCR and western blotting, respectively. The autocrine level of MIF was measured via enzyme-linked immunosorbent assay. The interaction between MIF and its main receptor was investigated by co-immunoprecipitation and confocal immunofluorescence microscopy. Finally, the effect of MIF on the proliferation and survival of human ESCs was preliminarily explored by incubating cells with exogenous MIF, MIF competitive ligand CXCL12 and MIF classic inhibitor ISO-1. We reported that MIF was highly expressed in H1 and H9 human ESCs. MIF was positively expressed in the cytoplasm, cell membrane and culture medium. Several surprising results emerge. The autosecreted concentration of MIF was 22 ng/mL, which was significantly higher than 2 ng/mL-6 ng/mL in normal human serum, and this was independent of cell culture time and cell number. Human ESCs mainly expressed the MIF receptors CXCR2 and CXCR7 rather than the classical receptor CD74. The protein receptor that interacts with MIF on human embryonic stem cells is CXCR7, and no evidence of interaction with CXCR2 was found. We found no evidence that MIF supports the proliferation and survival of human embryonic stem cells. In conclusion, we first found that MIF was highly expressed in human ESCs and at the same time highly expressed in associated receptors, suggesting that MIF mainly acts in an autocrine form in human ESCs.
Collapse
Affiliation(s)
- Yanzhao Wei
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Department of Human Functioning, Department of Health Services, Logistics University of Chinese People’s Armed Police Force, Tianjin, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Xiaohan Zheng
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Ting Huang
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Yuanji Zhong
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Shengtong Sun
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Xufang Wei
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Qibing Liu
- Department of Pharmacy, Hainan Medical University, Hainan, China
| | - Tan Wang
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| | - Zhenqiang Zhao
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Hainan, China
| |
Collapse
|
29
|
Kar S, Niharika, Roy A, Patra SK. Overexpression of SOX2 Gene by Histone Modifications: SOX2 Enhances Human Prostate and Breast Cancer Progression by Prevention of Apoptosis and Enhancing Cell Proliferation. Oncology 2023; 101:591-608. [PMID: 37549026 DOI: 10.1159/000531195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/02/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION SOX2 plays a crucial role in tumor development, cancer stem cell maintenance, and cancer progression. Mechanisms of SOX2 gene regulation in human breast and prostate cancers are not established yet. METHODS SOX2 expression in prostate and breast cancer tissues and cell lines was determined by qRT-PCR, Western blot, and immunochemistry, followed by the investigation of pro-tumorigenic properties like cell proliferation, migration, and apoptosis by gene knockdown and treatment with epigenetic modulators and ChIP. RESULTS Prostate and breast cancer tissues showed very high expression of SOX2. All cancer cell lines DU145 and PC3 (prostate) and MCF7 and MDA-MB-231 (breast) exhibited high expression of SOX2. Inhibition of SOX2 drastically decreased cell proliferation and migration. Epigenetic modulators enhanced SOX2 gene expression in both cancer types. DNA methylation pattern in SOX2 promoter could not be appreciably counted for SOX2 overexpression. Activation of SOX2 gene promoter was due to very high deposition of H3K4me3 and H3K9acS10p and drastic decrease of H3K9me3 and H3K27me3. CONCLUSION Histone modification is crucial for the overexpression of SOX2 during tumor development and cancer progression. These findings show the avenue of co-targeting SOX2 and its active epigenetic modifier enzymes to effectively treat aggressive prostate and breast cancers.
Collapse
Affiliation(s)
- Swayamsiddha Kar
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
30
|
Razi S, Haghparast A, Chodari Khameneh S, Ebrahimi Sadrabadi A, Aziziyan F, Bakhtiyari M, Nabi-Afjadi M, Tarhriz V, Jalili A, Zalpoor H. The role of tumor microenvironment on cancer stem cell fate in solid tumors. Cell Commun Signal 2023; 21:143. [PMID: 37328876 PMCID: PMC10273768 DOI: 10.1186/s12964-023-01129-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/15/2023] [Indexed: 06/18/2023] Open
Abstract
In the last few decades, the role of cancer stem cells in initiating tumors, metastasis, invasion, and resistance to therapies has been recognized as a potential target for tumor therapy. Understanding the mechanisms by which CSCs contribute to cancer progression can help to provide novel therapeutic approaches against solid tumors. In this line, the effects of mechanical forces on CSCs such as epithelial-mesenchymal transition, cellular plasticity, etc., the metabolism pathways of CSCs, players of the tumor microenvironment, and their influence on the regulating of CSCs can lead to cancer progression. This review focused on some of these mechanisms of CSCs, paving the way for a better understanding of their regulatory mechanisms and developing platforms for targeted therapies. While progress has been made in research, more studies will be required in the future to explore more aspects of how CSCs contribute to cancer progression. Video Abstract.
Collapse
Affiliation(s)
- Sara Razi
- Vira Pioneers of Modern Science (VIPOMS), Tehran, Iran
| | | | | | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran
- Cytotech and Bioinformatics Research Group, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vahideh Tarhriz
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box 5163639888, Tabriz, Iran.
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran.
- Parvaz Research Ideas Supporter Institute, Tehran, Iran.
