1
|
Daneshpour A, Nasiri H, Motamed AK, Heidarzadeh N, Fard AM, Koleini S, Fakhimi F, Abiri L, Mayeli M, Sadeghi M. Uncovering cerebral blood flow patterns corresponding to Amyloid-beta accumulations in patients across the Alzheimer's disease continuum using the arterial spin labeling. Neurol Sci 2025; 46:2081-2090. [PMID: 39838256 DOI: 10.1007/s10072-025-07992-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/28/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder ranging from mild cognitive impairment (MCI) to AD dementia. Abnormal cerebral perfusion alterations, influenced by amyloid-beta (Aβ) accumulations, have been implicated in cognitive decline along this spectrum. OBJECTIVE This study investigates the relationship between cerebrospinal fluid (CSF) Aβ1-42 levels and regional cerebral blood flow (CBF) changes across the AD continuum using the Arterial Spin Labeling (ASL) technique. METHODS We analyzed data from 229 participants extracted from the ADNI cohort, comprising of 50 cognitively normal (CN), 13 subjective memory complaints (SMC), 83 early MCI (EMCI), 52 late MCI (LMCI), and 31 AD participants with complete ASL and CSF data. Correlations between Aβ1-42 levels and regional mean CBF values were assessed. Multiple linear regression models accounted for confounders, including age, gender, and education level. RESULTS Preliminary unadjusted analyses revealed strong positive correlations between Aβ1-42 levels and CBF in multiple regions, predominantly in the AD group. After adjusting for confounders, significant correlations in AD participants emerged in the left pars triangularis and left caudal middle frontal cortex. In the LMCI group, significant associations were identified in the right lateral occipital cortex, right inferior parietal cortex, and left amygdala. CONCLUSION These findings highlight the critical role of Aβ-driven CBF alterations in regions associated with higher cognitive functions and suggest that these patterns may serve as potential biomarkers for diagnosing and monitoring disease progression.
Collapse
Affiliation(s)
- Arian Daneshpour
- Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Hamide Nasiri
- Student Research Committee, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| | - Atoosa Keshavarz Motamed
- Student Research Committee, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Neda Heidarzadeh
- Faculty of Psychology, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Atousa Moghadam Fard
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Colorado, USA
| | - Sara Koleini
- Department of Psychology, Isfahan Branch (Khorasgan), Islamic Azad University, Isfahan, Iran
| | - Fateme Fakhimi
- Department of Speech Therapy, School of Rehabilitation Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Abiri
- Department of Medical Sciences, Faculty of Medicine, Islamic Azad University, Tabriz Branch, Iran
| | - Mahsa Mayeli
- Department of Diagnostic Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Mohammad Sadeghi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Wang Y, Yang Z, Zheng X, Liang X, Wu L, Wu C, Dai J, Cao Y, Li M, Zhou F. Cerebral blood flow alterations and host genetic association in individuals with long COVID: A transcriptomic-neuroimaging study. J Cereb Blood Flow Metab 2025; 45:431-442. [PMID: 39177056 PMCID: PMC11572096 DOI: 10.1177/0271678x241277621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/03/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024]
Abstract
Neuroimaging studies have indicated that altered cerebral blood flow (CBF) was associated with the long-term symptoms of postacute sequelae of SARS-CoV-2 infection (PASC), also known as "long COVID". COVID-19 and long COVID were found to be strongly associated with host gene expression. Nevertheless, the relationships between altered CBF, clinical symptoms, and gene expression in the central nervous system (CNS) remain unclear in individuals with long COVID. This study aimed to explore the genetic mechanisms of CBF abnormalities in individuals with long COVID by transcriptomic-neuroimaging spatial association. Lower CBF in the left frontal-temporal gyrus was associated with higher fatigue and worse cognition in individuals with long COVID. This CBF pattern was spatially associated with the expression of 2,178 genes, which were enriched in the molecular functions and biological pathways of COVID-19. Our study suggested that lower CBF is associated with persistent clinical symptoms in long COVID individuals, possibly as a consequence of the complex interactions among multiple COVID-19-related genes, which contributes to our understanding of the impact of adverse CNS outcomes and the trajectory of development to long COVID.
Collapse
Affiliation(s)
- Yao Wang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Ziwei Yang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Xiumei Zheng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Xiao Liang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Lin Wu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Chengsi Wu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | | | - Yuan Cao
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| |
Collapse
|
3
|
Berger PK, Bansal R, Sawardekar S, Monk C, Peterson BS. Associations of Maternal Prenatal Zinc Consumption with Infant Brain Tissue Organization and Neurodevelopmental Outcomes. Nutrients 2025; 17:303. [PMID: 39861433 PMCID: PMC11767866 DOI: 10.3390/nu17020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES While studies in rat pups suggest that early zinc exposure is critical for optimal brain structure and function, associations of prenatal zinc intake with measures of brain development in infants are unknown. This study aimed to assess the associations of maternal zinc intake during pregnancy with MRI measures of brain tissue microstructure and neurodevelopmental outcomes, as well as to determine whether MRI measures of the brain mediated the relationship between maternal zinc intake and neurodevelopmental indices. METHODS Forty-one adolescent mothers were recruited for a longitudinal study during pregnancy. Maternal zinc intake was assessed during the third trimester of pregnancy using a 24 h dietary recall. Infant MRI scans were acquired at 3 weeks postpartum using a 3.0 Tesla scanner to measure fractional anisotropy (FA) and mean diffusivity (MD). Cognitive, language, and motor skills were assessed at 4, 14, and 24 months postpartum using the Bayley Scales of Infant Development. RESULTS Greater prenatal zinc intake was associated with reduced FA in cortical gray matter, particularly in the frontal lobe [medial superior frontal gyrus; β (95% CI) = -1.0 (-1.5, -0.5)], in developing white matter, and in subcortical gray matter nuclei. Greater prenatal zinc intake was associated with reduced MD in cortical gray matter and developing white matter [superior longitudinal fasciculus; -4.4 (-7.1, -1.7)]. Greater maternal zinc intake also was associated with higher cognitive development scores at 14 [0.1 (0.0, 0.1)] and 24 [0.1 (0.0, 0.2)] months of age; MRI indices of FA and MD did not mediate this relationship. CONCLUSIONS Maternal prenatal zinc intake was associated with more favorable measures of brain tissue microstructural maturation and cognitive development during infancy.
Collapse
Affiliation(s)
- Paige K. Berger
- Department of Pediatrics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ravi Bansal
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Division of Child & Adolescent Psychiatry, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| | - Siddhant Sawardekar
- Division of Child & Adolescent Psychiatry, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| | - Catherine Monk
- Departments of Obstetrics and Gynecology and Psychiatry, Columbia University Medical Center, New York, NY 10032, USA;
| | - Bradley S. Peterson
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Division of Child & Adolescent Psychiatry, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| |
Collapse
|
4
|
Alkhalifah B. Quantitative imaging for early detection and risk stratification of cardiovascular disease using 4D flow MRI and arterial spin labelling. Bioinformation 2024; 20:1769-1775. [PMID: 40230930 PMCID: PMC11993427 DOI: 10.6026/9732063002001769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 04/16/2025] Open
Abstract
Heart failure (HF) significantly burdens global healthcare, necessitating early detection and precise risk stratification. Advanced imaging techniques like 4D flow Magnetic resonance imaging (MRI) and arterial spin labelling (ASL) provide crucial insights into cardiac function by capturing complex flow patterns and measuring myocardial blood flow. Hence, this study explores how these modalities can enhance early detection and risk assessment of cardiovascular diseases, aiming to improve patient outcomes. Ten patients aged ≤ 65 with clinically compensated cardiomyopathy were recruited. MRI examinations included 4D flow MRI using a 1.5 T Philips Achieva Scanner and ASL imaging on a 3 Tesla scanner. Data analysis for 4D flow MRI involved segmenting the left ventricle and categorizing pathlines into flow components, while ASL data were analyzed using Buxton's model to quantify myocardial blood flow (MBF). The study population had a mean age of 49 ± 14 years, predominantly female (6:4). Average heart rate was 61 ± 11 bpm and blood pressures averaged 122/77 mmHg. Left ventricular end-diastolic volume was 179 ± 33 mL with an ejection fraction of 42 ± 5%. Patients showed lower direct flow volume and kinetic energy in early diastolic phases compared to healthy individuals. In conclusion, 4D flow MRI and accelerated ASL is effective for early detection and risk stratification in cardiovascular disease, offering enhanced cardiovascular assessment and potential improvements in patient care.
Collapse
Affiliation(s)
- Bassam Alkhalifah
- Department of Radiology and Medical Imaging, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
5
|
Sun J, Zelaya F, Sendt KV, McQueen G, Gillespie AL, Lally J, Howes OD, Barker GJ, McGuire P, MacCabe JH, Egerton A. Response to clozapine in treatment resistant schizophrenia is related to alterations in regional cerebral blood flow. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:122. [PMID: 39715777 DOI: 10.1038/s41537-024-00544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024]
Abstract
PET and SPECT studies in treatment-resistant schizophrenia (TRS) have revealed significant alterations in regional cerebral blood flow (CBF) during clozapine treatment, which may vary according to the clinical response. Here, we used the more recent MRI approach of arterial spin labelling (ASL) to evaluate regional CBF in participants with TRS (N = 36) before starting treatment with clozapine compared to in healthy volunteers (N = 16). We then compared CBF in the TRS group, before and after 12 weeks of treatment with clozapine (N = 24); and examined the relationship of those differences against changes in Positive and Negative Syndrome Scale for Schizophrenia (PANSS) scores over the treatment period. We observed widespread reductions in CBF in TRS compared to in healthy volunteers (p < 0.05). After covarying for global CBF and age, lower CBF in frontal and parietal regions was still evident (p < 0.05, FWE corrected). Clozapine treatment was associated with longitudinal decreases in CBF in the anterior cingulate cortex (ACC) (p < 0.05). Higher striatal CBF at baseline was associated with greater improvement in total and general symptoms following clozapine, and higher hippocampal CBF was associated with greater improvement in total and positive symptoms. Longitudinal reductions in CBF in the ACC and thalamus were associated with less improvement in negative (ACC), positive (thalamus), and total (thalamus) symptoms. These findings suggest that changes in CBF on clozapine administration in TRS may accompany symptomatic improvement, and that CBF prior to clozapine initiation may determine the degree of clinical response.
