1
|
Yuan M, Yin Z, Wang Z, Xiong Z, Chen P, Yao L, Liu P, Sun M, Shu K, Li L, Jiang Y. Modification of MSCs with aHSCs-targeting peptide pPB for enhanced therapeutic efficacy in liver fibrosis. Biomaterials 2025; 321:123295. [PMID: 40188718 DOI: 10.1016/j.biomaterials.2025.123295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/22/2025] [Accepted: 03/26/2025] [Indexed: 05/04/2025]
Abstract
Mesenchymal stem cells (MSCs) hold significant therapeutic potential for liver fibrosis but face translational challenges due to suboptimal homing efficiency and poor retention at injury sites. Activated hepatic stellate cells (aHSCs), the primary drivers of fibrogenesis, overexpress platelet-derived growth factor receptor-beta (PDGFRB), a validated therapeutic target in liver fibrosis. Here, we engineered pPB peptide-functionalized MSCs (pPB-MSCs) via hydrophobic insertion of DMPE-PEG-pPB (DPP) into the MSC membrane, creating a targeted "MSC-pPB-aHSC" delivery system. Our findings demonstrated that pPB modification preserved MSC viability, differentiation potential, and paracrine functions. pPB-MSCs exhibited higher binding affinity to TGF-β1-activated HSCs in vitro and greater hepatic accumulation in TAA-induced fibrotic mice, as quantified by in vivo imaging. Moreover, pPB-MSCs attenuated collagen deposition, suppressed α-SMA+ HSCs, and restored serum ALT/AST levels to near-normal ranges. Mechanistically, pPB-MSCs promoted hepatocyte regeneration via HGF upregulation, inhibited epithelial-mesenchymal transition through TGF-β/Smad pathway suppression, and polarized macrophages toward an M2 phenotype, reducing pro-inflammatory IL-6/TNF-α while elevating anti-inflammatory IL-10. Overall, our study raised a non-genetic MSC surface engineering strategy that synergizes PDGFRB-targeted homing with multifactorial tissue repair, addressing critical barriers in cell therapy for liver fibrosis. By achieving enhanced spatial delivery without compromising MSC functionality, our approach provides a clinically translatable platform for enhancing regenerative medicine outcomes.
Collapse
Affiliation(s)
- Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Wuhan 430000, China; Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Research Center for Medical Imaging in Hubei Province, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Zhengrong Yin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zheng Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Wuhan 430000, China
| | - Zhiyu Xiong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Wuhan 430000, China
| | - Ping Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Wuhan 430000, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Wuhan 430000, China
| | - Pingji Liu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Wuhan 430000, China
| | - Muhua Sun
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Wuhan 430000, China
| | - Kan Shu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Wuhan 430000, China
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Wuhan 430000, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China.
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Wuhan 430000, China.
| |
Collapse
|
2
|
Andersen C, Jacobsen S, Uvebrant K, Griffin JF, Vonk LA, Walters M, Berg LC, Lundgren-Åkerlund E, Lindegaard C. Integrin α10β1-Selected Mesenchymal Stem Cells Reduce Pain and Cartilage Degradation and Increase Immunomodulation in an Equine Osteoarthritis Model. Cartilage 2025; 16:250-264. [PMID: 37990503 PMCID: PMC12086101 DOI: 10.1177/19476035231209402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/01/2023] [Accepted: 10/07/2023] [Indexed: 11/23/2023] Open
Abstract
ObjectiveIntegrin α10β1-selected mesenchymal stem cells (integrin α10-MSCs) have previously shown potential in treating cartilage damage and osteoarthritis (OA) in vitro and in animal models in vivo. The aim of this study was to further investigate disease-modifying effects of integrin α10-MSCs.DesignOA was surgically induced in 17 horses. Eighteen days after surgery, horses received 2 × 107 integrin α10-MSCs intra-articularly or were left untreated. Lameness and response to carpal flexion was assessed weekly along with synovial fluid (SF) analysis. On day 52 after treatment, horses were euthanized, and carpi were evaluated by computed tomography (CT), MRI, histology, and for macroscopic pathology and integrin α10-MSCs were traced in the joint tissues.ResultsLameness and response to carpal flexion significantly improved over time following integrin α10-MSC treatment. Treated horses had milder macroscopic cartilage pathology and lower cartilage histology scores than the untreated group. Prostaglandin E2 and interleukin-10 increased in the SF after integrin α10-MSC injection. Integrin α10-MSCs were found in SF from treated horses up to day 17 after treatment, and in the articular cartilage and subchondral bone from 5 of 8 treated horses after euthanasia at 52 days after treatment. The integrin α10-MSC injection did not cause joint flare.ConclusionThis study demonstrates that intra-articular (IA) injection of integrin α10-MSCs appears to be safe, alleviate pathological changes in the joint, and improve joint function in an equine post-traumatic osteoarthritis (PTOA) model. The results suggest that integrin α10-MSCs hold promise as a disease-modifying osteoarthritis drug (DMOAD).
Collapse
Affiliation(s)
- Camilla Andersen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
- Xintela AB, Lund, Sweden
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | | | - John F. Griffin
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Marie Walters
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Lise Charlotte Berg
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | | | - Casper Lindegaard
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
3
|
Nagase K, Kuramochi H, Grainger DW, Takahashi H. Functional aligned mesenchymal stem cell sheets fabricated using micropatterned thermo-responsive cell culture surfaces. Mater Today Bio 2025; 32:101657. [PMID: 40166377 PMCID: PMC11957804 DOI: 10.1016/j.mtbio.2025.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are frequently applied for cell transplantation and regenerative therapy because they secrete diverse therapeutic cytokines that prompt immuno-stimulatory and tissue repair processes. Furthermore, cultured MSC sheets exhibit enhanced cytokine secretion compared to their MSC suspensions, and represent a durable, versatile format for tissue engineering as singular, multi-layered, or multi-cell type sandwiched, transplantable constructs. Tissue engineered implants with various cellular orientations have been reported. In this study, patterned, temperature-responsive culture surfaces were used to prepare oriented MSC sheets. Patterned culture surfaces were fabricated by grafting polyacrylamide (PAAm) onto commercial poly(N-isopropylacrylamide) (PNIPAAm)-modified plastic via photopolymerization using a stripe-patterned photomask. Patterned surfaces were characterized using x-ray photoelectron spectroscopy, fluorescently labelled fibronectin and albumin adsorption assays, wetting (contact angle) measurements, atomic force microscopy, and scanning electron microscopy. Striped grafted patterns of PAAm were fabricated on the PNIPAAm-coated culture substrates, and PAAm polymerized within the PNIPAAm overlayer. Cell-aligned MSC sheets were then produced from MSC culture on this patterned surface, secreting higher amounts of therapeutic cytokines (vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor-β) than non-aligned MSC control sheets. In addition, aligned MSC sheets maintained enhanced cell multi-potent differentiation capabilities. New, aligned MSC sheets might exhibit improved functional properties for cell sheet transplant therapies.
Collapse
Affiliation(s)
- Kenichi Nagase
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8553, Japan
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Hasumi Kuramochi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - David W. Grainger
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Health Sciences, Salt Lake City, UT, 84112, USA
| | - Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, 162-8666, Japan
| |
Collapse
|
4
|
Tang S, Zhang Y, Wang P, Tang Q, Liu Y, Lu F, Han M, Zhou M, Hu Q, Feng M, Liang D. NKG2D-CAR-targeted iPSC-derived MSCs efficiently target solid tumors expressing NKG2D ligand. iScience 2025; 28:112343. [PMID: 40276759 PMCID: PMC12020857 DOI: 10.1016/j.isci.2025.112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/28/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Mesenchymal stem cells (MSCs) hold potential in cancer therapy; however, insufficient tumor homing ability and heterogeneity limit their therapeutic benefits. Obviously, the homogeneous induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) with enhanced ability of tumor targeting could be the solution. In this study, a CAR containing the NKG2D extracellular domain was targeted at the B2M locus of iPSCs to generate NKG2D-CAR-iPSCs, which were subsequently differentiated into NKG2D-CAR-iMSCs. In vitro, NKG2D-CAR significantly enhanced migration and adhesion of iMSCs to a variety of solid tumor cells expressing NKG2D ligands. RNA sequencing (RNA-seq) revealed significant upregulation of genes related to cell adhesion, migration, and binding in NKG2D-CAR-iMSCs. In A549 xenograft model, NKG2D-CAR-iMSCs demonstrated a 57% improvement in tumor-homing ability compared with iMSCs. In conclusion, our findings demonstrate enhanced targeting specificity of NKG2D-CAR-iMSCs to tumor cells expressing NKG2D ligands in vitro and in vivo, facilitating future investigation of iMSCs as an off-the-shelf living carrier for targeted delivery of anti-tumor agents.
Collapse
Affiliation(s)
- Shuqing Tang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Yusang Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Peiyun Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Qiyu Tang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Yating Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Fan Lu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Mengting Han
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Miaojin Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Qian Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Mai Feng
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha 410078, China
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| |
Collapse
|
5
|
Hetta HF, Elsaghir A, Sijercic VC, Ahmed AK, Gad SA, Zeleke MS, Alanazi FE, Ramadan YN. Clinical Progress in Mesenchymal Stem Cell Therapy: A Focus on Rheumatic Diseases. Immun Inflamm Dis 2025; 13:e70189. [PMID: 40353645 PMCID: PMC12067559 DOI: 10.1002/iid3.70189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/10/2024] [Accepted: 03/21/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Rheumatic diseases are chronic immune-mediated disorders affecting multiple organ systems and significantly impairing patients' quality of life. Current treatments primarily provide symptomatic relief without offering a cure. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic option due to their ability to differentiate into various cell types and their immunomodulatory, anti-inflammatory, and regenerative properties. This review aims to summarize the clinical progress of MSC therapy in rheumatic diseases, highlight key findings from preclinical and clinical studies, and discuss challenges and future directions. METHODOLOGY A comprehensive review of preclinical and clinical studies on MSC therapy in rheumatic diseases, including systemic lupus erythematosus, rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, osteoporosis, Sjögren's syndrome, Crohn's disease, fibromyalgia, systemic sclerosis, dermatomyositis, and polymyositis, was conducted. Emerging strategies to enhance MSC efficacy and overcome current limitations were also analyzed. RESULTS AND DISCUSSION Evidence from preclinical and clinical studies suggests that MSC therapy can reduce inflammation, modulate immune responses, and promote tissue repair in various rheumatic diseases. Clinical trials have demonstrated potential benefits, including symptom relief and disease progression delay. However, challenges such as variability in treatment response, optimal cell source and dosing, long-term safety concerns, and regulatory hurdles remain significant barriers to clinical translation. Standardized protocols and further research are required to optimize MSC application. CONCLUSION MSC therapy holds promise for managing rheumatic diseases, offering potential disease-modifying effects beyond conventional treatments. However, large-scale, well-controlled clinical trials are essential to establish efficacy, safety, and long-term therapeutic potential. Addressing current limitations through optimized treatment protocols and regulatory frameworks will be key to its successful integration into clinical practice.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of PharmacyUniversity of TabukTabukSaudi Arabia
| | - Alaa Elsaghir
- Department of Microbiology and Immunology, Faculty of PharmacyAssiut UniversityAssiutEgypt
| | | | - Abdulrahman K. Ahmed
- Emergency Medicine Unit, Department of Anaethesia and Intensive Care, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Sayed A. Gad
- Emergency Medicine Unit, Department of Anaethesia and Intensive Care, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Mahlet S. Zeleke
- Menelik II Medical and Health Science CollegeAddis AbabaEthiopia
| | - Fawaz E. Alanazi
- Department of Pharmacology and Toxicology, Faculty of PharmacyUniversity of TabukTabukSaudi Arabia
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of PharmacyAssiut UniversityAssiutEgypt
| |
Collapse
|
6
|
Bai X, Liu T, Li C, Qiu C, Ge X, Gou H, Cai H, Yang L, Wei S, Yang W, Li T. PD-L1 and ICAM1 over expression empowers immunoregulation of mesenchymal stromal cells to improve the autoimmune hepatitis treatment efficacy. Stem Cell Res Ther 2025; 16:209. [PMID: 40275361 PMCID: PMC12023376 DOI: 10.1186/s13287-025-04347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Autoimmune hepatitis (AIH) is an immune-mediated disease for which there is no effective treatment. Mesenchymal stromal cells (MSCs) have become a promising treatment, but low AIH treatment efficacy has hampered the clinical application of MSCs. METHODS By using Good Manufacturing Practices, we generated mesenchymal stromal cells with enhanced immunomodulation by over-expressing PD-L1 and ICAM1 (PI-MSCs). PI-MSCs biological characteristics were established, a tertiary cell bank created, and safety of PI-MSCs determined. Finally, the efficacy of PI-MSCs for treatment of AIH was evaluated. RESULTS PI-MSCs preserved MSCs identity, with a normal karyotype, stable genome, and no tumorigenicity. The long-term safe dose was up to 5.0 × 107 cells/kg. PI-MSCs showed better therapeutic effect than conventional MSCs for treating AIH in a mouse model. Notably, PI-MSCs showed better homing to injured liver tissue than conventional MSCs. Furthermore, PI-MSCs treatment significantly increased Treg cells in the blood and spleen of AIH model mice compared to conventional MSCs. CONCLUSION PD-L1 and ICAM1 empower MSCs immuno-regulation, these empowered MSCs are more effective treatment for AIH. These findings provide support for the translation of PI-MSCs to the clinic for treatment of AIH patients.