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
31
|
Nairuz T, Mahmud Z, Manik RK, Kabir Y. Cancer stem cells: an insight into the development of metastatic tumors and therapy resistance. Stem Cell Rev Rep 2023:10.1007/s12015-023-10529-x. [PMID: 37129728 DOI: 10.1007/s12015-023-10529-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 05/03/2023]
Abstract
The term "cancer stem cells" (CSCs) refers to cancer cells that exhibit traits parallel to normal stem cells, namely the potential to give rise to every type of cell identified in a tumor microenvironment. It has been found that CSCs usually develops from other neoplastic cells or non-cancerous somatic cells by acquiring stemness and malignant characteristics through particular genetic modifications. A trivial number of CSCs, identified in solid and liquid cancer, can give rise to an entire tumor population with aggressive anticancer drug resistance, metastasis, and invasiveness. Besides, cancer stem cells manipulate their intrinsic and extrinsic features, regulate the metabolic pattern of the cell, adjust efflux-influx efficiency, modulate different signaling pathways, block apoptotic signals, and cause genetic and epigenetic alterations to retain their pluripotency and ability of self-renewal. Notably, to keep the cancer stem cells' ability to become malignant cells, mesenchymal stem cells, tumor-associated fibroblasts, immune cells, etc., interact with one another. Furthermore, CSCs are characterized by the expression of particular molecular markers that carry significant diagnostic and prognostic significance. Because of this, scientific research on CSCs is becoming increasingly imperative, intending to understand the traits and behavior of cancer stem cells and create more potent anticancer therapeutics to fight cancer at the CSC level. In this review, we aimed to elucidate the critical role of CSCs in the onset and spread of cancer and the characteristics of CSCs that promote severe resistance to targeted therapy.
Collapse
Affiliation(s)
- Tahsin Nairuz
- Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Rasel Khan Manik
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
32
|
Babazadeh M, Zamani M, Mehrbod P, Mokarram P. Stemness targeting of colorectal cell lines mediated by BAMLET and 5-Flourouracil. Biochem Biophys Res Commun 2023; 664:136-141. [PMID: 37167706 DOI: 10.1016/j.bbrc.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023]
Abstract
PURPOSE Stemness is the potential for self-renewal and repopulation causing the relapse, progression, and drug resistance of colorectal cancer. We investigated the effects of bovine alpha-lactalbumin made lethal to tumor cells and 5-Flourouracil consisting of bovine α-lactalbumin protein and oleic acid, on colorectal cancer cells on stemness. METHODS The quantitative real-time polymerase chain reaction assessed the expression levels of stemness-related genes (c-myc, Lgr5, OCT4). Expression of stemness-related surface markers (CD44 and CD24) was also measured by the flow cytometry technique following the treatments. RESULTS Our results indicated decreased expression levels of C-Myc, Lgr5, oct4 as the stemness-related genes (P < 0.0001), and reduced population of CD44+ as the stemness-related cell surface marker upon treatment with BAMLET and 5-Flourouracil. BAMLET inhibited the stemness more effectively than 5-Flourouracil (P < 0.0001). CONCLUSION Based on the result, inhibition of the Stemness related-genes (C-Myc, Lgr5, Oct4) and the surface markers (CD 24+ and CD44+) is a promising therapeutic approach using BAMLET.
Collapse
Affiliation(s)
- Marziyeh Babazadeh
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Pooneh Mokarram
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
33
|
Izadpanah MH, Forghanifard MM. TWIST1 Plays Role in Expression of Stemness State Markers in ESCC. Genes (Basel) 2022; 13:genes13122369. [PMID: 36553636 PMCID: PMC9777594 DOI: 10.3390/genes13122369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Stemness markers play critical roles in the maintenance of key properties of embryonic stem cells (ESCs), including the pluripotency, stemness state, and self-renewal capacities, as well as cell fate decision. Some of these features are present in cancer stem cells (CSCs). TWIST1, as a bHLH transcription factor oncogene, is involved in the epithelial-mesenchymal transition (EMT) process in both embryonic and cancer development. Our aim in this study was to investigate the functional correlation between TWIST1 and the involved genes in the process of CSCs self-renewal in human esophageal squamous cell carcinoma (ESCC) line KYSE-30. METHODS TWIST1 overexpression was enforced in the ESCC KYSE-30 cells using retroviral vector containing the specific pruf-IRES-GFP-hTWIST1 sequence. Following RNA extraction and cDNA synthesis, the mRNA expression profile of TWIST1 and the stem cell markers, including BMI1, CRIPTO1, DPPA2, KLF4, SOX2, NANOG, and MSI1, were assessed using relative comparative real-time PCR. RESULTS Ectopic expression of TWIST1 in KYSE-30 cells resulted in an increased expression of TWIST1 compared to control GFP cells by nearly 9-fold. Transduction of TWIST1-retroviral particles caused a significant enhancement in BMI1, CRIPTO1, DPPA2, KLF4, and SOX2 mRNA expression, approximately 4.5-, 3.2-, 5.5-, 3.5-, and 3.7-folds, respectively, whereas this increased TWIST1 expression caused no change in the mRNA expression of NANOG and MSI1 genes. CONCLUSIONS TWIST1 gene ectopic expression in KYSE-30 cells enhanced the level of cancer stem cell markers' mRNA expression. These results may emphasize the role of TWIST1 in the self-renewal process and may corroborate the involvement of TWIST1 in the stemness state capacity of ESCC cell line KYSE-30, as well as its potential as a therapeutic target.
Collapse
Affiliation(s)
- Mohammad Hossein Izadpanah
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad 9196773117, Iran
| | - Mohammad Mahdi Forghanifard
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan 3671637849, Iran
- Correspondence: or ; Tel.: +98-912-711-6027
| |
Collapse
|
34
|
Establishment and characterization of chemotherapy-enriched sphere-forming cells with stemness phenotypes as a new cell line (BAG 50) of gastric carcinoma. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:201. [PMID: 36175578 DOI: 10.1007/s12032-022-01742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/26/2022] [Indexed: 10/14/2022]
Abstract
Gastric cancer is a malignancy with a high mortality rate worldwide. Cancer stem cells (CSCs) are a small subpopulation of tumor cells that possess the tumor-initiating ability, self-renewal capacity, and high resistance to conventional therapies. Due to the diversity and complexity of human tumors, new cell lines are urgently needed to supply clinically and physiologically relevant cancer models. Here, we report establishing a novel cell line (BAG50) with stemness properties. Chemotherapy-enriched sphere-forming cells with CSC properties isolated from a patient with GC were cultured in a serum-containing medium and passaged for up to 51 passages. The colony-forming ability and tumor-forming capacity of BAG50 cells were evaluated in vitro and in vivo. mRNA upregulation of stemness-related transcriptional factors using real-time PCR as well as expression of CSC markers using flow cytometry was investigated. Finally, STR profiling and chromosome studies were performed. BAG50 cells formed floating spheroid colonies in a serum-free medium. Subcutaneous injection of these cells generated xenograft tumors in nude mice. Pluripotency markers (SOX-2, OCT4, and Cripto-1) in them were upregulated compared with normal gastric cells. The majority of them expressed CSC markers of CD44, CD54, and EpCAM, and stemness marker of oct-4. STR profiling showed a unique DNA fingerprint. Karyotype also demonstrated multiple aneuploidies and chromosomal translocations. We suggested that the highly tumorigenic BAG50 cell line with stem cell-like phenotypes may provide a valuable in vitro tool to support new diagnostic, prognostic, and predictive biomarkers as well as the development of more effective treatment strategies.
