1
|
Peppi PF, Lira GA, Campos LRS, Santos CR, Lima EMM, Barreto-Vianna ARC. Liver under attack: impacts of high-fat diet on murine model. BRAZ J BIOL 2025; 84:e284045. [PMID: 39907329 DOI: 10.1590/1519-6984.284045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/06/2024] [Indexed: 02/06/2025] Open
Abstract
At present, non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide, with obesity recognized as a global epidemic and type 2 diabetes a worldwide disease. In this study, 10 C57BL/6 mice were divided into two groups: the control group (SC) and the high-fat diet (HF) group. Both groups were fed their respective diets for 8 weeks. The animals were analyzed for body weight, glucose/insulin resistance, hepatic steatosis, and fibrosis to diagnose NAFLD. Results showed that the HF group animals had significantly higher body weight (P<0.0001), glucose resistance (P=0.0002), insulin resistance (P=0.0009), and blood glucose levels (P<0.05) compared to the SC group. The HF group exhibited increased hepatic steatosis (P<0.0001) and fibrosis (P<0.0001) compared to the SC group. These findings led to the conclusion that the animals in the HF group had grade and stage 2 NAFLD. Furthermore, the HF group animals were classified as obese, indicating a higher risk for developing insulin resistance and, subsequently, type 2 diabetes mellitus (T2DM). Understanding the risk factors and complications associated with NAFLD, obesity, and T2DM is crucial for preventing and treating metabolic alterations linked to a high-fat diet.
Collapse
Affiliation(s)
- P F Peppi
- Universidade Federal do Paraná - UFPR, Departamento de Biociências, Palotina, PR, Brasil
| | - G A Lira
- Universidade de Brasília - UnB, Programa de Pós-Graduação em Ciências Animais, Brasília, DF, Brasil
| | - L R S Campos
- Universidade de Brasília - UnB, Programa de Pós-Graduação em Ciências Animais, Brasília, DF, Brasil
| | - C R Santos
- Universidade de Brasília - UnB, Programa de Pós-Graduação em Ciências Animais, Brasília, DF, Brasil
| | - E M M Lima
- Universidade de Brasília - UnB, Programa de Pós-Graduação em Ciências Animais, Brasília, DF, Brasil
| | - A R C Barreto-Vianna
- Universidade Federal do Paraná - UFPR, Departamento de Biociências, Palotina, PR, Brasil
| |
Collapse
|
2
|
Pasta A, Formisano E, Calabrese F, Marabotto E, Furnari M, Bodini G, Torres MCP, Pisciotta L, Giannini EG, Zentilin P. From Dysbiosis to Hepatic Inflammation: A Narrative Review on the Diet-Microbiota-Liver Axis in Steatotic Liver Disease. Microorganisms 2025; 13:241. [PMID: 40005608 PMCID: PMC11857840 DOI: 10.3390/microorganisms13020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
The gut microbiota has emerged as a critical player in metabolic and liver health, with its influence extending to the pathogenesis and progression of steatotic liver diseases. This review delves into the gut-liver axis, a dynamic communication network linking the gut microbiome and liver through metabolic, immunological, and inflammatory pathways. Dysbiosis, characterized by altered microbial composition, contributes significantly to the development of hepatic steatosis, inflammation, and fibrosis via mechanisms such as gut barrier dysfunction, microbial metabolite production, and systemic inflammation. Dietary patterns, including the Mediterranean diet, are highlighted for their role in modulating the gut microbiota, improving gut-liver axis integrity, and attenuating liver injury. Additionally, emerging microbiota-based interventions, such as fecal microbiota transplantation and bacteriophage therapy, show promise as therapeutic strategies for steatotic liver disease. However, challenges such as population heterogeneity, methodological variability, and knowledge gaps hinder the translational application of current findings. Addressing these barriers through standardized approaches and integrative research will pave the way for microbiota-targeted therapies to mitigate the global burden of steatotic liver disease.
Collapse
Affiliation(s)
- Andrea Pasta
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
| | - Elena Formisano
- Dietetics and Clinical Nutrition Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (E.F.); (L.P.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Calabrese
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Elisa Marabotto
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Manuele Furnari
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Giorgia Bodini
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Maria Corina Plaz Torres
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Livia Pisciotta
- Dietetics and Clinical Nutrition Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (E.F.); (L.P.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Edoardo Giovanni Giannini
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Patrizia Zentilin
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
3
|
Holländer S, von Heesen M, Gäbelein G, Mercier J, Laschke MW, Menger MD, Glanemann M, Spiliotis AE. Perioperative treatment with cilostazol reverses steatosis and improves liver regeneration after major hepatectomy in a steatotic rat model. Sci Rep 2025; 15:2753. [PMID: 39843785 PMCID: PMC11754906 DOI: 10.1038/s41598-025-87135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025] Open
Abstract
Cilostazol has previously been shown to reduce liver steatosis and enhance hepatic perfusion. We investigated the effects of cilostazol after major hepatectomy in a steatotic rat model. Six weeks prior to surgery, Sprague-Dawley rats were fed with a high-fructose diet. The treatment group received daily 5 mg/kg cilostazol. Seven days following the cilostazol treatment, all animals underwent 70% liver resection (PHX). Analysis of hepatic blood flow and microcirculation and immunohistochemical examinations were conducted 30 min after PHX (postoperative day [POD] 0) as well as on POD 1, POD 3 and POD 7. The weight of cilostazol-treated animals was significantly reduced compared to untreated controls after completion of the 6-week high-FRC diet. Furthermore, 41% macrovesicular steatosis was found in the control group compared to 8% in the cilostazol group. Hepatic arterial and portal venous perfusion were increased in the cilostazol group on POD 7. Lower liver enzyme release was found postoperatively in cilostazol-treated animals. Moreover, apoptosis and neutrophil infiltration were reduced after cilostazol treatment. Proliferation of hepatocytes and liver regeneration after PHX were significantly increased in the cilostazol group. Consequently, cilostazol should be evaluated as a novel strategy to reduce the rate of liver failure after PHX in steatotic liver.
Collapse
Affiliation(s)
- Sebastian Holländer
- Department of General Surgery, Vascular-, Visceral- and Pediatric Surgery, Saarland University Medical Center, 66421, Homburg, Germany
| | - Maximilian von Heesen
- Department of General- and Visceral Surgery, University Hospital Göttingen, 37075, Göttingen, Germany
| | - Gereon Gäbelein
- Department of General Surgery, Vascular-, Visceral- and Pediatric Surgery, Saarland University Medical Center, 66421, Homburg, Germany
| | - Julie Mercier
- Department of General Surgery, Vascular-, Visceral- and Pediatric Surgery, Saarland University Medical Center, 66421, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Matthias Glanemann
- Department of General Surgery, Vascular-, Visceral- and Pediatric Surgery, Saarland University Medical Center, 66421, Homburg, Germany
| | - Antonios E Spiliotis
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany.
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.
| |
Collapse
|
4
|
Jiao J, Zhang X. Steatotic Liver Disease: Navigating Pathologic Features, Diagnostic Challenges, and Emerging Insights. Adv Anat Pathol 2025:00125480-990000000-00135. [PMID: 39895389 DOI: 10.1097/pap.0000000000000483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Steatotic liver disease (SLD) is now used as an overarching category encompassing five subcategories: metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic and alcohol related/associated liver disease (MetALD), alcohol-related/associated liver disease (ALD), SLD with specific etiology, and cryptogenic SLD. This review summarizes foundational and recent advances in the histologic evaluation of SLD, including common pathologic features across all subcategories, distinctions associated with different etiologies, scoring and grading systems, and the evolution of digital pathology techniques for SLD assessment.
Collapse
Affiliation(s)
- Jingjing Jiao
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | | |
Collapse
|
5
|
Xu X, Penjweini R, Székvölgyi L, Karányi Z, Heckel AM, Gurusamy D, Varga D, Yang S, Brown AL, Cui W, Park J, Nagy D, Podszun MC, Yang S, Singh K, Ashcroft SP, Kim J, Kim MK, Tarassov I, Zhu J, Philp A, Rotman Y, Knutson JR, Entelis N, Chung JH. Endonuclease G promotes hepatic mitochondrial respiration by selectively increasing mitochondrial tRNA Thr production. Proc Natl Acad Sci U S A 2025; 122:e2411298122. [PMID: 39752519 PMCID: PMC11725929 DOI: 10.1073/pnas.2411298122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/26/2024] [Indexed: 01/15/2025] Open
Abstract
Mitochondrial endonuclease G (EndoG) contributes to chromosomal degradation when it is released from mitochondria during apoptosis. It is presumed to also have a mitochondrial function because EndoG deficiency causes mitochondrial dysfunction. However, the mechanism by which EndoG regulates mitochondrial function is not known. Fat accumulation in metabolic dysfunction-associated steatotic liver disease (MASLD), which is more common in men, is caused in part by mitochondrial dysfunction. EndoG expression is reduced in MASLD liver, and EndoG deficiency causes MASLD in an obesity-independent manner but only in males. EndoG promotes mitochondrial respiration by resolving mitochondrial tRNA/DNA hybrids formed during mtDNA transcription by recruiting RNA helicase DHX30 to unwind them. EndoG also cleaves off the 3'-end of the H-strand transcript that can prevent mt-tRNAThr precursor cloverleaf-folding, and processing, which increases mt-tRNAThr production and mitochondrial translation. Using fluorescent lifetime imaging microscopy technology to visualize oxygen consumption at the individual mitochondrion level, we found that EndoG deficiency leads to the selective loss of a mitochondrial subpopulation with high-oxygen consumption. This defect was reversed with mt-tRNAThr supplementation. Thus, EndoG promotes mitochondrial respiration by selectively regulating the production of mt-tRNAThr in male mice.
Collapse
Affiliation(s)
- Xihui Xu
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Rozhin Penjweini
- Laboratory of Advanced Microscopy and Biophotonics, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Lóránt Székvölgyi
- Momentum Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen 4032, Hungary
| | - Zsolt Karányi
- Momentum Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen 4032, Hungary
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen4032, Hungary
| | - Anne-Marie Heckel
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie, Strasbourg University-CNRS, Strasbourg67000, France
| | - Devikala Gurusamy
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Dóra Varga
- Momentum Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen 4032, Hungary
| | - Shutong Yang
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Alexandra L. Brown
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Wenqi Cui
- Liver and Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD20892
| | - Jinsung Park
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Dénes Nagy
- Momentum Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen 4032, Hungary
| | - Maren C. Podszun
- Liver and Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD20892
| | - Sarah Yang
- DNA Sequencing and Genomics Core Facility, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Komudi Singh
- Bioinformatics Core Facility, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Stephen P. Ashcroft
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, BirminghamB152TT, United Kingdom
| | - Jeonghan Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul06591, South Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul06591, South Korea
| | - Myung K. Kim
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Ivan Tarassov
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie, Strasbourg University-CNRS, Strasbourg67000, France
| | - Jun Zhu
- DNA Sequencing and Genomics Core Facility, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Andrew Philp
- Centre for Healthy Ageing, Centenary Institute, Royal Prince Alfred Hospital, Sydney, NSW2050, Australia
- School of Sport, Exercise and Rehabilitation Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yaron Rotman
- Liver and Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD20892
| | - Jay R. Knutson
- Laboratory of Advanced Microscopy and Biophotonics, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Nina Entelis
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie, Strasbourg University-CNRS, Strasbourg67000, France
| | - Jay H. Chung
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| |
Collapse
|
6
|
Lu Q, La M, Wang Z, Huang J, Zhu J, Zhang D. Investigation of Active Components of Meconopsis integrifolia (Maxim.) Franch in Mitigating Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2024; 26:50. [PMID: 39795910 PMCID: PMC11719989 DOI: 10.3390/ijms26010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has rapidly emerged as the most prevalent chronic liver disease globally, representing a significant and escalating public health challenge. Meconopsis integrifolia (Maxim.) Franch, a traditional Tibetan medicinal herb used for treating hepatitis, remains largely unexplored regarding its therapeutic potential and active components in combating NAFLD. This study first evaluated the in vitro lipid accumulation inhibitory activity of different extraction fractions of M. integrifolia using a HepG2 cell steatosis model. The ethyl acetate fraction was found to significantly reduce triglyceride (TG) and low-density lipoprotein (LDL) levels, inhibit lipid droplet deposition in HepG2 cells, and promote lipid metabolism balance through modulation of the AMPK/SREPB-1c/PPAR-α signaling pathway. Further analysis utilizing chromatographic techniques and nuclear magnetic resonance spectroscopy (NMR) led to the isolation of 13 compounds from the active ethyl acetate fraction. Notably, compounds 6, 9, 10, 11, 12, and 13 were identified for the first time from this Tibetan herb. In vitro activity assays and molecular docking analyses further confirmed that the compounds Luteolin (1), Quercetin 3-O-[2‴, 6‴-O-diacetyl-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside] (6), and Quercetin 3-O-[2‴-O-acetyl-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside] (8) are potential key components responsible for the NAFLD-ameliorating effects of M. integrifolia. This study highlights the therapeutic potential of M. integrifolia in treating NAFLD and provides a foundation for its further development and application, underscoring its significance in the advanced utilization of traditional Tibetan medicine.