Collapse
Affiliation(s)
- Junyu Sun
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Kyra-Verena Sendt
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Grant McQueen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Amy L Gillespie
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - John Lally
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychiatry, University College Dublin, Dublin, Ireland
- Department of Psychiatry, St Vincent's Hospital Fairview, Dublin, Ireland
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Psychosis Unit, South London and Maudsley NHS Foundation Trust, London, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
6
|
Kuang Z, Baizabal-Carvallo JF, Alonso-Juarez M, Mofatteh M, Rissardo JP, Pan M, Ye J, Wang Z, Chen Y. The limbic and extra-limbic encephalitis associated with glutamic acid decarboxylase (GAD)-65 antibodies: an observational study. Neurol Sci 2024:10.1007/s10072-024-07933-7. [PMID: 39704979 DOI: 10.1007/s10072-024-07933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
We aimed to define the clinical features and outcomes of encephalitis associated with anti-GAD65 Abs. In addition, we reviewed cases published in the literature with GAD65 encephalitis. We retrospectively studied 482 consecutive patients attending a tertiary care center for evaluation of an autoimmune neurological disorder. Nineteen patients were enrolled (3.94% of the cohort). Twelve (63.16%) patients were females, and the mean age at onset of the cohort was 31.68 ± 13.88 years. The following clinical-neuroimaging syndromes were identified: limbic encephalitis (n = 10), limbic plus extra-limbic encephalitis (n = 6), meningoencephalitis (n = 1), extralimbic encephalitis (n = 1), and unclassified (n = 1). The mesial temporal lobes were the most frequently affected (n = 13, 68.42%) in the brain magnetic resonance imaging (MRI), followed by frontal lobes (21%), and insular lobes (21%). Epileptiform discharges (94.4%), mostly from temporal lobes, were the most common electroencephalogram (EEG) finding. Most patients received immunotherapy and were followed for a mean duration of 21 months. A total of 73 patients, including 54 from the literature and 19 presented from the current series, were analyzed. Limbic encephalitis was the predominant presentation, and most patients received immunotherapy. Outcomes varied considerably. Considering patients from the literature and this series (n = 70), mortality was 5.7%. Also, 82.8% of patients had persistent neurologic manifestations, including seizures and cognitive impairment following immunotherapy. Limbic encephalitis is the most common form of GAD65 encephalitis, while a smaller proportion of patients may have signs of extra-limbic involvement. Most patients have persistent manifestations following combined immunotherapy with a relatively low mortality rate.
Collapse
Affiliation(s)
- Zuying Kuang
- Department of Neurology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - José Fidel Baizabal-Carvallo
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
- Department of Sciences and Engineering, University of Guanajuato, León, 07738, Mexico.
| | | | - Mohammad Mofatteh
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | - Mengqiu Pan
- Department of Neurology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Jinlong Ye
- Department of Neurology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Zhanhang Wang
- Department of Neurology, Guangdong Sanjiu Brain Hospital, Guangzhou, China.
| | - Yimin Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510000, China.
| |
Collapse
|
7
|
Bachtiar NA, Murtala B, Muis M, Ilyas MI, Abdul Hamid HB, As’ad S, Tammasse J, Wuysang AD, Soraya GV. Non-Contrast MRI Sequences for Ischemic Stroke: A Concise Overview for Clinical Radiologists. Vasc Health Risk Manag 2024; 20:521-531. [PMID: 39618686 PMCID: PMC11608002 DOI: 10.2147/vhrm.s474143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024] Open
Abstract
Ischemic stroke is the second leading cause of mortality and morbidity worldwide. Due to the urgency of implementing immediate therapy, acute stroke necessitates prompt diagnosis. The current gold standards for vascular imaging in stroke include computed tomography angiography (CTA), digital subtraction angiography (DSA) and magnetic resonance angiography (MRA). However, the contrast agents used in these methods can be costly and pose risks for patients with renal impairment or allergies. The aim of this paper is to provide a comprehensive overview of current MRI techniques and sequences for evaluating ischemic stroke, emphasizing the importance of non-contrast options and their clinical implications for radiologists in the diagnosis and management of ischemic stroke. Standard MRI sequences-such as T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), fluid-attenuated inversion recovery (FLAIR), diffusion-weighted imaging (DWI), DWI-FLAIR mismatch, and apparent diffusion coefficient (ADC)-are essential for determining infarct location, volume, and age. Additionally, incorporating susceptibility-weighted imaging (SWI) sequence aids in identifying signs of hemorrhagic transformation within the infarcted region. Advanced techniques like arterial spin labeling (ASL) can serve as a non-contrast alternative for mapping cerebral blood flow (CBF) and allowing for comparison between infarcted and healthy brain areas. Adding ASL to the routine sequence allows ASL-DWI mismatch analysis that is useful for quantifying salvageable tissue volume and facilitate timely recanalization, while time-of-flight (TOF) MRA and magnetic resonance venography (MRV) help assess venous thrombosis, stenosis, or arterial occlusions. Finally, MR spectroscopy can provide insights into critical brain metabolites, including N-acetylaspartate (NAA), and lactate (Lac) to determine patient prognosis. Current MRI technology provides a myriad of sequence options for the comprehensive evaluation of ischemic stroke without the need for contrast material. A thorough understanding of the advantages and limitations of each sequence is crucial for its optimal implementation in diagnosis and treatment.
Collapse
Affiliation(s)
| | - Bachtiar Murtala
- Department of Radiology, Hasanuddin University, Makassar, Indonesia
| | - Mirna Muis
- Department of Radiology, Hasanuddin University, Makassar, Indonesia
| | - Muhammad I Ilyas
- Department of Radiology, Hasanuddin University, Makassar, Indonesia
| | | | - Suryani As’ad
- Faculty of Medicine, Muhammadiyah University, Makassar, Indonesia
| | | | | | - Gita Vita Soraya
- Department of Neurology, Hasanuddin University, Makassar, Indonesia
- Department of Biochemistry, Hasanuddin University, Makassar, Indonesia
- Department of Biomedicine, Graduate School Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
8
|
Śledzińska-Bebyn P, Furtak J, Bebyn M, Serafin Z. Beyond conventional imaging: Advancements in MRI for glioma malignancy prediction and molecular profiling. Magn Reson Imaging 2024; 112:63-81. [PMID: 38914147 DOI: 10.1016/j.mri.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
This review examines the advancements in magnetic resonance imaging (MRI) techniques and their pivotal role in diagnosing and managing gliomas, the most prevalent primary brain tumors. The paper underscores the importance of integrating modern MRI modalities, such as diffusion-weighted imaging and perfusion MRI, which are essential for assessing glioma malignancy and predicting tumor behavior. Special attention is given to the 2021 WHO Classification of Tumors of the Central Nervous System, emphasizing the integration of molecular diagnostics in glioma classification, significantly impacting treatment decisions. The review also explores radiogenomics, which correlates imaging features with molecular markers to tailor personalized treatment strategies. Despite technological progress, MRI protocol standardization and result interpretation challenges persist, affecting diagnostic consistency across different settings. Furthermore, the review addresses MRI's capacity to distinguish between tumor recurrence and pseudoprogression, which is vital for patient management. The necessity for greater standardization and collaborative research to harness MRI's full potential in glioma diagnosis and personalized therapy is highlighted, advocating for an enhanced understanding of glioma biology and more effective treatment approaches.
Collapse
Affiliation(s)
- Paulina Śledzińska-Bebyn
- Department of Radiology, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland.
| | - Jacek Furtak
- Department of Clinical Medicine, Faculty of Medicine, University of Science and Technology, Bydgoszcz, Poland; Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Marek Bebyn
- Department of Internal Diseases, 10th Military Clinical Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Zbigniew Serafin
- Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland
| |
Collapse
|
9
|
Yun JY, Kim YK. Neural correlates of treatment response to ketamine for treatment-resistant depression: A systematic review of MRI-based studies. Psychiatry Res 2024; 340:116092. [PMID: 39116687 DOI: 10.1016/j.psychres.2024.116092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/26/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
Treatment-resistant depression (TRD) is defined as patients diagnosed with depression having a history of failure with different antidepressants with an adequate dosage and treatment duration. The NMDA receptor antagonist ketamine rapidly reduces depressive symptoms in TRD. We examined neural correlates of treatment response to ketamine in TRD through a systematic review of brain magnetic resonance imaging (MRI) studies. A comprehensive search in PubMed was performed using "ketamine AND depression AND magnetic resonance." The time span for the database queries was "Start date: 2018/01/01; End date: 2024/05/31." Total 41 original articles comprising 1,396 TRD and 587 healthy controls (HC) were included. Diagnosis of depression was made using the Structured Clinical Interview for DSM Disorders (SCID), the Mini-International Neuropsychiatric Interview (MINI), and/or the clinical assessment by psychiatrists. Patients with affective psychotic disorders were excluded. Most studies applied ketamine [0.5mg/kg racemic ketamine and/or 0.25mg/kg S-ketamine] diluted in 60cc of normal saline via intravenous infusion over 40 min one time, four times, or six times spaced 2-3 days apart over 2 weeks. Clinical outcome was defined as either remission, response, and/or percentage changes of depressive symptoms. Brain MRI of the T2*-weighted imaging (resting-state or task performance), arterial spin labeling, diffusion weighted imaging, and T1-weighted imaging were acquired at baseline and mainly 1-3days after the ketamine administration. Only the study results replicated by ≥ 2 studies and were included in the default-mode, salience, fronto-parietal, subcortical, and limbic networks were regarded as meaningful. Putative brain-based markers of treatment response to ketamine in TRD were found in the structural/functional features of limbic (subgenual ACC, hippocampus, cingulum bundle-hippocampal portion; anhedonia/suicidal ideation), salience (dorsal ACC, insula, cingulum bundle-cingulate gyrus portion; thought rumination/suicidal ideation), fronto-parietal (dorsolateral prefrontal cortex, superior longitudinal fasciculus; anhedonia/suicidal ideation), default-mode (posterior cingulate cortex; thought rumination), and subcortical (striatum; anhedonia/thought rumination) networks. Brain features of limbic, salience, and fronto-parietal networks could be useful in predicting the TRD with better response to ketamine in relief of anhedonia, thought rumination, and suicidal ideation.