Collapse
|
35
|
Firdous S, Ghosh A, Saha S. BCSCdb: a database of biomarkers of cancer stem cells. Database (Oxford) 2022; 2022:6725752. [PMID: 36169329 PMCID: PMC9517164 DOI: 10.1093/database/baac082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/06/2022] [Accepted: 09/02/2022] [Indexed: 06/14/2023]
Abstract
Cancer stem cells (CSCs) are a small heterogeneous population present within the tumor cells exhibiting self-renewal properties. CSCs have been demonstrated to elicit an important role in cancer recurrence, metastasis and drug resistance. CSCs are distinguished from cancer cell populations based on their molecular profiling or expression of distinct CSC biomarker(s). Recently, a huge amount of omics data have been generated for the characterization of CSCs, which enables distinguishing CSCs in different cancers. Here, we report biomarkers of the Cancer Stem Cells database (BCSCdb), a repository of information about CSC biomarkers. BCSCdb comprises CSC biomarkers collected from PubMed literature where these are identified using high-throughput and low-throughput methods. Each biomarker is provided with two different scores: the first is a confidence score to give confidence to reported CSC biomarkers based on the experimental method of detection in CSCs. The second is the global score to identify the global CSC biomarkers across 10 different types of cancer. This database contains three tables containing information about experimentally validated CSC biomarkers or genes, therapeutic target genes of CSCs and CSC biomarkers interactions. It contains information on three types of markers: high-throughput marker (HTM-8307), high-throughput marker validated by the low-throughput method (283) and low-throughput marker (LTM-525). A total of 171 low-throughput biomarkers were identified in primary tissue referred to as clinical biomarkers. Moreover, it contains 445 target genes for CSC therapeutics, 10 biomarkers targeted by clinical trial drugs in CSCs and 5 different types of interaction data for CSC biomarkers. BCSCdb is an online resource for CSC biomarkers, which will be immensely helpful in the cancer research community and is freely available. Database URL: http://dibresources.jcbose.ac.in/ssaha4/bcscdb.
Collapse
Affiliation(s)
- Shazia Firdous
- Division of Bioinformatics, Bose Institute, Unified Campus Salt Lake, College More, EN Block, Sector V, Kolkata, West Bengal 700091, India
| | - Abhirupa Ghosh
- Division of Bioinformatics, Bose Institute, Unified Campus Salt Lake, College More, EN Block, Sector V, Kolkata, West Bengal 700091, India
| | | |
Collapse
|
36
|
Barguilla I, Domenech J, Ballesteros S, Rubio L, Marcos R, Hernández A. Long-term exposure to nanoplastics alters molecular and functional traits related to the carcinogenic process. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129470. [PMID: 35785738 DOI: 10.1016/j.jhazmat.2022.129470] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Micro/nanoplastics (MNPLs) are considered emergent pollutants widely spread over all environmental compartments. Although their potential biological effects are being intensively evaluated, many doubts remain about their potential health effects in humans. One of the most underdeveloped fields is the determination of the potential tumorigenic risk of MNPLs exposure. To shed light on this topic, we have designed a wide battery of different hallmarks of cancer applied to prone-to-transformed progress MEF cells exposed to polystyrene nanoplastics (PSNPLs) in the long term (6 months). Interestingly, most of the evaluated hallmarks of cancer are exacerbated after exposure, independently if they are associated with an early tumoral phenotype (changes in stress-related genes, or microRNA deregulation), advanced tumoral phenotype (growing independently of anchorage ability, and migration capacity), or an aggressive tumoral phenotype (invasion potential, changes in pluripotency markers, and ability to grow to form tumorspheres). This set of obtained data constitutes a relevant warning on the potential carcinogenic risk associated with long-term exposures to MNPLs, specifically that induced by the PSNPLs evaluated in this study.