Collapse
Affiliation(s)
- Qiqin Lu
- Research Center for High Altitude Medicine, Key Laboratory of the Ministry of High Altitude Medicine, Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810001, China;
- College of Chemical Engineering, Qinghai University, Xining 810016, China; (M.L.); (Z.W.); (J.H.); (J.Z.)
| | - Majia La
- College of Chemical Engineering, Qinghai University, Xining 810016, China; (M.L.); (Z.W.); (J.H.); (J.Z.)
| | - Ziyang Wang
- College of Chemical Engineering, Qinghai University, Xining 810016, China; (M.L.); (Z.W.); (J.H.); (J.Z.)
| | - Jiaomei Huang
- College of Chemical Engineering, Qinghai University, Xining 810016, China; (M.L.); (Z.W.); (J.H.); (J.Z.)
| | - Jiahui Zhu
- College of Chemical Engineering, Qinghai University, Xining 810016, China; (M.L.); (Z.W.); (J.H.); (J.Z.)
| | - Dejun Zhang
- Research Center for High Altitude Medicine, Key Laboratory of the Ministry of High Altitude Medicine, Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810001, China;
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
| |
Collapse
|
7
|
Chen H, Huang M, Zhang D, Wang H, Wang D, Li M, Wang X, Zhu R, Liu J, Ma L. Metformin's effect on metabolic dysfunction-associated steatotic liver disease through the miR-200a-5p and AMPK/SERCA2b pathway. Front Pharmacol 2024; 15:1477212. [PMID: 39741625 PMCID: PMC11685231 DOI: 10.3389/fphar.2024.1477212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Metformin has shown benefits in treating metabolic dysfunction-associated steatotic liver disease (MASLD), but its mechanisms remain unclear. This study investigates miR-200a-5p's role in the AMPK/SERCA2b pathway to reduce liver fat accumulation and ER stress in MASLD. Methods A PA cell model induced by palmitic and oleic acids (2:1) was used to assess lipid accumulation via Oil Red O and Nile Red staining. mRNA levels of miR-200a-5p and lipid metabolism genes were measured with RT-PCR, and AMPK, p-AMPK, and SERCA2b protein levels were analyzed by Western blotting. The interaction between miR-200a-5p and AMPK was studied using a luciferase reporter assay. A high-fat diet-induced MASLD mouse model was used to evaluate metformin's effects on liver steatosis and lipid profiles. Serum miR-200a-5p levels were also analyzed in MASLD patients. Results In the PA cell model, elevated miR-200a-5p and lipid metabolism gene mRNA levels were observed, with decreased AMPK and SERCA2b protein levels. miR-200a-5p mimic reduced AMPK and SERCA2b expression. Metformin treatment reduced liver steatosis and lipid deposition in mice, normalizing miR-200a-5p, lipid metabolism gene mRNA, and AMPK/SERCA2b protein levels. Elevated serum miR-200a-5p was detected in MASLD patients. Discussion These findings suggest that metformin alleviates lipid deposition and ER stress in MASLD through the modulation of the AMPK/SERCA2b pathway via miR-200a-5p.
Collapse
Affiliation(s)
- Hang Chen
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Minshan Huang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Dan Zhang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Hui Wang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Da Wang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Mengwei Li
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Xianmei Wang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Rui Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Jianjun Liu
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Academy of Biomedical Engineering, Kunming Medical University, Kunming, China
| | - Lanqing Ma
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| |
Collapse
|
8
|
Katsaros I, Sotiropoulou M, Vailas M, Papachristou F, Papakyriakopoulou P, Grigoriou M, Kostomitsopoulos N, Giatromanolaki A, Valsami G, Tsaroucha A, Schizas D. The Effect of Quercetin on Non-Alcoholic Fatty Liver Disease (NAFLD) and the Role of Beclin1, P62, and LC3: An Experimental Study. Nutrients 2024; 16:4282. [PMID: 39770904 PMCID: PMC11678826 DOI: 10.3390/nu16244282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Non-alcoholic fatty liver disease (NAFLD) is a major metabolic disorder with no established pharmacotherapy. Quercetin, a polyphenolic flavonoid, demonstrates potential hepatoprotective effects but has limited bioavailability. This study evaluates the impact of quercetin on NAFLD and assesses the roles of autophagy-related proteins in disease progression. Methods: Forty-seven male C57BL/6J mice were fed a high-fat diet (HFD) for 12 weeks to induce NAFLD, followed by quercetin treatment for 4 weeks. Mice were divided into baseline, control, and two quercetin groups, receiving low (10 mg/kg) and high (50 mg/kg) doses. Liver histology was scored using the NAFLD Activity Score (NAS). Immunohistochemistry and immunoblotting were performed to analyze autophagy markers. Results: Quercetin-treated groups showed significant reductions in NAS compared to controls (p = 0.011), mainly in steatosis and steatohepatitis. Immunohistochemistry indicated increased expression of autophagy markers LCA and p62 in quercetin groups. Western blot analysis revealed significant elevations in LC3A in the treated groups, suggesting improved autophagic activity and lipid degradation. Conclusions: Quercetin effectively reduces NAFLD severity and modulates autophagy-related proteins. These findings suggest that quercetin enhances autophagic flux, supporting its therapeutic potential for NAFLD. Additional research is needed to clarify the molecular mechanisms of quercetin and to determine the optimal dosing for clinical application.
Collapse
Affiliation(s)
- Ioannis Katsaros
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (M.S.); (M.V.); (D.S.)
| | - Maria Sotiropoulou
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (M.S.); (M.V.); (D.S.)
| | - Michail Vailas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (M.S.); (M.V.); (D.S.)
| | - Fotini Papachristou
- Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (F.P.); (A.T.)
| | - Paraskevi Papakyriakopoulou
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15774 Athens, Greece; (P.P.); (G.V.)
| | - Marirena Grigoriou
- Laboratory of Molecular Developmental Biology & Molecular Neurobiology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupoli, Greece;
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Alexandra Giatromanolaki
- Department of Pathology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Georgia Valsami
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15774 Athens, Greece; (P.P.); (G.V.)
| | - Alexandra Tsaroucha
- Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (F.P.); (A.T.)
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (M.S.); (M.V.); (D.S.)
| |
Collapse
|
9
|
Colombo L. A Survey Assessing Nonalcoholic Fatty Liver Disease Knowledge Among Hepatologists and Non-Hepatologists in China. JGH Open 2024; 8:e70054. [PMID: 39659486 PMCID: PMC11629256 DOI: 10.1002/jgh3.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/04/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
Background and Aim A global increase in nonalcoholic fatty liver disease (NAFLD) prevalence has been observed in the last decade. This study assesses knowledge, awareness, and clinical practice gaps of hepatologists and non-hepatologists in NAFLD management across hospitals in China. Methods A web-based quantitative survey was conducted, and participants included hepatologists (gastroenterologists and infectious disease specialists) and non-hepatologists (internal medicine specialists, cardiologists, and pharmacists) from various hospitals across China. Results In total, 1627 healthcare practitioners (HCPs) responded to the survey. This included 658 hepatologists and 969 non-hepatologists. In comparison to 92.6% hepatologists, only 58.0% of non-hepatologists were aware of NAFLD. A higher proportion of hepatologists (82.8%) performed screening for NAFLD compared to non-hepatologists (56.9%). Majority of the hepatologists (70%) and non-hepatologists (67%) were aware of the four primary recommendations for managing NAFLD. Only 11% of hepatologists did not manage NAFLD patients, mainly because they felt they did not have enough time (66.7%). Of the 36% non-hepatologists who did not manage NAFLD, 78.4% stated that NAFLD is not their specialty, and 38.6% were not familiar with the treatment options. Conclusion Most hepatologists were aware of and agreed to performing screening for NAFLD compared to non-hepatologists. Both hepatologists and non-hepatologists exhibited similar level of understanding on NAFLD management. However, a small percentage of both hepatologists and non-hepatologists admitted that they did not manage NAFLD patients because they were not familiar with available treatment options. This underscores the importance of further educating HCPs involved in managing NAFLD.
Collapse
|
10
|
Katsaros I, Sotiropoulou M, Vailas M, Kapetanakis EI, Valsami G, Tsaroucha A, Schizas D. Quercetin's Potential in MASLD: Investigating the Role of Autophagy and Key Molecular Pathways in Liver Steatosis and Inflammation. Nutrients 2024; 16:3789. [PMID: 39599578 PMCID: PMC11597035 DOI: 10.3390/nu16223789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MASLD) is a widespread liver disorder characterized by excessive fat accumulation in the liver, commonly associated with metabolic syndrome components such as obesity, diabetes, and dyslipidemia. With a global prevalence of up to 30%, MASLD is projected to affect over 100 million people in the U.S. and 20 million in Europe by 2030. The disease ranges from Steatotic Lived Disease (SLD) to more severe forms like metabolic dysfunction-associated steatohepatitis (MASH), which can progress to cirrhosis and hepatocellular carcinoma. Autophagy, a cellular process crucial for lipid metabolism and homeostasis, is often impaired in MASLD, leading to increased hepatic lipid accumulation and inflammation. Key autophagy-related proteins, such as Beclin1, LC3A, SQSTM1 (p62), CD36, and Perilipin 3, play significant roles in regulating this process. Disruption in these proteins contributes to the pathogenesis of MASLD. Quercetin, a natural polyphenolic flavonoid with antioxidant and anti-inflammatory properties, has promising results in mitigating MASLD. It may reduce hepatic lipid accumulation, improve mitochondrial function, and enhance autophagy. However, further research is needed to elucidate its mechanisms and validate its therapeutic potential in clinical settings. This underscores the need for continued investigation into autophagy and novel treatments for MASLD.
Collapse
Affiliation(s)
- Ioannis Katsaros
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 17 AgiouThoma Str., Athens 11527, Greece; (M.S.); (M.V.); (D.S.)
| | - Maria Sotiropoulou
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 17 AgiouThoma Str., Athens 11527, Greece; (M.S.); (M.V.); (D.S.)
| | - Michail Vailas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 17 AgiouThoma Str., Athens 11527, Greece; (M.S.); (M.V.); (D.S.)
| | - Emmanouil Ioannis Kapetanakis
- Department of Thoracic Surgery, National and Kapodistrian University of Athens, Attikon University Hospital, Athens12462, Greece;
| | - Georgia Valsami
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15774, Greece;
| | - Alexandra Tsaroucha
- Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis 68100, Greece;
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 17 AgiouThoma Str., Athens 11527, Greece; (M.S.); (M.V.); (D.S.)
| |
Collapse
|
11
|
Cathy Xu L, Rangel-Garcia M, Pinon-Gutierrez R, Fine JR, Medici V, Molfino A. Liver fibrosis prediction models in a population of Latina and White women. J Investig Med 2024; 72:697-704. [PMID: 38869163 DOI: 10.1177/10815589241262004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Point-of-care tools to assess advanced liver fibrosis, including the NFS, BARD, FIB-4, and APRI, are of major interest due to their noninvasive nature. However, these tools have not been investigated extensively in the Latina population. Given that the highest rate of NAFLD in Latinos and the most severe presentation of non-alcoholic fatty liver disease (NAFLD) is more common in women, we hypothesize that ethnicity may play a role in predicting liver fibrosis, particularly in women. We determined whether ethnicity alone or in association with other parameters can predict the severity of fibrosis in women with NAFLD when included in four tools. We retrospectively included 562 Latina and 133 White Caucasian women with a history of NAFLD. Associations between ethnicity and liver fibrosis severity using the four fibrosis predictor models were studied using backward selection multinomial logistic regression. Latina women compared to White showed lower body mass index (p < 0.001), higher HbA1c (p < 0.001), lower prevalence of bariatric surgery (p < 0.001), lower likelihood to smoke (p = 0.003), and higher prevalence of chronic kidney disease stages 3-5 (p = 0.01). Some clinical variables were associated with fibrosis but not univocally in each tool. We did not find differences in the outcome of the four models when holding all other factors and examining ethnicity alone between Latina and White women. Although we did not include data on liver histology, this is the first study examining the role of ethnicity in predicting the severity of fibrosis using established noninvasive scores and documenting no association between Latina ethnicity and the severity of fibrosis in women with NAFLD.
Collapse
Affiliation(s)
- Lankai Cathy Xu
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | | | - Rogelio Pinon-Gutierrez
- Division of Hospital Medicine, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Jeffrey R Fine
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Sacramento, CA, USA
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Alessio Molfino
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Banaszak M, Dobrzyńska M, Kawka A, Górna I, Woźniak D, Przysławski J, Drzymała-Czyż S. Role of Omega-3 fatty acids eicosapentaenoic (EPA) and docosahexaenoic (DHA) as modulatory and anti-inflammatory agents in noncommunicable diet-related diseases - Reports from the last 10 years. Clin Nutr ESPEN 2024; 63:240-258. [PMID: 38980796 DOI: 10.1016/j.clnesp.2024.06.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND & AIMS Fatty acids are a fundamental component of the human diet, particularly polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The importance of omega-3 fatty acids has been studied in the context of many diseases due to their pleiotropic effects, focusing on the anti-inflammatory effects of EPA and DHA. Currently, the results of these acids in noncommunicable diseases are being increasingly assessed in a broader context than just inflammation. However, the mechanisms underlying the modulatory and anti-inflammatory effects of omega-3 fatty acids remain the subject of intensive research. Therefore, we reviewed the literature covering articles from the last decade to assess not only the anti-inflammatory but, above all, the modulatory effect of EPA and DHA acids on noncommunicable diet-related diseases. METHODS The PubMed, Web of Science and Scopus databases were searched for studies regarding the effects of omega-3 fatty acids on diet-related disorders from the last 10 years. RESULTS The available research shows that EPA and DHA supplementation has a beneficial impact on regulating triglycerides, total cholesterol, insulin resistance, blood pressure, liver enzymes, inflammatory markers and oxidative stress. Additionally, there is evidence of their potential benefits in terms of mitochondrial function, regulation of plasma lipoproteins, and reduction of the risk of sudden cardiovascular events associated with atherosclerotic plaque rupture. CONCLUSIONS Omega-3 polyunsaturated fatty acids (EPA, DHA) have many beneficial effects among patients with diet-related disorders. More well-designed randomised controlled trials are needed to fully determine the usefulness of EPA and DHA in treating and preventing noncommunicable diet-related diseases.