Collapse
Affiliation(s)
- Je-Yeon Yun
- Seoul National University Hospital, Seoul, Republic of Korea; Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, College of Medicine, Republic of Korea.
| |
Collapse
|
10
|
Hallak H, Aljarayhi S, Abou-Al-Shaar H, Martini M, Michealcheck C, Elarjani T, Bin-Alamer O, Naik A, Aldahash H, Brinjikji W, Lawton M, Alotaibi N. Diagnostic accuracy of arterial spin labeling MR imaging in detecting cerebral arteriovenous malformations: a systematic review and meta-analysis. Neurosurg Rev 2024; 47:492. [PMID: 39190141 DOI: 10.1007/s10143-024-02659-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
Diagnostic accuracy of arteriovenous malformations (AVMs) is imperative for delineating management. The current standard is digital subtraction angiography (DSA). Arterial spin labeling (ASL) is an understudied noninvasive, non-contrast technique that allows angioarchitecture visualization and additionally quantifies cortical and AVM cerebral blood flow and hemodynamics. This meta-analysis aims to compare ASL and DSA imaging in detecting and characterizing cerebral AVMs. EMBASE, Medline, Scopus, and Cochrane databases were queried from inception to July 2022 for reports of AVMs evaluated by DSA and ASL imaging. Fourteen studies with 278 patients evaluated using DSA and ASL imaging prior to intervention were included; pCASL in 11 studies (n = 239, 85.37%) and PASL in three studies (n = 41, 14.64%). The overall AVM detection rate on ASL was 99% (CI 97-100%); subgroup analysis revealed no difference between pCASL vs. PASL (99%; CI 96-100% vs. 100%; CI 95-100% respectively, p = 0.42). The correlation value comparing ASL and DSA nidus size was 0.99. DSA and ASL intermodality agreement Cohen's k factor for Spetzler Martin Grading (SMG) was reported at a median of 0.98 (IQR 0.73-0.1), with a 1.0 agreement on SMG classification. A median of 25 arteries were detected by DSA (IQR 14.5-27), vs. 25 by ASL (IQR 14.5-27.5) at a median 0.92 k factor. ASL provides angioarchitectural visualization noninferior to DSA and additionally quantifies CBF. Our study suggests that ASL should be considered in the detection of AVMs, especially in patients with contrast contraindications or apprehension towards an invasive assessment.
Collapse
Affiliation(s)
- Hana Hallak
- Department of Neurological Surgery, King Faisal Specialist Hospital, Riyadh, Saudi Arabia.
| | - Salwa Aljarayhi
- Department of Neurological Surgery, King Faisal Specialist Hospital, Riyadh, Saudi Arabia
| | - Hussam Abou-Al-Shaar
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael Martini
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Turki Elarjani
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
| | - Othman Bin-Alamer
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Anant Naik
- Department of Neurological Surgery, Barrow Neurologic Institute, Phoenix, AZ, USA
| | - Homoud Aldahash
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Waleed Brinjikji
- Department of Neurological Surgery, King Faisal Specialist Hospital, Riyadh, Saudi Arabia
| | - Michael Lawton
- Department of Neurological Surgery, Barrow Neurologic Institute, Phoenix, AZ, USA
| | - Naif Alotaibi
- Department of Neurologic Surgery, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Oliveira ÍAF, Schnabel R, van Osch MJP, van der Zwaag W, Hirschler L. Advancing 7T perfusion imaging by pulsed arterial spin labeling: Using a parallel transmit coil for enhanced labeling robustness and temporal SNR. PLoS One 2024; 19:e0309204. [PMID: 39186519 PMCID: PMC11346640 DOI: 10.1371/journal.pone.0309204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/08/2024] [Indexed: 08/28/2024] Open
Abstract
Non-invasive perfusion imaging by Arterial spin labeling (ASL) can be advantageous at Ultra-high field (UHF) MRI, since the image SNR and the T1 relaxation time both increase with the static field. However, ASL implementation, especially at 7T, is not trivial. Especially for ASL, UHF MRI comes with many challenges, mainly due to B1+ inhomogeneities. This study aimed to investigate the effects of different transmit coil configurations on perfusion-weighted imaging at 7T using a flow-sensitive alternating inversion recovery (FAIR) technique with time-resolved frequency offset corrected inversion (TR-FOCI) pulses for labeling and background suppression. We conducted a performance comparison between a parallel transmit (pTx) system equipped with 32 receive (Rx) and 8 transmit (Tx) channels and a standard setup with 32Rx and 2Tx channels. Our findings demonstrate that the pTx system, characterized by a more homogeneous B1 transmit field, resulted in a significantly higher contrast-to-noise ratio, temporal signal-to-noise ratio, and lower coefficient of variance (CoV) than the standard 2Tx setup. Additionally, both setups demonstrated comparable capabilities for functional mapping of the hand region in the motor cortex, achieving reliable results within a short acquisition time of approximately 5 minutes.
Collapse
Affiliation(s)
- Ícaro Agenor Ferreira Oliveira
- Spinoza Centre for Neuroimaging, Netherlands Academy for Arts and Sciences, Amsterdam, Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Robin Schnabel
- Spinoza Centre for Neuroimaging, Netherlands Academy for Arts and Sciences, Amsterdam, Netherlands
| | - Matthias J. P. van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Wietske van der Zwaag
- Spinoza Centre for Neuroimaging, Netherlands Academy for Arts and Sciences, Amsterdam, Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Lydiane Hirschler
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
12
|
Mihailescu S, Hlava Q, Cook PA, Mandelli ML, Lee SE, Boeve BF, Dickerson BC, Gorno-Tempini ML, Rogalski E, Grossman M, Gee J, McMillan CT, Olm CA. Boundary-based registration improves sensitivity for detecting hypoperfusion in sporadic frontotemporal lobar degeneration. Front Neurol 2024; 15:1452944. [PMID: 39233675 PMCID: PMC11371585 DOI: 10.3389/fneur.2024.1452944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Frontotemporal lobar degeneration (FTLD) is associated with FTLD due to tau (FTLD-tau) or TDP (FTLD-TDP) inclusions found at autopsy. Arterial Spin Labeling (ASL) MRI is often acquired in the same session as a structural T1-weighted image (T1w), enabling detection of regional changes in cerebral blood flow (CBF). We hypothesize that ASL-T1w registration with more degrees of freedom using boundary-based registration (BBR) will better align ASL and T1w images and show increased sensitivity to regional hypoperfusion differences compared to manual registration in patient participants. We hypothesize that hypoperfusion will be associated with a clinical measure of disease severity, the FTLD-modified clinical dementia rating scale sum-of-boxes (FTLD-CDR). Materials and methods Patients with sporadic likely FTLD-tau (sFTLD-tau; N = 21), with sporadic likely FTLD-TDP (sFTLD-TDP; N = 14), and controls (N = 50) were recruited from the Connectomic Imaging in Familial and Sporadic Frontotemporal Degeneration project (FTDHCP). Pearson's Correlation Coefficients (CC) were calculated on cortical vertex-wise CBF between each participant for each of 3 registration methods: (1) manual registration, (2) BBR initialized with manual registration (manual+BBR), (3) and BBR initialized using FLIRT (FLIRT+BBR). Mean CBF was calculated in the same regions of interest (ROIs) for each registration method after image alignment. Paired t-tests of CC values for each registration method were performed to compare alignment. Mean CBF in each ROI was compared between groups using t-tests. Differences were considered significant at p < 0.05 (Bonferroni-corrected). We performed linear regression to relate FTLD-CDR to mean CBF in patients with sFTLD-tau and sFTLD-TDP, separately (p < 0.05, uncorrected). Results All registration methods demonstrated significant hypoperfusion in frontal and temporal regions in each patient group relative to controls. All registration methods detected hypoperfusion in the left insular cortex, middle temporal gyrus, and temporal pole in sFTLD-TDP relative to sFTLD-tau. FTLD-CDR had an inverse association with CBF in right temporal and orbitofrontal ROIs in sFTLD-TDP. Manual+BBR performed similarly to FLIRT+BBR. Discussion ASL is sensitive to distinct regions of hypoperfusion in patient participants relative to controls, and in patients with sFTLD-TDP relative to sFTLD-tau, and decreasing perfusion is associated with increasing disease severity, at least in sFTLD-TDP. BBR can register ASL-T1w images adequately for controls and patients.
Collapse
Affiliation(s)
- Sylvia Mihailescu
- School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Quinn Hlava
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Philip A Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Maria Luisa Mandelli
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Emily Rogalski
- Healthy Aging & Alzheimer's Care Center, University of Chicago, Chicago, IL, United States
- Department of Neurology, University of Chicago, Chicago, IL, United States
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - James Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Corey T McMillan
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher A Olm
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
13
|
Alyafaie A, Han W, Li Y, Vydro SA, Vella M, Truong TL, Park L, Langston D, Kim H, Conrad MB, Hetts SW. Arterial Spin-Labeling MR Imaging in the Detection of Intracranial Arteriovenous Malformations in Patients with Hereditary Hemorrhagic Telangiectasia. AJNR Am J Neuroradiol 2024; 45:1019-1024. [PMID: 38991769 PMCID: PMC11383423 DOI: 10.3174/ajnr.a8281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND AND PURPOSE Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease that causes vascular malformations in a variety of organs and tissues, including brain AVMs. Because brain AVMs have the potential to cause disabling or fatal intracranial hemorrhage, detection of these lesions before rupture is the goal of screening MR imaging/MRA examinations in patients with HHT. Prior studies have demonstrated superior sensitivity for HHT-related brain AVMs by using postcontrast MR imaging sequences as compared with MRA alone. We now present data regarding the incremental benefit of including arterial spin-labeling (ASL) perfusion sequences as part of MR imaging/MRA screening in patients with this condition. MATERIALS AND METHODS We retrospectively analyzed 831 patients at the UCSF Hereditary Hemorrhagic Telangiectasia Center of Excellence. Of these, 42 patients had complete MR imaging/MRA, ASL perfusion scans, and criterion-standard DSA data. Two neuroradiologists reviewed imaging studies and a third provided adjudication when needed. RESULTS Eight patients had no brain AVMs detected on DSA. The remaining 34 patients had 57 brain AVMs on DSA. Of the 57 identified AVMs, 51 (89.5%) were detected on ASL and 43 (75.4%) were detected on conventional MR imaging/MRA sequences (P = .049), with 8 lesions detected on ASL perfusion but not on conventional MR imaging. CONCLUSIONS ASL provides increased sensitivity for brain AVMs in patients with HHT. Inclusion of ASL should be considered as part of comprehensive MR imaging/MRA screening protocols for institutions taking care of patients with HHT.