Collapse
Affiliation(s)
- Irene Barguilla
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Josefa Domenech
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Sandra Ballesteros
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Laura Rubio
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Santiago de los Caballeros, Dominican Republic
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
37
|
El Baba R, Pasquereau S, Haidar Ahmad S, Diab-Assaf M, Herbein G. Oncogenic and Stemness Signatures of the High-Risk HCMV Strains in Breast Cancer Progression. Cancers (Basel) 2022; 14:cancers14174271. [PMID: 36077806 PMCID: PMC9455011 DOI: 10.3390/cancers14174271] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Lately, human cytomegalovirus (HCMV) has been progressively implicated in carcinogenesis alongside its oncomodulatory impact. CMV-Transformed Human mammary epithelial cells (CTH) phenotype might be defined by giant cell cycling, whereby the generation of polyploid giant cancer cells (PGCCs) could expedite the acquisition of malignant phenotypes. Herein, the main study objectives were to assess the transformation potential in vitro and evaluate the obtained cellular phenotype, the genetic and molecular features, and the activation of cellular stemness programs of HCMV strains, B544 and B693, which were previously isolated from triple-negative breast cancer (TNBC) biopsies. The strains’ sensitivity to paclitaxel and ganciclovir combination therapy was evaluated. A unique molecular landscape was unveiled in the tumor microenvironment of TNBC harboring high-risk HCMV. Overall, the explicit oncogenic and stemness signatures highlight HCMV potential in breast cancer progression thus paving the way for targeted therapies and clinical interventions which prolong the overall survival of breast cancer patients. Abstract Background: Human cytomegalovirus (HCMV) oncomodulation, molecular mechanisms, and ability to support polyploid giant cancer cells (PGCCs) generation might underscore its contribution to oncogenesis, especially breast cancers. The heterogeneity of strains can be linked to distinct properties influencing the virus-transforming potential, cancer types induced, and patient’s clinical outcomes. Methods: We evaluated the transforming potential in vitro and assessed the acquired cellular phenotype, genetic and molecular features, and stimulation of stemness of HCMV strains, B544 and B693, isolated from EZH2HighMycHigh triple-negative breast cancer (TNBC) biopsies. Therapeutic response assessment after paclitaxel (PTX) and ganciclovir (GCV) treatment was conducted in addition to the molecular characterization of the tumor microenvironment (TME). Findings: HCMV-B544 and B693 transformed human mammary epithelial cells (HMECs). We detected multinucleated and lipid droplet-filled PGCCs harboring HCMV. Colony formation was detected and Myc was overexpressed in CMV-Transformed-HMECs (CTH cells). CTH-B544 and B693 stimulated stemness and established an epithelial/mesenchymal hybrid state. HCMV-IE1 was detected in CTH long-term cultures indicating a sustained viral replication. Biopsy B693 unveiled a tumor signature predicting a poor prognosis. CTH-B544 cells were shown to be more sensitive to PTX/GCV therapy. Conclusion: The oncogenic and stemness signatures of HCMV strains accentuate the oncogenic potential of HCMV in breast cancer progression thereby leading the way for targeted therapies and innovative clinical interventions that will improve the overall survival of breast cancer patients.
Collapse
Affiliation(s)
- Ranim El Baba
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 25030 Besançon, France
| | - Sébastien Pasquereau
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 25030 Besançon, France
| | - Sandy Haidar Ahmad
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 25030 Besançon, France
| | - Mona Diab-Assaf
- Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beirut 1500, Lebanon
| | - Georges Herbein
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 25030 Besançon, France
- Department of Virology, CHU Besançon, 25030 Besançon, France
- Correspondence: ; Tel.: +33-381-665-616; Fax: +33-381-665-695
| |
Collapse
|
38
|
Hao P, Zhang J, Fang S, Jia M, Xian X, Yan S, Wang Y, Ren Q, Yue F, Cui H. Lipocalin-2 inhibits pancreatic cancer stemness via the AKT/c-Jun pathway. Hum Cell 2022; 35:1475-1486. [PMID: 35792978 DOI: 10.1007/s13577-022-00735-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/10/2022] [Indexed: 12/17/2022]
Abstract
Cancer stem cells (CSCs) are involved in cancer recurrence and metastasis owing to their self-renewal properties and drug-resistance capacity. Lipocalin-2 (Lcn2) of the lipocalin superfamily is highly expressed in pancreatic cancer. Nevertheless, reports on the involvement of Lcn2 in the regulation of pancreatic CSC properties are scant. This study is purposed to investigate whether Lcn2 plays a crucial role in CSC renewal and stemness maintenance in pancreatic carcinoma. Immunohistochemistry results of tumor tissue chips together with Gene Expression Omnibus sequencing files confirmed that Lcn2 is highly expressed in pancreatic carcinoma compared with that in normal tissues. The exogenous expression of Lcn2 attenuated CSC-associated SOX2, CD44, and EpCAM expression and suppressed sarcosphere formation and tumorigenesis in the pancreatic carcinoma cell line PANC-1, which showed low expression of Lcn2. However, Lcn2 knockout in BxPC-3 cell line, which presented high Lcn2 expression, promoted CSC stemness, further enhancing sarcosphere formation and tumorigenesis. Moreover, Lcn2 was found to regulate stemness in pancreatic cancer depending on the activation of AKT and c-Jun. Lcn2 suppresses stemness properties in pancreatic carcinoma by activating the AKT-c-Jun pathway, and thus, it may be a novel candidate to suppress the stemness of pancreatic cancer. This study provides a new insight into disease progression.
Collapse
Affiliation(s)
- Peipei Hao
- Department of Human Anatomy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China
| | - Jiamin Zhang
- Department of Human Anatomy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China
| | - Shu Fang
- Department of Human Anatomy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China
| | - Miaomiao Jia
- Department of Human Anatomy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China
| | - Xian Xian
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sinan Yan
- Department of Otorhinolaryngology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yunpeng Wang
- Department of General Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qian Ren
- Department of Human Anatomy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China
| | - Fengming Yue
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China.
- Department of Histology and Embryology, Shinshu University School of Medicine, Matsumoto, Nagano, 390-0312, Japan.
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China.
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, Hebei, China.