Collapse
Affiliation(s)
- Michalina Banaszak
- Poznan University of Medical Sciences, Department of Bromatology, Rokietnicka 3, Poznan, Poland; Poznan University of Medical Sciences Doctoral School, Bukowska 70, Poznan, Poland.
| | - Małgorzata Dobrzyńska
- Poznan University of Medical Sciences, Department of Bromatology, Rokietnicka 3, Poznan, Poland
| | - Anna Kawka
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, Poznan, Poland
| | - Ilona Górna
- Poznan University of Medical Sciences, Department of Bromatology, Rokietnicka 3, Poznan, Poland
| | - Dagmara Woźniak
- Poznan University of Medical Sciences, Department of Bromatology, Rokietnicka 3, Poznan, Poland
| | - Juliusz Przysławski
- Poznan University of Medical Sciences, Department of Bromatology, Rokietnicka 3, Poznan, Poland
| | - Sławomira Drzymała-Czyż
- Poznan University of Medical Sciences, Department of Bromatology, Rokietnicka 3, Poznan, Poland
| |
Collapse
|
13
|
Yang B, Zhong X. Clinical model to predict the risk of nonalcoholic fatty liver disease: A secondary analysis of data from a cross-sectional study. Medicine (Baltimore) 2024; 103:e39437. [PMID: 39252286 PMCID: PMC11383496 DOI: 10.1097/md.0000000000039437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
This study aimed to develop and validate a clinical model for predicting the risk of nonalcoholic fatty liver disease (NAFLD) by using data from a cross-sectional study. This investigation utilized data from the Dryad database and employed multivariable logistic regression analysis, restricted cubic spline, and nomogram analysis to achieve comprehensive insights. The discrimination and calibration of the nomogram were evaluated using the receiver operating characteristic curve and calibration plot. A total of 1072 patients were included in the study, including 456 with non-NAFLD and 616 with NAFLD. Significant differences were observed in terms of sex, body mass index (BMI), tobacco, hypertension, diabetes, alanine aminotransferase (ALT), aspartate aminotransferase (AST), ALT/AST ratio, uric acid (UA), fasting blood glucose (FBG), triglyceride (TG), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, systolic blood pressure, and diastolic blood pressure (P < .05 for all comparisons). Multivariable logistic regression analysis indicated that sex, BMI, diabetes, ALT/AST ratio, UA, FBG, and TG were associated with an increased risk of NAFLD. Restricted cubic spline indicated a nonlinear relationship between the risk of NAFLD and variables including ALT/AST ratio, FPG, TG, and UA (P for nonlinearity < .01). The variables in the nomogram included BMI, diabetes, ALT/AST ratio, UA, FBG, and TG. The value of area under the curve was 0.790, indicating that the nomogram prediction model exhibited significant discriminatory accuracy. A reliable clinical model for predicting the risk of NAFLD was developed using readily available clinical data. The model can assist clinicians in identifying individuals with an increased risk of NAFLD, enabling early interventions for preventing and managing this prevalent liver disease.
Collapse
Affiliation(s)
- Bo Yang
- Department of Gastroenterology and Hepatology, Guizhou Aerospace Hospital, Zunyi, China
| | - Xiang Zhong
- Department of Gastroenterology and Hepatology, Guizhou Aerospace Hospital, Zunyi, China
| |
Collapse
|
14
|
Malladi N, Lahamge D, Somwanshi BS, Tiwari V, Deshmukh K, Balani JK, Chakraborty S, Alam MJ, Banerjee SK. Paricalcitol attenuates oxidative stress and inflammatory response in the liver of NAFLD rats by regulating FOXO3a and NFκB acetylation. Cell Signal 2024; 121:111299. [PMID: 39004324 DOI: 10.1016/j.cellsig.2024.111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
The lack of therapeutics along with complex pathophysiology made non-alcoholic fatty liver disease (NAFLD) a research hotspot. Studies showed that the deficiency of Vitamin D plays a vital role in NAFLD pathogenesis. While several research studies focused on vitamin D supplementation in NAFLD, there is still a need to understand the regulatory mechanism of direct vitamin D receptor activation in NAFLD. In the present study, we explored the role of direct Vitamin D receptor activation using paricalcitol in choline-deficient high-fat diet-induced NAFLD rat liver and its modulation on protein acetylation. Our results showed that paricalcitol administration significantly reduced the fat accumulation in HepG2 cells and the liver of NAFLD rats. Paricalcitol attenuated the elevated serum level of alanine transaminase, aspartate transaminase, insulin, low-density lipoprotein, triglyceride, and increased high-density lipoprotein in NAFLD rats. Paricalcitol significantly decreased the increased total protein acetylation by enhancing the SIRT1 and SIRT3 expression in NAFLD liver. Further, the study revealed that paricalcitol reduced the acetylation of NFκB and FOXO3a in NAFLD liver along with a decrease in the mRNA expression of IL1β, NFκB, TNFα, and increased catalase and MnSOD. Moreover, total antioxidant activity, glutathione, and catalase were also elevated, whereas lipid peroxidation, myeloperoxidase, and reactive oxygen species levels were significantly decreased in the liver of NAFLD after paricalcitol administration. The study concludes that the downregulation of SIRT1 and SIRT3 in NAFLD liver was associated with an increased acetylated NFκB and FOXO3a. Paricalcitol effectively reversed hepatic inflammation and oxidative stress in NAFLD rats through transcriptional regulation of NFκB and FOXO3a, respectively, by inhibiting their acetylation.
Collapse
Affiliation(s)
- Navya Malladi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Devidas Lahamge
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Balaji Sanjay Somwanshi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Vikas Tiwari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Kajal Deshmukh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Jagdish Kumar Balani
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Samhita Chakraborty
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India; Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India.
| |
Collapse
|
15
|
Hajibonabi F, Riedesel EL, Taylor SD, Linam LE, Alazraki AL, Zhang C, Khanna G. Ultrasound-estimated hepatorenal index: diagnostic performance and interobserver agreement for pediatric liver fat quantification. Pediatr Radiol 2024; 54:1653-1660. [PMID: 39136769 DOI: 10.1007/s00247-024-06021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Semiquantitative and quantitative sonographic techniques have the potential for screening and surveillance of children at risk of nonalcoholic fatty liver disease. OBJECTIVE To determine diagnostic performance and interobserver agreement of hepatorenal index (HRI) for pediatric ultrasound-based liver fat quantification. MATERIALS AND METHODS In an institutional review board (IRB)-approved retrospective study (April 2014 to April 2023), children (< 18 years) with clinically performed magnetic resonance imaging (MRI) scans for liver fat quantification were assessed. Inclusion criteria required availability of abdominal ultrasound within 3 months of quantitative MRI. Three blinded readers subjectively assessed for sonographic hepatic steatosis and calculated HRI. MRI proton density fat fraction (PDFF) was the reference standard. Interobserver agreement, correlation with PDFF, and optimal HRI (using ROC analysis) values were analyzed. The significance level was set at p < 0.05. RESULTS A total of 41 patients (25 male) with median (interquartile range (IQR)) age of 13 (10-15) years were included. Median (IQR) MRI PDFF was 11.30% (2.70-17.95%). Hepatic steatosis distribution by MRI PDFF included grade 0 (34%), grade 1 (15%), grade 2 (22%), and grade 3 (29%) patients. Intraclass correlation coefficient for HRI among the three readers was 0.61 (95% CI 0.43-0.75) (p < 0.001). Moderate correlation was observed between manually estimated HRI and PDFF for each reader (r = 0.62, 0.67, and 0.67; p < 0.001). Optimal HRI cutoff was found to be 1.99 to diagnose hepatic steatosis (sensitivity 89%, specificity 93%). Median (IQR) HRI for each MRI grade of hepatic steatosis (0-4) was as follows: 1.2 (1.1-1.5), 2.6 (1.1-3.3), 3.6 (2.6-5.4), 5.6 (2.6-10.9), respectively (p < 0.001). CONCLUSION Ultrasound-estimated HRI has moderate interobserver agreement and moderate correlation with MRI-derived PDFF. HRI of 1.99 maximizes accuracy for identifying pediatric liver fat.
Collapse
Affiliation(s)
- Farid Hajibonabi
- Department of Radiology & Imaging Sciences, Emory University and Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, GA, 30322, USA.
| | - Erica L Riedesel
- Department of Radiology & Imaging Sciences, Emory University and Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Susan D Taylor
- Department of Radiology & Imaging Sciences, Emory University and Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Leann E Linam
- Department of Radiology & Imaging Sciences, Emory University and Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Adina L Alazraki
- Department of Radiology & Imaging Sciences, Emory University and Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Chao Zhang
- Biostatistics Shared Resource, Winship Cancer Institute of Emory University, Atlanta, USA
| | - Geetika Khanna
- Department of Radiology & Imaging Sciences, Emory University and Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, GA, 30322, USA
| |
Collapse
|
16
|
Li Y, Chen L, Papadopoulos V. The mitochondrial translocator protein (TSPO, 18 kDa): A key multifunctional molecule in liver diseases. Biochimie 2024; 224:91-103. [PMID: 38065288 DOI: 10.1016/j.biochi.2023.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 08/23/2024]
Abstract
Translocator protein (TSPO, 18 kDa), previously known as peripheral-type benzodiazepine receptor, is an evolutionarily conserved and tryptophan-rich 169-amino-acid protein located on the outer mitochondrial membrane. TSPO plays a crucial role in various fundamental physiological functions and cellular processes. Its expression is altered in pathological conditions, thus rendering TSPO a potential tool for diagnostic imaging and an appealing therapeutic target. The investigation of synthetic TSPO ligands as both agonists and antagonists has provided valuable insights into the regulatory mechanisms and functional properties of TSPO. Recently, accumulating evidence has highlighted the significance of TSPO in liver diseases. However, a comprehensive summary of TSPO function in the normal liver and diverse liver diseases is lacking. This review aims to provide an overview of recent advances in understanding TSPO function in both normal liver cells and various liver diseases, with a particular emphasis on its involvement in liver fibrosis and inflammation and addresses the existing knowledge gaps in the field that require further investigation.
Collapse
Affiliation(s)
- Yuchang Li
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Liting Chen
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
17
|
Coşgun S, Ünal D, Çalışkan Kartal A, Bedir O. Does Breast Feeding Protect Mothers From Obesity? Cureus 2024; 16:e70217. [PMID: 39463500 PMCID: PMC11512000 DOI: 10.7759/cureus.70217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Hepatosteatosis, which we frequently observe today with change in lifestyle, is often unnoticed, but preventable and reversible; if not prevented, it can lead to serious comorbidities. There is contradicting evidence in the literature; we believe that breastfeeding has a protective effect on hepatosteatosis. In this cross-sectional study we conducted, we aimed to examine the relationship between breastfeeding duration, metabolic parameters and fatty liver. METHODS We examined the data of 135 patients aged 20-40 years who have had at least one pregnancy and were admitted to our polyclinic. Forty-five healthcare staff who never breastfed were included in the control group. Measurements of height and weight were taken, and number of children and total breastfeeding time were questioned. Blood values were measured to calculate insulin resistance, non-alcoholic fatty liver disease (NAFLD) fibrosis score and Fibrosis-4 (FIB-4) score. RESULTS Consequently, there was no significant correlation between total breastfeeding time and body mass index (BMI), NAFLD fibrosis score, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) value and hemoglobin A1C (HbA1C). When two groups were formed as patients breastfeeding for less than six months and patients breastfeeding for more than six months, a significant difference in BMI was observed between these two groups (p: 0.02). There was a significant relationship between BMI and NAFLD (p: 0.00) and HOMA-IR (p: 0.00). It was observed that there was a significant difference between BMI FIB-4 and NAFLD fibrosis scores of the control group and breastfed group. CONCLUSIONS Lactation should be maintained for at least six months for maternal health together with the baby's health, and more comprehensive studies should be conducted for long-term data.
Collapse
Affiliation(s)
- Süleyman Coşgun
- Internal Medicine, Gastroenterology, Kütahya University of Health Sciences, Kütahya, TUR
| | - Derya Ünal
- Internal Medicine, Kütahya University of Health Sciences, Kütahya, TUR
| | - Aysun Çalışkan Kartal
- Gastroenterology and Hepatology, Kütahya University of Health Sciences, Kütahya, TUR
| | - Osman Bedir
- Gastroenterology, Kütahya University of Health Sciences, Evliya Celebi Education and Research Hospital, Kütahya, TUR
| |
Collapse
|
18
|
Nair B, Kamath AJ, Tergaonkar V, Sethi G, Nath LR. Mast cells and the gut-liver Axis: Implications for liver disease progression and therapy. Life Sci 2024; 351:122818. [PMID: 38866220 DOI: 10.1016/j.lfs.2024.122818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
The role of mast cells, traditionally recognized for their involvement in immediate hypersensitivity reactions, has garnered significant attention in liver diseases. Studies have indicated a notable increase in mast cell counts following hepatic injury, underscoring their potential contribution to liver disorder pathogenesis. Predominantly situated in connective tissue that envelops the hepatic veins, bile ducts, and arteries, mast cells are central to both initiating and perpetuating liver disorders. Additionally, they are crucial for maintaining gastrointestinal barrier function. The gut-liver axis emphasizes the complex, two-way communication between the gut microbiome and the liver. Past research has implicated gut microbiota and their metabolites in the progression of hepatic disorders. This review sheds light on how mast cells are activated in various liver conditions such as alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), viral hepatitis, hepatic fibrogenesis, and hepatocellular carcinoma. It also briefly explores the connection between the gut microbiome and mast cell activation in these hepatic conditions.