Collapse
Affiliation(s)
- Xilong Bai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, Shaanxi, 710100, China
| | - Tingting Liu
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, Shaanxi, 710100, China
| | - Congge Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Caie Qiu
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, Shaanxi, 710100, China
| | - Xiaofan Ge
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, Shaanxi, 710100, China
| | - Huili Gou
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, Shaanxi, 710100, China
| | - Hongzhi Cai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Liting Yang
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, Shaanxi, 710100, China
| | - Sili Wei
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, Shaanxi, 710100, China
| | - Wei Yang
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, Shaanxi, 710100, China
| | - Tianqing Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, Shaanxi, 710100, China.
| |
Collapse
|
7
|
Song J, Zhu J, Jiang Y, Guo Y, Liu S, Qiao Y, Du Y, Li J. Advancements in immunotherapy for gastric cancer: Unveiling the potential of immune checkpoint inhibitors and emerging strategies. Biochim Biophys Acta Rev Cancer 2025; 1880:189277. [PMID: 39938663 DOI: 10.1016/j.bbcan.2025.189277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/08/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Gastric cancer (GC) is linked to high morbidity and mortality rates. Approximately two-thirds of GC patients are diagnosed at an advanced or metastatic stage. Conventional treatments for GC, including surgery, radiotherapy, and chemotherapy, offer limited prognostic improvement. Recently, immunotherapy has gained attention for its promising therapeutic effects in various tumors. Immunotherapy functions by activating and regulating the patient's immune cells to target and eliminate tumor cells, thereby reducing the tumor burden in the body. Among immunotherapies, immune checkpoint inhibitors (ICIs) are the most advanced. ICIs disrupt the inhibitory protein-small molecule (PD-L1, CTLA4, VISTA, TIM-3 and LAG3) interactions produced by immune cells, reactivating these cells to recognize and attack tumor cells. However, adverse reactions and resistance to ICIs hinder their further clinical and experimental development. Therefore, a comprehensive understanding of the advancements in ICIs for GC is crucial. This article discusses the latest developments in clinical trials of ICIs for GC and examines combination therapies involving ICIs (targeted therapy, chemotherapy, radiotherapy), alongside ongoing clinical trials. Additionally, the review investigates the tumor immune microenvironment and its role in non-responsiveness to ICIs, highlighting the function of tumor immune cells in ICI efficacy. Finally, the article explores the prospects and limitations of new immunotherapy-related technologies, such as tumor vaccines, nanotechnologies, and emerging therapeutic strategies, aiming to advance research into personalized and optimized immunotherapy for patients with locally advanced gastric cancer.
Collapse
Affiliation(s)
- Jiawei Song
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China; Department of Experimental Surgery, Xijing Hospital, Xi'an 710038, China
| | - Jun Zhu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yu Jiang
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yajie Guo
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Shuai Liu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yihuan Qiao
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yongtao Du
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Jipeng Li
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China; Department of Experimental Surgery, Xijing Hospital, Xi'an 710038, China.
| |
Collapse
|
8
|
Ning A, Xiao N, Yu X, Wang H, Guan C, Guo C, Dong Y, Ma X, Xia H. Dimethyloxallyl Glycine Preconditioning Promotes the Anti-inflammatory and Anti-fibrotic Effects of Human Umbilical Cord Mesenchymal Stem Cells on Kidney Damage in Systemic Lupus Erythematosus Related to TGF-β/Smad Signaling Pathway. Inflammation 2025; 48:839-854. [PMID: 39044003 DOI: 10.1007/s10753-024-02092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/03/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease lacking effective treatments without adverse effects. Dimethyloxallyl glycine (DMOG) enhanced mesenchymal stem cells (MSC) capabilities, but it remains unclear how DMOG-pretreatment of MSCs augments their SLE treatment. Here, we explore the therapeutic potential of DMOG-pretreated human umbilical cord MSCs (hUC-MSCs) in a mouse lupus nephritis (LN) model. In vitro experiments showed that DMOG could alleviate the mRNA levels of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-6 and increase the mRNA level of IL-13 in lipopolysaccharide (LPS)-induced inflammation in hUC-MSCs. DMOG enhanced the migratory and invasive abilities of the hUC-MSCs. In vivo animal studies revealed that DMOG-pretreated hUC-MSCs exhibited more pronounced inhibition of lymphadenectasis and reduced kidney weight and urinary protein content than MSCs alone. DMOG-pretreated hUC-MSCs improved renal morphological structure and alleviated inflammatory cell infiltration and renal fibrosis, evidenced by the reduced mRNA levels of fibrosis markers, including fibronectin (Fn), collagen alpha-1 chain (Colα1), collagen alpha-3 chain (Colα3), and TNF-α, IFN-γ, and IL-6 cytokines. Further investigation revealed that DMOG-pretreated hUC-MSCs down-regulated the expressions of transforming growth factor (Tgf)-β1 and its downstream effectors Smad2 and Smad3, recognized as central mediators in renal fibrosis (P < 0.05). The findings suggest that DMOG-pretreated hUC-MSCs can augment the therapeutic efficacy of hUC-MSCs in LN by enhancing their anti-inflammatory and antifibrotic effects, and the TGF-β/Smad signaling pathway may be involved in this process.
Collapse
Affiliation(s)
- Anfeng Ning
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Nansong Xiao
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaoqin Yu
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hu Wang
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chunyi Guan
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Changlong Guo
- National Human Genetic Resources Center, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
| | - Yichao Dong
- National Human Genetic Resources Center, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
| | - Xu Ma
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China.
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Hongfei Xia
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China.
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
9
|
Guan A, Alibrandi L, Verma E, Sareen N, Guan Q, Lionetti V, Dhingra S. Clinical translation of mesenchymal stem cells in ischemic heart failure: Challenges and future perspectives. Vascul Pharmacol 2025; 159:107491. [PMID: 40112941 DOI: 10.1016/j.vph.2025.107491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Myocardial infarction (MI) with resulting congestive heart failure is one of the leading causes of death worldwide. Current therapies for treating MI, such as devices, traditional medicine, and surgeries, come with many limitations as patients in their final stages of heart failure have little chances of experiencing any reversible changes. In recent decades, Mesenchymal stem cell (MSC) based therapy has become one of the most popular and rapidly developing fields in treating MI. Their supremacy for clinical applications is partially due to their unique properties and encouraging pre-clinical outcomes in various animal disease models. However, the majority of clinical trials registered for MSC therapy for diverse human diseases, including MI, have fallen short of expectations. This review intends to discuss the recent advances in the clinical application of using MSCs for cardiac repair and discuss challenges facing the clinical translation of MSCs for cardiac regeneration such as restoration of endothelial-cardiomyocyte crosstalk, immunomodulation and immune rejection, poor homing and migration, as well as low retention and survival. Furthermore, we will discuss recent strategies being investigated to help overcome some of these challenges.
Collapse
Affiliation(s)
- Anqi Guan
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Lisa Alibrandi
- TrancriLab, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Pisa, Italy
| | - Elika Verma
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Qingdong Guan
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba; Department of Immunology and Internal Medicina, University of Manitoba, Winnipeg, Canada
| | - Vincenzo Lionetti
- TrancriLab, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Pisa, Italy.; UOSVD Anesthesiology and Intensive Care, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada.
| |
Collapse
|
10
|
Lee DR, Lee JE. Preservation of ovarian function using human pluripotent stem cell-derived mesenchymal progenitor cells. Clin Exp Reprod Med 2025; 52:30-37. [PMID: 38782038 PMCID: PMC11900672 DOI: 10.5653/cerm.2024.07003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 05/25/2024] Open
Abstract
Ovarian reserve diminishes with age, and older women experience a corresponding shift in sex hormone levels. These changes contribute to an age-dependent decrease in fertility and a decline in overall health. Furthermore, while survival rates following cancer treatment have improved for young female patients, a reduction in ovarian function due to the side effects of such treatments can be difficult to avoid. To date, no effective therapy has been recommended to preserve ovarian health in these patients. Mesenchymal progenitor cells (MPCs) are considered a promising option for cell therapy aimed at maintaining fertility and fecundity. Although MPCs derived from human adult tissues are recognized for their various protective effects against ovarian senescence, they are limited in quantity. Consequently, human pluripotent stem cell-derived MPCs (hPSC-MPCs), which exhibit high proliferative capacity and retain genetic stability during growth, have been utilized to delay reproductive aging. This review highlights the impact of hPSC-MPCs on preserving the functionality of damaged ovaries in female mouse models subjected to chemotherapy and natural aging. It also proposes their potential as a valuable cell source for fertility preservation in women with a variety of diseases.
Collapse
Affiliation(s)
- Dong Ryul Lee
- Department of Biomedical Science, College of Biological Science, CHA University, Seongnam, Republic of Korea
- Department of Biochemisty, CHA University School of Medicine, Seongnam, Republic of Korea
- CHA Advanced Research Institute, CHA Bundang Medical Center, Seongnam, Republic of Korea
| | - Jeoung Eun Lee
- CHA Advanced Research Institute, CHA Bundang Medical Center, Seongnam, Republic of Korea
| |
Collapse
|
11
|
Gao Y, Ji Z, Zhao J, Gu J. Therapeutic potential of mesenchymal stem cells for fungal infections: mechanisms, applications, and challenges. Front Microbiol 2025; 16:1554917. [PMID: 39949625 PMCID: PMC11821621 DOI: 10.3389/fmicb.2025.1554917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
As a particularly serious condition in immunocompromised patients, fungal infections (FIs) have increasingly become a public health problem worldwide. Mesenchymal stem cells (MSCs), characterized by multilineage differentiation potential and immunomodulatory properties, are considered an emerging strategy for the treatment of FIs. In this study, the therapeutic potential of MSCs for FIs was reviewed, including their roles played by secreting antimicrobial peptides, regulating immune responses, and promoting tissue repair. Meanwhile, the status of research on MSCs in FIs and the controversies were also discussed. However, the application of MSCs still faces numerous challenges, such as the heterogeneity of cell sources, long-term safety, and feasibility of large-scale production. By analyzing the latest study results, this review intends to offer theoretical support for the application of MSCs in FI treatment and further research.
Collapse
Affiliation(s)
- Yangjie Gao
- Department of Dermatology, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhe Ji
- Department of Pharmacology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingyu Zhao
- Department of Dermatology, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Julin Gu
- Department of Dermatology, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
12
|
Baran Z, Çetinkaya M, Baran Y. Mesenchymal Stem Cells in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:149-177. [PMID: 39470980 DOI: 10.1007/5584_2024_824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The mesenchymal stem/stromal cells (MSCs) are multipotent cells that were initially discovered in the bone marrow in the late 1960s but have so far been discovered in almost all tissues of the body. The multipotent property of MSCs enables them to differentiate into various cell types and lineages, such as adipocytes, chondrocytes, and osteocytes. The immunomodulation capacity and tumor-targeting features of MSCs made their use crucial for cell-based therapies in cancer treatment, yet limited advancement could be observed in translational medicine prospects due to the need for more information regarding the controversial roles of MSCs in crosstalk tumors. In this review, we discuss the therapeutic potential of MSCs, the controversial roles played by MSCs in cancer progression, and the anticancer therapeutic strategies that are in association with MSCs. Finally, the clinical trials designed for the direct use of MSCs for cancer therapy or for their use in decreasing the side effects of other cancer therapies are also mentioned in this review to evaluate the current status of MSC-based cancer therapies.
Collapse
Affiliation(s)
- Züleyha Baran
- Laboratory of Molecular Pharmacology, Department of Pharmacology, Anadolu University, Eskişehir, Turkey
| | - Melisa Çetinkaya
- Laboratory of Cancer Genetics, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey
| | - Yusuf Baran
- Laboratory of Cancer Genetics, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey.
| |
Collapse
|
13
|
Zhang Q, Shan Y, Shen L, Ni Q, Wang D, Wen X, Xu H, Liu X, Zeng Z, Yang J, Wang Y, Liu J, Su Y, Wei N, Wang J, Sun L, Wang G, Zhou F. Renal remodeling by CXCL10-CXCR3 axis-recruited mesenchymal stem cells and subsequent IL4I1 secretion in lupus nephritis. Signal Transduct Target Ther 2024; 9:325. [PMID: 39557841 PMCID: PMC11574084 DOI: 10.1038/s41392-024-02018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/19/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUC-MSCs) have shown potential as a therapeutic option for lupus nephritis (LN), particularly in patients refractory to conventional treatments. Despite extensive translational research on MSCs, the precise mechanisms by which MSCs migrate to the kidney and restore renal function remain incompletely understood. Here, we aim to clarify the spatiotemporal characteristics of hUC-MSC migration into LN kidneys and their interactions with host cells in microenvironment. This study elucidates that the migration of hUC-MSCs to the LN kidney is driven by elevated levels of CXCL10, predominantly produced by glomerular vascular endothelial cells through the IFN-γ/IRF1-KPNA4 pathway. Interestingly, the blockade of CXCL10-CXCR3 axis impedes the migration of hUC-MSCs to LN kidney and negatively impacts therapeutic outcomes. Single cell-RNA sequencing analysis underscores the importance of this axis in mediating the regulatory effects of hUC-MSCs on the renal immune environment. Furthermore, hUC-MSCs have been observed to induce and secrete interleukin 4 inducible gene 1 (IL4I1) in response to the microenvironment of LN kidney, thereby suppressing Th1 cells. Genetically ablating IL4I1 in hUC-MSCs abolishes their therapeutic effects and prevents the inhibition of CXCR3+ Th1 cell infiltration into LN kidneys. This study provides valuable insights into the significant involvement of CXCL10-CXCR3 axis in hUC-MSC migration to the LN kidneys and the subsequent remodeling of renal immune microenvironment. Regulating the CXCL10-CXCR3 axis and IL4I1 secretion may be developed as a novel therapeutic strategy to improve treatment outcomes of LN.