| |
Collapse
|
39
|
Li LJ, Li CH, Chang PMH, Lai TC, Yong CY, Feng SW, Hsiao M, Chang WM, Huang CYF. Dehydroepiandrosterone (DHEA) Sensitizes Irinotecan to Suppress Head and Neck Cancer Stem-Like Cells by Downregulation of WNT Signaling. Front Oncol 2022; 12:775541. [PMID: 35912234 PMCID: PMC9328800 DOI: 10.3389/fonc.2022.775541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Current treatment options for head and neck squamous cell carcinoma (HNSCC) are limited, especially for cases with cancer stem cell-induced chemoresistance and recurrence. The WNT signaling pathway contributes to maintenance of stemness via translocation of β-catenin into the nucleus, and represents a promising druggable target in HNSCC. Dehydroepiandrosterone (DHEA), a steroid hormone, has potential as an anticancer drug. However, the potential anticancer mechanisms of DHEA including inhibition of stemness, and its therapeutic applications in HNSCC remain unclear. Methods Firstly, SRB assay and sphere formation assay were used to examine cellular viability and cancer stem cell-like phenotype, respectively. The expressions of stemness related factors were measured by RT-qPCR and western blotting. The luciferase reporter assay was applied to evaluate transcriptional potential of stemness related pathways. The alternations of WNT signaling pathway were measured by nuclear translocation of β-catenin, RT-qPCR and western blotting. Furthermore, to investigate the effect of drugs in vivo, both HNSCC orthotopic and subcutaneous xenograft mouse models were applied. Results We found that DHEA reduced HNSCC cell viability, suppressed sphere formation, and inhibited the expression of cancer-stemness markers, such as BMI-1 and Nestin. Moreover, DHEA repressed the transcriptional activity of stemness-related pathways. In the WNT pathway, DHEA reduced the nuclear translocation of the active form of β-catenin and reduced the protein expression of the downstream targets, CCND1 and CD44. Furthermore, when combined with the chemotherapeutic drug, irinotecan (IRN), DHEA enhanced the sensitivity of HNSCC cells to IRN as revealed by reduced cell viability, sphere formation, expression of stemness markers, and activation of the WNT pathway. Additionally, this combination reduced in vivo tumor growth in both orthotopic and subcutaneous xenograft mouse models. Conclusion These findings indicate that DHEA has anti-stemness potential in HNSCC and serves as a promising anticancer agent. The combination of DHEA and IRN may provide a potential therapeutic strategy for patients with advanced HNSCC.
Collapse
Affiliation(s)
- Li-Jie Li
- Ph.D. Program in School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Peter Mu-Hsin Chang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsung-Ching Lai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chen-Yin Yong
- Division of Oral and Maxillofacial Surgery, Department of Dentistry Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Wei Feng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Prosthodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Chi-Ying F. Huang, ; Wei-Min Chang,
| | - Chi-Ying F. Huang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Chi-Ying F. Huang, ; Wei-Min Chang,
| |
Collapse
|
40
|
The synergistic anticancer effect of salinomycin combined with cabazitaxel in CD44+ prostate cancer cells by downregulating wnt, NF-κB and AKT signaling. Mol Biol Rep 2022; 49:4873-4884. [PMID: 35705771 DOI: 10.1007/s11033-022-07343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Tumor-initiating or cancer stem cells (CSCs) reduce the effectiveness of conventional therapy. Thus, it is crucial to eliminate CSCs while killing bulky cancer cells using a combination of conventional chemotherapy and anti-CSC drugs. Salinomycin is a selective inhibitor against CSCs and shows promise in combination applications. The aim of the study was to examine the efficacy of co-administered cabazitaxel and salinomycin on the survival of prostate cancer cells and CSCs. METHODS AND RESULTS CD44 + stem cells were isolated from human PC3 prostate cancer cells by using magnetic activated cell sorting. The cells were concomitantly exposed to salinomycin and cabazitaxel, and the cell survival was determined by MTT test. Apoptosis was assessed by image-based cytometer, and cell migration was evaluated by wound healing assay. The expression of target mRNA and protein were assessed by RT-qPCR and Western blot, respectively. Combination index (CI) analysis showed that simultaneous administration of salinomycin and cabazitaxel was able to exert strong synergistic effect on CD44 + subpopulation (CI = 0.33), but no synergism was observed in PC3 cells. The combination of the two agents significantly increased Bax, cytochrome c, caspase-3 and - 8 mRNA expression in CD44 + CSCs, causing apoptosis. The applied therapy strategy strongly inhibited the phosphorylation of Akt, protein expression of Akt1, NF-κB and Wnt. CONCLUSIONS In conclusion, our data suggest that combining salinomycin with cabazitaxel shows promise as a prostate cancer treatment approach that can target CSCs.
Collapse
|
41
|
Abou Khouzam R, Zaarour RF, Brodaczewska K, Azakir B, Venkatesh GH, Thiery J, Terry S, Chouaib S. The Effect of Hypoxia and Hypoxia-Associated Pathways in the Regulation of Antitumor Response: Friends or Foes? Front Immunol 2022; 13:828875. [PMID: 35211123 PMCID: PMC8861358 DOI: 10.3389/fimmu.2022.828875] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Hypoxia is an environmental stressor that is instigated by low oxygen availability. It fuels the progression of solid tumors by driving tumor plasticity, heterogeneity, stemness and genomic instability. Hypoxia metabolically reprograms the tumor microenvironment (TME), adding insult to injury to the acidic, nutrient deprived and poorly vascularized conditions that act to dampen immune cell function. Through its impact on key cancer hallmarks and by creating a physical barrier conducive to tumor survival, hypoxia modulates tumor cell escape from the mounted immune response. The tumor cell-immune cell crosstalk in the context of a hypoxic TME tips the balance towards a cold and immunosuppressed microenvironment that is resistant to immune checkpoint inhibitors (ICI). Nonetheless, evidence is emerging that could make hypoxia an asset for improving response to ICI. Tackling the tumor immune contexture has taken on an in silico, digitalized approach with an increasing number of studies applying bioinformatics to deconvolute the cellular and non-cellular elements of the TME. Such approaches have additionally been combined with signature-based proxies of hypoxia to further dissect the turbulent hypoxia-immune relationship. In this review we will be highlighting the mechanisms by which hypoxia impacts immune cell functions and how that could translate to predicting response to immunotherapy in an era of machine learning and computational biology.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Rania Faouzi Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Bilal Azakir
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Goutham Hassan Venkatesh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Jerome Thiery
- INSERM U1186, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Faculty of Medicine, University Paris Sud, Le Kremlin Bicêtre, France
| | - Stéphane Terry
- INSERM U1186, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Faculty of Medicine, University Paris Sud, Le Kremlin Bicêtre, France.,Research Department, Inovarion, Paris, France
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates.,INSERM U1186, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
42
|
Zhou H, Liu Z, Wang Y, Wen X, Amador EH, Yuan L, Ran X, Xiong L, Ran Y, Chen W, Wen Y. Colorectal liver metastasis: molecular mechanism and interventional therapy. Signal Transduct Target Ther 2022; 7:70. [PMID: 35246503 PMCID: PMC8897452 DOI: 10.1038/s41392-022-00922-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring malignancy tumors with a high morbidity additionally, CRC patients may develop liver metastasis, which is the major cause of death. Despite significant advances in diagnostic and therapeutic techniques, the survival rate of colorectal liver metastasis (CRLM) patients remains very low. CRLM, as a complex cascade reaction process involving multiple factors and procedures, has complex and diverse molecular mechanisms. In this review, we summarize the mechanisms/pathophysiology, diagnosis, treatment of CRLM. We also focus on an overview of the recent advances in understanding the molecular basis of CRLM with a special emphasis on tumor microenvironment and promise of newer targeted therapies for CRLM, further improving the prognosis of CRLM patients.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Zhongtao Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Yongxiang Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xiaoyong Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Eric H Amador
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA
| | - Liqin Yuan
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xin Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Chen
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA.