Collapse
Affiliation(s)
- Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India; Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India
| | - Adithya Jayaprakash Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India; Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India.
| |
Collapse
|
19
|
Banerjee T, Sarkar A, Ali SZ, Bhowmik R, Karmakar S, Halder AK, Ghosh N. Bioprotective Role of Phytocompounds Against the Pathogenesis of Non-alcoholic Fatty Liver Disease to Non-alcoholic Steatohepatitis: Unravelling Underlying Molecular Mechanisms. PLANTA MEDICA 2024; 90:675-707. [PMID: 38458248 DOI: 10.1055/a-2277-4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), with a global prevalence of 25%, continues to escalate, creating noteworthy concerns towards the global health burden. NAFLD causes triglycerides and free fatty acids to build up in the liver. The excessive fat build-up causes inflammation and damages the healthy hepatocytes, leading to non-alcoholic steatohepatitis (NASH). Dietary habits, obesity, insulin resistance, type 2 diabetes, and dyslipidemia influence NAFLD progression. The disease burden is complicated due to the paucity of therapeutic interventions. Obeticholic acid is the only approved therapeutic agent for NAFLD. With more scientific enterprise being directed towards the understanding of the underlying mechanisms of NAFLD, novel targets like lipid synthase, farnesoid X receptor signalling, peroxisome proliferator-activated receptors associated with inflammatory signalling, and hepatocellular injury have played a crucial role in the progression of NAFLD to NASH. Phytocompounds have shown promising results in modulating hepatic lipid metabolism and de novo lipogenesis, suggesting their possible role in managing NAFLD. This review discusses the ameliorative role of different classes of phytochemicals with molecular mechanisms in different cell lines and established animal models. These compounds may lead to the development of novel therapeutic strategies for NAFLD progression to NASH. This review also deliberates on phytomolecules undergoing clinical trials for effective management of NAFLD.
Collapse
Affiliation(s)
- Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sk Zeeshan Ali
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Amit Kumar Halder
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur, West Bengal, India
| | - Nilanjan Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| |
Collapse
|
20
|
Aragón-Vela J, Sánchez-Oliver AJ, Huertas JR, Casuso RA. Does curcumin improve liver enzymes levels in nonalcoholic fatty liver disease? A systematic review, meta-analysis, and meta-regression. Phytother Res 2024; 38:4261-4271. [PMID: 38965866 DOI: 10.1002/ptr.8274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/26/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024]
Abstract
The aim of this meta-analysis is to investigate the sources of heterogeneity in randomized clinical trials examining the effects of curcumin supplementation on liver aminotransferases in subjects with nonalcoholic fatty liver disease (NAFLD). We conducted a systematic search of the PubMed, SCOPUS, and Web of Science databases for randomized clinical trials and identified 15 studies (n = 835 subjects). We used random-effects models with DerSimonian-Laird methods to analyze the serum levels of alanine aminotransferase and aspartate aminotransferase enzymes. Our results indicate that curcumin did not affect serum alanine aminotransferase, but it did reduce aspartate aminotransferase levels. Notably, both outcomes showed high heterogeneity (p < 0.01). Subgroup analysis revealed that adding piperine to curcumin did not benefit aminotransferase levels in NAFLD patients. Additionally, we found a negative correlation between the duration of the intervention and the relative (mg/kg/day) curcumin dose with the reduction in liver aminotransferases. In summary, the sources of heterogeneity identified in our study are likely attributed to the duration of the intervention and the relative dose of curcumin. Consequently, longer trials utilizing high doses of curcumin could diminish the positive impact of curcumin in reducing serum levels of aminotransferases in patients with NAFLD.
Collapse
Affiliation(s)
- Jerónimo Aragón-Vela
- Department of Health Sciences, Area of Physiology, University of Jaen, Jaén, Spain
| | - Antonio J Sánchez-Oliver
- Departamento de Motricidad Humana y Rendimiento Deportivo, Facultad de Ciencias de la Educación, Universidad de Sevilla, Sevilla, Spain
| | - Jesús R Huertas
- Institutes of Nutrition and Food Technology, Department of Physiology, University of Granada, Granada, Spain
| | - Rafael A Casuso
- Department of Health Sciences, Universidad Loyola Andalucía, Córdoba, Spain
| |
Collapse
|
21
|
Shih SF, Wu HH. Free-breathing MRI techniques for fat and R 2* quantification in the liver. MAGMA (NEW YORK, N.Y.) 2024; 37:583-602. [PMID: 39039272 PMCID: PMC11878285 DOI: 10.1007/s10334-024-01187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/18/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE To review the recent advancements in free-breathing MRI techniques for proton-density fat fraction (PDFF) and R2* quantification in the liver, and discuss the current challenges and future opportunities. MATERIALS AND METHODS This work focused on recent developments of different MRI pulse sequences, motion management strategies, and reconstruction approaches that enable free-breathing liver PDFF and R2* quantification. RESULTS Different free-breathing liver PDFF and R2* quantification techniques have been evaluated in various cohorts, including healthy volunteers and patients with liver diseases, both in adults and children. Initial results demonstrate promising performance with respect to reference measurements. These techniques have a high potential impact on providing a solution to the clinical need of accurate liver fat and iron quantification in populations with limited breath-holding capacity. DISCUSSION As these free-breathing techniques progress toward clinical translation, studies of the linearity, bias, and repeatability of free-breathing PDFF and R2* quantification in a larger cohort are important. Scan acceleration and improved motion management also hold potential for further enhancement.
Collapse
Affiliation(s)
- Shu-Fu Shih
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Holden H Wu
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Zou J, Li J, Wang X, Tang D, Chen R. Neuroimmune modulation in liver pathophysiology. J Neuroinflammation 2024; 21:188. [PMID: 39090741 PMCID: PMC11295927 DOI: 10.1186/s12974-024-03181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
The liver, the largest organ in the human body, plays a multifaceted role in digestion, coagulation, synthesis, metabolism, detoxification, and immune defense. Changes in liver function often coincide with disruptions in both the central and peripheral nervous systems. The intricate interplay between the nervous and immune systems is vital for maintaining tissue balance and combating diseases. Signaling molecules and pathways, including cytokines, inflammatory mediators, neuropeptides, neurotransmitters, chemoreceptors, and neural pathways, facilitate this complex communication. They establish feedback loops among diverse immune cell populations and the central, peripheral, sympathetic, parasympathetic, and enteric nervous systems within the liver. In this concise review, we provide an overview of the structural and compositional aspects of the hepatic neural and immune systems. We further explore the molecular mechanisms and pathways that govern neuroimmune communication, highlighting their significance in liver pathology. Finally, we summarize the current clinical implications of therapeutic approaches targeting neuroimmune interactions and present prospects for future research in this area.
Collapse
Affiliation(s)
- Ju Zou
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Li
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoxu Wang
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
23
|
Secchiero P, Rimondi E, Marcuzzi A, Longo G, Papi C, Manfredini M, Fields M, Caruso L, Di Caprio R, Balato A. Metabolic Syndrome and Psoriasis: Pivotal Roles of Chronic Inflammation and Gut Microbiota. Int J Mol Sci 2024; 25:8098. [PMID: 39125666 PMCID: PMC11311610 DOI: 10.3390/ijms25158098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
In recent years, the incidence of metabolic syndrome (MS) has increased due to lifestyle-related factors in developed countries. MS represents a group of conditions that increase the risk of diabetes, cardiovascular diseases, and other severe health problems. Low-grade chronic inflammation is now considered one of the key aspects of MS and could be defined as a new cardiovascular risk factor. Indeed, an increase in visceral adipose tissue, typical of obesity, contributes to the development of an inflammatory state, which, in turn, induces the production of several proinflammatory cytokines responsible for insulin resistance. Psoriasis is a chronic relapsing inflammatory skin disease and is characterized by the increased release of pro-inflammatory cytokines, which can contribute to different pathological conditions within the spectrum of MS. A link between metabolic disorders and Psoriasis has emerged from evidence indicating that weight loss obtained through healthy diets and exercise was able to improve the clinical course and therapeutic response of Psoriasis in patients with obesity or overweight patients and even prevent its occurrence. A key factor in this balance is the gut microbiota; it is an extremely dynamic system, and this makes its manipulation through diet possible via probiotic, prebiotic, and symbiotic compounds. Given this, the gut microbiota represents an additional therapeutic target that can improve metabolism in different clinical conditions.
Collapse
Affiliation(s)
- Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (P.S.); (E.R.)
| | - Erika Rimondi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (P.S.); (E.R.)
| | - Annalisa Marcuzzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.L.); (C.P.); (M.M.); (M.F.)
| | - Giovanna Longo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.L.); (C.P.); (M.M.); (M.F.)
| | - Chiara Papi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.L.); (C.P.); (M.M.); (M.F.)
| | - Marta Manfredini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.L.); (C.P.); (M.M.); (M.F.)
| | - Matteo Fields
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.L.); (C.P.); (M.M.); (M.F.)
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Roberta Di Caprio
- Dermatology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (R.D.C.); (A.B.)
| | - Anna Balato
- Dermatology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (R.D.C.); (A.B.)
| |
Collapse
|
24
|
Lodge M, Dykes R, Kennedy A. Regulation of Fructose Metabolism in Nonalcoholic Fatty Liver Disease. Biomolecules 2024; 14:845. [PMID: 39062559 PMCID: PMC11274671 DOI: 10.3390/biom14070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Elevations in fructose consumption have been reported to contribute significantly to an increased incidence of obesity and metabolic diseases in industrial countries. Mechanistically, a high fructose intake leads to the dysregulation of glucose, triglyceride, and cholesterol metabolism in the liver, and causes elevations in inflammation and drives the progression of nonalcoholic fatty liver disease (NAFLD). A high fructose consumption is considered to be toxic to the body, and there are ongoing measures to develop pharmaceutical therapies targeting fructose metabolism. Although a large amount of work has summarized the effects fructose exposure within the intestine, liver, and kidney, there remains a gap in our knowledge regarding how fructose both indirectly and directly influences immune cell recruitment, activation, and function in metabolic tissues, which are essential to tissue and systemic inflammation. The most recent literature demonstrates that direct fructose exposure regulates oxidative metabolism in macrophages, leading to inflammation. The present review highlights (1) the mechanisms by which fructose metabolism impacts crosstalk between tissues, nonparenchymal cells, microbes, and immune cells; (2) the direct impact of fructose on immune cell metabolism and function; and (3) therapeutic targets of fructose metabolism to treat NAFLD. In addition, the review highlights how fructose disrupts liver tissue homeostasis and identifies new therapeutic targets for treating NAFLD and obesity.
Collapse
Affiliation(s)
| | | | - Arion Kennedy
- Department of Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall Campus, Box 7622, Raleigh, NC 27695, USA
| |
Collapse
|
25
|
Suddle A, Reeves H, Hubner R, Marshall A, Rowe I, Tiniakos D, Hubscher S, Callaway M, Sharma D, See TC, Hawkins M, Ford-Dunn S, Selemani S, Meyer T. British Society of Gastroenterology guidelines for the management of hepatocellular carcinoma in adults. Gut 2024; 73:1235-1268. [PMID: 38627031 PMCID: PMC11287576 DOI: 10.1136/gutjnl-2023-331695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
Deaths from the majority of cancers are falling globally, but the incidence and mortality from hepatocellular carcinoma (HCC) is increasing in the United Kingdom and in other Western countries. HCC is a highly fatal cancer, often diagnosed late, with an incidence to mortality ratio that approaches 1. Despite there being a number of treatment options, including those associated with good medium to long-term survival, 5-year survival from HCC in the UK remains below 20%. Sex, ethnicity and deprivation are important demographics for the incidence of, and/or survival from, HCC. These clinical practice guidelines will provide evidence-based advice for the assessment and management of patients with HCC. The clinical and scientific data underpinning the recommendations we make are summarised in detail. Much of the content will have broad relevance, but the treatment algorithms are based on therapies that are available in the UK and have regulatory approval for use in the National Health Service.
Collapse
Affiliation(s)
- Abid Suddle
- King's College Hospital NHS Foundation Trust, London, UK
| | - Helen Reeves
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Richard Hubner
- Department of Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | | | - Ian Rowe
- University of Leeds, Leeds, UK
- St James's University Hospital, Leeds, UK
| | - Dina Tiniakos
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Stefan Hubscher
- Department of Pathology, University of Birmingham, Birmingham, UK
| | - Mark Callaway
- Division of Diagnostics and Therapies, University Hospitals Bristol NHS Trust, Bristol, UK
| | | | - Teik Choon See
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Maria Hawkins
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | | | - Sarah Selemani
- King's College Hospital NHS Foundation Trust, London, UK
| | - Tim Meyer
- Department of Oncology, University College, London, UK
| |
Collapse
|
26
|
Ahmed M, Ahmed MH. Ramadan Fasting in Individuals with Metabolic Dysfunction-Associated Steatotic Liver Disease, Liver Transplant, and Bariatric Surgery: A Narrative Review. J Clin Med 2024; 13:3893. [PMID: 38999457 PMCID: PMC11242100 DOI: 10.3390/jcm13133893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease is a growing worldwide pandemic. A limited number of studies have investigated the potential effect of Ramadan fasting on metabolic dysfunction-associated steatotic liver disease (MASLD). There is no single medication for the treatment of MASLD. There is a growing interest in dietary intervention as potential treatment for metabolic diseases including MASLD. The aim of this study was to discuss the epidemiology, pathogenesis, and risk factors of MASLD and the potential effects of Ramadan fasting on MASLD, liver transplant, and bariatric surgery. We searched PubMed and SCOPUS databases using different search terms. The literature search was based on research studies published in English from the year 2000 to the 2024. Thirty-two studies were included in this review. Ramadan fasting reduced body weight and improved lipid profile, anthropometric indices, fasting plasma glucose, plasma insulin, and inflammatory cytokines. Ramadan fasting improved risk factors of nonalcoholic fatty liver disease and might improve MASLD through weight reduction. However, further studies are needed to assess the safety and effectiveness of Ramadan fasting in liver transplant recipients and bariatric surgery.