Collapse
Affiliation(s)
- Qixiang Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Luping Shen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Ni
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Wen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Huanke Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiaoyan Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zhu Zeng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jingwen Yang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yukai Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jiali Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yueyan Su
- Jiangsu Renocell Biotech Co., Ltd., Nanjing, China
| | - Ning Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Renocell Biotech Co., Ltd., Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co., Ltd., Nanjing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
14
|
Zhang Q, Li S, Chen H, Yin J, Chen Y, Liu L, He W, Min Z, Gong Y, Xu J, Song K, Lv W, Xin H. Reduction of Oxidative Stress and Excitotoxicity by Mesenchymal Stem Cell Biomimetic Co-Delivery System for Cerebral Ischemia-Reperfusion Injury Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401045. [PMID: 38948959 DOI: 10.1002/smll.202401045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/10/2024] [Indexed: 07/02/2024]
Abstract
A cerebral ischemia-reperfusion injury is ensued by an intricate interplay between various pathological processes including excitotoxicity, oxidative stress, inflammation, and apoptosis. For a long time, drug intervention policies targeting a single signaling pathway have failed to achieve the anticipated clinical efficacy in the intricate and dynamic inflammatory environment of the brain. Moreover, inadequate targeted drug delivery remains a significant challenge in cerebral ischemia-reperfusion injury therapy. In this study, a multifunctional nanoplatform (designated as PB-006@MSC) is developed using ZL006-loaded Prussian blue nanoparticles (PBNPs) camouflaged by a mesenchymal stem cell (MSC) membrane (MSCm). ZL006 is a neuroprotectant. It can be loaded efficiently into the free radical scavenger PBNP through mesoporous adsorption. This can simultaneously modulate multiple targets and pathways. MSCm biomimetics can reduce the nanoparticle immunogenicity, efficiently enhance their homing capability to the cerebral ischemic penumbra, and realize active-targeting therapy for ischemic stroke. In animal experiments, PB-006@MSC integrated reactive oxygen species (ROS) scavenging and neuroprotection. Thereby, it selectively targeted the cerebral ischemic penumbra (about fourfold higher accumulation at 24 h than in the non-targeted group), demonstrated a remarkable therapeutic efficacy in reducing the volume of cerebral infarction (from 37.1% to 2.3%), protected the neurogenic functions, and ameliorated the mortality.
Collapse
Affiliation(s)
- Qi Zhang
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Pharmacy School of Nanjing Medical University, Nanjing, 211166, China
| | - Shengnan Li
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Pharmacy School of Nanjing Medical University, Nanjing, 211166, China
| | - Hua Chen
- Department of Neurosurgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Jiaqing Yin
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Pharmacy School of Nanjing Medical University, Nanjing, 211166, China
| | - Yuqin Chen
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Pharmacy School of Nanjing Medical University, Nanjing, 211166, China
| | - Linfeng Liu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Pharmacy School of Nanjing Medical University, Nanjing, 211166, China
| | - Weichong He
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Pharmacy School of Nanjing Medical University, Nanjing, 211166, China
| | - Zhiyi Min
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Pharmacy School of Nanjing Medical University, Nanjing, 211166, China
| | - Yue Gong
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Pharmacy School of Nanjing Medical University, Nanjing, 211166, China
| | - Jiangna Xu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Pharmacy School of Nanjing Medical University, Nanjing, 211166, China
| | - Kefan Song
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Pharmacy School of Nanjing Medical University, Nanjing, 211166, China
| | - Wei Lv
- Department of Pharmacy, the Affiliated Jiangyin Hospital of Xuzhou Medical University, Jiangyin, 214400, China
| | - Hongliang Xin
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center of Nanjing Medical University, Pharmacy School of Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
15
|
Kangari P, Salahlou R, Vandghanooni S. Harnessing the Therapeutic Potential of Mesenchymal Stem Cells in Cancer Treatment. Adv Pharm Bull 2024; 14:574-590. [PMID: 39494266 PMCID: PMC11530882 DOI: 10.34172/apb.2024.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer, as a complicated disease, is considered to be one of the major leading causes of death globally. Although various cancer therapeutic strategies have been established, however, some issues confine the efficacies of the treatments. In recent decades researchers for finding efficient therapeutic solutions have extensively focused on the abilities of stem cells in cancer inhibition. Mesenchymal stem cells (MSCs) are multipotent stromal cells that can the most widely extracted from various sources such as the bone marrow (BM), placenta, umbilical cord (UC), menses blood, Wharton's jelly (WJ), adipose tissue and dental pulp (DP). These cells are capable of differentiating into the osteoblasts, chondrocytes, and adipocytes. Due to the unique characteristics of MSCs such as paracrine effects, immunomodulation, tumor-tropism, and migration, they are considered promising candidates for cancer therapeutics. Currently, MSCs are an excellent living carrier for delivery of therapeutic genes and chemical agents to target tumor sites. Also, exosomes, the most important extracellular vesicle released from MSCs, act as a strong cell-free tool for cancer therapeutics. MSCs can prevent cancer progression by inhibiting several signaling pathways, such as wnt/β-catenin and PI3K/AKT/mTOR. However, there are several challenges associated with the use of MSCs and their exosomes in the field of therapy that need to be considered. This review explores the significance of MSCs in cell-based therapy, focusing on their homing properties and immunomodulatory characteristics. It also examines the potential of using MSCs as carriers for delivery of anticancer agents and their role in modulating the signal transduction pathways of cancer cells.
Collapse
Affiliation(s)
- Parisa Kangari
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Salahlou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Amiri F, Mistriotis P. Leveraging Cell Migration Dynamics to Discriminate Between Senescent and Presenescent Human Mesenchymal Stem Cells. Cell Mol Bioeng 2024; 17:385-399. [PMID: 39513008 PMCID: PMC11538215 DOI: 10.1007/s12195-024-00807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/11/2024] [Indexed: 11/15/2024] Open
Abstract
Purpose The suboptimal clinical performance of human mesenchymal stem cells (hMSCs) has raised concerns about their therapeutic potential. One major contributing factor to this issue is the heterogeneous nature of hMSCs. Senescent cell accumulation during stem cell expansion is a key driver of MSC heterogeneity. Current methodologies to eradicate senescent hMSCs have either shown limited success or lack clinical relevance. This study leverages the inherent capacity of hMSCs to migrate toward damaged tissues as a means to discern senescent from presenescent stem cells. Given the established deficiency of senescent cells to migrate through physiologically relevant environments, we hypothesized that a microfluidic device, designed to emulate key facets of in vivo cell motility, could serve as a platform for identifying presenescent cells. Methods We employed a Y-shaped microchannel assay, which allows fine-tuning of fluid flow rates and the degree of confinement. Results Highly migratory hMSCs detected by the device not only demonstrate increased speed, smaller size, and higher proliferative capacity but also manifest reduced DNA damage and senescence compared to non-migratory cells. Additionally, this assay detects presenescent cells in experiments with mixed early and late passage cells. The introduction of fluid flow through the device can further increase the fraction of highly motile stem cells, improving the assay's effectiveness to remove senescent hMSCs. Conclusions Collectively, this assay facilitates the detection and isolation of a highly potent stem cell subpopulation. Given the positive correlation between the migratory potential of administered MSCs and the long-term clinical outcome, delivering homogeneous, highly motile presenescent hMSCs may benefit patient outcomes. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00807-0.
Collapse
Affiliation(s)
- Farshad Amiri
- Department of Chemical Engineering, Auburn University, Auburn, AL USA
| | | |
Collapse
|
17
|
Peserico A, Canciello A, Prencipe G, Gramignoli R, Melai V, Scortichini G, Bellocci M, Capacchietti G, Turriani M, Di Pancrazio C, Berardinelli P, Russo V, Mattioli M, Barboni B. Optimization of a nanoparticle uptake protocol applied to amniotic-derived cells: unlocking the therapeutic potential. J Mater Chem B 2024; 12:8977-8992. [PMID: 39140678 DOI: 10.1039/d4tb00607k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Stem cell-based therapy implementation relies heavily on advancements in cell tracking. The present research has been designed to develop a gold nanorod (AuNR) labeling protocol applied to amniotic epithelial cells (AECs) leveraging the pro-regenerative properties of this placental stem cell source which is widely used for both human and veterinary biomedical regenerative applications, although not yet exploited with tracking technologies. Ovine AECs, in native or induced mesenchymal (mAECs) phenotypes via epithelial-mesenchymal transition (EMT), served as the model. Initially, various uptake methods validated on other sources of mesenchymal stromal cells (MSCs) were assessed on mAECs before optimization for AECs. Furthermore, the protocol was implemented by adopting the biological strategy of MitoCeption to improve endocytosis. The results indicate that the most efficient, affordable, and easy protocol leading to internalization of AuNRs in living mAECs recognized the combination of the one-step uptake condition (cell in suspension), centrifugation-mediated internalization method (G-force) and MitoCeption (mitochondrial isolated from mAECs). This protocol produced labeled vital mAECs within minutes, suitable for preclinical and clinical trials. The optimized protocol has the potential to yield feasible labeled amniotic-derived cells for biomedical purposes: up to 10 million starting from a single amniotic membrane. Similar and even higher efficiency was found when the protocol was applied to ovine and human AECs, thereby demonstrating the transferability of the method to cells of different phenotypes and species-specificity, hence validating its great potential for the development of improved biomedical applications in cell-based therapy and diagnostic imaging.
Collapse
Affiliation(s)
- Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Angelo Canciello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Giuseppe Prencipe
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Valeria Melai
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale', Campo Boario, 64100 Teramo, Italy
| | - Giampiero Scortichini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale', Campo Boario, 64100 Teramo, Italy
| | - Mirella Bellocci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale', Campo Boario, 64100 Teramo, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Maura Turriani
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Chiara Di Pancrazio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale', Campo Boario, 64100 Teramo, Italy
| | - Paolo Berardinelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Mauro Mattioli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| |
Collapse
|
18
|
Chatzianagnosti S, Dermitzakis I, Theotokis P, Kousta E, Mastorakos G, Manthou ME. Application of Mesenchymal Stem Cells in Female Infertility Treatment: Protocols and Preliminary Results. Life (Basel) 2024; 14:1161. [PMID: 39337944 PMCID: PMC11433628 DOI: 10.3390/life14091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Infertility is a global phenomenon that impacts people of both the male and the female sex; it is related to multiple factors affecting an individual's overall systemic health. Recently, investigators have been using mesenchymal stem cell (MSC) therapy for female-fertility-related disorders such as polycystic ovarian syndrome (PCOS), premature ovarian failure (POF), endometriosis, preeclampsia, and Asherman syndrome (AS). Studies have shown promising results, indicating that MSCs can enhance ovarian function and restore fertility for affected individuals. Due to their regenerative effects and their participation in several paracrine pathways, MSCs can improve the fertility outcome. However, their beneficial effects are dependent on the methodologies and materials used from isolation to reimplantation. In this review, we provide an overview of the protocols and methods used in applications of MSCs. Moreover, we summarize the findings of published preclinical studies on infertility treatments and discuss the multiple properties of these studies, depending on the isolation source of the MSCs used.
Collapse
Affiliation(s)
- Sofia Chatzianagnosti
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleni Kousta
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Mastorakos
- Department of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
19
|
Huang J, Hong X, Chen S, He Y, Xie L, Gao F, Zhu C, Jin X, Yan H, Ye Y, Shao M, Du X, Feng G. Biomimetic Metal-Organic Framework Gated Nanoplatform for Sonodynamic Therapy against Extensively Drug Resistant Bacterial Lung Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402473. [PMID: 38962911 PMCID: PMC11434100 DOI: 10.1002/advs.202402473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/03/2024] [Indexed: 07/05/2024]
Abstract
Novel antimicrobial strategies are urgently needed to treat extensively drug-resistant (XDR) bacterial infections due to the high mortality rate and lack of effective therapeutic agents. Herein, nanoengineered human umbilical cord mesenchymal stem cells (hUC-MSCs), named PMZMU, are designed as a sonosensitizer for synergistic sonodynamic-nano-antimicrobial therapy against gram-negative XDR bacteria. PMZMU is composed of a bacterial targeting peptide (UBI29-41) modified hUC-MSCs membrane (MSCm), a sonosensitizer meso-tetra(4-car-boxyphenyl) porphine doped mesoporous organo-silica nanoparticle and an acidity-responsive metal-organic framework ZIF-8. This innovative formulation enables efficient loading of polymyxin B, reduces off-target drug release, increases circulation and targeting efficacy, and generates reactive oxygen species upon ultrasound irradiation. PMZMU exhibits remarkable in vitro inhibitory activity against four XDR bacteria: Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa (PA), and Escherichia coli. Taking advantage of the bacterial targeting ability of UBI29-41 and the inflammatory chemotaxis of hUC-MSC, PMZMU can be precisely delivered to lung infection sites thereby augmenting polymyxin B concentration. PMZMU-mediated sonodynamic therapy significantly reduces bacterial burden, relieves inflammatory damage by promoting the polarization of macrophages toward M2 phenotype, and improves survival rates without introducing adverse events. Overall, this study offers promising strategies for treating deep-tissue XDR bacterial infections, and guides the design and optimization of biomimetic nanomedicine.