- Medical Technology Research Centre, Chelmsford Campus, Anglia Ruskin University, Chelmsford, CM1 1SQ, UK.
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| |
Collapse
|
43
|
Yarmishyn AA, Ishola AA, Chen CY, Verusingam ND, Rengganaten V, Mustapha HA, Chuang HK, Teng YC, Phung VL, Hsu PK, Lin WC, Ma HI, Chiou SH, Wang ML. Circular RNAs Modulate Cancer Hallmark and Molecular Pathways to Support Cancer Progression and Metastasis. Cancers (Basel) 2022; 14:cancers14040862. [PMID: 35205610 PMCID: PMC8869994 DOI: 10.3390/cancers14040862] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Circular RNAs (circRNA) are a type of RNA molecule of circular shape that are now being extensively studied due to the important roles they play in different biological processes. In addition, they were also shown to be implicated in disease such as cancer. Cancer is a complex process which is often defined by a combination of specific processes called cancer hallmarks. In this review, we summarize the literature on circRNAs in cancer and classify them as being implicated in specific cancer hallmarks. Abstract Circular RNAs (circRNAs) are noncoding products of backsplicing of pre-mRNAs which have been established to possess potent biological functions. Dysregulated circRNA expression has been linked to diseases including different types of cancer. Cancer progression is known to result from the dysregulation of several molecular mechanisms responsible for the maintenance of cellular and tissue homeostasis. The dysregulation of these processes is defined as cancer hallmarks, and the molecular pathways implicated in them are regarded as the targets of therapeutic interference. In this review, we summarize the literature on the investigation of circRNAs implicated in cancer hallmark molecular signaling. First, we present general information on the properties of circRNAs, such as their biogenesis and degradation mechanisms, as well as their basic molecular functions. Subsequently, we summarize the roles of circRNAs in the framework of each cancer hallmark and finally discuss the potential as therapeutic targets.
Collapse
Affiliation(s)
- Aliaksandr A. Yarmishyn
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (A.A.Y.); (A.A.I.); (C.-Y.C.); (N.D.V.); (V.R.); (H.A.M.); (H.-K.C.); (Y.-C.T.); (V.L.P.); (S.-H.C.)
| | - Afeez Adekunle Ishola
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (A.A.Y.); (A.A.I.); (C.-Y.C.); (N.D.V.); (V.R.); (H.A.M.); (H.-K.C.); (Y.-C.T.); (V.L.P.); (S.-H.C.)
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112, Taiwan
| | - Chieh-Yu Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (A.A.Y.); (A.A.I.); (C.-Y.C.); (N.D.V.); (V.R.); (H.A.M.); (H.-K.C.); (Y.-C.T.); (V.L.P.); (S.-H.C.)
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112, Taiwan
| | - Nalini Devi Verusingam
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (A.A.Y.); (A.A.I.); (C.-Y.C.); (N.D.V.); (V.R.); (H.A.M.); (H.-K.C.); (Y.-C.T.); (V.L.P.); (S.-H.C.)
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Vimalan Rengganaten
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (A.A.Y.); (A.A.I.); (C.-Y.C.); (N.D.V.); (V.R.); (H.A.M.); (H.-K.C.); (Y.-C.T.); (V.L.P.); (S.-H.C.)
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Postgraduate Programme, Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Habeebat Aderonke Mustapha
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (A.A.Y.); (A.A.I.); (C.-Y.C.); (N.D.V.); (V.R.); (H.A.M.); (H.-K.C.); (Y.-C.T.); (V.L.P.); (S.-H.C.)
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Hao-Kai Chuang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (A.A.Y.); (A.A.I.); (C.-Y.C.); (N.D.V.); (V.R.); (H.A.M.); (H.-K.C.); (Y.-C.T.); (V.L.P.); (S.-H.C.)
| | - Yuan-Chi Teng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (A.A.Y.); (A.A.I.); (C.-Y.C.); (N.D.V.); (V.R.); (H.A.M.); (H.-K.C.); (Y.-C.T.); (V.L.P.); (S.-H.C.)
| | - Van Long Phung
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (A.A.Y.); (A.A.I.); (C.-Y.C.); (N.D.V.); (V.R.); (H.A.M.); (H.-K.C.); (Y.-C.T.); (V.L.P.); (S.-H.C.)
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Po-Kuei Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wen-Chang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
| | - Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (A.A.Y.); (A.A.I.); (C.-Y.C.); (N.D.V.); (V.R.); (H.A.M.); (H.-K.C.); (Y.-C.T.); (V.L.P.); (S.-H.C.)
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Genomic Research Center, Academia Sinica, Taipei 112, Taiwan
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (A.A.Y.); (A.A.I.); (C.-Y.C.); (N.D.V.); (V.R.); (H.A.M.); (H.-K.C.); (Y.-C.T.); (V.L.P.); (S.-H.C.)