Collapse
Affiliation(s)
- Musaab Ahmed
- College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Mohamed H Ahmed
- Department of Medicine and HIV Metabolic Clinic, Milton Keynes University Hospital NHS Foundation Trust, Eagelstone, Milton Keynes MK6 5LD, UK
- Department of Geriatric Medicine, Milton Keynes University Hospital NHS Foundation Trust, Eagelstone, Milton Keynes MK6 5LD, UK
- Honorary Senior Lecturer of the Faculty of Medicine and Health Sciences, University of Buckingham, Buckingham MK18 1EG, UK
| |
Collapse
|
27
|
Kajani S, Laker RC, Ratkova E, Will S, Rhodes CJ. Hepatic glucagon action: beyond glucose mobilization. Physiol Rev 2024; 104:1021-1060. [PMID: 38300523 DOI: 10.1152/physrev.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."
Collapse
Affiliation(s)
- Sarina Kajani
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Rhianna C Laker
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Ekaterina Ratkova
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sarah Will
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Christopher J Rhodes
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| |
Collapse
|
28
|
Parsa S, Dousti M, Mohammadi N, Abedanzadeh M, Dehdari Ebrahimi N, Dara M, Sani M, Nekouee M, Abolmaali SS, Sani F, Azarpira N. The effects of simvastatin-loaded nanoliposomes on human multilineage liver fibrosis microtissue. J Cell Mol Med 2024; 28:e18529. [PMID: 38984945 PMCID: PMC11234647 DOI: 10.1111/jcmm.18529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/11/2024] Open
Abstract
In this in vitro study, for the first time, we evaluate the effects of simvastatin-loaded liposome nanoparticles (SIM-LipoNPs) treatment on fibrosis-induced liver microtissues, as simvastatin (SIM) has shown potential benefits in the non-alcoholic fatty liver disease process. We developed multicellular liver microtissues composed of hepatic stellate cells, hepatoblastoma cells and human umbilical vein endothelial cells. The microtissues were supplemented with a combination of palmitic acid and oleic acid to develop fibrosis models. Subsequently, various groups of microtissues were exposed to SIM and SIM-LipoNPs at doses of 5 and 10 mg/mL. The effectiveness of the treatments was evaluated by analysing cell viability, production of reactive oxygen species (ROS) and nitric oxide (NO), the expression of Kruppel-like factor (KLF) 2, and pro-inflammatory cytokines (interleukin(IL)-1 α, IL-1 β, IL-6 and tumour necrosis factor-α), and the expression of collagen I. Our results indicated that SIM-LipoNPs application showed promising results. SIM-LipoNPs effectively amplified the SIM-klf2-NO pathway at a lower dosage compatible with a high dosage of free SIM, which also led to reduced oxidative stress by decreasing ROS levels. SIM-LipoNPs administration also resulted in a significant reduction in pro-inflammatory cytokines and Collagen I mRNA levels, as a marker of fibrosis. In conclusion, our study highlights the considerable therapeutic potential of using SIM-LipoNPs to prevent liver fibrosis progress, underscoring the remarkable properties of SIM-LipoNPs in activating the KLF2-NO pathway and anti-oxidative and anti-inflammatory response.
Collapse
Affiliation(s)
- Shima Parsa
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Dousti
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Mohammadi
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhgan Abedanzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahintaj Dara
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sani
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Muhammad Nekouee
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Sani
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Kalopitas G, Arvanitakis K, Tsachouridou O, Malandris K, Koufakis T, Metallidis S, Germanidis G. Metabolic Dysfunction-Associated Steatotic Liver Disease in People Living with HIV-Limitations on Antiretroviral Therapy Selection. Life (Basel) 2024; 14:742. [PMID: 38929725 PMCID: PMC11205092 DOI: 10.3390/life14060742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic liver disease is one of the main causes of morbidity and mortality in people living with HIV (PLWH). The increasing life expectancy of PLWH, effective treatment for viral hepatitis, and Western dietary patterns as well as the adverse effects of antiretroviral therapy (ART) have rendered metabolic dysfunction-associated steatotic liver disease (MASLD) the most common chronic liver disease in PLWH. The risk factors for MASLD in PLWH include traditional MASLD risk factors and additional virus-specific factors, including the adverse effects of ART. The management of patients suffering from HIV and MASLD is often challenging. Apart from the conventional management of MASLD, there are also certain limitations concerning the use of ART in this patient population. In general, the appropriate combination of antiretroviral drugs should be chosen to achieve the triad of effective viral suppression, avoidance of mitochondrial dysfunction, and deterrence of worsening the patient's metabolic profile. In the current review, we discuss the epidemiology of MASLD in PLWH, the risk factors, and the disease pathogenesis, as well as the limitations in the use of ART in this patient population, while practical recommendations on how to overcome these limitations are also given.
Collapse
Affiliation(s)
- Georgios Kalopitas
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.K.); (K.A.); (O.T.); (S.M.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.K.); (K.A.); (O.T.); (S.M.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Olga Tsachouridou
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.K.); (K.A.); (O.T.); (S.M.)
| | - Konstantinos Malandris
- Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Theocharis Koufakis
- 2nd Propedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Symeon Metallidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.K.); (K.A.); (O.T.); (S.M.)
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.K.); (K.A.); (O.T.); (S.M.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
30
|
Guagliano G, Volpini C, Sardelli L, Briatico Vangosa F, Visai L, Petrini P. Bioinspired Bioinks for the Fabrication of Chemomechanically Relevant Standalone Disease Models of Hepatic Steatosis. Adv Healthc Mater 2024; 13:e2303349. [PMID: 38323754 DOI: 10.1002/adhm.202303349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/17/2024] [Indexed: 02/08/2024]
Abstract
Hepatotoxicity-related issues are poorly predicted during preclinical experimentation, as its relevance is limited by the inadequacy to screen all the non-physiological subclasses of the population. These pitfalls can be solved by implementing complex in vitro models of hepatic physiology and pathologies in the preclinical phase. To produce these platforms, extrusion-based bioprinting is focused on, since it allows to manufacture tridimensional cell-laden constructs with controlled geometries, in a high-throughput manner. Different bioinks, whose formulation is tailored to mimic the chemomechanical environment of hepatic steatosis, the most prevalent hepatic disorder worldwide, are proposed. Internally crosslinked alginate hydrogels are chosen as structural components of the inks. Their viscoelastic properties (G' = 512-730 Pa and G″ = 94-276 Pa, depending on frequency) are tuned to mimic those of steatotic liver tissue. Porcine hepatic ECM is introduced as a relevant biochemical cue. Sodium oleate is added to recall the accumulation of lipids in the tissue. Downstream analyses on 14-layered bioprinted structures cultured for 10 days reveal the establishment of steatotic-like features (intracellular lipid vesicles, viability decrease up to ≈50%) without needing external conditionings. The presented bioinks are thus suitable to fabricate complex models of hepatic steatosis to be implemented in a high-throughput experimental frame.
Collapse
Affiliation(s)
- Giuseppe Guagliano
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, P.zza L. Da Vinci 32, Milan, 20133, Italy
| | - Cristina Volpini
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, 65-27100, Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Via Boezio, Pavia, 28-27100, Italy
| | - Lorenzo Sardelli
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, P.zza L. Da Vinci 32, Milan, 20133, Italy
| | - Francesco Briatico Vangosa
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, P.zza L. Da Vinci 32, Milan, 20133, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, 65-27100, Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Via Boezio, Pavia, 28-27100, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), Università di Pavia Unit, Pavia, 5-27100, Italy
| | - Paola Petrini
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, P.zza L. Da Vinci 32, Milan, 20133, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), Politecnico di Milano Unit, Milano, 32-20133, Italy
| |
Collapse
|
31
|
Jangwan NS, Khan M, Das R, Altwaijry N, Sultan AM, Khan R, Saleem S, Singh MF. From petals to healing: consolidated network pharmacology and molecular docking investigations of the mechanisms underpinning Rhododendron arboreum flower's anti-NAFLD effects. Front Pharmacol 2024; 15:1366279. [PMID: 38863975 PMCID: PMC11165132 DOI: 10.3389/fphar.2024.1366279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
Rhododendron arboreum: Sm., also known as Burans is traditionally used as an anti-inflammatory, anti-diabetic, hepatoprotective, adaptogenic, and anti-oxidative agent. It has been used since ancient times in Indian traditional medicine for various liver disorders. However, the exact mechanism behind its activity against NAFLD is not known. The aim of the present study is to investigate the molecular mechanism of Rhododendron arboreum flower (RAF) in the treatment of NAFLD using network pharmacology and molecular docking methods. Bioactives were also predicted for their drug-likeness score, probable side effects and ADMET profile. Protein-protein interaction (PPI) data was obtained using the STRING platform. For the visualisation of GO analysis, a bioinformatics server was employed. Through molecular docking, the binding affinity between potential targets and active compounds were assessed. A total of five active compounds of RAF and 30 target proteins were selected. The targets with higher degrees were identified through the PPI network. GO analysis indicated that the NAFLD treatment with RAF primarily entails a response to the fatty acid biosynthetic process, lipid metabolic process, regulation of cell death, regulation of stress response, and cellular response to a chemical stimulus. Molecular docking and molecular dynamic simulation exhibited that rutin has best binding affinity among active compounds and selected targets as indicated by the binding energy, RMSD, and RMSF data. The findings comprehensively elucidated toxicity data, potential targets of bioactives and molecular mechanisms of RAF against NAFLD, providing a promising novel strategy for future research on NAFLD treatment.
Collapse
Affiliation(s)
- Nitish Singh Jangwan
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Mausin Khan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Richa Das
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahlam Mansour Sultan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ruqaiyah Khan
- Department of Basic Health Sciences, Deanship of Preparatory Year for the Health Colleges, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Mamta F. Singh
- College of Pharmacy, COER University, Roorkee, Uttarakhand, India
| |
Collapse
|
32
|
Yang Q, Abed Jawad M, Ali Alzahrani A, F Hassan Z, Elawady A, Hjazi A, Naghibi M. Synergistic effects of Metformin and Forskolin on oxidative stress induced by diabetes and hepatocellular cancer: An animal study. Toxicon 2024; 243:107720. [PMID: 38614244 DOI: 10.1016/j.toxicon.2024.107720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
AIM This study proposed to assess the synergistic effects of Forskolin and Metformin (alone and in combination) on glucose, hematological, liver serum, and oxidative stress parameters in diabetic, healthy, and hepatocellular carcinoma (HCC) induced rats. MATERIALS AND METHODS Eighty male Wistar rats were divided into 10 experimental groups (8 rats for each group), including 1) healthy group, 2) diabetic group, 3) HCC group, 4) diabet + Metformin (300 mg/kg), 5) diabet + Forskolin (100 mg/kg), 6) diabet + Metformin (300 mg/kg) & Forskolin (100 mg/kg), 7) HCC + Metformin (300 mg/kg), 8) HCC + Forskolin (100 mg/kg), 9) HCC + Metformin (300 mg/kg) & Forskolin (100 mg/kg), and 10) healthy group + Metformin (300 mg/kg) & Forskolin (100 mg/kg). The rats were administrated Forskolin/Metformin daily for 8 weeks. Glucose, hematological, and liver serum parameters were measured and compared among the groups. The levels of malondialdehyde (MDA), and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), as well as 8-hydroxydeoxyguanosine (8 OHdG) levels, were also measured. RESULTS The average blood glucose reduction in diabetic rats with the Forskolin, Metformin, and Forskolin + Metformin treatments was 43.5%, 47.1%, and 53.9%, respectively. These reduction values for HCC rats after the treatments were 21.0%, 16.2%, and 23.7%, respectively. For all the diabetic and HCC rats treated with Forskolin/Metformin, the MDA, SOD, and GPx levels showed significant improvement compared with the diabetic and HCC groups (P < 0.05). Although the rats treated with Forskolin + Metformin experienced a higher reduction in oxidative stress of blood and urine samples compared to the Forskolin group, the differences between this group and rats treated with Metformin were not significant for all parameters. CONCLUSION Metformin and Forskolin reduced oxidative stress in diabetic and HCC-induced rats. The results indicated that the combination of agents (Metformin & Forskolin) had greater therapeutic effects than Forskolin alone in reducing glucose levels in diabetic rats. However, the ameliorative effects of combining Metformin and Forskolin on blood and urine oxidative stress were not statistically higher than those of Metformin alone.
Collapse
Affiliation(s)
- Qian Yang
- Department of Traditional Chinese Medicine, Cangzhou Central Hospital, Cangzhou, 061001, China
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq.
| | | | | | - Ahmed Elawady
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq.