Collapse
Affiliation(s)
- Jianling Huang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Xiuwen Hong
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Sixi Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Yucong He
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Lixu Xie
- Department of Pulmonary and Critical Care Medicine, Qi Lu Hospital of Shandong University, Wen hua xi Road 107#, Jinan, 250012, China
| | - Fenglin Gao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Chenghua Zhu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Xiao Jin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Haihao Yan
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Yongxia Ye
- Department of Radiology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210009, China
| | - Mingyue Shao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Xingran Du
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China
| | - Ganzhu Feng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| |
Collapse
|
20
|
Vaes JEG, Onstwedder SM, Trayford C, Gubbins E, Maas M, van Rijt SH, Nijboer CH. Modifying the Secretome of Mesenchymal Stem Cells Prolongs the Regenerative Treatment Window for Encephalopathy of Prematurity. Int J Mol Sci 2024; 25:6494. [PMID: 38928201 PMCID: PMC11203777 DOI: 10.3390/ijms25126494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Clinical treatment options to combat Encephalopathy of Prematurity (EoP) are still lacking. We, and others, have proposed (intranasal) mesenchymal stem cells (MSCs) as a potent therapeutic strategy to boost white matter repair in the injured preterm brain. Using a double-hit mouse model of diffuse white matter injury, we previously showed that the efficacy of MSC treatment was time dependent, with a significant decrease in functional and histological improvements after the postponement of cell administration. In this follow-up study, we aimed to investigate the mechanisms underlying this loss of therapeutic efficacy. Additionally, we optimized the regenerative potential of MSCs by means of genetic engineering with the transient hypersecretion of beneficial factors, in order to prolong the treatment window. Though the cerebral expression of known chemoattractants was stable over time, the migration of MSCs to the injured brain was partially impaired. Moreover, using a primary oligodendrocyte (OL) culture, we showed that the rescue of injured OLs was reduced after delayed MSC coculture. Cocultures of modified MSCs, hypersecreting IGF1, LIF, IL11, or IL10, with primary microglia and OLs, revealed a superior treatment efficacy over naïve MSCs. Additionally, we showed that the delayed intranasal administration of IGF1-, LIF-, or IL11-hypersecreting MSCs, improved myelination and the functional outcome in EoP mice. In conclusion, the impaired migration and regenerative capacity of intranasally applied MSCs likely underlie the observed loss of efficacy after delayed treatment. The intranasal administration of IGF1-, LIF-, or IL11-hypersecreting MSCs, is a promising optimization strategy to prolong the window for effective MSC treatment in preterm infants with EoP.
Collapse
Affiliation(s)
- Josine E. G. Vaes
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands
- Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands
| | - Suzanne M. Onstwedder
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands
| | - Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Eva Gubbins
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Mirjam Maas
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands
| | - Sabine H. van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Cora H. Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands
| |
Collapse
|
21
|
Chan AML, Ng AMH, Yunus MHM, Idrus RH, Law JX, Yazid MD, Chin KY, Yusof MRM, Ng SN, Koh B, Lokanathan Y. Single high-dose intravenous injection of Wharton's jelly-derived mesenchymal stem cell exerts protective effects in a rat model of metabolic syndrome. Stem Cell Res Ther 2024; 15:160. [PMID: 38835014 DOI: 10.1186/s13287-024-03769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/26/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a significant epidemiological problem worldwide. It is a pre-morbid, chronic and low-grade inflammatory disorder that precedes many chronic diseases. Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) could be used to treat MetS because they express high regenerative capacity, strong immunomodulatory properties and allogeneic biocompatibility. This study aims to investigate WJ-MSCs as a therapy against MetS in a rat model. METHODS Twenty-four animals were fed with high-fat high-fructose (HFHF) diet ad libitum. After 16 weeks, the animals were randomised into treatment groups (n = 8/group) and received a single intravenous administration of vehicle, that is, 3 × 106 cells/kg or 10 × 106 cells/kg of WJ-MSCs. A healthy animal group (n = 6) fed with a normal diet received the same vehicle as the control (CTRL). All animals were periodically assessed (every 4 weeks) for physical measurements, serum biochemistry, glucose tolerance test, cardiovascular function test and whole-body composition. Post-euthanasia, organs were weighed and processed for histopathology. Serum was collected for C-reactive protein and inflammatory cytokine assay. RESULTS The results between HFHF-treated groups and healthy or HFHF-CTRL did not achieve statistical significance (α = 0.05). The effects of WJ-MSCs were masked by the manifestation of different disease subclusters and continuous supplementation of HFHF diet. Based on secondary analysis, WJ-MSCs had major implications in improving cardiopulmonary morbidities. The lungs, liver and heart show significantly better histopathology in the WJ-MSC-treated groups than in the untreated CTRL group. The cells produced a dose-dependent effect (high dose lasted until week 8) in preventing further metabolic decay in MetS animals. CONCLUSIONS The establishment of safety and therapeutic proof-of-concept encourages further studies by improving the current therapeutic model.
Collapse
Affiliation(s)
- Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
- Ming Medical Sdn Bhd, D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1a/46, 47301, Petaling Jaya, Selangor, Malaysia
| | - Angela Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Ruszymah Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Mohd Rafizul Mohd Yusof
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - See Nguan Ng
- Ming Medical Sdn Bhd, D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1a/46, 47301, Petaling Jaya, Selangor, Malaysia
| | - Benson Koh
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
22
|
Park HW, Lee CE, Kim S, Jeong WJ, Kim K. Ex Vivo Peptide Decoration Strategies on Stem Cell Surfaces for Augmenting Endothelium Interaction. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:327-339. [PMID: 37830185 DOI: 10.1089/ten.teb.2023.0210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Ischemic vascular diseases remain leading causes of disability and death. Although various clinical therapies have been tried, reperfusion injury is a major issue, occurring when blood recirculates at the damaged lesion. As an alternative approach, cell-based therapy has emerged. Mesenchymal stem cells (MSCs) are attractive cellular candidates due to their therapeutic capacities, including differentiation, safety, angiogenesis, and tissue repair. However, low levels of receptors/ligands limit targeted migration of stem cells. Thus, it is important to improve homing efficacy of transplanted MSCs toward damaged endothelium. Among various MSC modulations, ex vivo cell surface engineering could effectively augment homing efficiency by decorating MSC surfaces with alternative receptors/ligands, thereby facilitating intercellular interactions with the endothelium. Especially, exogenous decoration of peptides onto stem cell surfaces could provide appropriate functional signaling moieties to achieve sufficient MSC homing. Based on their protein-like functionalities, high modularity in molecular design, and high specific affinities and multivalency to target receptors, peptides could be representative surface-presentable moieties. Moreover, peptides feature a mild synthetic process, enabling precise control of amino acid composition and sequence. Such ex vivo stem cell surface engineering could be achieved primarily by hydrophobic interactions of the cellular bilayer with peptide-conjugated anchor modules and by covalent conjugation between peptides and available compartments in membranes. To this end, this review provides an overview of currently available peptide-mediated, ex vivo stem cell surface engineering strategies for enhancing MSC homing efficiency by facilitating interactions with endothelial cells. Stem cell surface engineering techniques using peptide-based bioconjugates have the potential to revolutionize current vascular disease treatments while addressing their technical limitations.
Collapse
Affiliation(s)
- Hee Won Park
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Chae Eun Lee
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Sungjun Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Woo-Jin Jeong
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Kyobum Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Roghani AK, Garcia RI, Roghani A, Reddy A, Khemka S, Reddy RP, Pattoor V, Jacob M, Reddy PH, Sehar U. Treating Alzheimer's disease using nanoparticle-mediated drug delivery strategies/systems. Ageing Res Rev 2024; 97:102291. [PMID: 38614367 DOI: 10.1016/j.arr.2024.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
The administration of promising medications for the treatment of neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) is significantly hampered by the blood-brain barrier (BBB). Nanotechnology has recently come to light as a viable strategy for overcoming this obstacle and improving drug delivery to the brain. With a focus on current developments and prospects, this review article examines the use of nanoparticles to overcome the BBB constraints to improve drug therapy for AD The potential for several nanoparticle-based approaches, such as those utilizing lipid-based, polymeric, and inorganic nanoparticles, to enhance drug transport across the BBB are highlighted. To shed insight on their involvement in aiding effective drug transport to the brain, methods of nanoparticle-mediated drug delivery, such as surface modifications, functionalization, and particular targeting ligands, are also investigated. The article also discusses the most recent findings on innovative medication formulations encapsulated within nanoparticles and the therapeutic effects they have shown in both preclinical and clinical testing. This sector has difficulties and restrictions, such as the need for increased safety, scalability, and translation to clinical applications. However, the major emphasis of this review aims to provide insight and contribute to the knowledge of how nanotechnology can potentially revolutionize the worldwide treatment of NDDs, particularly AD, to enhance clinical outcomes.
Collapse
Affiliation(s)
- Aryan Kia Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Frenship High School, Lubbock, TX 79382, USA.
| | - Ricardo Isaiah Garcia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ali Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Aananya Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ruhananhad P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Vasanthkumar Pattoor
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; University of South Florida, Tampa, FL 33620, USA.
| | - Michael Jacob
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Services, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
24
|
Cheng F, Ji L, Li P, Han Z, He Y, Yang F, Xu Z, Li Y, Ruan T, Zhu X, Lin J. Enhanced therapeutic potential of Flotillins-modified MenSCs by improve the survival, proliferation and migration. Mol Biol Rep 2024; 51:680. [PMID: 38796595 DOI: 10.1007/s11033-024-09624-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/08/2024] [Indexed: 05/28/2024]
Abstract
Menstrual blood-derived endometrial stem cells (MenSCs) have attracted increasing interest due to their excellent safety, and lack of ethical dilemma as well as their ability to be periodically obtained in a noninvasive manner. However, although preclinical research as shown the therapeutic potential of MenSCs in several diseases, their poor cell survival and low engraftment at disease sites reduce their clinical efficacy. Flotillins (including Flot1 and Flot2) are implicated in various cellular processes, such as vesicular trafficking, signal transduction, cell proliferation, migration and apoptosis. In this study, we aimed to determine the effects of Flotillins on MenSCs survival, proliferation and migration. Our experimental results show that MenSCs were modified to overexpress Flot1 and/or Flot2 without altering their intrinsic characteristics. Flot1 and Flot2 co-overexpression promoted MenSC viability and proliferation capacity. Moreover, Flot1 or Flot2 overexpression significantly promoted the migration and inhibited the apoptosis of MenSCs compared with the negative control group, and these effects were stronger in the Flot1 and Flot2 gene co-overexpression group. However, these effects were significantly reversed after Flot1 and/or Flot2 knockdown. In conclusion, our results indicate that Flot1 and Flot2 overexpression in MenSCs improved their proliferation and migration and inhibited their apoptosis, and this might be an effective approach to improve the efficiency of cell-based therapies.
Collapse
Affiliation(s)
- Fangfang Cheng
- Stem Cell and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Longkai Ji
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Pan Li
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhisheng Han
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yanan He
- Zhongyuan Stem Cell Research Institute, Xinxiang, 453003, China
| | - Fen Yang
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhihao Xu
- Stem Cell and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yonghai Li
- Stem Cell and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tao Ruan
- Stem Cell and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xinxing Zhu
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Juntang Lin
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China.
- Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road #601, Xinxiang, Henan Province, China.
| |
Collapse
|
25
|
Jalili A, Shojaei-Ghahrizjani F, Tabatabaiefar MA, Rahmati S. Decellularized skin pretreatment by monophosphoryl lipid A and lactobacillus casei supernatant accelerate skin recellularization. Mol Biol Rep 2024; 51:675. [PMID: 38787484 DOI: 10.1007/s11033-024-09599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Bioscaffolds and cells are two main components in the regeneration of damaged tissues via cell therapy. Umbilical cord stem cells are among the most well-known cell types for this purpose. The main objective of the present study was to evaluate the effect of the pretreatment of the foreskin acellular matrix (FAM) by monophosphoryl lipid A (MPLA) and Lactobacillus casei supernatant (LCS) on the attraction of human umbilical cord mesenchymal stem cells (hucMSC). METHODS AND RESULTS The expression of certain cell migration genes was studied using qRT-PCR. In addition to cell migration, transdifferentiation of these cells to the epidermal-like cells was evaluated via immunohistochemistry (IHC) and immunocytochemistry (ICC) of cytokeratin 19 (CK19). The hucMSC showed more tissue tropism in the presence of MPLA and LCS pretreated FAM compared to the untreated control group. We confirmed this result by scanning electron microscopy (SEM) analysis, glycosaminoglycan (GAG), collagen, and DNA content. Furthermore, IHC and ICC data demonstrated that both treatments increase the protein expression level of CK19. CONCLUSION Pretreatment of acellular bioscaffolds by MPLA or LCS can increase the migration rate of cells and also transdifferentiation of hucMSC to epidermal-like cells without growth factors. This strategy suggests a new approach in regenerative medicine.