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: ; Tel.: +886-2-5568-1156; Fax: +886-2-2875-7435
| |
Collapse
|
44
|
Borriello L, Coste A, Traub B, Sharma VP, Karagiannis GS, Lin Y, Wang Y, Ye X, Duran CL, Chen X, Friedman M, Sosa MS, Sun D, Dalla E, Singh DK, Oktay MH, Aguirre-Ghiso JA, Condeelis JS, Entenberg D. Primary tumor associated macrophages activate programs of invasion and dormancy in disseminating tumor cells. Nat Commun 2022; 13:626. [PMID: 35110548 PMCID: PMC8811052 DOI: 10.1038/s41467-022-28076-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
Metastases are initiated by disseminated tumor cells (DTCs) that colonize distant organs. Growing evidence suggests that the microenvironment of the primary tumor primes DTCs for dormant or proliferative fates. However, the manner in which this occurs remains poorly understood. Here, using the Window for High-Resolution Intravital Imaging of the Lung (WHRIL), we study the live lung longitudinally and follow the fate of individual DTCs that spontaneously disseminate from orthotopic breast tumors. We find that spontaneously DTCs have increased levels of retention, increased speed of extravasation, and greater survival after extravasation, compared to experimentally metastasized tumor cells. Detailed analysis reveals that a subset of macrophages within the primary tumor induces a pro-dissemination and pro-dormancy DTC phenotype. Our work provides insight into how specific primary tumor microenvironments prime a subpopulation of cells for expression of proteins associated with dissemination and dormancy.
Collapse
Affiliation(s)
- Lucia Borriello
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Anouchka Coste
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Brian Traub
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Ved P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - George S Karagiannis
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Yu Lin
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Xianjun Ye
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Camille L Duran
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Xiaoming Chen
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Madeline Friedman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Maria Soledad Sosa
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Sun
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Erica Dalla
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deepak K Singh
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Julio A Aguirre-Ghiso
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
45
|
Li MM, Yuan J, Guan XY, Ma NF, Liu M. Molecular subclassification of gastrointestinal cancers based on cancer stem cell traits. Exp Hematol Oncol 2021; 10:53. [PMID: 34774101 PMCID: PMC8590337 DOI: 10.1186/s40164-021-00246-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022] Open
Abstract
Human gastrointestinal malignancies are highly heterogeneous cancers. Clinically, heterogeneity largely contributes to tumor progression and resistance to therapy. Heterogeneity within gastrointestinal cancers is defined by molecular subtypes in genomic and transcriptomic analyses. Cancer stem cells (CSCs) have been demonstrated to be a major source of tumor heterogeneity; therefore, assessing tumor heterogeneity by CSC trait-guided classification of gastrointestinal cancers is essential for the development of effective therapies. CSCs share critical features with embryonic stem cells (ESCs). Molecular investigations have revealed that embryonic genes and developmental signaling pathways regulating the properties of ESCs or cell lineage differentiation are abnormally active and might be oncofetal drivers in certain tumor subtypes. Currently, multiple strategies allow comprehensive identification of tumor subtype-specific oncofetal signatures and evaluation of subtype-specific therapies. In this review, we summarize current knowledge concerning the molecular classification of gastrointestinal malignancies based on CSC features and elucidate their clinical relevance. We also outline strategies for molecular subtype identification and subtype-based therapies. Finally, we explore how clinical implementation of tumor classification by CSC subtype might facilitate the development of more effective personalized therapies for gastrointestinal cancers.
Collapse
Affiliation(s)
- Mei-Mei Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Jun Yuan
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Clinical Oncology, State Key Laboratory of Liver Research, University of Hong Kong, Hong Kong, China
| | - Ning-Fang Ma
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Ming Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China.
| |
Collapse
|
46
|
Pluripotency Stemness and Cancer: More Questions than Answers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:77-100. [PMID: 34725790 DOI: 10.1007/5584_2021_663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Embryonic stem cells and induced pluripotent stem cells provided us with fascinating new knowledge in recent years. Mechanistic insight into intricate regulatory circuitry governing pluripotency stemness and disclosing parallels between pluripotency stemness and cancer instigated numerous studies focusing on roles of pluripotency transcription factors, including Oct4, Sox2, Klf4, Nanog, Sall4 and Tfcp2L1, in cancer. Although generally well substantiated as tumour-promoting factors, oncogenic roles of pluripotency transcription factors and their clinical impacts are revealing themselves as increasingly complex. In certain tumours, both Oct4 and Sox2 behave as genuine oncogenes, and reporter genes driven by composite regulatory elements jointly recognized by both the factors can identify stem-like cells in a proportion of tumours. On the other hand, cancer stem cells seem to be biologically very heterogeneous both among different tumour types and among and even within individual tumours. Pluripotency transcription factors are certainly implicated in cancer stemness, but do not seem to encompass its entire spectrum. Certain cancer stem cells maintain their stemness by biological mechanisms completely different from pluripotency stemness, sometimes even by engaging signalling pathways that promote differentiation of pluripotent stem cells. Moreover, while these signalling pathways may well be antithetical to stemness in pluripotent stem cells, they may cooperate with pluripotency factors in cancer stem cells - a paradigmatic example is provided by the MAPK-AP-1 pathway. Unexpectedly, forced expression of pluripotency transcription factors in cancer cells frequently results in loss of their tumour-initiating ability, their phenotypic reversion and partial epigenetic normalization. Besides the very different signalling contexts operating in pluripotent and cancer stem cells, respectively, the pronounced dose dependency of reprogramming pluripotency factors may also contribute to the frequent loss of tumorigenicity observed in induced pluripotent cancer cells. Finally, contradictory cell-autonomous and non-cell-autonomous effects of various signalling molecules operate during pluripotency (cancer) reprogramming. The effects of pluripotency transcription factors in cancer are thus best explained within the concept of cancer stem cell heterogeneity.