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Mehran Naghibi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Tas E, Sundararajan D, Lo JS, Morelli N, Garcia-Reyes Y, Ware MA, Rahat H, Ou X, Na X, Sundaram S, Severn C, Pyle LL, Børsheim E, Vajravelu ME, Muzumdar R, Dranoff JA, Cree MG. Diagnostic Accuracy of Transient Elastography in Hepatosteatosis in Youth With Obesity. J Endocr Soc 2024; 8:bvae110. [PMID: 38895640 PMCID: PMC11185182 DOI: 10.1210/jendso/bvae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 06/21/2024] Open
Abstract
Context Steatotic liver disease is common but overlooked in childhood obesity; diagnostic methods are invasive or expensive. Objective We sought to determine the diagnostic accuracy of vibration-controlled transient elastography (VCTE) compared with magnetic resonance imaging (MRI) in adolescents with obesity and high risk for hepatosteatosis. Methods Baseline data in 3 clinical trials enrolling adolescents with obesity were included (NCT03919929, NCT03717935, NCT04342390). Liver fat was assessed using MRI fat fraction and VCTE-based controlled attenuation parameter (CAP). Hepatosteatosis was defined as MRI fat fraction ≥5.0%. The area under the receiver-operating characteristic curves (AUROCs) for CAP against MRI was calculated, and optimal CAP using the Youden index for hepatosteatosis diagnosis was determined. Results Data from 82 adolescents (age 15.6 ± 1.4 years, body mass index 36.5 ± 5.9 kg/m2, 81% female) were included. Fifty youth had hepatosteatosis by MRI (fat fraction 9.3% ; 95% CI 6.7, 14.0), and 32 participants did not have hepatosteatosis (fat fraction 3.1%; 95% CI 2.2, 3.9; P < .001). The hepatosteatosis group had higher mean CAP compared with no hepatosteatosis (293 dB/m; 95% CI 267, 325 vs 267 dB/m; 95% CI 248, 282; P = .0120). A CAP of 281 dB/m had the highest sensitivity (60%) and specificity (74%) with AUROC of 0.649 (95% CI 0.51-0.79; P = .04) in the entire cohort. In a subset of participants with polycystic ovary syndrome (PCOS), a CAP of 306 dB/m had the highest sensitivity (78%) and specificity (52%) and AUROC of 0.678 (95% CI 0.45-0.90; P = .108). Conclusion CAP of 281 dB/m has modest diagnostic performance for hepatosteatosis compared with MRI in youth with significant obesity. A higher CAP in youth with PCOS suggests that comorbidities might affect optimal CAP in hepatosteatosis diagnosis.
Collapse
Affiliation(s)
- Emir Tas
- Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
- Center for Childhood Obesity Prevention, Arkansas Children's Research Institute, Little Rock, AR 72202, USA
| | - Divya Sundararajan
- Pediatric Endocrinology, University of Colorado Anschutz, Aurora, CO 80045, USA
| | - Jaclyn S Lo
- Pediatric Endocrinology, University of Colorado Anschutz, Aurora, CO 80045, USA
| | - Nazeen Morelli
- Pediatric Endocrinology, University of Colorado Anschutz, Aurora, CO 80045, USA
| | | | - Meredith A Ware
- Pediatric Endocrinology, University of Colorado Anschutz, Aurora, CO 80045, USA
| | - Haseeb Rahat
- Pediatric Endocrinology, University of Colorado Anschutz, Aurora, CO 80045, USA
| | - Xiawei Ou
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xiaoxu Na
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Shikha Sundaram
- Pediatric Gastroenterology, University of Colorado Anschutz, Aurora, CO 80045, USA
| | - Cameron Severn
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Laura L Pyle
- Pediatric Endocrinology, University of Colorado Anschutz, Aurora, CO 80045, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Elisabet Børsheim
- Center for Childhood Obesity Prevention, Arkansas Children's Research Institute, Little Rock, AR 72202, USA
| | - Mary Ellen Vajravelu
- Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Radhika Muzumdar
- Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jonathan A Dranoff
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06520, USA
| | - Melanie G Cree
- Pediatric Endocrinology, University of Colorado Anschutz, Aurora, CO 80045, USA
- Ludeman Center for Women's Health, Aurora, CO 80045, USA
| |
Collapse
|
34
|
Neogi A, Jaiswal A, Kumar A, Anand J, Sadhukhan B. Predictive Modeling for Mortality Risk in Nonalcoholic Fatty Liver Disease Patients: A Machine Learning Approach. 2024 SECOND INTERNATIONAL CONFERENCE ON DATA SCIENCE AND INFORMATION SYSTEM (ICDSIS) 2024:1-6. [DOI: 10.1109/icdsis61070.2024.10594545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
35
|
Isaac R, Bandyopadhyay G, Rohm TV, Kang S, Wang J, Pokhrel N, Sakane S, Zapata R, Libster AM, Vinik Y, Berhan A, Kisseleva T, Borok Z, Zick Y, Telese F, Webster NJG, Olefsky JM. TM7SF3 controls TEAD1 splicing to prevent MASH-induced liver fibrosis. Cell Metab 2024; 36:1030-1043.e7. [PMID: 38670107 PMCID: PMC11113091 DOI: 10.1016/j.cmet.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/29/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
The mechanisms of hepatic stellate cell (HSC) activation and the development of liver fibrosis are not fully understood. Here, we show that deletion of a nuclear seven transmembrane protein, TM7SF3, accelerates HSC activation in liver organoids, primary human HSCs, and in vivo in metabolic-dysfunction-associated steatohepatitis (MASH) mice, leading to activation of the fibrogenic program and HSC proliferation. Thus, TM7SF3 knockdown promotes alternative splicing of the Hippo pathway transcription factor, TEAD1, by inhibiting the splicing factor heterogeneous nuclear ribonucleoprotein U (hnRNPU). This results in the exclusion of the inhibitory exon 5, generating a more active form of TEAD1 and triggering HSC activation. Furthermore, inhibiting TEAD1 alternative splicing with a specific antisense oligomer (ASO) deactivates HSCs in vitro and reduces MASH diet-induced liver fibrosis. In conclusion, by inhibiting TEAD1 alternative splicing, TM7SF3 plays a pivotal role in mitigating HSC activation and the progression of MASH-related fibrosis.
Collapse
Affiliation(s)
- Roi Isaac
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Gautam Bandyopadhyay
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Theresa V Rohm
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Sion Kang
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jinyue Wang
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Narayan Pokhrel
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Sadatsugu Sakane
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Surgery, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Rizaldy Zapata
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Avraham M Libster
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Yaron Vinik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Asres Berhan
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yehiel Zick
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Francesca Telese
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas J G Webster
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, San Diego, CA, USA
| | - Jerrold M Olefsky
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
36
|
Zhu X, Zeng C, Yu B. White adipose tissue in metabolic associated fatty liver disease. Clin Res Hepatol Gastroenterol 2024; 48:102336. [PMID: 38604293 DOI: 10.1016/j.clinre.2024.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Metabolic associated fatty liver disease (MAFLD) is a prevalent chronic liver condition globally, currently lacking universally recognized therapeutic drugs, thereby increasing the risk of cirrhosis and hepatocellular carcinoma. Research has reported an association between white adipose tissue and MAFLD. SCOPE OF REVIEW White adipose tissue (WAT) is involved in lipid metabolism and can contribute to the progression of MAFLD by mediating insulin resistance, inflammation, exosomes, autophagy, and other processes. This review aims to elucidate the mechanisms through which WAT plays a role in the development of MAFLD. MAJOR CONCLUSIONS WAT participates in the occurrence and progression of MAFLD by mediating insulin resistance, inflammation, autophagy, and exosome secretion. Fibrosis and restricted expansion of adipose tissue can lead to the release of more free fatty acids (FFA), exacerbating the progression of MAFLD. WAT-secreted TNF-α and IL-1β, through the promotion of JNK/JKK/p38MAPK expression, interfere with insulin receptor serine and tyrosine phosphorylation, worsening insulin resistance. Adiponectin, by inhibiting the TLR-4-NF-κB pathway and suppressing M2 to M1 transformation, further inhibits the secretion of IL-6, IL-1β, and TNF-α, improving insulin resistance in MAFLD patients. Various gene expressions within WAT, such as MBPAT7, Nrf2, and Ube4A, can ameliorate insulin resistance in MAFLD patients. Autophagy-related gene Atg7 promotes the expression of fibrosis-related genes, worsening MAFLD. Non-pharmacological treatments, including diabetes-related medications and exercise, can improve MAFLD.
Collapse
Affiliation(s)
- Xiaoqin Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China.
| |
Collapse
|
37
|
Mandal B, Das R, Mondal S. Anthocyanins: Potential phytochemical candidates for the amelioration of non-alcoholic fatty liver disease. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:373-391. [PMID: 38354975 DOI: 10.1016/j.pharma.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is described by too much hepatic fat deposition causing steatosis, which further develops into nonalcoholic steatohepatitis (NASH), defined by necroinflammation and fibrosis, progressing further to hepatic cirrhosis, hepatocellular carcinoma, and liver failure. NAFLD is linked to different aspects of the metabolic syndrome like obesity, insulin resistance, hypertension, and dyslipidemia, and its pathogenesis involves several elements including diet, obesity, disruption of lipid homeostasis, and a high buildup of triglycerides and other lipids in liver cells. It is therefore linked to an increase in the susceptibility to developing diabetes mellitus and cardiovascular diseases. Several interventions exist regarding its management, but the availability of natural sources through diet will be a benefit in dealing with the disorder due to the immensely growing dependence of the population worldwide on natural sources owing to their ability to treat the root cause of the disease. Anthocyanins (ACNs) are naturally occurring polyphenolic pigments that exist in the form of glycosides, which are the glucosides of anthocyanidins and are produced from flavonoids via the phenyl propanoid pathway. To understand their mode of action in NAFLD and their therapeutic potential, the literature on in vitro, in vivo, and clinical trials on naturally occurring ACN-rich sources was exhaustively reviewed. It was concluded that ACNs show their potential in the treatment of NAFLD through their antioxidant properties and their efficacy to control lipid metabolism, glucose homeostasis, transcription factors, and inflammation. This led to the conclusion that ACNs possess efficacy in the amelioration of NAFLD and the various features associated with it. However, additional clinical trials are required to justify the potential of ACNs in NAFLD.
Collapse
Affiliation(s)
- Bitasta Mandal
- School of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Kolkata 700126, India.
| | - Rakesh Das
- School of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Kolkata 700126, India.
| | - Sandip Mondal
- School of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Kolkata 700126, India.
| |
Collapse
|
38
|
Liu M, Park S. The Role of PNPLA3_rs738409 Gene Variant, Lifestyle Factors, and Bioactive Compounds in Nonalcoholic Fatty Liver Disease: A Population-Based and Molecular Approach towards Healthy Nutrition. Nutrients 2024; 16:1239. [PMID: 38674929 PMCID: PMC11054963 DOI: 10.3390/nu16081239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to investigate the impact of a common non-synonymous gene variant (C>G, rs738409) in patatin-like phospholipase domain-containing 3 (PNPLA3), leading to the substitution of isoleucine with methionine at position 148 (PNPLA3-I148M), on susceptibility to nonalcoholic fatty liver disease (NAFLD) and explore potential therapeutic nutritional strategies targeting PNPLA3. It contributed to understanding sustainable dietary practices for managing NAFLD, recently referred to as metabolic-dysfunction-associated fatty liver. NAFLD had been diagnosed by ultrasound in a metropolitan hospital-based cohort comprising 58,701 middle-aged and older Korean individuals, identifying 2089 NAFLD patients. The interaction between PNPLA3 and lifestyle factors was investigated. In silico analyses, including virtual screening, molecular docking, and molecular dynamics simulations, were conducted to identify bioactive compounds from foods targeting PNPLA3(I148M). Subsequent cellular experiments involved treating oleic acid (OA)-exposed HepG2 cells with selected bioactive compounds, both in the absence and presence of compound C (AMPK inhibitor), targeting PNPLA3 expression. Carriers of the risk allele PNPLA3_rs738409G showed an increased association with NAFLD risk, particularly with adherence to a plant-based diet, avoidance of a Western-style diet, and smoking. Delphinidin 3-caffeoyl-glucoside, pyranocyanin A, delta-viniferin, kaempferol-7-glucoside, and petunidin 3-rutinoside emerged as potential binders to the active site residues of PNPLA3, exhibiting a reduction in binding energy. These compounds demonstrated a dose-dependent reduction in intracellular triglyceride and lipid peroxide levels in HepG2 cells, while pretreatment with compound C showed the opposite trend. Kaempferol-7-glucoside and petunidin-3-rutinoside showed potential as inhibitors of PNPLA3 expression by enhancing AMPK activity, ultimately reducing intrahepatic lipogenesis. In conclusion, there is potential for plant-based diets and specific bioactive compounds to promote sustainable dietary practices to mitigate NAFLD risk, especially in individuals with genetic predispositions.
Collapse
Affiliation(s)
- Meiling Liu
- Department of Chemical Engineering, Shanxi Institute of Science and Technology, Jincheng 048000, China;
| | - Sunmin Park
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea
- Department of Food and Nutrition, Institute of Basic Science, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea
| |
Collapse
|
39
|
Savari F, Mard SA. Nonalcoholic steatohepatitis: A comprehensive updated review of risk factors, symptoms, and treatment. Heliyon 2024; 10:e28468. [PMID: 38689985 PMCID: PMC11059522 DOI: 10.1016/j.heliyon.2024.e28468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 05/02/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a subtype of nonalcoholic fatty liver disease and a progressive and chronic liver disorder with a significant risk for the development of liver-related morbidity and mortality. The complex and multifaceted pathophysiology of NASH makes its management challenging. Early identification of symptoms and management of patients through lifestyle modification is essential to prevent the development of advanced liver disease. Despite the increasing prevalence of NASH, there is no FDA-approved treatment for this disease. Currently, medications targeting metabolic disease risk factors and some antifibrotic medications are used for NASH patients but are not sufficiently effective. The beneficial effects of different drugs and phytochemicals represent new avenues for the development of safer and more effective treatments for NASH. In this review, different risk factors, clinical symptoms, diagnostic methods of NASH, and current treatment strategies for the management of patients with NASH are reviewed.