Collapse
Affiliation(s)
- Ali Jalili
- Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Rahmati
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
26
|
Joshi R, Suryawanshi T, Mukherjee S, Shukla S, Majumder A. Chromatin Condensation Delays Senescence in Human Mesenchymal Stem Cells by Safeguarding Nuclear Damages during In Vitro Expansion. J Tissue Eng Regen Med 2024; 2024:1543849. [PMID: 40225747 PMCID: PMC11919206 DOI: 10.1155/2024/1543849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/30/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2025]
Abstract
Human mesenchymal stem cells (hMSCs) are multipotent cells that differentiate into adipocytes, chondrocytes, and osteoblasts. Owing to their differentiation potential, hMSCs are among the cells most frequently used for therapeutic applications in tissue engineering and regenerative medicine. However, the number of cells obtained through isolation alone is insufficient for hMSC-based therapies and basic research, which necessitates in vitro expansion. Conventionally, this is often performed on rigid surfaces such as tissue culture plates (TCPs). However, during in vitro expansion, hMSCs lose their proliferative ability and multilineage differentiation potential, rendering them unsuitable for clinical use. Although multiple approaches have been attempted to maintain hMSC stemness during prolonged expansion, finding a suitable culture system remains an unmet need. Recently, a few research groups have shown that hMSCs maintain their stemness over long passages when cultured on soft substrates. In addition, it has been shown that hMSCs cultured on soft substrates have more condensed chromatin and lower levels of histone acetylation compared to those cultured on stiff substrates. Furthermore, it has also been shown that condensing/decondensing chromatin by deacetylation/acetylation can delay replicative senescence in hMSCs during long-term expansion on TCPs. However, the mechanism by which chromatin condensation/decondensation influences nuclear morphology and DNA damage, which are strongly related to the onset of senescence, remains unknown. To answer this question, we cultured hMSCs for long duration in the presence of epigenetic modifiers, histone acetyltransferase inhibitor (HATi), which promotes chromatin condensation by preventing histone acetylation, and histone deacetylase inhibitor (HDACi), which promotes chromatin decondensation, and investigated their effects on various nuclear markers related to senescence. We found that consistent acetylation causes severe nuclear abnormalities, whereas chromatin condensation by deacetylation helps to safeguard the nucleus from damage caused by in vitro expansion.
Collapse
Affiliation(s)
- Rohit Joshi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Tejas Suryawanshi
- Centre for Research in Nano Technology and Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sourav Mukherjee
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shobha Shukla
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
27
|
Innuan P, Sirikul C, Anukul N, Rolin G, Dechsupa N, Kantapan J. Identifying transcriptomic profiles of iron-quercetin complex treated peripheral blood mononuclear cells from healthy volunteers and diabetic patients. Sci Rep 2024; 14:9441. [PMID: 38658734 PMCID: PMC11043337 DOI: 10.1038/s41598-024-60197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
Peripheral blood is an alternative source of stem/progenitor cells for regenerative medicine owing to its ease of retrieval and blood bank storage. Previous in vitro studies indicated that the conditioned medium derived from peripheral blood mononuclear cells (PBMCs) treated with the iron-quercetin complex (IronQ) contains potent angiogenesis and wound-healing properties. This study aims to unveil the intricate regulatory mechanisms governing the effects of IronQ on the transcriptome profiles of human PBMCs from healthy volunteers and those with diabetes mellitus (DM) using RNA sequencing analysis. Our findings revealed 3741 and 2204 differentially expressed genes (DEGs) when treating healthy and DM PBMCs with IronQ, respectively. Functional enrichment analyses underscored the biological processes shared by the DEGs in both conditions, including inflammatory responses, cell migration, cellular stress responses, and angiogenesis. A comprehensive exploration of these molecular alterations exposed a network of 20 hub genes essential in response to stimuli, cell migration, immune processes, and the mitogen-activated protein kinase (MAPK) pathway. The activation of these pathways enabled PBMCs to potentiate angiogenesis and tissue repair. Corroborating this, quantitative real-time polymerase chain reaction (qRT-PCR) and cell phenotyping confirmed the upregulation of candidate genes associated with anti-inflammatory, pro-angiogenesis, and tissue repair processes in IronQ-treated PBMCs. In summary, combining IronQ and PBMCs brings about substantial shifts in gene expression profiles and activates pathways that are crucial for tissue repair and immune response, which is promising for the enhancement of the therapeutic potential of PBMCs, especially in diabetic wound healing.
Collapse
Affiliation(s)
- Phattarawadee Innuan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chonticha Sirikul
- Division of Transfusion Science, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nampeung Anukul
- Division of Transfusion Science, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Gwenaël Rolin
- INSERM CIC-1431, CHU Besançon, 25000, Besançon, France
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
28
|
Kollampally SCR, Zhang X, Moskwa N, Nelson DA, Sharfstein ST, Larsen M, Xie Y. Evaluation of Alginate Hydrogel Microstrands for Stromal Cell Encapsulation and Maintenance. Bioengineering (Basel) 2024; 11:375. [PMID: 38671796 PMCID: PMC11048715 DOI: 10.3390/bioengineering11040375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) have displayed potential in regenerating organ function due to their anti-fibrotic, anti-inflammatory, and regenerative properties. However, there is a need for delivery systems to enhance MSC retention while maintaining their anti-fibrotic characteristics. This study investigates the feasibility of using alginate hydrogel microstrands as a cell delivery vehicle to maintain MSC viability and phenotype. To accommodate cell implantation needs, we invented a Syringe-in-Syringe approach to reproducibly fabricate microstrands in small numbers with a diameter of around 200 µm and a porous structure, which would allow for transporting nutrients to cells by diffusion. Using murine NIH 3T3 fibroblasts and primary embryonic 16 (E16) salivary mesenchyme cells as primary stromal cell models, we assessed cell viability, growth, and expression of mesenchymal and fibrotic markers in microstrands. Cell viability remained higher than 90% for both cell types. To determine cell number within the microstrands prior to in vivo implantation, we have further optimized the alamarBlue assay to measure viable cell growth in microstrands. We have shown the effect of initial cell seeding density and culture period on cell viability and growth to accommodate future stromal cell delivery and implantation. Additionally, we confirmed homeostatic phenotype maintenance for E16 mesenchyme cells in microstrands.
Collapse
Affiliation(s)
- Sujith Chander Reddy Kollampally
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| | - Xulang Zhang
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| | - Nicholas Moskwa
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA; (N.M.); (D.A.N.); (M.L.)
- The Jackson Laboratory of Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Deirdre A. Nelson
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA; (N.M.); (D.A.N.); (M.L.)
| | - Susan T. Sharfstein
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA; (N.M.); (D.A.N.); (M.L.)
| | - Yubing Xie
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| |
Collapse
|
29
|
Hetta HF, Elsaghir A, Sijercic VC, Akhtar MS, Gad SA, Moses A, Zeleke MS, Alanazi FE, Ahmed AK, Ramadan YN. Mesenchymal stem cell therapy in diabetic foot ulcer: An updated comprehensive review. Health Sci Rep 2024; 7:e2036. [PMID: 38650719 PMCID: PMC11033295 DOI: 10.1002/hsr2.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Background Diabetes has evolved into a worldwide public health issue. One of the most serious complications of diabetes is diabetic foot ulcer (DFU), which frequently creates a significant financial strain on patients and lowers their quality of life. Up until now, there has been no curative therapy for DFU, only symptomatic relief or an interruption in the disease's progression. Recent studies have focused attention on mesenchymal stem cells (MSCs), which provide innovative and potential treatment candidates for several illnesses as they can differentiate into various cell types. They are mostly extracted from the placenta, adipose tissue, umbilical cord (UC), and bone marrow (BM). Regardless of their origin, they show comparable features and small deviations. Our goal is to investigate MSCs' therapeutic effects, application obstacles, and patient benefit strategies for DFU therapy. Methodology A comprehensive search was conducted using specific keywords relating to DFU, MSCs, and connected topics in the databases of Medline, Scopus, Web of Science, and PubMed. The main focus of the selection criteria was on English-language literature that explored the relationship between DFU, MSCs, and related factors. Results and Discussion Numerous studies are being conducted and have demonstrated that MSCs can induce re-epithelialization and angiogenesis, decrease inflammation, contribute to immunological modulation, and subsequently promote DFU healing, making them a promising approach to treating DFU. This review article provides a general snapshot of DFU (including clinical presentation, risk factors and etiopathogenesis, and conventional treatment) and discusses the clinical progress of MSCs in the management of DFU, taking into consideration the side effects and challenges during the application of MSCs and how to overcome these challenges to achieve maximum benefits. Conclusion The incorporation of MSCs in the management of DFU highlights their potential as a feasible therapeutic strategy. Establishing a comprehensive understanding of the complex relationship between DFU pathophysiology, MSC therapies, and related obstacles is essential for optimizing therapy outcomes and maximizing patient benefits.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative MedicineFaculty of Pharmacy, University of TabukTabukSaudi Arabia
- Department of Medical Microbiology and ImmunologyFaculty of Medicine, Assiut UniversityAssiutEgypt
| | - Alaa Elsaghir
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| | | | | | - Sayed A. Gad
- Faculty of Medicine, Assiut UniversityAssiutEgypt
| | | | - Mahlet S. Zeleke
- Menelik II Medical and Health Science College, Kotebe Metropolitan UniversityAddis AbabaEthiopia
| | - Fawaz E. Alanazi
- Department of Pharmacology and ToxicologyFaculty of Pharmacy, University of TabukTabukSaudi Arabia
| | | | - Yasmin N. Ramadan
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| |
Collapse
|
30
|
Liu J, Qi L, Bao S, Yan F, Chen J, Yu S, Dong C. The acute spinal cord injury microenvironment and its impact on the homing of mesenchymal stem cells. Exp Neurol 2024; 373:114682. [PMID: 38199509 DOI: 10.1016/j.expneurol.2024.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Spinal cord injury (SCI) is a highly debilitating condition that inflicts devastating harm on the lives of affected individuals, underscoring the urgent need for effective treatments. By activating inflammatory cells and releasing inflammatory factors, the secondary injury response creates an inflammatory microenvironment that ultimately determines whether neurons will undergo necrosis or regeneration. In recent years, mesenchymal stem cells (MSCs) have garnered increasing attention for their therapeutic potential in SCI. MSCs not only possess multipotent differentiation capabilities but also have homing abilities, making them valuable as carriers and mediators of therapeutic agents. The inflammatory microenvironment induced by SCI recruits MSCs to the site of injury through the release of various cytokines, chemokines, adhesion molecules, and enzymes. However, this mechanism has not been previously reported. Thus, a comprehensive exploration of the molecular mechanisms and cellular behaviors underlying the interplay between the inflammatory microenvironment and MSC homing is crucial. Such insights have the potential to provide a better understanding of how to harness the therapeutic potential of MSCs in treating inflammatory diseases and facilitating injury repair. This review aims to delve into the formation of the inflammatory microenvironment and how it influences the homing of MSCs.
Collapse
Affiliation(s)
- Jinyi Liu
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Longju Qi
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Shengzhe Bao
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Fangsu Yan
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Jiaxi Chen
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Shumin Yu
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Chuanming Dong
- Department of Anatomy, Medical College of Nantong University, Nantong, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
31
|
Gill JK, Rehsia SK, Verma E, Sareen N, Dhingra S. Stem cell therapy for cardiac regeneration: past, present, and future. Can J Physiol Pharmacol 2024; 102:161-179. [PMID: 38226807 DOI: 10.1139/cjpp-2023-0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Cardiac disorders remain the leading cause of mortality worldwide. Current clinical strategies, including drug therapy, surgical interventions, and organ transplantation offer limited benefits to patients without regenerating the damaged myocardium. Over the past decade, stem cell therapy has generated a keen interest owing to its unique self-renewal and immune privileged characteristics. Furthermore, the ability of stem cells to differentiate into specialized cell types, has made them a popular therapeutic tool against various diseases. This comprehensive review provides an overview of therapeutic potential of different types of stem cells in reference to cardiovascular diseases. Furthermore, it sheds light on the advantages and limitations associated with each cell type. An in-depth analysis of the challenges associated with stem cell research and the hurdles for its clinical translation and their possible solutions have also been elaborated upon. It examines the controversies surrounding embryonic stem cells and the emergence of alternative approaches, such as the use of induced pluripotent stem cells for cardiac therapeutic applications. Overall, this review serves as a valuable resource for researchers, clinicians, and policymakers involved in the field of regenerative medicine, guiding the development of safe and effective stem cell-based therapies to revolutionize patient care.