Collapse
Affiliation(s)
- Adam Alyafaie
- From the School of Medicine (A.A., S.A.V.), University of California, San Francisco, San Francisco, California
| | - Woody Han
- Department of Radiology and Biomedical Imaging (W.H., Y.L., M.V.), University of California, San Francisco, San Francisco, California
| | - Yi Li
- Department of Radiology and Biomedical Imaging (W.H., Y.L., M.V.), University of California, San Francisco, San Francisco, California
| | - Samuel A Vydro
- From the School of Medicine (A.A., S.A.V.), University of California, San Francisco, San Francisco, California
| | - Maya Vella
- Department of Radiology and Biomedical Imaging (W.H., Y.L., M.V.), University of California, San Francisco, San Francisco, California
| | - Torianna L Truong
- HHT Center of Excellence, Department of Radiology and Biomedical Imaging (T.L.T., L.P., D.L., M.B.C.), University of California, San Francisco, San Francisco, California
| | - Lindsay Park
- HHT Center of Excellence, Department of Radiology and Biomedical Imaging (T.L.T., L.P., D.L., M.B.C.), University of California, San Francisco, San Francisco, California
| | - Daniel Langston
- HHT Center of Excellence, Department of Radiology and Biomedical Imaging (T.L.T., L.P., D.L., M.B.C.), University of California, San Francisco, San Francisco, California
| | - Helen Kim
- Department of Anesthesia, and Perioperative Care (H.K.), University of California, San Francisco, San Francisco, California
| | - Miles B Conrad
- HHT Center of Excellence, Department of Radiology and Biomedical Imaging (T.L.T., L.P., D.L., M.B.C.), University of California, San Francisco, San Francisco, California
| | - Steven W Hetts
- HHT Center of Excellence, Departments of Radiology, Biomedical Imaging, and Neurological Surgery (S.W.H.), University of California, San Francisco, San Francisco, California
| |
Collapse
|
14
|
Okazaki A, Yamasaki T, Kataoka E, Fujihiro M, Kurozumi K. Clinical Benefits of Arterial Spin-Labeling Magnetic Resonance Imaging for Primary Diffuse Large B-cell Lymphoma of the Central Nervous System Presenting With Lymphomatosis Cerebri: A Case Report. Cureus 2024; 16:e67577. [PMID: 39310434 PMCID: PMC11416737 DOI: 10.7759/cureus.67577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Of the primary central nervous system (CNS) lymphomas, diffuse large B-cell lymphoma of the CNS (CNS-DLBCL) is an aggressive extranodal lymphoma that originates in the CNS. Lymphomatosis cerebri (LC) is an exceptionally rare subtype, posing diagnostic challenges due to the absence of abnormal enhancement and making the identification of suitable biopsy sites difficult. Arterial spin-labeling magnetic resonance imaging (ASL-MRI) is a non-invasive MRI technique that quantifies tumor blood flow. This report presents a case of CNS-DLBCL with LC, which was evaluated and biopsied using ASL-MRI of the brain. Herein, we present a case of a 32-year-old female who presented with abnormal involuntary movements and cognitive impairments. She underwent an MRI which showed a diffuse and infiltrative lesion in the bilateral basal ganglia, showing a high signal intensity area on fluid-attenuated inversion recovery (FLAIR) images with no contrast enhancement. Computed Tomography scans and Gallium-67 scintigraphy showed no abnormal uptake throughout the whole body. Although she received corticosteroid treatments, subsequent MRI showed an enlarged lesion, and she underwent a brain biopsy. The biopsy site was determined based on high perfusion demonstrated by ASL-MRI and the histological findings positive for B-cell markers led to diagnoses of CNS-DLBCL, specifically LC. Her symptoms improved following high-dose methotrexate and whole-brain irradiation. Subsequent MRI scans showed a dramatic improvement, and the high perfusion observed in the ASL-MRI disappeared. This report has emphasized the critical role of histopathology in diagnosing CNS-DLBCL presenting with LC, a highly aggressive lymphoma requiring prompt treatment. In this case, high ASL-MRI signal intensity indicated an increased area of tumor cell density suitable for biopsy. This is the first report to establish a relationship between cell density and ASL-MRI signal intensity in LC. The challenge in locating the optimal biopsy site due to the lack of contrast enhancement and the difference in tumor cell densities within high signal intensity areas on FLAIR imaging is presented. ASL-MRI provides information on tumor blood flow (TBF), which may be associated with higher tumor cell density, making it a valuable tool for identifying suitable biopsy sites. Thus, ASL-MRI is clinically beneficial for the biopsy of LC cases that show high signal intensity on FLAIR images without contrast enhancement.
Collapse
Affiliation(s)
- Akira Okazaki
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, JPN
| | - Tomohiro Yamasaki
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, JPN
| | - Eri Kataoka
- Department of Diagnostic Pathology, Hamamatsu University School of Medicine, Hamamatsu, JPN
| | - Mayu Fujihiro
- Department of Diagnostic Pathology, Hamamatsu University School of Medicine, Hamamatsu, JPN
| | - Kazuhiko Kurozumi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, JPN
| |
Collapse
|
15
|
Poulin JM, Bigford GE, Lanctôt KL, Giacobbe P, Schaffer A, Sinyor M, Rabin JS, Masellis M, Singnurkar A, Pople CB, Lipsman N, Husain MI, Rosenblat JD, Cao X, MacIntosh BJ, Nestor SM. Engaging Mood Brain Circuits with Psilocybin (EMBRACE): a study protocol for a randomized, placebo-controlled and delayed-start, neuroimaging trial in depression. Trials 2024; 25:441. [PMID: 38956594 PMCID: PMC11221029 DOI: 10.1186/s13063-024-08268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a leading cause of disability worldwide across domains of health and cognition, affecting overall quality of life. Approximately one third of individuals with depression do not fully respond to treatments (e.g., conventional antidepressants, psychotherapy) and alternative strategies are needed. Recent early phase trials suggest psilocybin may be a safe and efficacious intervention with rapid-acting antidepressant properties. Psilocybin is thought to exert therapeutic benefits by altering brain network connectivity and inducing neuroplastic changes that endure for weeks post-treatment. Although early clinical results are encouraging, psilocybin's acute neurobiological effects on neuroplasticity have not been fully investigated. We aim to examine for the first time how psilocybin acutely (intraday) and subacutely (weeks) alters functional brain networks implicated in depression. METHODS Fifty participants diagnosed with MDD or persistent depressive disorder (PDD) will be recruited from a tertiary mood disorders clinic and undergo 1:1 randomization into either an experimental or control arm. Participants will be given either 25 mg psilocybin or 25 mg microcrystalline cellulose (MCC) placebo for the first treatment. Three weeks later, those in the control arm will transition to receiving 25 mg psilocybin. We will investigate whether treatments are associated with changes in arterial spin labelling and blood oxygenation level-dependent contrast neuroimaging assessments at acute and subacute timepoints. Primary outcomes include testing whether psilocybin demonstrates acute changes in (1) cerebral blood flow and (2) functional brain activity in networks associated with mood regulation and depression when compared to placebo, along with changes in MADRS score over time compared to placebo. Secondary outcomes include changes across complementary clinical psychiatric, cognitive, and functional scales from baseline to final follow-up. Serum peripheral neurotrophic and inflammatory biomarkers will be collected at baseline and follow-up to examine relationships with clinical response, and neuroimaging measures. DISCUSSION This study will investigate the acute and additive subacute neuroplastic effects of psilocybin on brain networks affected by depression using advanced serial neuroimaging methods. Results will improve our understanding of psilocybin's antidepressant mechanisms versus placebo response and whether biological measures of brain function can provide early predictors of treatment response. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT06072898. Registered on 6 October 2023.
Collapse
Affiliation(s)
- Joshua M Poulin
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Gregory E Bigford
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Krista L Lanctôt
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Peter Giacobbe
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ayal Schaffer
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Mark Sinyor
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jennifer S Rabin
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Amit Singnurkar
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Christopher B Pople
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Nir Lipsman
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Muhammad I Husain
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Xingshan Cao
- Research Design and Biostatistics, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Sean M Nestor
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Lee H, Fu JF, Gaudet K, Bryant AG, Price JC, Bennett RE, Johnson KA, Hyman BT, Hedden T, Salat DH, Yen YF, Huang SY. Aberrant vascular architecture in the hippocampus correlates with tau burden in mild cognitive impairment and Alzheimer's disease. J Cereb Blood Flow Metab 2024; 44:787-800. [PMID: 38000018 PMCID: PMC11197134 DOI: 10.1177/0271678x231216144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/04/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023]
Abstract
Cerebrovascular dysfunction is a significant contributor to Alzheimer's disease (AD) progression. AD mouse models show altered capillary morphology, density, and diminished blood flow in areas of tau and beta-amyloid accumulation. The purpose of this study was to examine alterations in vascular structure and their contributions to perfusion deficits in the hippocampus in AD and mild cognitive impairment (MCI). Seven individuals with AD and MCI (1 AD/6 MCI), nine cognitively intact older healthy adults, and seven younger healthy adults underwent pseudo-continuous arterial spin labeling (PCASL) and gradient-echo/spin-echo (GESE) dynamic susceptibility contrast (DSC) MRI. Cerebral blood flow (CBF), cerebral blood volume, relative vessel size index (rVSI), and mean vessel density were calculated from model fitting. Lower CBF from PCASL and SE DSC MRI was observed in the hippocampus of AD/MCI group. rVSI in the hippocampus of the AD/MCI group was larger than that of the two healthy groups (FDR-P = 0.02). No difference in vessel density was detected between the groups. We also explored relationship of tau burden from 18F-flortaucipir positron emission tomography and vascular measures from MRI. Tau burden was associated with larger vessel size and lower CBF in the hippocampus. We postulate that larger vessel size may be associated with vascular alterations in AD/MCI.
Collapse
Affiliation(s)
- Hansol Lee
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Jessie Fanglu Fu
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Kyla Gaudet
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Annie G Bryant
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Julie C Price
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Rachel E Bennett
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Keith A Johnson
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Trey Hedden
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David H Salat
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yi-Fen Yen
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Susie Y Huang
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
17
|
Zhou S, Gao X, Park G, Yang X, Qi B, Lin M, Huang H, Bian Y, Hu H, Chen X, Wu RS, Liu B, Yue W, Lu C, Wang R, Bheemreddy P, Qin S, Lam A, Wear KA, Andre M, Kistler EB, Newell DW, Xu S. Transcranial volumetric imaging using a conformal ultrasound patch. Nature 2024; 629:810-818. [PMID: 38778234 PMCID: PMC11875229 DOI: 10.1038/s41586-024-07381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/02/2024] [Indexed: 05/25/2024]
Abstract
Accurate and continuous monitoring of cerebral blood flow is valuable for clinical neurocritical care and fundamental neurovascular research. Transcranial Doppler (TCD) ultrasonography is a widely used non-invasive method for evaluating cerebral blood flow1, but the conventional rigid design severely limits the measurement accuracy of the complex three-dimensional (3D) vascular networks and the practicality for prolonged recording2. Here we report a conformal ultrasound patch for hands-free volumetric imaging and continuous monitoring of cerebral blood flow. The 2 MHz ultrasound waves reduce the attenuation and phase aberration caused by the skull, and the copper mesh shielding layer provides conformal contact to the skin while improving the signal-to-noise ratio by 5 dB. Ultrafast ultrasound imaging based on diverging waves can accurately render the circle of Willis in 3D and minimize human errors during examinations. Focused ultrasound waves allow the recording of blood flow spectra at selected locations continuously. The high accuracy of the conformal ultrasound patch was confirmed in comparison with a conventional TCD probe on 36 participants, showing a mean difference and standard deviation of difference as -1.51 ± 4.34 cm s-1, -0.84 ± 3.06 cm s-1 and -0.50 ± 2.55 cm s-1 for peak systolic velocity, mean flow velocity, and end diastolic velocity, respectively. The measurement success rate was 70.6%, compared with 75.3% for a conventional TCD probe. Furthermore, we demonstrate continuous blood flow spectra during different interventions and identify cascades of intracranial B waves during drowsiness within 4 h of recording.