Collapse
Affiliation(s)
- Feryal Savari
- Department of Medical Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Seyed Ali Mard
- Clinical Sciences Research Institute, Alimentary Tract Research Center, Department of Physiology, The School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
40
|
Elmansoury N, Megahed AA, Kamal A, El-Nikhely N, Labane M, Abdelmageed M, Daly AK, Wahid A. Relevance of PNPLA3, TM6SF2, HSD17B13, and GCKR Variants to MASLD Severity in an Egyptian Population. Genes (Basel) 2024; 15:455. [PMID: 38674389 PMCID: PMC11049340 DOI: 10.3390/genes15040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is a frequent clinical condition globally. Single nucleotide polymorphisms (SNPs) associated with NAFLD have been proposed in the literature and based on bioinformatic screening. The association between NAFLD and genetic variants in Egyptians is still unclear. Hence, we sought to investigate the association of some genetic variants with NAFLD in Egyptians. Egyptians have been categorized into either the MASLD group (n = 205) or the healthy control group (n = 187). The severity of hepatic steatosis and liver fibrosis was assessed by a Fibroscan device. TaqMan-based genotyping assays were employed to explore the association of selected SNPs with MASLD. PNPLA3 rs738409 C>G variant is associated with the presence of MASLD with liver fibrosis, the severity of both hepatic steatosis and liver fibrosis, increased systolic and diastolic blood pressure and increased alanine aminotransferase (all p < 0.05), while the TM6SF2 rs58542926 C>T, HSD17B13 rs9992651 G>A, and GCKR rs1260326 T>C variants were not (all p > 0.05). The TM6SF2 rs58542926 T allele is associated with increased fasting blood glucose and a decreased waist circumference. The GCKR rs1260326 C allele is associated with decreased aspartate transaminase and diastolic blood pressure (all p < 0.05). Only after adjusting for the risk factors (age, sex, BMI, WC, HDL, TG, diabetes mellitus, and hypertension) F2 liver fibrosis score is negatively correlated with the HSD17B13 rs9992651 GA genotype. This study offers evidence for the association of the PNPLA3 rs738409 C>G variant with MASLD among Egyptians and for the association of the PNPLA3 rs738409 G allele, the TM6SF2 rs58542926 T allele, and the GCKR rs1260326 C allele with some parameters of cardiometabolic criteria.
Collapse
Affiliation(s)
- Nehal Elmansoury
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt;
| | - Ahmed A. Megahed
- Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; (A.A.M.); (M.L.)
| | - Ahmed Kamal
- Department of Internal Medicine and Hepatology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt;
| | - Nefertiti El-Nikhely
- Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt;
| | - Marina Labane
- Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; (A.A.M.); (M.L.)
| | - Manal Abdelmageed
- Department of Experimental and Clinical Internal Medicine, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt;
| | - Ann K. Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK;
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt;
| |
Collapse
|
41
|
Belji Kangarlou M, Khavanin A, Nadri F, Goodarzi Z, Karami E, Rashidy-Pour A, Kiani M, Hashemi Habybabady R. Noise and silver nanoparticles induce hepatotoxicity via CYP450/NF-Kappa B 2 and p53 signaling pathways in a rat model. Toxicol Ind Health 2024; 40:206-219. [PMID: 38358440 DOI: 10.1177/07482337241233317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Co-exposure to noise and nanomaterials, such as silver nanoparticles (Silver-NPs), is a common occurrence in today's industries. This study aimed to investigate the effects of exposure to noise and the administration of silver-NPs on the liver tissue of rats. Thirty-six adult male albino Wistar rats were randomly divided into six groups: a control group (administered saline intraperitoneally), two groups administered different doses of Silver-NPs (50 mg/kg and 100 mg/kg, 5 days a week for 28 days), two groups exposed to noise in addition to Silver-NPs (at the same doses as mentioned before), and a group exposed only to noise (104 dB, 6 hours a day, 5 days a week for 4 weeks). Blood samples were taken to assess hepatic-functional alterations, such as serum ALP, ALT, and AST levels. Additionally, biochemical parameters (MDA, GPX, and CAT) and the silver concentration in the liver were measured. Histopathological analysis, mRNA expression (P53 and NF-κB), protein expression (CYP450), and liver weight changes in rats were also documented. The study found that the administration of Silver-NPs and exposure to noise resulted in elevated levels of ALP, ALT, AST, and MDA (p < .01). Conversely, GPX and CAT levels decreased in all groups compared with the control group (p < .0001). There was a significant increase (p < .05) in liver weight and silver concentration in the liver tissues of groups administered Silver-NPs (50 mg/kg) plus noise exposure, Silver-NPs (100 mg/kg), and Silver-NPs (100 mg/kg) plus noise exposure, respectively. The expression rate of P53, NF-κB, and cytochromes P450 (CYPs-450) was increased in the experimental groups (p < .05). These findings were further confirmed by histopathological changes. In conclusion, this study demonstrated that exposure to noise and the administration of Silver-NPs exacerbated liver damage by increasing protein and gene expression, causing hepatic necrosis, altering biochemical parameters, and affecting liver weight.
Collapse
Affiliation(s)
- Marzieh Belji Kangarlou
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Ali Khavanin
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Farshad Nadri
- Department of Occupational Health Engineering, Faculty of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Goodarzi
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Esmaeil Karami
- Department of Occupational Health Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mehrafarin Kiani
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Raheleh Hashemi Habybabady
- Health Promotion Research Centre, Department of Occupational Health Engineering, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
42
|
Gao L, Wang X, Guo L, Zhang W, Wang G, Han S, Zhang Y. Sex differences in diabetes‑induced hepatic and renal damage. Exp Ther Med 2024; 27:148. [PMID: 38476888 PMCID: PMC10928993 DOI: 10.3892/etm.2024.12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 11/20/2023] [Indexed: 03/14/2024] Open
Abstract
Diabetes mellitus (DM) is a disease that affects millions of individuals worldwide and is characterized by abnormal glucose metabolism that can induce severe damage to numerous organs throughout the body. Sex differences have been demonstrated in a number of factors associated with diabetes and its complications, such as diabetic kidney disease and diabetic liver disease. To investigate the sex differences in DM further, the changes in the weight, food and water intake, and blood sugar of mice were recorded for 8 weeks in the present study. Hematoxylin and eosin staining, Masson's trichrome staining and transmission electron microscopy were used to observe the pathological changes of liver and kidney tissues. There is no significant difference in the water intake and blood glucose concentration between db/db female and male mice was observed. However, sex differences in liver and kidney damage including glomerular injury and hepatic fibrosis were found. In conclusion, the present study characterized the features of liver and kidney damage in db/db mice and indicated that sex differences should be taken into account in experiments using female and male experimental animals. Furthermore, sex differences should be taken into account in the selection of drug interventions in experiments and in clinical drug therapy.
Collapse
Affiliation(s)
- Linghuan Gao
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, Tangshan, Hebei 063210, P.R. China
| | - Xindi Wang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, Tangshan, Hebei 063210, P.R. China
| | - Lei Guo
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, Tangshan, Hebei 063210, P.R. China
| | - Wenli Zhang
- Comprehensive Testing and Analytical Center, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Gengyin Wang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Shuying Han
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, Tangshan, Hebei 063210, P.R. China
- School of Nursing and Health, Caofeidian College of Technology, Tangshan, Hebei 063210, P.R. China
| | - Yuxin Zhang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, Tangshan, Hebei 063210, P.R. China
| |
Collapse
|
43
|
Lusnig L, Sagingalieva A, Surmach M, Protasevich T, Michiu O, McLoughlin J, Mansell C, De' Petris G, Bonazza D, Zanconati F, Melnikov A, Cavalli F. Hybrid Quantum Image Classification and Federated Learning for Hepatic Steatosis Diagnosis. Diagnostics (Basel) 2024; 14:558. [PMID: 38473030 DOI: 10.3390/diagnostics14050558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
In the realm of liver transplantation, accurately determining hepatic steatosis levels is crucial. Recognizing the essential need for improved diagnostic precision, particularly for optimizing diagnosis time by swiftly handling easy-to-solve cases and allowing the expert time to focus on more complex cases, this study aims to develop cutting-edge algorithms that enhance the classification of liver biopsy images. Additionally, the challenge of maintaining data privacy arises when creating automated algorithmic solutions, as sharing patient data between hospitals is restricted, further complicating the development and validation process. This research tackles diagnostic accuracy by leveraging novel techniques from the rapidly evolving field of quantum machine learning, known for their superior generalization abilities. Concurrently, it addresses privacy concerns through the implementation of privacy-conscious collaborative machine learning with federated learning. We introduce a hybrid quantum neural network model that leverages real-world clinical data to assess non-alcoholic liver steatosis accurately. This model achieves an image classification accuracy of 97%, surpassing traditional methods by 1.8%. Moreover, by employing a federated learning approach that allows data from different clients to be shared while ensuring privacy, we maintain an accuracy rate exceeding 90%. This initiative marks a significant step towards a scalable, collaborative, efficient, and dependable computational framework that aids clinical pathologists in their daily diagnostic tasks.
Collapse
Affiliation(s)
- Luca Lusnig
- Terra Quantum AG, 9000 St. Gallen, Switzerland
- Research Unit of Paleoradiology and Allied Sciences, Laboratorio di Telematica Sanitaria-Struttura Complessa Informatica e Telecomunicazioni, Azienda Sanitaria Universitaria Giuliana Isontina, 34149 Trieste, Italy
| | | | | | | | | | | | | | - Graziano De' Petris
- Laboratorio di Telematica Sanitaria-Struttura Complessa Informatica e Telecomunicazioni, Azienda Sanitaria Universitaria Giuliana Isontina, 34149 Trieste, Italy
| | - Deborah Bonazza
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Academic Hospital, 34149 Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Academic Hospital, 34149 Trieste, Italy
| | | | - Fabio Cavalli
- Research Unit of Paleoradiology and Allied Sciences, Laboratorio di Telematica Sanitaria-Struttura Complessa Informatica e Telecomunicazioni, Azienda Sanitaria Universitaria Giuliana Isontina, 34149 Trieste, Italy
| |
Collapse
|
44
|
Catania R, Jia L, Haghshomar M, Miller FH, Borhani AA. Detection of moderate hepatic steatosis on contrast-enhanced dual-source dual-energy CT: Role and accuracy of virtual non-contrast CT. Eur J Radiol 2024; 172:111328. [PMID: 38325187 DOI: 10.1016/j.ejrad.2024.111328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
PURPOSE To investigate diagnostic accuracy of virtual non contrast (VNC) images, based on dual-source dual-energy CT (dsDECT), for detection of at least moderate steatosis and to define a threshold value to make this diagnosis on VNC. METHODS This single-institution retrospective study included patients who had multi-phasic protocol dsDECT. Regions of interests were placed in different segments of the liver and spleen on true non-contrast (TNC), VNC, and portal-venous phase (PVP) images. At least moderate steatosis was defined as liver attenuation (LHU) < 40 HU on TNC. Diagnostic performance of VNC to detect steatosis was determined and the new threshold was tested in a validation cohort. RESULTS 236 patients were included in training cohort. Mean liver attenuation values were 51.3 ± 10.8 HU and 58.1 ± 11.5 HU for TNC and VNC (p < 0.001), with a mean difference (VNC - TNC) of 6.8 ± 6.9 HU. Correlation between TNC and VNC was strong (r = 0.81, p < 0.001). The AUCs of LHU on VNC for detection of hepatic steatosis were 0.92 (95 % Cl: 0.86-0.98), 0.92 (95 % Cl: 0.87-0.97), 0.92 (95 % Cl: 0.86-0.99), 0.91 (95 % Cl: 0.84-0.97), and 0.87 (95 % Cl: 0.80-0.95) for entire liver, left lateral, left medial, right anterior, and right posterior segments, respectively. VNC had sensitivity/specificity of 100 % /42 % when using a threshold of 40 HU; they were 69 % and 95 %, respectively, when using optimized threshold of 46 HU. This threshold showed similar performance in validation cohort (n = 80). CONCLUSIONS Hepatic attenuation on VNC has promising performance for detection of at least moderate steatosis. Proposed threshold of 46 HU provides high specificity and moderate sensitivity to detect steatosis.