Collapse
Affiliation(s)
- Jaideep Kaur Gill
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Sargun Kaur Rehsia
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Elika Verma
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| |
Collapse
|
32
|
Li K, Shen C, Wen N, Han Y, Guo L. EPO regulates the differentiation and homing of bone marrow mesenchymal stem cells through Notch1/Jagged pathway to treat pulmonary hypertension. Heliyon 2024; 10:e25234. [PMID: 38375306 PMCID: PMC10875385 DOI: 10.1016/j.heliyon.2024.e25234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Purpose To investigate whether erythropoietin (EPO) can treat pulmonary arterial hypertension (PAH) in rats by regulating the differentiation and homing of bone marrow mesenchymal stem cells (BMSCs) through Notch1/Jagged signaling pathway. Materials & methods BMSCs were isolated from the bone marrow of 6-week-old male SD rats by whole bone marrow method and identified. BMSCs were treated with 500 IU/mL EPO, and the proliferation, migration, invasion and differentiation ability, and the expression of MMP-2 and MMP-9 protein of BMSCs were detected in vitro. After the establishment of the pulmonary hypertension model in rats, BMSCs were intervened with different concentrations of EPO and injected into the rats through intravenous injection. The levels of TNF-α, IL-1β and IL-6 in lung tissue, the expression of SRY CXCR4, CCR2, Notch1 and Jagged protein in lung tissue, and the levels of TGF-α, vascular endothelial factor (VEGF), IGF-1 and HGF in serum were detected. Immunofluorescence (IF) staining was used to detect the co-localization of CD34. Results EPO promoted the proliferation, migration, and invasion of BMSCs by inhibiting Notch1/Jagged pathway in vitro, and induced BMSCs to differentiate into vascular smooth muscle cells and vascular endothelial cells. EPO inhibited Notch1/Jagged pathway in PAH rats, induced BMSCs homing and differentiation, increased the levels of TGF-α, VEGF, IGF-1 and HGF, and decreased the levels of TNF-α, IL-1β and IL-6. Discussion & conclusion EPO can inhibit the Notch1/Jagged pathway and promote the proliferation, migration, invasion, homing and differentiation of BMSCs to treat pulmonary hypertension in rats in vitro and in vivo.
Collapse
Affiliation(s)
- Kang Li
- Department of Gastroenterology, People's Hospital of Tibet Autonomous Region, Lhasa, Tibet 850000, China
| | - Chongyang Shen
- School of basic medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 230041, Sichuan, China
| | - Nianchi Wen
- Department of Health Management & Physical Examination, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Yicen Han
- Department of Pulmonary and Critical Care Medicine, Chengdu Second People's Hospital, Chengdu 610021, Sichuan, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| |
Collapse
|
33
|
Cao JK, Hong XY, Feng ZC, Li QP. Mesenchymal stem cells-based therapies for severe ARDS with ECMO: a review. Intensive Care Med Exp 2024; 12:12. [PMID: 38332384 PMCID: PMC10853094 DOI: 10.1186/s40635-024-00596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is the primary cause of respiratory failure in critically ill patients. Despite remarkable therapeutic advances in recent years, ARDS remains a life-threatening clinical complication with high morbidity and mortality, especially during the global spread of the coronavirus disease 2019 (COVID-19) pandemic. Previous studies have demonstrated that mesenchymal stem cell (MSC)-based therapy is a potential alternative strategy for the treatment of refractory respiratory diseases including ARDS, while extracorporeal membrane oxygenation (ECMO) as the last resort treatment to sustain life can help improve the survival of ARDS patients. In recent years, several studies have explored the effects of ECMO combined with MSC-based therapies in the treatment of ARDS, and some of them have demonstrated that this combination can provide better therapeutic effects, while others have argued that some critical issues need to be solved before it can be applied to clinical practice. This review presents an overview of the current status, clinical challenges and future prospects of ECMO combined with MSCs in the treatment of ARDS.
Collapse
Affiliation(s)
- Jing-Ke Cao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Yang Hong
- Department of Pediatric Intensive Care Unit, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, NO.5 Nanmencang, Dongcheng District, 100700, Beijing, China
| | - Zhi-Chun Feng
- Department of Neonatology, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, NO. 5 Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Qiu-Ping Li
- Department of Neonatology, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, NO. 5 Nanmencang, Dongcheng District, Beijing, 100700, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
34
|
Kolahi Azar H, Imanpour A, Rezaee H, Ezzatifar F, Zarei-Behjani Z, Rostami M, Azami M, Behestizadeh N, Rezaei N. Mesenchymal stromal cells and CAR-T cells in regenerative medicine: The homing procedure and their effective parameters. Eur J Haematol 2024; 112:153-173. [PMID: 37254607 DOI: 10.1111/ejh.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Mesenchymal stromal cells (MSCs) and chimeric antigen receptor (CAR)-T cells are two core elements in cell therapy procedures. MSCs have significant immunomodulatory effects that alleviate inflammation in the tissue regeneration process, while administration of specific chemokines and adhesive molecules would primarily facilitate CAR-T cell trafficking into solid tumors. Multiple parameters affect cell homing, including the recipient's age, the number of cell passages, proper cell culture, and the delivery method. In addition, several chemokines are involved in the tumor microenvironment, affecting the homing procedure. This review discusses parameters that improve the efficiency of cell homing and significant cell therapy challenges. Emerging comprehensive mechanistic strategies such as non-systemic and systemic homing that revealed a significant role in cell therapy remodeling were also reviewed. Finally, the primary implications for the development of combination therapies that incorporate both MSCs and CAR-T cells for cancer treatment were discussed.
Collapse
Affiliation(s)
- Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Aylar Imanpour
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Rezaee
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ezzatifar
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Molecular and Cell Biology Research Center, Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zeinab Zarei-Behjani
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, Advanced School of Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahmoud Azami
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Behestizadeh
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
35
|
Li DY, Li YM, Lv DY, Deng T, Zeng X, You L, Pang QY, Li Y, Zhu BM. Enhanced interaction between genome-edited mesenchymal stem cells and platelets improves wound healing in mice. J Tissue Eng 2024; 15:20417314241268917. [PMID: 39329066 PMCID: PMC11425747 DOI: 10.1177/20417314241268917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/26/2024] [Indexed: 09/28/2024] Open
Abstract
Impaired wound healing poses a significant burden on the healthcare system and patients. Stem cell therapy has demonstrated promising potential in the treatment of wounds. However, its clinical application is hindered by the low efficiency of cell homing. In this study, we successfully integrated P-selectin glycoprotein ligand-1 (PSGL-1) into the genome of human adipose-derived mesenchymal stem cells (ADSCs) using a Cas9-AAV6-based genome editing tool platform. Our findings revealed that PSGL-1 knock-in enhanced the binding of ADSCs to platelets and their adhesion to the injured site. Moreover, the intravenous infusion of PSGL-1 -engineered ADSCs (KI-ADSCs) significantly improved the homing efficiency and residence rate at the site of skin lesions in mice. Mechanistically, PSGL-1 knock-in promotes the release of some therapeutic cytokines by activating the canonical WNT/β-catenin signaling pathway and accelerates the healing of wounds by promoting angiogenesis, re-epithelialization, and granulation tissue formation at the wound site. This study provides a novel strategy to simultaneously address the problem of poor migration and adhesion of mesenchymal stem cells (MSCs).
Collapse
Affiliation(s)
- De-Yong Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Meng Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan-Yi Lv
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tian Deng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zeng
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiu-Yu Pang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
36
|
Rajput S, Malviya R, Uniyal P. Advances in the Treatment of Kidney Disorders using Mesenchymal Stem Cells. Curr Pharm Des 2024; 30:825-840. [PMID: 38482624 DOI: 10.2174/0113816128296105240305110312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 06/04/2024]
Abstract
Renal disease is a medical condition that poses a potential threat to the life of an individual and is related to substantial morbidity and mortality rates in clinical environments. The aetiology of this condition is influenced by multiple factors, and its incidence tends to increase with progressive aging. Although supportive therapy and kidney transplantation have potential advantages, they also have limitations in terms of mitigating the progression of KD. Despite significant advancements in the domain of supportive therapy, mortality rates in patients continue to increase. Due to their ability to self-renew and multidirectionally differentiate, stem cell therapy has been shown to have tremendous potential in the repair of the diseased kidney. MSCs (Mesenchymal stem cells) are a cell population that is extensively distributed and can be located in various niches throughout an individual's lifespan. The cells in question are characterised by their potential for indefinite replication and their aptitude for undergoing differentiation into fully developed cells of mesodermal origin under laboratory conditions. It is essential to emphasize that MSCs have demonstrated a favorable safety profile and efficacy as a therapeutic intervention for renal diseases in both preclinical as well as clinical investigations. MSCs have been found to slow the advancement of kidney disease, and this impact is thought to be due to their control over a number of physiological processes, including immunological response, tubular epithelial- mesenchymal transition, oxidative stress, renal tubular cell death, and angiogenesis. In addition, MSCs demonstrate recognised effectiveness in managing both acute and chronic kidney diseases via paracrine pathways. The proposal to utilise a therapy that is based on stem-cells as an effective treatment has been put forward in search of discovering novel therapies to promote renal regeneration. Preclinical researchers have demonstrated that various types of stem cells can provide advantages in acute and chronic kidney disease. Moreover, preliminary results from clinical trials have suggested that these interventions are both safe and well-tolerated. This manuscript provides a brief overview of the potential renoprotective effects of stem cell-based treatments in acute as well as chronic renal dysfunction. Furthermore, the mechanisms that govern the process of kidney regeneration induced by stem cells are investigated. This article will examine the therapeutic approaches that make use of stem cells for the treatment of kidney disorders. The analysis will cover various cellular sources that have been utilised, potential mechanisms involved, and the outcomes that have been achieved so far.
Collapse
Affiliation(s)
- Shivam Rajput
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
37
|
Hazrati A, Malekpour K, Mirsanei Z, Khosrojerdi A, Rahmani-Kukia N, Heidari N, Abbasi A, Soudi S. Cancer-associated mesenchymal stem/stromal cells: role in progression and potential targets for therapeutic approaches. Front Immunol 2023; 14:1280601. [PMID: 38022534 PMCID: PMC10655012 DOI: 10.3389/fimmu.2023.1280601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Malignancies contain a relatively small number of Mesenchymal stem/stromal cells (MSCs), constituting a crucial tumor microenvironment (TME) component. These cells comprise approximately 0.01-5% of the total TME cell population. MSC differentiation potential and their interaction with the tumor environment enable these cells to affect tumor cells' growth, immune evasion, metastasis, drug resistance, and angiogenesis. This type of MSC, known as cancer-associated mesenchymal stem/stromal cells (CA-MSCs (interacts with tumor/non-tumor cells in the TME and affects their function by producing cytokines, chemokines, and various growth factors to facilitate tumor cell migration, survival, proliferation, and tumor progression. Considering that the effect of different cells on each other in the TME is a multi-faceted relationship, it is essential to discover the role of these relationships for targeting in tumor therapy. Due to the immunomodulatory role and the tissue repair characteristic of MSCs, these cells can help tumor growth from different aspects. CA-MSCs indirectly suppress antitumor immune response through several mechanisms, including decreasing dendritic cells (DCs) antigen presentation potential, disrupting natural killer (NK) cell differentiation, inducing immunoinhibitory subsets like tumor-associated macrophages (TAMs) and Treg cells, and immune checkpoint expression to reduce effector T cell antitumor responses. Therefore, if these cells can be targeted for treatment so that their population decreases, we can hope for the treatment and improvement of the tumor conditions. Also, various studies show that CA-MSCs in the TME can affect other vital aspects of a tumor, including cell proliferation, drug resistance, angiogenesis, and tumor cell invasion and metastasis. In this review article, we will discuss in detail some of the mechanisms by which CA-MSCs suppress the innate and adaptive immune systems and other mechanisms related to tumor progression.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Khosrojerdi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nasim Rahmani-Kukia
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Heidari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
38
|
Shahani P, Mahadevan A, Mondal K, Waghmare G, Datta I. Repeat intramuscular transplantation of human dental pulp stromal cells is more effective in sustaining Schwann cell survival and myelination for functional recovery after onset of diabetic neuropathy. Cytotherapy 2023; 25:1200-1211. [PMID: 37642606 DOI: 10.1016/j.jcyt.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/30/2023] [Accepted: 07/30/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cell (MSC) therapy for diabetic neuropathy (DN) has been extensively researched in vitro and in pre-clinical studies; however, the clinical scenario thus far has been disappointing. Temporary recovery, a common feature of these studies, indicates that either the retention of transplanted cells deteriorates with time or recovery of supportive endogenous cells, such as bone marrow-derived MSCs (BM-MSCs), does not occur, requiring further replenishment. In DN, BM-MSCs are recognized mediators of Schwann cell regeneration, and we have earlier shown that they suffer impairment in the pre-neuropathy stage. In this study, we attempted to further elucidate the mechanisms of functional recovery by focusing on changes occurring at the cellular level in the sciatic nerve, in conjunction with the biodistribution and movement patterns of the transplanted cells, to define the interval between doses. METHOD & RESULTS We found that two doses of 1 × 106 dental pulp stromal cells (DPSCs) transplanted intramuscularly at an interval of 4 weeks effectively improved nerve conduction velocity (NCV) and restored motor coordination through improving sciatic nerve architecture, Schwann cell survival and myelination. Despite very minimal recovery of endogenous BM-MSCs, a temporary restoration of NCV and motor function was achieved with the first dose of DPSC transplantation. However, this did not persist, and a repeat dose was needed to consolidate functional improvement and rehabilitate the sciatic nerve architecture. CONCLUSION Thus, repeat intramuscular transplantation of DPSCs is more effective for maintenance of Schwann cell survival and myelination for functional recovery after onset of DN.