Collapse
Affiliation(s)
- Sai Zhou
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Xiaoxiang Gao
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Geonho Park
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Xinyi Yang
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Baiyan Qi
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Muyang Lin
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Hao Huang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Yizhou Bian
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Hongjie Hu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Xiangjun Chen
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Ray S Wu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Boyu Liu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Wentong Yue
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Chengchangfeng Lu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Ruotao Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Pranavi Bheemreddy
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Siyu Qin
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Arthur Lam
- Department of Anesthesiology and Critical Care, University of California San Diego, La Jolla, CA, USA
| | - Keith A Wear
- U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Michael Andre
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Erik B Kistler
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - David W Newell
- Department of Neurosurgery, Seattle Neuroscience Institute, Seattle, WA, USA
| | - Sheng Xu
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA.
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California San Diego, La Jolla, CA, USA.
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
18
|
Barros CDS, Coutinho A, Tengan CH. Arginine Supplementation in MELAS Syndrome: What Do We Know about the Mechanisms? Int J Mol Sci 2024; 25:3629. [PMID: 38612442 PMCID: PMC11011289 DOI: 10.3390/ijms25073629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
MELAS syndrome, characterized by mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes, represents a devastating mitochondrial disease, with the stroke-like episodes being its primary manifestation. Arginine supplementation has been used and recommended as a treatment for these acute attacks; however, insufficient evidence exists to support this treatment for MELAS. The mechanisms underlying the effect of arginine on MELAS pathophysiology remain unclear, although it is hypothesized that arginine could increase nitric oxide availability and, consequently, enhance blood supply to the brain. A more comprehensive understanding of these mechanisms is necessary to improve treatment strategies, such as dose and regimen adjustments; identify which patients could benefit the most; and establish potential markers for follow-up. This review aims to analyze the existing evidence concerning the mechanisms through which arginine supplementation impacts MELAS pathophysiology and provide the current scenario and perspectives for future investigations.
Collapse
Affiliation(s)
| | | | - Celia H. Tengan
- Division of Neurology, Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil; (C.D.S.B.); (A.C.)
| |
Collapse
|
19
|
Roeske MJ, McHugo M, Rogers B, Armstrong K, Avery S, Donahue M, Heckers S. Modulation of hippocampal activity in schizophrenia with levetiracetam: a randomized, double-blind, cross-over, placebo-controlled trial. Neuropsychopharmacology 2024; 49:681-689. [PMID: 37833590 PMCID: PMC10876634 DOI: 10.1038/s41386-023-01730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023]
Abstract
Hippocampal hyperactivity is a novel pharmacological target in the treatment of schizophrenia. We hypothesized that levetiracetam (LEV), a drug binding to the synaptic vesicle glycoprotein 2 A, normalizes hippocampal activity in persons with schizophrenia and can be measured using neuroimaging methods. Thirty healthy control participants and 30 patients with schizophrenia (28 treated with antipsychotic drugs), were randomly assigned to a double-blind, cross-over trial to receive a single administration of 500 mg oral LEV or placebo during two study visits. At each visit, we assessed hippocampal function using resting state fractional amplitude of low frequency fluctuations (fALFF), cerebral blood flow (CBF) with arterial spin labeling, and hippocampal blood-oxygen-level-dependent (BOLD) signal during a scene processing task. After placebo treatment, we found significant elevations in hippocampal fALFF in patients with schizophrenia, consistent with hippocampal hyperactivity. Additionally, hippocampal fALFF in patients with schizophrenia after LEV treatment did not significantly differ from healthy control participants receiving placebo, suggesting that LEV may normalize hippocampal hyperactivity. In contrast to our fALFF findings, we did not detect significant group differences or an effect of LEV treatment on hippocampal CBF. In the context of no significant group difference in BOLD signal, we found that hippocampal recruitment during scene processing is enhanced by LEV more significantly in schizophrenia. We conclude that pharmacological modulation of hippocampal hyperactivity in schizophrenia can be studied with some neuroimaging methods, but not others. Additional studies in different cohorts, employing alternate neuroimaging methods and study designs, are needed to establish levetiracetam as a treatment for schizophrenia.
Collapse
Affiliation(s)
- Maxwell J Roeske
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baxter Rogers
- Vanderbilt University Institute of Imaging Sciences, Nashville, TN, USA
| | - Kristan Armstrong
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Suzanne Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
20
|
Liu Q, Zhang Y, Liu C, Chen Y, Zhang Y. Reduced cerebral blood flow and cognitive dysfunction following isolated cerebellar infarction: two case reports. J Int Med Res 2024; 52:3000605241235848. [PMID: 38513145 PMCID: PMC10958817 DOI: 10.1177/03000605241235848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Cognitive impairment in focal cerebellar disorders has been widely recognized and is described as cerebellar cognitive affective syndrome (CCAS). However, the relationship between CCAS and crossed cerebello-cerebral diaschisis (CCD) has rarely been discussed. The present report describes the uncommon phenomenon of CCD in two cases with isolated cerebellar infarction, and discuss its contribution to cognitive impairment. Cognitive performance was examined using the CCAS scale and a battery of neuropsychological assessments. Moreover, the relative distribution of cerebral and cerebellar blood flow was measured using three-dimensional arterial spin labeling imaging. Case 1 showed deficits in general cognition and had impaired language, episodic memory, and executive function. Case 2 showed deficits in general cognition at baseline, and cognitive deterioration of visuospatial abilities, language, episodic memory, and executive function was observed at the 3-month follow-up. Both cases met the diagnosis criteria of CCAS. Reduced cerebral blood flow was observed in the cerebral hemisphere contralateral to the cerebellar infarction at baseline in Case 1, and at the 3-month follow-up in Case 2. The present report describes cognitive decline after isolated cerebellar infarction in combination with contralateral cerebral hypoperfusion, as measured using quantitative arterial spin labeling. One possible mechanism involves the functional depression of cerebello-cerebral pathways.
Collapse
Affiliation(s)
- Qi Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yingkui Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chang Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, USA
| | - Yumei Zhang
- Department of Rehabilitation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Shiozaki E, Morofuji Y, Izumo T, Matsuo T. Retrograde Flow Into the Internal Jugular Vein in a Hemodialysis Patient Mimicking Dural Arteriovenous Fistula: A Case Report. Cureus 2024; 16:e53092. [PMID: 38414703 PMCID: PMC10897943 DOI: 10.7759/cureus.53092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2024] [Indexed: 02/29/2024] Open
Abstract
Arterial spin labeling (ASL) and three-dimensional (3D) time-of-flight (TOF) magnetic resonance angiography (MRA) are sensitive tools to detect dural arteriovenous fistula (DAVF), but hyperintensity in these images is also caused by jugular venous reflux. We present a case of a patient with renal failure on hemodialysis with retrograde flow into the internal jugular vein (IJV) mimicking DAVF. A 74-year-old man with a radial arteriovenous fistula for hemodialysis experienced transient dizziness. The TOF MRA and ASL revealed high signal intensity, suggesting the presence of a DAVF in the left transverse and sigmoid sinuses and the IJV. Digital subtraction angiography (DSA) revealed no evidence of a DAVF but showed retrograde flow into the IJV via his radial shunt. In hemodialysis patients, a high-flow shunt can cause fast retrograde flow into the dural sinuses and might lead to intracranial hypertension. The ASL images are useful for early detection and careful observation.
Collapse
Affiliation(s)
- Eri Shiozaki
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| | - Yoichi Morofuji
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| | - Tsuyoshi Izumo
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| | - Takayuki Matsuo
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| |
Collapse
|
22
|
Kornemann N, Klimeš F, Kern AL, Behrendt L, Voskrebenzev A, Gutberlet M, Wattjes MP, Wacker F, Vogel-Claussen J, Glandorf J. Cerebral microcirculatory pulse wave propagation and pulse wave amplitude mapping in retrospectively gated MRI. Sci Rep 2023; 13:21374. [PMID: 38049511 PMCID: PMC10696084 DOI: 10.1038/s41598-023-48439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
To analyze cerebral arteriovenous pulse propagation and to generate phase-resolved pulse amplitude maps from a fast gradient-echo sequence offering flow-related enhancement (FREE). Brain MRI was performed using a balanced steady-state free precession sequence at 3T followed by retrospective k-space gating. The time interval of the pulse wave between anterior-, middle- and posterior cerebral artery territories and the superior sagittal sinus were calculated and compared between and older and younger groups within 24 healthy volunteers. Pulse amplitude maps were generated and compared to pseudo-Continuous Arterial Spin Labeling (pCASL) MRI maps by voxel-wise Pearson correlation, Sørensen-Dice maps and in regards to signal contrast. The arteriovenous delays between all vascular territories and the superior sagittal sinus were significantly shorter in the older age group (11 individuals, ≥ 31 years) ranging between 169 ± 112 and 246 ± 299 ms versus 286 ± 244 to 419 ± 299 ms in the younger age group (13 individuals) (P ≤ 0.04). The voxel-wise pulse wave amplitude values and perfusion-weighted pCASL values correlated significantly (Pearson-r = 0.33, P < 0.01). Mean Dice overlaps of high (gray) and low (white matter) regions were 73 ± 3% and 59 ± 5%. No differences in image contrast were seen in the whole brain and the white matter, but significantly higher mean contrast of 0.73 ± 0.23% in cortical gray matter in FREE-MRI compared to 0.52 ± 0.12% in pCASL-MRI (P = 0.01). The dynamic information of flow-related enhancement allows analysis of the cerebral pulse wave propagation potentially providing information about the (micro)circulation on a regional level. However, the pulse wave amplitude reveals weaknesses in comparison to true perfusion-weighting and could rather be used to calculate a pulsatility index.