Collapse
|
47
|
Xie D, Pei Q, Li J, Wan X, Ye T. Emerging Role of E2F Family in Cancer Stem Cells. Front Oncol 2021; 11:723137. [PMID: 34476219 PMCID: PMC8406691 DOI: 10.3389/fonc.2021.723137] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
The E2F family of transcription factors (E2Fs) consist of eight genes in mammals. These genes encode ten proteins that are usually classified as transcriptional activators or transcriptional repressors. E2Fs are important for many cellular processes, from their canonical role in cell cycle regulation to other roles in angiogenesis, the DNA damage response and apoptosis. A growing body of evidence demonstrates that cancer stem cells (CSCs) are key players in tumor development, metastasis, drug resistance and recurrence. This review focuses on the role of E2Fs in CSCs and notes that many signals can regulate the activities of E2Fs, which in turn can transcriptionally regulate many different targets to contribute to various biological characteristics of CSCs, such as proliferation, self-renewal, metastasis, and drug resistance. Therefore, E2Fs may be promising biomarkers and therapeutic targets associated with CSCs pathologies. Finally, exploring therapeutic strategies for E2Fs may result in disruption of CSCs, which may prevent tumor growth, metastasis, and drug resistance.
Collapse
Affiliation(s)
- Dan Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Qin Pei
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jingyuan Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Xue Wan
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Ting Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| |
Collapse
|
48
|
Targeting cancer stem cells in medulloblastoma by inhibiting AMBRA1 dual function in autophagy and STAT3 signalling. Acta Neuropathol 2021; 142:537-564. [PMID: 34302498 PMCID: PMC8357694 DOI: 10.1007/s00401-021-02347-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022]
Abstract
Medulloblastoma (MB) is a childhood malignant brain tumour comprising four main subgroups characterized by different genetic alterations and rate of mortality. Among MB subgroups, patients with enhanced levels of the c-MYC oncogene (MBGroup3) have the poorest prognosis. Here we identify a previously unrecognized role of the pro-autophagy factor AMBRA1 in regulating MB. We demonstrate that AMBRA1 expression depends on c-MYC levels and correlates with Group 3 patient poor prognosis; also, knockdown of AMBRA1 reduces MB stem potential, growth and migration of MBGroup3 stem cells. At a molecular level, AMBRA1 mediates these effects by suppressing SOCS3, an inhibitor of STAT3 activation. Importantly, pharmacological inhibition of autophagy profoundly affects both stem and invasion potential of MBGroup3 stem cells, and a combined anti-autophagy and anti-STAT3 approach impacts the MBGroup3 outcome. Taken together, our data support the c-MYC/AMBRA1/STAT3 axis as a strong oncogenic signalling pathway with significance for both patient stratification strategies and targeted treatments of MBGroup3.
Collapse
|
49
|
Hossain SM, Lynch-Sutherland CF, Chatterjee A, Macaulay EC, Eccles MR. Can Immune Suppression and Epigenome Regulation in Placenta Offer Novel Insights into Cancer Immune Evasion and Immunotherapy Resistance? EPIGENOMES 2021; 5:16. [PMID: 34968365 PMCID: PMC8594685 DOI: 10.3390/epigenomes5030016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is the second leading cause of mortality and morbidity in the developed world. Cancer progression involves genetic and epigenetic alterations, accompanied by aggressive changes, such as increased immune evasion, onset of metastasis, and drug resistance. Similar to cancer, DNA hypomethylation, immune suppression, and invasive cell behaviours are also observed in the human placenta. Mechanisms that lead to the acquisition of invasive behaviour, immune evasion, and drug and immunotherapy resistance are presently under intense investigations to improve patient outcomes. Here, we review current knowledge regarding the similarities between immune suppression and epigenome regulation, including the expression of repetitive elements (REs), endogenous retroviruses (ERVs) and transposable elements (TEs) in cells of the placenta and in cancer, which are associated with changes in immune regulation and invasiveness. We explore whether immune suppression and epigenome regulation in placenta offers novel insights into immunotherapy resistance in cancer, and we also discuss the implications and the knowledge gaps relevant to these findings, which are rapidly being accrued in these quite disparate research fields. Finally, we discuss potential linkages between TE, ERV and RE activation and expression, regarding mechanisms of immune regulation in placenta and cancer. A greater understanding of the role of immune suppression and associated epigenome regulation in placenta could help to elucidate some comparable mechanisms operating in cancer, and identify potential new therapeutic targets for treating cancer.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
| | - Chiemi F. Lynch-Sutherland
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Erin C. Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
50
|
Bower JJ, Song L, Bastola P, Hirsch ML. Harnessing the Natural Biology of Adeno-Associated Virus to Enhance the Efficacy of Cancer Gene Therapy. Viruses 2021; 13:v13071205. [PMID: 34201599 PMCID: PMC8309980 DOI: 10.3390/v13071205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
Adeno-associated virus (AAV) was first characterized as small “defective” contaminant particles in a simian adenovirus preparation in 1965. Since then, a recombinant platform of AAV (rAAV) has become one of the leading candidates for gene therapy applications resulting in two FDA-approved treatments for rare monogenic diseases and many more currently in various phases of the pharmaceutical development pipeline. Herein, we summarize rAAV approaches for the treatment of diverse types of cancers and highlight the natural anti-oncogenic effects of wild-type AAV (wtAAV), including interactions with the cellular host machinery, that are of relevance to enhance current treatment strategies for cancer.
Collapse
Affiliation(s)
- Jacquelyn J. Bower
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (L.S.); (P.B.)
- Correspondence: (J.J.B.); (M.L.H.)
| | - Liujiang Song
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (L.S.); (P.B.)
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Prabhakar Bastola
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (L.S.); (P.B.)
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew L. Hirsch
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (L.S.); (P.B.)
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (J.J.B.); (M.L.H.)
| |
Collapse
|