Collapse
Affiliation(s)
- Pradnya Shahani
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Kallolika Mondal
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Girish Waghmare
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Indrani Datta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India.
| |
Collapse
|
39
|
Zhao Y, Shen M, Wu L, Yang H, Yao Y, Yang Q, Du J, Liu L, Li Y, Bai Y. Stromal cells in the tumor microenvironment: accomplices of tumor progression? Cell Death Dis 2023; 14:587. [PMID: 37666813 PMCID: PMC10477351 DOI: 10.1038/s41419-023-06110-6] [Citation(s) in RCA: 136] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
The tumor microenvironment (TME) is made up of cells and extracellular matrix (non-cellular component), and cellular components include cancer cells and non-malignant cells such as immune cells and stromal cells. These three types of cells establish complex signals in the body and further influence tumor genesis, development, metastasis and participate in resistance to anti-tumor therapy. It has attracted scholars to study immune cells in TME due to the significant efficacy of immune checkpoint inhibitors (ICI) and chimeric antigen receptor T (CAR-T) in solid tumors and hematologic tumors. After more than 10 years of efforts, the role of immune cells in TME and the strategy of treating tumors based on immune cells have developed rapidly. Moreover, ICI have been recommended by guidelines as first- or second-line treatment strategies in a variety of tumors. At the same time, stromal cells is another major class of cellular components in TME, which also play a very important role in tumor metabolism, growth, metastasis, immune evasion and treatment resistance. Stromal cells can be recruited from neighboring non-cancerous host stromal cells and can also be formed by transdifferentiation from stromal cells to stromal cells or from tumor cells to stromal cells. Moreover, they participate in tumor genesis, development and drug resistance by secreting various factors and exosomes, participating in tumor angiogenesis and tumor metabolism, regulating the immune response in TME and extracellular matrix. However, with the deepening understanding of stromal cells, people found that stromal cells not only have the effect of promoting tumor but also can inhibit tumor in some cases. In this review, we will introduce the origin of stromal cells in TME as well as the role and specific mechanism of stromal cells in tumorigenesis and tumor development and strategies for treatment of tumors based on stromal cells. We will focus on tumor-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), tumor-associated adipocytes (CAAs), tumor endothelial cells (TECs) and pericytes (PCs) in stromal cells.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Meili Shen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Liangqiang Wu
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Haiqin Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Yixuan Yao
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Qingbiao Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Jianshi Du
- Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Linlin Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Yapeng Li
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China.
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China.
| |
Collapse
|
40
|
Xiao K, Liu C, Wang H, Hou F, Shi Y, Qian ZR, Zhang H, Deng DYB, Xie L. Umbilical cord mesenchymal stem cells overexpressing CXCR7 facilitate treatment of ARDS-associated pulmonary fibrosis via inhibition of Notch/Jag1 mediated by the Wnt/β-catenin pathway. Biomed Pharmacother 2023; 165:115124. [PMID: 37454589 DOI: 10.1016/j.biopha.2023.115124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
The therapeutic efficacy of umbilical cord mesenchymal stem cells (UCMSCs) in acute respiratory distress syndrome (ARDS) is mainly limited by the efficiency of homing of UCMSCs toward tissue damage. C-X-C chemokine receptor type 7 (CXCR7), which is involved in the mobilization of UCMSCs, is only expressed on the surface of a small proportion of UCMSCs. This study examined whether overexpression of CXCR7 in UCMSCs (UCMSCsOE-CXCR7) could improve their homing efficiency, and therefore, improve their effectiveness in fibrosis repair at the site of lung injury caused by ARDS. A lentiviral vector expressing CXCR7 was built and then transfect into UCMSCs. The impacts of CXCR7 expression of the proliferationand homing of UCMSCs were examined in a lipopolysaccharide-induced ARDS mouse model. The potential role and underlying mechanism of CXCR7 were examined by performing scratch assays, transwell assays, and immunoassays. The therapeutic dose and treatment time of UCMSCsOE-CXCR7 were directly proportional to their therapeutic effect on lung injury. In addition, overexpression of CXCR7 increased SDF-1-induced proliferation and migration of lung epithelial cells (Base-2b cells), and upregulation of CXCR7 inhibited α-SMA expression, suggesting that CXCR7 may have a role in alleviating pulmonary fibrosis caused by ARDS. Overexpression of CXCR7 in UCMSCs may improve their therapeutic effect of acute lung injury mouse, The mechanism of fibrosis repair by CXCR7 is inhibition of Jag1 via suppression of the Wnt/β-catenin pathway under the chemotaxis of SDF-1.
Collapse
Affiliation(s)
- Kun Xiao
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Chang Liu
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing 100853, China; School of medicine Nankai university, Tianjin 300071, China
| | - Heming Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou 570228, China
| | - Fei Hou
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Yinghan Shi
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhi Rong Qian
- Department of Scientific Research Center, The Seventh Affiliated Hospital of Sun YatSen University, Shenzhen 518106, China; Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Hao Zhang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - David Y B Deng
- Department of Scientific Research Center, The Seventh Affiliated Hospital of Sun YatSen University, Shenzhen 518106, China.
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
41
|
Slama Y, Ah-Pine F, Khettab M, Arcambal A, Begue M, Dutheil F, Gasque P. The Dual Role of Mesenchymal Stem Cells in Cancer Pathophysiology: Pro-Tumorigenic Effects versus Therapeutic Potential. Int J Mol Sci 2023; 24:13511. [PMID: 37686315 PMCID: PMC10488262 DOI: 10.3390/ijms241713511] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells involved in numerous physiological events, including organogenesis, the maintenance of tissue homeostasis, regeneration, or tissue repair. MSCs are increasingly recognized as playing a major, dual, and complex role in cancer pathophysiology through their ability to limit or promote tumor progression. Indeed, these cells are known to interact with the tumor microenvironment, modulate the behavior of tumor cells, influence their functions, and promote distant metastasis formation through the secretion of mediators, the regulation of cell-cell interactions, and the modulation of the immune response. This dynamic network can lead to the establishment of immunoprivileged tissue niches or the formation of new tumors through the proliferation/differentiation of MSCs into cancer-associated fibroblasts as well as cancer stem cells. However, MSCs exhibit also therapeutic effects including anti-tumor, anti-proliferative, anti-inflammatory, or anti-oxidative effects. The therapeutic interest in MSCs is currently growing, mainly due to their ability to selectively migrate and penetrate tumor sites, which would make them relevant as vectors for advanced therapies. Therefore, this review aims to provide an overview of the double-edged sword implications of MSCs in tumor processes. The therapeutic potential of MSCs will be reviewed in melanoma and lung cancers.
Collapse
Affiliation(s)
- Youssef Slama
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Franck Ah-Pine
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Anatomie et Cytologie Pathologiques, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Mohamed Khettab
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Oncologie Médicale, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Angelique Arcambal
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Mickael Begue
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Fabien Dutheil
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Philippe Gasque
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
| |
Collapse
|
42
|
Mozafari N, Mozafari N, Dehshahri A, Azadi A. Knowledge Gaps in Generating Cell-Based Drug Delivery Systems and a Possible Meeting with Artificial Intelligence. Mol Pharm 2023; 20:3757-3778. [PMID: 37428824 DOI: 10.1021/acs.molpharmaceut.3c00162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Cell-based drug delivery systems are new strategies in targeted delivery in which cells or cell-membrane-derived systems are used as carriers and release their cargo in a controlled manner. Recently, great attention has been directed to cells as carrier systems for treating several diseases. There are various challenges in the development of cell-based drug delivery systems. The prediction of the properties of these platforms is a prerequisite step in their development to reduce undesirable effects. Integrating nanotechnology and artificial intelligence leads to more innovative technologies. Artificial intelligence quickly mines data and makes decisions more quickly and accurately. Machine learning as a subset of the broader artificial intelligence has been used in nanomedicine to design safer nanomaterials. Here, how challenges of developing cell-based drug delivery systems can be solved with potential predictive models of artificial intelligence and machine learning is portrayed. The most famous cell-based drug delivery systems and their challenges are described. Last but not least, artificial intelligence and most of its types used in nanomedicine are highlighted. The present Review has shown the challenges of developing cells or their derivatives as carriers and how they can be used with potential predictive models of artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| | - Niloofar Mozafari
- Design and System Operations Department, Regional Information Center for Science and Technology, 71946 94171 Shiraz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
- Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
- Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| |
Collapse
|
43
|
Dantas JR, Araujo DB, Silva KR, Souto DL, Pereira MDFC, Raggio LR, Claudio-da Silva C, Couri CE, Maiolino A, Rebellato CLK, Daga DR, Senegaglia AC, Brofman PRS, Baptista LS, Oliveira JEPD, Zajdenverg L, Rodacki M. Adipose Tissue-Derived Stromal/Stem Cells Transplantation with Cholecalciferol Supplementation in Recent-Onset Type 1 Diabetes Patients: Twelve Months Follow-Up. Horm Metab Res 2023; 55:536-545. [PMID: 37192655 DOI: 10.1055/a-2094-1039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To evaluate safety and therapeutic effect along 12 months of allogenic adipose tissue-derived stromal/stem cells (ASCs) transplantation with cholecalciferol (VITD) in patients with recent-onset type 1 diabetes (T1D). Prospective, phase II, open trial, pilot study in which patients with recent onset T1D received ASCs (1xKgx106 cells) and VITD 2000UI/day for 12 months (group 1) and were compared to controls with standard insulin therapy (group 2). Adverse events, C-peptide area under the curve (CPAUC), insulin dose, HbA1c and frequency of FoxP3+ in CD4+ or CD8+ T-cells(flow cytometry) were evaluated at baseline(T0), after 3(T3), 6(T6) and 12 months(T12). Eleven patients completed follow up (7:group 1;4:group 2). Group 1 had lower insulin requirement at T3(0.24±0.18vs0.53±0.23UI/kg,p=0.04), T6(0.24±0.15vs0.66±0.33 UI/kg,p=0.04) and T12(0.39±0.15vs0.74±0.29 UI/Kg,p=0.04).HbA1c was lower at T6 (50.57±8.56vs72.25±10.34 mmol/mol,p=0.01), without differences at T12 (57.14±11.98 in group 1 vs. 73.5±14.57 mmol/min in group 2, p=0.16). CPAUC was not significantly different between groups at T0(p=0.07), higher in group 1 at T3(p=0.04) and T6(p=0.006), but similar at T12(p=0.23). IDAA1c was significantly lower in group 1 than group 2 at T3,T6 and T12 (p=0.006, 0.006 and 0.042, respectively). IDDA1c was inversely correlated to FoxP3 expression in CD4 and CD8+ T cells at T6 (p<0.001 and p=0.01, respectively). In group 1, one patient had recurrence of a benign teratoma that was surgically removed, not associated to the intervention. ASCs with VITD without immunosuppression were safe and associated lower insulin requirements, better glycemic control, and transient better pancreatic function in recent onset T1D, but the potential benefits were not sustained.
Collapse
Affiliation(s)
- Joana R Dantas
- Nutrology and Diabetes Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Batista Araujo
- Nutrology and Diabetes Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karina Ribeiro Silva
- Laboratory of Tissue Bioengineering, Instituto Nacional de Metrologia Qualidade e Tecnologia Campus de Xerem, Duque de Caxias, Brazil
- Histology and Embryology Departament, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Lopes Souto
- Nutrology and Diabetes Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Luiz Ronir Raggio
- Institute of Public Health Studies, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Carlos Eduardo Couri
- Internal Medicine, Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto, Ribeirao Preto, Brazil
| | - Angelo Maiolino
- Hematology Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Debora Regina Daga
- Core Cell Technology, Pontifical Catholic University of Parana, Curitiba, Brazil
| | | | | | - Leandra S Baptista
- Laboratory of Tissue Bioengineering, Instituto Nacional de Metrologia Qualidade e Tecnologia Campus de Xerem, Duque de Caxias, Brazil
- Center for Biological Research (Numpex-Bio), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Lenita Zajdenverg
- Nutrology and Diabetes Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Melanie Rodacki
- Nutrology and Diabetes Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Da Ros F, Kowal K, Vicinanza C, Lombardi E, Agostini F, Ciancia R, Rupolo M, Durante C, Michieli M, Mazzucato M. IRE1a-Induced FilaminA Phosphorylation Enhances Migration of Mesenchymal Stem Cells Derived from Multiple Myeloma Patients. Cells 2023; 12:1935. [PMID: 37566015 PMCID: PMC10417526 DOI: 10.3390/cells12151935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
Multiple myeloma (MM) is an aggressive malignancy that shapes, during its progression, a pro-tumor microenvironment characterized by altered protein secretion and the gene expression of mesenchymal stem cells (MSCs). In turn, MSCs from MM patients can exert an high pro-tumor activity and play a strong immunosuppressive role. Here, we show, for the first time, greater cell mobility paralleled by the activation of FilaminA (FLNA) in MM-derived MSCs, when compared to healthy donor (HD)-derived MSCs. Moreover, we suggest the possible involvement of the IRE1a-FLNA axis in the control of the MSC migration process. In this way, IRE1a can be considered as a good target candidate for MM therapy, considering its pro-survival, pro-osteoclast and chemoresistance role in the MM microenvironment. Our results suggest that IRE1a downregulation could also interfere with the response of MSCs to MM stimuli, possibly preventing cell-cell adhesion-mediated drug resistance. In addition, further investigations harnessing IRE1a-FLNA interaction could improve the homing efficiency of MSC as cell product for advanced therapy applications.