Collapse
Affiliation(s)
- Norman Kornemann
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Filip Klimeš
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Agilo Luitger Kern
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Lea Behrendt
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Andreas Voskrebenzev
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Mike P Wattjes
- Institute for Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Julian Glandorf
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
23
|
Dobeson CB, Birkbeck M, Bhatnagar P, Hall J, Pearson R, West S, English P, Butteriss D, Perthen J, Lewis J. Perfusion MRI in the evaluation of brain metastases: current practice review and rationale for study of baseline MR perfusion imaging prior to stereotactic radiosurgery (STARBEAM-X). Br J Radiol 2023; 96:20220462. [PMID: 37660364 PMCID: PMC10646666 DOI: 10.1259/bjr.20220462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Stereotactic radiosurgery is an established focal treatment for brain metastases with high local control rates. An important side-effect of stereotactic radiosurgery is the development of radionecrosis. On conventional MR imaging, radionecrosis and tumour progression often have similar appearances, but have contrasting management approaches. Perfusion MR imaging is often used in the post-treatment setting in order to help distinguish between the two, but image interpretation can be fraught with challenges.Perfusion MR plays an established role in the baseline and post-treatment evaluation of primary brain tumours and a number of studies have concentrated on the value of perfusion imaging in brain metastases. Of the parameters generated, relative cerebral blood volume is the most widely used variable in terms of its clinical value in differentiating between radionecrosis and tumour progression. Although it has been suggested that the relative cerebral blood volume tends to be elevated in active metastatic disease following treatment with radiosurgery, but not with treatment-related changes, the literature available on interpretation of the ratios provided in the context of defining tumour progression is not consistent.This article aims to provide an overview of the role perfusion MRI plays in the assessment of brain metastases and introduces the rationale for the STARBEAM-X study (Study of assessment of radionecrosis in brain metastases using MR perfusion extra imaging), which will prospectively evaluate baseline perfusion imaging in brain metastases. We hope this will allow insight into the vascular appearance of metastases from different primary sites, and aid in the interpretation of post-treatment perfusion imaging.
Collapse
Affiliation(s)
| | - Matthew Birkbeck
- Northern Medical Physics and Clinical Engineering, Freeman Hospital, Newcastle upon Tyne, UK
| | - Priya Bhatnagar
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Julie Hall
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Rachel Pearson
- Department of Oncology, Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| | - Serena West
- Department of Oncology, Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| | - Philip English
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - David Butteriss
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Joanna Perthen
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Joanne Lewis
- Department of Oncology, Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
24
|
Nico E, Hossa J, McGuire LS, Alaraj A. Rupture-Risk Stratifying Patients with Cerebral Arteriovenous Malformations Using Quantitative Hemodynamic Flow Measurements. World Neurosurg 2023; 179:68-76. [PMID: 37597662 DOI: 10.1016/j.wneu.2023.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Arteriovenous malformations (AVMs) are high-pressure, low-resistance arterial-venous shunts without intervening capillaries. Up to 60% of AVMs present with an intracranial hemorrhage; however, noninvasive neuroimaging has increasingly diagnosed incidental AVMs. AVM management depends on weighing the lifetime rupture risk against the risks of intervention. Although AVM rupture risk relies primarily on angioarchitectural features, measuring hemodynamic flow is gaining traction. Accurate understanding of AVM hemodynamic flow parameters will help endovascular neurosurgeons and interventional neuroradiologists stratify patients by rupture risk and select treatment plans. This review examines various neuroimaging modalities and their capabilities to quantify AVM flow, as well as the relationship between AVM flow and rupture risk. Quantitative hemodynamic studies on the relationship between AVM flow and rupture risk have not reached a clear consensus; however, the preponderance of data suggests that higher arterial inflow and lower venous outflow in the AVM nidus contribute to increased hemorrhagic risk. Future studies should consider using larger sample sizes and standardized definitions of hemodynamic parameters to reach a consensus. In the meantime, classic angioarchitectural features may be more strongly correlated with AVM rupture than the amount of blood flow.
Collapse
Affiliation(s)
- Elsa Nico
- University of Illinois College of Medicine at Chicago, Chicago, Illinois, USA
| | - Jessica Hossa
- University of Illinois College of Medicine at Chicago, Chicago, Illinois, USA
| | - Laura Stone McGuire
- Department of Neurosurgery, University of Illinois Hospital, Chicago, Illinois, USA
| | - Ali Alaraj
- Department of Neurosurgery, University of Illinois Hospital, Chicago, Illinois, USA.
| |
Collapse
|
25
|
Medeiros GC, Matheson M, Demo I, Reid MJ, Matheson S, Twose C, Smith GS, Gould TD, Zarate CA, Barrett FS, Goes FS. Brain-based correlates of antidepressant response to ketamine: a comprehensive systematic review of neuroimaging studies. Lancet Psychiatry 2023; 10:790-800. [PMID: 37625426 PMCID: PMC11534374 DOI: 10.1016/s2215-0366(23)00183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 08/27/2023]
Abstract
Ketamine is an effective antidepressant, but there is substantial variability in patient response and the precise mechanism of action is unclear. Neuroimaging can provide predictive and mechanistic insights, but findings are limited by small sample sizes. This systematic review covers neuroimaging studies investigating baseline (pre-treatment) and longitudinal (post-treatment) biomarkers of responses to ketamine. All modalities were included. We performed searches of five electronic databases (from inception to April 26, 2022). 69 studies were included (with 1751 participants). There was substantial methodological heterogeneity and no well replicated biomarker. However, we found convergence across some significant results, particularly in longitudinal biomarkers. Response to ketamine was associated with post-treatment increases in gamma power in frontoparietal regions in electrophysiological studies, post-treatment increases in functional connectivity within the prefrontal cortex, and post-treatment increases in the functional activation of the striatum. Although a well replicated neuroimaging biomarker of ketamine response was not identified, there are biomarkers that warrant further investigation.
Collapse
Affiliation(s)
- Gustavo C Medeiros
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Malcolm Matheson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Isabella Demo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew J Reid
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Claire Twose
- Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gwenn S Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA; Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, NIMH-NIH, Bethesda, MD, USA
| | - Frederick S Barrett
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Department of Psychological and Brain Sciences, and Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Ravula S, Patil C, Kumar Ks P, Kollu R, Shaik AR, Bandari R, Songa R, Battula V, Arelly SPD, Gopagoni R. A Study to Evaluate the Role of Three-Dimensional Pseudo-Continuous Arterial Spin Labelling in Acute Ischemic Stroke. Cureus 2023; 15:e44030. [PMID: 37746491 PMCID: PMC10517431 DOI: 10.7759/cureus.44030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Magnetic resonance imaging (MRI) is well known to detect ischemic brain tissue and evaluate the tissue vulnerable to infarction. Diffusion-weighted imaging (DWI) has been a mainstay of stroke evaluation but has a few shortcomings, as it generally indicates only the core of ischemia and does not provide information regarding the tissue at risk or the ischemic penumbra surrounding the infarct. Perfusion imaging identifies brain tissue that has reduced blood flow as a potential target for reperfusion therapy. Arterial spin labelling (ASL) is a new non-invasive, non-contrast MRI perfusion sequence used to detect areas of hypoperfusion qualitatively and quantitatively and also identify the area at risk, i.e., the penumbra, in acute ischemic stroke. The most important component of the imaging is to determine the ischemic penumbra. One of the working definitions of penumbra is brain tissue that is ischemic but not yet infarcted and is at risk of further damage unless the flow is rapidly restored. Hence, perfusion-diffusion mismatch provides a realistic target for potential intervention. The aim of our study is to assess the role of ASL imaging in identifying the penumbra and providing insight into the management of acute ischemic stroke. Materials and methods Patients who presented with symptoms of acute ischemic stroke were included in the study, and an MRI stroke protocol comprising DWI, fluid-attenuated inversion recovery (FLAIR), ASL, and magnetic resonance angiogram (MRA) sequences was done. Post-thrombolysis, a follow-up MRI was done using DWI, ASL, and MRA to see the restoration of perfusion in the ischemic penumbra. Three-dimensional pseudo-continuous ASL (in our study, ASL refers to pseudo-continuous ASL) is included in the stroke protocol in cases of acute ischemic stroke and assessed qualitatively. Results Our study included 43 patients (n = 43), of whom 39.5% (17 patients) belong to the age group of 51-60 years and 2.3% (one patient) are in the age group of 21-30 years. All 43 cases demonstrated DWI-FLAIR mismatch, suggestive of ischemic stroke within the window period, and all 43 cases showed DWI-ASL mismatch, suggestive of a large yet potentially salvageable peri-infarct ischemic penumbra. The most common territory involved was the middle cerebral artery (MCA), and the posterior cerebral artery (PCA) was the least commonly involved territory. We had one case involving the MCA-PCA watershed zone. Conclusion Arterial spin labelling is a novel, non-invasive, non-contrast MRI sequence with the capability to provide qualitative information regarding the salvageable ischemic penumbra, and timely management prevents the progression of the penumbra. The incorporation of ASL as part of the standard neuroimaging protocol aids in the management of acute stroke, giving insight into the prediction of outcome.
Collapse
Affiliation(s)
- Smitha Ravula
- Radiodiagnosis, Malla Reddy Medical College for Women, Hyderabad, IND
| | | | | | - Raja Kollu
- Radiology, New Medical Centre (NMC) Speciality Hospital, Abu Dhabi, ARE
| | | | - Rohit Bandari
- Neurology, Malla Reddy Narayana Multispeciality Hospital, Hyderabad, IND
| | - Rajesh Songa
- Neurology, Malla Reddy Narayana Multispeciality Hospital, Hyderabad, IND
| | | | | | - Ragini Gopagoni
- Internal Medicine, Malla Reddy Institute of Medical Sciences, Hyderabad, IND
| |
Collapse
|
27
|
Joshi D, Prasad S, Saini J, Ingalhalikar M. Role of Arterial Spin Labeling (ASL) Images in Parkinson's Disease (PD): A Systematic Review. Acad Radiol 2023; 30:1695-1708. [PMID: 36435728 DOI: 10.1016/j.acra.2022.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022]
Abstract
RATIONALE AND OBJECTIVES Parkinson's disease is a chronic progressive neurodegenerative disorder with standard structural MRIs often showing no gross abnormalities. Quantitative perfusion MRI modality Arterial Spin Labeling (ASL) is helpful in identifying PD specific perfusion patterns. Absolute Cerebral blood flow (CBF) measurement using ASL provides insights into regional perfusion abnormalities. We reviewed the role of ASL to identify specific brain regions responsible for motor, non-motor symptoms and neurovascular changes observed in PD. Challenges in assessing the blood perfusion level are discussed with future development for improving the evaluation of ASL perfusion maps. MATERIALS AND METHODS We included CBF quantification studies using ASL for PD diagnosis. A systematic search was performed in Pubmed, Scopus and Web of Science. The perfusion parameters CBF and arterial arrival time (AAT) measured using ASL were considered for brain region assessment. Clinical aspects of PD have been analyzed using ASL perfusion maps. RESULTS The systematic search identified 153 unique records. Thirty articles were selected after verification of inclusion and exclusion criteria. Voxel and region-based analyses in white and gray matter tissues have been performed to identify PD-specific perfusion patterns by reported articles. Predominant brain regions such as basal ganglia sub-regions, frontoparietal network, precuneus, occipital lobe, sensory motor area regions, visual network, which are associated with motor and non-motor symptoms in PD, were identified with CBF hypoperfusion, indicating neuronal loss and cerebrovascular dysfunction. CONCLUSION CBF and AAT values derived from ASL can potentially be used as biomarkers to discriminate PD from similar brain-related disorders.