Collapse
Affiliation(s)
- Roberta Catania
- Department of Radiology, Northwestern University Feinberg School of Medicine, 676 N. Saint Clair Street, Arkes Family Pavilion, Suite 800, Chicago, IL 60611, United States.
| | - Leo Jia
- Department of Radiology, Northwestern University Feinberg School of Medicine, 676 N. Saint Clair Street, Arkes Family Pavilion, Suite 800, Chicago, IL 60611, United States.
| | - Maryam Haghshomar
- Department of Radiology, Northwestern University Feinberg School of Medicine, 676 N. Saint Clair Street, Arkes Family Pavilion, Suite 800, Chicago, IL 60611, United States.
| | - Frank H Miller
- Department of Radiology, Northwestern University Feinberg School of Medicine, 676 N. Saint Clair Street, Arkes Family Pavilion, Suite 800, Chicago, IL 60611, United States.
| | - Amir A Borhani
- Department of Radiology, Northwestern University Feinberg School of Medicine, 676 N. Saint Clair Street, Arkes Family Pavilion, Suite 800, Chicago, IL 60611, United States.
| |
Collapse
|
45
|
Li S, Duan F, Li S, Lu B. Administration of silymarin in NAFLD/NASH: A systematic review and meta-analysis. Ann Hepatol 2024; 29:101174. [PMID: 38579127 DOI: 10.1016/j.aohep.2023.101174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 04/07/2024]
Abstract
INTRODUCTION AND OBJECTIVES Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease with a high prevalence worldwide and poses serious harm to human health. There is growing evidence suggesting that the administration of specific supplements or nutrients may slow NAFLD progression. Silymarin is a hepatoprotective extract of milk thistle, but its efficacy in NAFLD remains unclear. MATERIALS AND METHODS Relevant studies were searched in PubMed, Embase, the Cochrane Library, Web of Science, clinicaltrails.gov, and China National Knowledge Infrastructure and were screened according to the eligibility criteria. Data were analyzed using Revman 5.3. Continuous values and dichotomous values were pooled using the standard mean difference (SMD) and odds ratio (OR). Heterogeneity was evaluated using the Cochran's Q test (I2 statistic). A P<0.05 was considered statistically significant. RESULTS A total of 26 randomized controlled trials involving 2,375 patients were included in this study. Administration of silymarin significantly reduced the levels of TC (SMD[95%CI]=-0.85[-1.23, -0.47]), TG (SMD[95%CI]=-0.62[-1.14, -0.10]), LDL-C (SMD[95%CI]=-0.81[-1.31, -0.31]), FI (SMD[95%CI]=-0.59[-0.91, -0.28]) and HOMA-IR (SMD[95%CI]=-0.37[-0.77, 0.04]), and increased the level of HDL-C (SMD[95%CI]=0.46[0.03, 0.89]). In addition, silymarin attenuated liver injury as indicated by the decreased levels of ALT (SMD[95%CI]=-12.39[-19.69, -5.08]) and AST (SMD[95% CI]=-10.97[-15.51, -6.43]). The levels of fatty liver index (SMD[95%CI]=-6.64[-10.59, -2.69]) and fatty liver score (SMD[95%CI]=-0.51[-0.69, -0.33]) were also decreased. Liver histology of the intervention group revealed significantly improved hepatic steatosis (OR[95%CI]=3.25[1.80, 5.87]). CONCLUSIONS Silymarin can regulate energy metabolism, attenuate liver damage, and improve liver histology in NAFLD patients. However, the effects of silymarin will need to be confirmed by further research.
Collapse
Affiliation(s)
- Shudi Li
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Fei Duan
- The First Affiliated Hospital of Henan University of TCM Zhengzhou 450000, China
| | - Suling Li
- The First Affiliated Hospital of Henan University of TCM Zhengzhou 450000, China
| | - Baoping Lu
- Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
46
|
Lu H, Ban Z, Xiao K, Sun M, Liu Y, Chen F, Shi T, Chen L, Shao D, Zhang M, Li W. Hepatic-Accumulated Obeticholic Acid and Atorvastatin Self-Assembled Nanocrystals Potentiate Ameliorative Effects in Treatment of Metabolic-Associated Fatty Liver Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308866. [PMID: 38196299 PMCID: PMC10933608 DOI: 10.1002/advs.202308866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Indexed: 01/11/2024]
Abstract
Exploration of medicines for efficient and safe management of metabolic-associated fatty liver disease (MAFLD) remains a challenge. Obeticholic acid (OCA), a selective farnesoid X receptor agonist, has been reported to ameliorate injury and inflammation in various liver diseases. However, its clinical application is mainly limited by poor solubility, low bioavailability, and potential side effects. Herein a hepatic-targeted nanodrugs composed of OCA and cholesterol-lowering atorvastatin (AHT) with an ideal active pharmaceutical ingredient (API) content for orally combined treatment of MAFLD is created. Such carrier-free nanocrystals (OCAHTs) are self-assembled, not only improving the stability in gastroenteric environments but also achieving hepatic accumulation through the bile acid transporter-mediated enterohepatic recycling process. Orally administrated OCAHT outperforms the simple combination of OCA and AHT in ameliorating of liver damage and inflammation in both acetaminophen-challenged mice and high-fat diet-induced MAFLD mice with less systematic toxicity. Importantly, OCAHT exerts profoundly reverse effects on MAFLD-associated molecular pathways, including impairing lipid metabolism, reducing inflammation, and enhancing the antioxidation response. This work not only provides a facile bile acid transporter-based strategy for hepatic-targeting drug delivery but also presents an efficient and safe full-API nanocrystal with which to facilitate the practical translation of nanomedicines against MAFLD.
Collapse
Affiliation(s)
- Huanfen Lu
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouGuangdong511442China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Zhenglan Ban
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Kai Xiao
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Madi Sun
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouGuangdong511442China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Yongbo Liu
- College of Chinese Medicinal MaterialsJilin Agricultural UniversityChangchun130118China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Tongfei Shi
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouGuangdong511442China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Li Chen
- College of MedicineJilin UniversityChangchun130021China
| | - Dan Shao
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouGuangdong511442China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Ming Zhang
- College of MedicineJilin UniversityChangchun130021China
| | - Wei Li
- College of Chinese Medicinal MaterialsJilin Agricultural UniversityChangchun130118China
| |
Collapse
|
47
|
Tong M, Yang X, Qiao Y, Liu G, Ge H, Huang G, Wang Y, Yang Y, Fan W. Serine protease inhibitor from the muscle larval Trichinella spiralis ameliorates non-alcoholic fatty liver disease in mice via anti-inflammatory properties and gut-liver crosstalk. Biomed Pharmacother 2024; 172:116223. [PMID: 38325266 DOI: 10.1016/j.biopha.2024.116223] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Trichinella spiralis is recognized for its ability to regulate host immune responses. The serine protease inhibitor of T. spiralis (Ts-SPI) participates in T. spiralis-mediated immunoregulatory effects. Studies have shown that helminth therapy exhibits therapeutic effects on metabolic diseases. In addition, we previously found that T. spiralis-derived crude antigens could alleviate diet-induced obesity. Thus, Ts-SPI was hypothesized to alleviate non-alcoholic fatty liver disease (NAFLD). Herein, recombinant Ts-SPI (rTs-SPI) was prepared from the muscle larvae T. spiralis. The relative molecular mass of rTs-SPI was approximately 35,000 Da, and western blot analysis indicated good immunoreactivity. rTs-SPI ameliorated hepatic steatosis, inflammation, and pyroptosis in NAFLD mice, which validated the hypothesis. rTs-SPI also reduced macrophage infiltration, significantly expanded Foxp3+ Treg population, and inactivated TLR4/NF-κB/NLRP3 signaling in the liver. Furthermore, rTs-SPI treatment significantly shifted the gut microbiome structure, with a remarkable increase in beneficial bacteria and reduction in harmful bacteria to improve gut barrier integrity. Finally, Abx-treated mice and FMT confirmed that gut-liver crosstalk contributed to NAFLD improvement after rTs-SPI treatment. Taken together, Taken together, these findings suggest that rTs-SPI exerts therapeutic effects in NAFLD via anti-inflammatory activity and gut-liver crosstalk.
Collapse
Affiliation(s)
- Mingwei Tong
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China.
| | - Xiaodan Yang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Yuyu Qiao
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Ge Liu
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Huihui Ge
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Guangrong Huang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Yanhong Wang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China
| | - Yong Yang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China.
| | - Weiping Fan
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China.
| |
Collapse
|
48
|
Mao Z, Gao ZX, Ji T, Huan S, Yin GP, Chen L. Bidirectional two-sample mendelian randomization analysis identifies causal associations of MRI-based cortical thickness and surface area relation to NAFLD. Lipids Health Dis 2024; 23:58. [PMID: 38395962 PMCID: PMC10885469 DOI: 10.1186/s12944-024-02043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) patients have exhibited extra-hepatic neurological changes, but the causes and mechanisms remain unclear. This study investigates the causal effect of NAFLD on cortical structure through bidirectional two-sample Mendelian randomization analysis. METHODS Genetic data from 778,614 European individuals across four NAFLD studies were used to determine genetically predicted NAFLD. Abdominal MRI scans from 32,860 UK Biobank participants were utilized to evaluate genetically predicted liver fat and volume. Data from the ENIGMA Consortium, comprising 51,665 patients, were used to evaluate the associations between genetic susceptibility, NAFLD risk, liver fat, liver volume, and alterations in cortical thickness (TH) and surface area (SA). Inverse-variance weighted (IVW) estimation, Cochran Q, and MR-Egger were employed to assess heterogeneity and pleiotropy. RESULTS Overall, NAFLD did not significantly affect cortical SA or TH. However, potential associations were noted under global weighting, relating heightened NAFLD risk to reduced parahippocampal SA and decreased cortical TH in the caudal middle frontal, cuneus, lingual, and parstriangularis regions. Liver fat and volume also influenced the cortical structure of certain regions, although no Bonferroni-adjusted p-values reached significance. Two-step MR analysis revealed that liver fat, AST, and LDL levels mediated the impact of NAFLD on cortical structure. Multivariable MR analysis suggested that the impact of NAFLD on the cortical TH of lingual and parstriangularis was independent of BMI, obesity, hyperlipidemia, and diabetes. CONCLUSION This study provides evidence that NAFLD causally influences the cortical structure of the brain, suggesting the existence of a liver-brain axis in the development of NAFLD.
Collapse
Affiliation(s)
- Zun Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhi-Xiang Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Tong Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Sheng Huan
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, P. R. China
| | - Guo-Ping Yin
- Department of Anesthesiology, Nanjing Second Hospital, Nanjing, 210000, P. R. China.
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, P. R. China.
| |
Collapse
|
49
|
Derosa G, D’Angelo A, Maffioli P, Cucinella L, Nappi RE. The Use of Nigella sativa in Cardiometabolic Diseases. Biomedicines 2024; 12:405. [PMID: 38398007 PMCID: PMC10886913 DOI: 10.3390/biomedicines12020405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 02/25/2024] Open
Abstract
Nigella sativa L. is an herb that is commonly used in cooking and in traditional medicine, particularly in Arab countries, the Indian subcontinent, and some areas of eastern Europe. Nigella sativa is also called "black cumin" or "black seeds", as the seeds are the most-used part of the plant. They contain the main bioactive component thymoquinone (TQ), which is responsible for the pleiotropic pharmacological properties of the seeds, including anti-oxidant, anti-inflammatory, anti-hypertensive, anti-hepatotoxic, hypoglycemic, and lipid-lowering properties. In this narrative review, both the potential mechanisms of action of Nigella sativa and the fundamental role played by pharmaceutical technology in optimizing preparations based on this herb in terms of yield, quality, and effectiveness have been outlined. Moreover, an analysis of the market of products containing Nigella sativa was carried out based on the current literature with an international perspective, along with a specific focus on Italy.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
- Centre of Diabetes, Metabolic Diseases, and Dyslipidemias, University of Pavia, 27100 Pavia, Italy;
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and Atherosclerosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Italian Nutraceutical Society (SINut), 40100 Bologna, Italy
- Laboratory of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Angela D’Angelo
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
- Laboratory of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Pamela Maffioli
- Centre of Diabetes, Metabolic Diseases, and Dyslipidemias, University of Pavia, 27100 Pavia, Italy;
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and Atherosclerosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Italian Nutraceutical Society (SINut), 40100 Bologna, Italy
| | - Laura Cucinella
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.E.N.)
- Research Center for Reproductive Medicine and Gynecological Endocrinology, Menopause Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Rossella Elena Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.E.N.)
- Research Center for Reproductive Medicine and Gynecological Endocrinology, Menopause Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
50
|
Samrit T, Osotprasit S, Chaiwichien A, Suksomboon P, Chansap S, Athipornchai A, Changklungmoa N, Kueakhai P. Cold-Pressed Sacha Inchi Oil: High in Omega-3 and Prevents Fat Accumulation in the Liver. Pharmaceuticals (Basel) 2024; 17:220. [PMID: 38399435 PMCID: PMC10892392 DOI: 10.3390/ph17020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
The ability of oil supplementation to inhibit various metabolic syndromes has been recognized. However, there are currently no studies determining the effects of oil supplements on healthy conditions. Plukenetia volubilis L., also known as Sacha inchi, is a seed rich in essential unsaturated fatty acids that improves metabolic syndrome diseases, such as obesity and nonalcoholic fatty liver. However, the health benefits and effects of Sacha inchi oil (SIO) supplementation remain unclear. This study aims to evaluate the chemical effects and properties of Sacha inchi oil. The results of the chemical compound analysis showed that Sacha inchi is an abundant source of ω-3 fatty acids, with a content of 44.73%, and exhibits scavenging activity of 240.53 ± 11.74 and 272.41 ± 6.95 µg Trolox/g, determined via DPPH and ABTS assays, respectively, while both olive and lard oils exhibited lower scavenging activities compared with Sacha inchi. Regarding liver histology, rats given Sacha inchi supplements showed lower TG accumulation and fat droplet distribution in the liver than those given lard supplements, with fat areas of approximately 14.19 ± 6.49% and 8.15 ± 2.40%, respectively. In conclusion, our findings suggest that Sacha inchi oil is a plant source of ω-3 fatty acids and antioxidants and does not induce fatty liver and pathology in the kidney, pancreas, and spleen. Therefore, it has the potential to be used as a dietary supplement to improve metabolic syndrome diseases.
Collapse
Affiliation(s)
- Tepparit Samrit
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Supawadee Osotprasit
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Athit Chaiwichien
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Phawiya Suksomboon
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Supanan Chansap
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Anan Athipornchai
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand;
| | - Narin Changklungmoa
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Pornanan Kueakhai
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| |
Collapse
|