Collapse
Affiliation(s)
- Francesco Da Ros
- Stem Cell Unit, Department of Research and Advance Cancer Diagnostic, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; (F.D.R.)
| | - Kinga Kowal
- Department of Life Sciences, University of Trieste, 34151 Trieste, Italy
| | - Carla Vicinanza
- Stem Cell Unit, Department of Research and Advance Cancer Diagnostic, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; (F.D.R.)
| | - Elisabetta Lombardi
- Stem Cell Unit, Department of Research and Advance Cancer Diagnostic, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; (F.D.R.)
| | - Francesco Agostini
- Stem Cell Unit, Department of Research and Advance Cancer Diagnostic, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; (F.D.R.)
| | - Rosanna Ciancia
- Oncohematology and Cell Therapy Unit, Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Maurizio Rupolo
- Oncohematology and Cell Therapy Unit, Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Cristina Durante
- Stem Cell Unit, Department of Research and Advance Cancer Diagnostic, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; (F.D.R.)
| | - Mariagrazia Michieli
- Oncohematology and Cell Therapy Unit, Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Mario Mazzucato
- Stem Cell Unit, Department of Research and Advance Cancer Diagnostic, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; (F.D.R.)
| |
Collapse
|
45
|
Yang X, Wang Y, Rovella V, Candi E, Jia W, Bernassola F, Bove P, Piacentini M, Scimeca M, Sica G, Tisone G, Mauriello A, Wei L, Melino G, Shi Y. Aged mesenchymal stem cells and inflammation: from pathology to potential therapeutic strategies. Biol Direct 2023; 18:40. [PMID: 37464416 PMCID: PMC10353240 DOI: 10.1186/s13062-023-00394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Natural ageing of organisms and corresponding age-related diseases result mainly from stem cell ageing and "inflammaging". Mesenchymal stem cells (MSCs) exhibit very high immune-regulating capacity and are promising candidates for immune-related disease treatment. However, the effect of MSC application is not satisfactory for some patients, especially in elderly individuals. With ageing, MSCs undergo many changes, including altered cell population reduction and differentiation ability, reduced migratory and homing capacity and, most important, defective immunosuppression. It is necessary to explore the relationship between the "inflammaging" and aged MSCs to prevent age-related diseases and increase the therapeutic effects of MSCs. In this review, we discuss changes in naturally ageing MSCs mainly from an inflammation perspective and propose some ideas for rejuvenating aged MSCs in future treatments.
Collapse
Affiliation(s)
- Xue Yang
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| | - Ying Wang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Wei Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233 China
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong China
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Pierluigi Bove
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Mauro Piacentini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Giuseppe Sica
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Giuseppe Tisone
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438 China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| |
Collapse
|
46
|
Clavellina D, Balkan W, Hare JM. Stem cell therapy for acute myocardial infarction: Mesenchymal Stem Cells and induced Pluripotent Stem Cells. Expert Opin Biol Ther 2023; 23:951-967. [PMID: 37542462 PMCID: PMC10837765 DOI: 10.1080/14712598.2023.2245329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
INTRODUCTION Acute myocardial infarction (AMI) remains a leading cause of death in the United States. The limited capacity of cardiomyocytes to regenerate and the restricted contractility of scar tissue after AMI are not addressed by current pharmacologic interventions. Mesenchymal stem/stromal cells (MSCs) have emerged as a promising therapeutic approach due to their low antigenicity, ease of harvesting, and efficacy and safety in preclinical and clinical studies, despite their low survival and engraftment rates. Other stem cell types, such as induced pluripotent stem cells (iPSCs) also show promise, and optimizing cardiac repair requires integrating emerging technologies and strategies. AREAS COVERED This review offers insights into advancing cell-based therapies for AMI, emphasizing meticulously planned trials with a standardized definition of AMI, for a bench-to-bedside approach. We critically evaluate fundamental studies and clinical trials to provide a comprehensive overview of the advances, limitations and prospects for cell-based therapy in AMI. EXPERT OPINION MSCs continue to show potential promise for treating AMI and its sequelae, but addressing their low survival and engraftment rates is crucial for clinical success. Integrating emerging technologies such as pluripotent stem cells and conducting well-designed trials will harness the full potential of cell-based therapy in AMI management. Collaborative efforts are vital to developing effective stem cell therapies for AMI patients.
Collapse
Affiliation(s)
- Diana Clavellina
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
47
|
Nethi SK, Li X, Bhatnagar S, Prabha S. Enhancing Anticancer Efficacy of Chemotherapeutics Using Targeting Ligand-Functionalized Synthetic Antigen Receptor-Mesenchymal Stem Cells. Pharmaceutics 2023; 15:1742. [PMID: 37376189 DOI: 10.3390/pharmaceutics15061742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been studied for their potential in facilitating tumor-targeted delivery of chemotherapeutics due to their tumor-homing characteristics. We hypothesized that targeting effectiveness of MSCs can be further enhanced by incorporating tumor-targeting ligands on MSC surfaces that will allow for enhanced arrest and binding within the tumor tissue. We utilized a unique strategy of modifying MSCs with synthetic antigen receptors (SARs), targeting specific antigens overexpressed on cancer cells. MSCs were surface-functionalized by first incorporating recombinant protein G (PG) on the surface, followed by binding of the targeting antibody to the PG handle. We functionalized MSCs with antibodies targeting a tyrosine kinase transmembrane receptor protein, epidermal growth factor receptor (EGFR), overexpressed in non-small-cell lung cancer (NSCLC). The efficacy of MSCs functionalized with anti-EGFR antibodies (cetuximab and D8) was determined in murine models of NSCLC. Cetuximab-functionalized MSCs demonstrated improved binding to EGFR protein and to EGFR overexpressing A549 lung adenocarcinoma cells. Further, cetuximab-functionalized MSCs loaded with paclitaxel nanoparticles were efficient in slowing orthotopic A549 tumor growth and improving the overall survival relative to that of other controls. Biodistribution studies revealed a six-fold higher retention of EGFR-targeted MSCs than non-targeted MSCs. Based on these results, we conclude that targeting ligand functionalization could be used to enhance the concentration of therapeutic MSC constructs at the tumor tissue and to achieve improved antitumor response.
Collapse
Affiliation(s)
- Susheel Kumar Nethi
- Fels Cancer Institute for Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xiaolei Li
- Fels Cancer Institute for Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | | | - Swayam Prabha
- Fels Cancer Institute for Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Molecular Therapeutics Program, Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA
| |
Collapse
|
48
|
Boukani LM, Khosroshahi RF, Kh SA, Rashtbar M, Khosroshahi AF. Statistical study of clinical trials with stem cells and their function in skin wound. Cell Tissue Res 2023:10.1007/s00441-023-03793-3. [PMID: 37266728 DOI: 10.1007/s00441-023-03793-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Mesenchymal stem cells (MSCs) have been known as a reliable and effective source to repair damaged tissues. The differentiation and self-renewal ability, easy access, immune system modulation capability, and important role in the process of repairing wounds have caused using these cells extensively in wound healing. In this review study, the role of MSCs is debated about different diseases especially in repairing skin wounds. This review article was obtained from 75 basic and trial articles on the PubMed, Google Scholar, and Clinical Trials databases between 2000 and 2022. MSCs are capable of migrating to the wound site and are effective in all stages of wound healing. These cells differentiate into skin cells and also inhibit inflammatory responses, proliferation, and differentiation cells through paracrine messages. They stimulate locally resident precursors, leading to angiogenesis, epithelial regeneration, and granular tissue formation. During maturation stages, these cells decrease fibrosis tissue formation and wound contraction and increase collagen expression and wound tensile strength. The molecular factors of the lesion site change function of these cells and cause MSCs to create a wound healing microenvironment instead of a fibrotic microenvironment. Currently, significant advances have been achieved in the delivery of MSCs to wound sites. These cells are injected intravenously or intradermally, with or without a scaffold. They are also used in the form of spray or hydrogels. Furthermore, the extracellular vesicles and the synergistic environment of these cells alone are effective. Forthcoming studies could lead to more effective treatment strategies for the use of MSCs in wound healing.
Collapse
Affiliation(s)
| | | | | | - Morteza Rashtbar
- Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Ferdowsi Khosroshahi
- Imam Reza General Hospital & Stem Cell Research, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
49
|
Abdelrahman SA, Raafat N, Abdelaal GMM, Aal SMA. Electric field-directed migration of mesenchymal stem cells enhances their therapeutic potential on cisplatin-induced acute nephrotoxicity in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1077-1093. [PMID: 36640200 PMCID: PMC10185611 DOI: 10.1007/s00210-022-02380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
Cisplatin is widely used as an anti-neoplastic agent but is limited by its nephrotoxicity. The use of mesenchymal stem cells (MSCs) for the management of acute kidney injury (AKI) represents a new era in treatment but effective homing of administered cells is needed. This study aimed to investigate the effect of bone marrow-derived mesenchymal stem cells (BM-MSCs) on cisplatin-induced AKI in rats after directed migration by electric field (EF). Forty-eight adult male albino rats were equally classified into four groups: control, cisplatin-treated, cisplatin plus BM-MSCs, and cisplatin plus BM-MSCs exposed to EF. Serum levels of IL-10 and TNF-α were measured by ELISA. Quantitative real-time PCR analysis for gene expression of Bcl2, Bax, caspase-3, and caspase-8 was measured. Hematoxylin and eosin (H&E) staining, periodic acid Schiff staining, and immunohistochemical analysis were also done. MSC-treated groups showed improvement of kidney function; increased serum levels of IL-10 and decreased levels of TNF-α; and increased mRNA expression of Bcl2 and decreased expression of Bax, caspase-3, and caspase-8 proteins comparable to the cisplatin-injured group. EF application increased MSCs homing with significant decrease in serum urea level and caspase-3 gene expression together with significant increase in Bcl2 expression than occurred in the MSCs group. Restoration of normal kidney histomorphology with significant decrease in immunohistochemical expression of caspase-3 protein was observed in the BM-MSCs plus EF group compared to the BM-MSCs group. EF stimulation enhanced the MSCs homing and improved their therapeutic potential on acute cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Shaimaa A. Abdelrahman
- Medical Histology & Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nermin Raafat
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ghadeer M. M. Abdelaal
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sara M. Abdel Aal
- Medical Histology & Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
50
|
Hodge JG, Decker HE, Robinson JL, Mellott AJ. Tissue-mimetic culture enhances mesenchymal stem cell secretome capacity to improve regenerative activity of keratinocytes and fibroblasts in vitro. Wound Repair Regen 2023; 31:367-383. [PMID: 36866522 DOI: 10.1111/wrr.13076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/18/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) are a heterogenous population of multipotent and highly secretory cells currently being investigated in the field of wound healing for their ability to augment tissue responses. The adaptive response of MSC populations to the rigid substrate of current 2D culture systems has been considered to result in a deterioration of regenerative 'stem-like' properties. In this study, we characterise how the improved culture of adipose-derived mesenchymal stem cells (ASCs) within a tissue-mimetic 3D hydrogel system, that is mechanically similar to native adipose tissue, enhances their regenerative capabilities. Notably, the hydrogel system contains a porous microarchitecture that permits mass transport, enabling efficient collection of secreted cellular compounds. By utilising this 3D system, ASCs retained a significantly higher expression of ASC 'stem-like' markers while demonstrating a significant reduction in senescent populations, relative to 2D. Additionally, culture of ASCs within the 3D system resulted in enhanced secretory activity with significant increases in the secretion of proteinaceous factors, antioxidants and extracellular vesicles (EVs) within the conditioned media (CM) fraction. Lastly, treatment of wound healing cells, keratinocytes (KCs) and fibroblasts (FBs), with ASC-CM from the 2D and 3D systems resulted in augmented functional regenerative activity, with ASC-CM from the 3D system significantly increasing KC and FB metabolic, proliferative and migratory activity. This study demonstrates the potential beneficial role of MSC culture within a tissue-mimetic 3D hydrogel system that more closely mimics native tissue mechanics, and subsequently how the improved phenotype augments secretory activity and potential wound healing capabilities of the MSC secretome.
Collapse
Affiliation(s)
- Jacob G Hodge
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, USA
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Jennifer L Robinson
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, USA
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Adam J Mellott
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
- Ronawk, LLC, Olathe, Kansas, USA
| |
Collapse
|