Collapse
Affiliation(s)
- Dhanashri Joshi
- Symbiosis Center of Medical Image Analysis, Symbiosis International (Deemed) University, Pune,MH, India
| | - Shweta Prasad
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, KA, India; Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences, Bengaluru,, KA, India
| | - Jitender Saini
- Department of Neuroimaging & Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, KA, India
| | - Madhura Ingalhalikar
- Symbiosis Center of Medical Image Analysis, Symbiosis International (Deemed) University, Pune,MH, India.
| |
Collapse
|
28
|
Peer S, Singh P. Intraluminal arterial transit artifact as a predictor of intracranial large artery stenosis on 3D time of flight MR angiography: Expanding the application of arterial spin labeling MRI in ischemic stroke. J Clin Imaging Sci 2023; 13:17. [PMID: 37405363 PMCID: PMC10316254 DOI: 10.25259/jcis_27_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023] Open
Abstract
Objectives The objective of this study was to evaluate the diagnostic value of "intraluminal arterial transit artifact" in the prediction of intracranial large artery stenosis and to determine if this finding is predictive of ischemic stroke in the territory of the involved artery. Material and Methods The presence of arterial transit artifact (ATA) within the lumen of an intracranial large vessel was noted on three-dimensional time of flight (3D-TOF) magnetic resonance angiography (MRA) (ATA group). The patients with stenosis but with no ATA (no-ATA group), patients with total occlusion (total occlusion group), and patients with no stenosis/occlusion (normal group) were included in the analysis. Results There were four groups of patients included in the final analysis, the ATA group (n = 22), the no-ATA group (n = 23), the normal group (n = 25), and the total occlusion group (n = 9). Among patients with any demonstrable stenosis (n = 45), the presence of ATA within the stenotic segment was predictive of stenosis of ≥56% (Sensitivity of 100% [85.2-100, 95% CI], specificity of 100% [86.4-100, 95% CI]), with area under curve of 1.0 (0.92-.0, 95% CI). The presence of intra-arterial ATA signal was significantly associated with ischemic stroke as compared with the no-ATA group (86.36% vs. 26.08%, P = 0.0003). Intraluminal ATA was found to be an independent predictor of infarction in the territory of the involved artery. Conclusion Intraluminal ATA is predictive of stenosis of at least 56% in the involved artery on 3D-TOF MRA. Intraluminal ATA sign may be an independent predictor of infarction in the territory of the involved artery.
Collapse
Affiliation(s)
- Sameer Peer
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Paramdeep Singh
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Bathinda, Punjab, India
| |
Collapse
|
29
|
Tripathi SM, Majrashi NA, Alyami AS, Ageeli WA, Refaee TA. A Systematic Review of PET Contrasted with MRI for Detecting Crossed Cerebellar Diaschisis in Patients with Neurodegenerative Diseases. Diagnostics (Basel) 2023; 13:diagnostics13101674. [PMID: 37238158 DOI: 10.3390/diagnostics13101674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
There has not been extensive research into crossed cerebellar diaschisis (CCD) in neurodegenerative disorders. CCD is frequently detected using positron emission tomography (PET). However, advanced MRI techniques have come forth for the detection of CCD. The correct diagnosis of CCD is crucial for the care of neurological patients and those with neurodegenerative conditions. The purpose of this study is to determine whether PET can offer extra value over MRI or an advanced technique in MRI for detecting CCD in neurological conditions. We searched three main electronic databases from 1980 until the present and included only English and peer-reviewed journal articles. Eight articles involving 1246 participants met the inclusion criteria, six of which used PET imaging while the other two used MRI and hybrid imaging. The findings in PET studies showed decreased cerebral metabolism in the frontal, parietal, temporal, and occipital cortices, as on the opposite side of the cerebellar cortex. However, the findings in MRI studies showed decreased cerebellar volumes. This study concludes that PET is a common, accurate, and sensitive technique for detecting both crossed cerebellar and uncrossed basal ganglia as well as thalamic diaschisis in neurodegenerative diseases, while MRI is better for measuring brain volume. This study suggests that PET has a higher diagnostic value for diagnosing CCD compared to MRI, and that PET is a more valuable technique for predicting CCD.
Collapse
Affiliation(s)
| | - Naif Ali Majrashi
- Diagnostic Radiography Technology (DRT) Department, Faculty of Applied Medical Sciences, Jazan University, Jazan 85145, Saudi Arabia
| | - Ali S Alyami
- Diagnostic Radiography Technology (DRT) Department, Faculty of Applied Medical Sciences, Jazan University, Jazan 85145, Saudi Arabia
| | - Wael A Ageeli
- Diagnostic Radiography Technology (DRT) Department, Faculty of Applied Medical Sciences, Jazan University, Jazan 85145, Saudi Arabia
| | - Turkey A Refaee
- Diagnostic Radiography Technology (DRT) Department, Faculty of Applied Medical Sciences, Jazan University, Jazan 85145, Saudi Arabia
| |
Collapse
|
30
|
Crouzet C, Phan T, Wilson RH, Shin TJ, Choi B. Intrinsic, widefield optical imaging of hemodynamics in rodent models of Alzheimer's disease and neurological injury. NEUROPHOTONICS 2023; 10:020601. [PMID: 37143901 PMCID: PMC10152182 DOI: 10.1117/1.nph.10.2.020601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023]
Abstract
The complex cerebrovascular network is critical to controlling local cerebral blood flow (CBF) and maintaining brain homeostasis. Alzheimer's disease (AD) and neurological injury can result in impaired CBF regulation, blood-brain barrier breakdown, neurovascular dysregulation, and ultimately impaired brain homeostasis. Measuring cortical hemodynamic changes in rodents can help elucidate the complex physiological dynamics that occur in AD and neurological injury. Widefield optical imaging approaches can measure hemodynamic information, such as CBF and oxygenation. These measurements can be performed over fields of view that range from millimeters to centimeters and probe up to the first few millimeters of rodent brain tissue. We discuss the principles and applications of three widefield optical imaging approaches that can measure cerebral hemodynamics: (1) optical intrinsic signal imaging, (2) laser speckle imaging, and (3) spatial frequency domain imaging. Future work in advancing widefield optical imaging approaches and employing multimodal instrumentation can enrich hemodynamic information content and help elucidate cerebrovascular mechanisms that lead to the development of therapeutic agents for AD and neurological injury.
Collapse
Affiliation(s)
- Christian Crouzet
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Thinh Phan
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
| | - Robert H. Wilson
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Medicine, Irvine, California, United States
| | - Teo Jeon Shin
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- Seoul National University, Department of Pediatric Dentistry and Dental Research Institute, Seoul, Republic of Korea
| | - Bernard Choi
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
- University of California, Irvine, Department of Surgery, Irvine, California, United States
- University of California, Irvine, Edwards Lifesciences Foundation Cardiovascular Innovation Research Center, California, United States
| |
Collapse
|
31
|
Wiącek M, Oboz-Adaś A, Kuźniar K, Karaś A, Jasielski P, Bartosik-Psujek H. Acute Ischemic Stroke in Pregnancy : A Practical Focus on Neuroimaging and Reperfusion Therapy. Clin Neuroradiol 2023; 33:31-39. [PMID: 36112175 PMCID: PMC10014666 DOI: 10.1007/s00062-022-01215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Pregnancy increases the risk of acute ischemic stroke (AIS) among young women and is responsible for about 5% of maternal deaths and significant disability. Concerns of potential adverse events of imaging and reperfusion therapies in this group of patients can lead to a substantial delay or omission of treatment that can significantly worsen outcomes. OBJECTIVE The objective of this study is to discuss main concerns of diagnosis and therapy of pregnant patients with AIS regarding neuroimaging and reperfusion treatment. RESULTS The cumulative radiation dose of computed tomography (CT)-based entire diagnostic procedure (noncontrast CT, CT-angiography and CT-perfusion) is estimated to be below threshold for serious fetal radiation exposure adverse events. Similarly, magnetic resonance imaging(MRI)-based imaging is thought to be safe as long as gadolinium contrast media are avoided. The added risk of intravenous thrombolysis (IVT) and mechanical thrombectomy during pregnancy is thought to be very low. Nevertheless, some additional safety measures should be utilized to reduce the risk of radiation, contrast media and hypotension exposure during diagnostic procedures or reperfusion treatment. CONCLUSION Fetal safety concerns should not preclude routine diagnostic work-up (except for gadolinium contrast media administration) in childbearing AIS women, including procedures applied in unknown onset and late onset individuals. Due to rather low added risk of serious treatment complications, pregnancy should not be a sole contraindication for neither IVT, nor endovascular treatment.
Collapse
Affiliation(s)
- Marcin Wiącek
- Institute of Medical Sciences, University of Rzeszow, Rzeszow, Poland
- Department of Neurology, Clinical Regional Hospital No. 2, Rzeszow, Poland
| | - Antonina Oboz-Adaś
- Institute of Medical Sciences, University of Rzeszow, Rzeszow, Poland.
- Department of Neurology, Clinical Regional Hospital No. 2, Rzeszow, Poland.
| | - Katarzyna Kuźniar
- Institute of Medical Sciences, University of Rzeszow, Rzeszow, Poland
- Department of Neurology, Clinical Regional Hospital No. 2, Rzeszow, Poland
| | - Anna Karaś
- Institute of Medical Sciences, University of Rzeszow, Rzeszow, Poland
- Department of Neurology, Clinical Regional Hospital No. 2, Rzeszow, Poland
| | - Patryk Jasielski
- Department of Neurology, Clinical Regional Hospital No. 2, Rzeszow, Poland
| | - Halina Bartosik-Psujek
- Institute of Medical Sciences, University of Rzeszow, Rzeszow, Poland
- Department of Neurology, Clinical Regional Hospital No. 2, Rzeszow, Poland
| |
Collapse
|
32
|
Cai M, Liu J, Wang X, Ma J, Ma L, Liu M, Zhao Y, Wang H, Fu D, Wang W, Xu Q, Guo L, Liu F. Spontaneous brain activity abnormalities in migraine: A meta-analysis of functional neuroimaging. Hum Brain Mapp 2023; 44:571-584. [PMID: 36129066 PMCID: PMC9842892 DOI: 10.1002/hbm.26085] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/21/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2023] Open
Abstract
Neuroimaging studies have demonstrated that migraine is accompanied by spontaneous brain activity alterations in specific regions. However, these findings are inconsistent, thus hindering our understanding of the potential neuropathology. Hence, we performed a quantitative whole-brain meta-analysis of relevant resting-state functional imaging studies to identify brain regions consistently involved in migraine. A systematic search of studies that investigated the differences in spontaneous brain activity patterns between migraineurs and healthy controls up to April 2022 was conducted. We then performed a whole-brain voxel-wise meta-analysis using the anisotropic effect size version of seed-based d mapping software. Complementary analyses including jackknife sensitivity analysis, heterogeneity test, publication bias test, subgroup analysis, and meta-regression analysis were conducted as well. In total, 24 studies that reported 31 datasets were finally eligible for our meta-analysis, including 748 patients and 690 controls. In contrast to healthy controls, migraineurs demonstrated consistent and robust decreased spontaneous brain activity in the angular gyrus, visual cortex, and cerebellum, while increased activity in the caudate, thalamus, pons, and prefrontal cortex. Results were robust and highly replicable in the following jackknife sensitivity analysis and subgroup analysis. Meta-regression analyses revealed that a higher visual analog scale score in the patient sample was associated with increased spontaneous brain activity in the left thalamus. These findings provided not only a comprehensive overview of spontaneous brain activity patterns impairments, but also useful insights into the pathophysiology of dysfunction in migraine.
Collapse
Affiliation(s)
- Mengjing Cai
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Jiawei Liu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Xuexiang Wang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
- Department of RadiologyTianjin Hongqiao HospitalTianjinChina
| | - Juanwei Ma
- Department of RadiologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Lin Ma
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Mengge Liu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yao Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - He Wang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Dianxun Fu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Wenqin Wang
- School of Mathematical SciencesTiangong UniversityTianjinChina
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
33
|
Wang X, Bishop C, O'Callaghan J, Gayhoor A, Albani J, Theriault W, Chappell M, Golay X, Wang D, Becerra L. MRI assessment of cerebral perfusion in clinical trials. Drug Discov Today 2023; 28:103506. [PMID: 36690177 DOI: 10.1016/j.drudis.2023.103506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Neurodegenerative mechanisms affect the brain through a variety of processes that are reflected as changes in brain structure and physiology. Although some biomarkers for these changes are well established, others are at different stages of development for use in clinical trials. One of the most challenging biomarkers to harmonize for clinical trials is cerebral blood flow (CBF). There are several magnetic resonance imaging (MRI) methods for quantifying CBF without the use of contrast agents, in particular arterial spin labeling (ASL) perfusion MRI, which has been increasingly applied in clinical trials. In this review, we present ASL MRI techniques, including strategies for implementation across multiple imaging centers, levels of confidence in assessing disease progression and treatment effects, and details of image analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael Chappell
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham
| | - Xavier Golay
- MR Neurophysics and Translational Neuroscience, Queen Square UCL Institute of Neurology, University College London; Gold Standard Phantoms
| | - Danny Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California (USC)
| | | |
Collapse
|
34
|
Iutaka T, de Freitas MB, Omar SS, Scortegagna FA, Nael K, Nunes RH, Pacheco FT, Maia Júnior ACM, do Amaral LLF, da Rocha AJ. Arterial Spin Labeling: Techniques, Clinical Applications, and Interpretation. Radiographics 2023; 43:e220088. [DOI: 10.1148/rg.220088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Liu G, Ladrón-de-Guevara A, Izhiman Y, Nedergaard M, Du T. Measurements of cerebrospinal fluid production: a review of the limitations and advantages of current methodologies. Fluids Barriers CNS 2022; 19:101. [PMID: 36522656 PMCID: PMC9753305 DOI: 10.1186/s12987-022-00382-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cerebrospinal fluid (CSF) is an essential and critical component of the central nervous system (CNS). According to the concept of the "third circulation" originally proposed by Cushing, CSF is mainly produced by the choroid plexus and subsequently leaves the cerebral ventricles via the foramen of Magendie and Luschka. CSF then fills the subarachnoid space from whence it disperses to all parts of the CNS, including the forebrain and spinal cord. CSF provides buoyancy to the submerged brain, thus protecting it against mechanical injury. CSF is also transported via the glymphatic pathway to reach deep interstitial brain regions along perivascular channels; this CSF clearance pathway promotes transport of energy metabolites and signaling molecules, and the clearance of metabolic waste. In particular, CSF is now intensively studied as a carrier for the removal of proteins implicated in neurodegeneration, such as amyloid-β and tau. Despite this key function of CSF, there is little information about its production rate, the factors controlling CSF production, and the impact of diseases on CSF flux. Therefore, we consider it to be a matter of paramount importance to quantify better the rate of CSF production, thereby obtaining a better understanding of CSF dynamics. To this end, we now review the existing methods developed to measure CSF production, including invasive, noninvasive, direct, and indirect methods, and MRI-based techniques. Depending on the methodology, estimates of CSF production rates in a given species can extend over a ten-fold range. Throughout this review, we interrogate the technical details of CSF measurement methods and discuss the consequences of minor experimental modifications on estimates of production rate. Our aim is to highlight the gaps in our knowledge and inspire the development of more accurate, reproducible, and less invasive techniques for quantitation of CSF production.
Collapse
Affiliation(s)
- Guojun Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
- School of Pharmacy, China Medical University, Shenyang, 110122, China
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Antonio Ladrón-de-Guevara
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yara Izhiman
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| | - Ting Du
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
36
|
Gyanwali B, Mutsaerts HJ, Tan CS, Kaweilh OR, Petr J, Chen C, Hilal S. Association of Arterial Spin Labeling Parameters With Cognitive Decline, Vascular Events, and Mortality in a Memory-Clinic Sample. Am J Geriatr Psychiatry 2022; 30:1298-1309. [PMID: 35871110 DOI: 10.1016/j.jagp.2022.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/25/2022] [Accepted: 06/12/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cognitive decline in older adults has been attributed to reduced cerebral blood flow (CBF). Recently, the spatial coefficient of variation (sCoV) of ASL has been proposed as a proxy marker of cerebrovascular insufficiency. We investigated the association between baseline ASL parameters with cognitive decline, incident cerebrovascular disease, and risk of vascular events and mortality. DESIGN, SETTING, AND PARTICIPANTS About 368 memory-clinic patients underwent three-annual neuropsychological assessments and brain MRI scans at baseline and follow-up. MRIs were graded for white matter hyperintensities (WMH), lacunes, cerebral microbleeds (CMBs), cortical infarcts, and intracranial stenosis. Baseline gray (GM) and white matter (WM) CBF and GM-sCoV were obtained with ExploreASL from 2D-EPI pseudo-continuous ASL images. Cognitive assessment was done using a validated neuropsychological battery. Data on incident vascular events (heart disease, stroke, transient ischemic attack) and mortality were obtained. RESULTS Higher baseline GM-sCoV was associated with decline in the memory domain over 3 years of follow-up. Furthermore, higher GM-sCoV was associated with a decline in the memory domain only in participants without dementia. Higher baseline GM-sCoV was associated with progression of WMH and incident CMBs. During a mean follow-up of 3 years, 29 (7.8%) participants developed vascular events and 18 (4.8%) died. Participants with higher baseline mean GM-sCoV were at increased risk of vascular events. CONCLUSIONS Higher baseline GM-sCoV of ASL was associated with a decline in memory and risk of cerebrovascular disease and vascular events, suggesting that cerebrovascular insufficiency may contribute to accelerated cognitive decline and worse clinical outcomes in memory clinic participants.
Collapse
Affiliation(s)
- Bibek Gyanwali
- Memory Aging & Cognition Centre, National University Health System (BG, ORK, CC, SH), Singapore
| | - Henk Jmm Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience (HJMMM), Amsterdam, the Netherlands
| | - Chuen Seng Tan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System (CST, SH), Singapore
| | - Omar Rajab Kaweilh
- Memory Aging & Cognition Centre, National University Health System (BG, ORK, CC, SH), Singapore
| | - Jan Petr
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research (JP), Dresden, Germany
| | - Christopher Chen
- Memory Aging & Cognition Centre, National University Health System (BG, ORK, CC, SH), Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore (CC, SH), Singapore
| | - Saima Hilal
- Memory Aging & Cognition Centre, National University Health System (BG, ORK, CC, SH), Singapore; Saw Swee Hock School of Public Health, National University of Singapore and National University Health System (CST, SH), Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore (CC, SH), Singapore.
| |
Collapse
|
37
|
Gyanwali B, Tan CS, Petr J, Escobosa LLT, Vrooman H, Chen C, Mutsaerts HJ, Hilal S. Arterial Spin-Labeling Parameters and Their Associations with Risk Factors, Cerebral Small-Vessel Disease, and Etiologic Subtypes of Cognitive Impairment and Dementia. AJNR Am J Neuroradiol 2022; 43:1418-1423. [PMID: 36562454 PMCID: PMC9575536 DOI: 10.3174/ajnr.a7630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/01/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE Cerebral small-vessel disease may alter cerebral blood flow (CBF) leading to brain changes and, hence, cognitive impairment and dementia. CBF and the spatial coefficient of variation can be measured quantitatively by arterial spin-labeling. We aimed to investigate the associations of demographics, vascular risk factors, location, and severity of cerebral small-vessel disease as well as the etiologic subtypes of cognitive impairment and dementia with CBF and the spatial coefficient of variation. MATERIALS AND METHODS Three hundred ninety patients with a diagnosis of no cognitive impairment, cognitive impairment no dementia, vascular cognitive impairment no dementia, Alzheimer disease, and vascular dementia were recruited from the memory clinic. Cerebral microbleeds and lacunes were categorized into strictly lobar, strictly deep, and mixed-location and enlarged perivascular spaces into the centrum semiovale and basal ganglia. Total and region-specific white matter hyperintensity volumes were segmented using FreeSurfer. CBF (n = 333) and the spatial coefficient of variation (n = 390) were analyzed with ExploreASL from 2D-EPI pseudocontinuous arterial spin-labeling images in white matter (WM) and gray matter (GM). To analyze the effect of demographic and vascular risk factors as well as the location and severity of cerebral small-vessel disease markers on arterial spin-labeling parameters, we constructed linear regression models, whereas logistic regression models were used to determine the association between arterial spin-labeling parameters and cognitive impairment no dementia, vascular cognitive impairment no dementia, Alzheimer disease, and vascular dementia. RESULTS Increasing age, male sex, hypertension, hyperlipidemia, history of heart disease, and smoking were associated with lower CBF and a higher spatial coefficient of variation. Higher numbers of lacunes and cerebral microbleeds were associated with lower CBF and a higher spatial coefficient of variation. Location-specific analysis showed mixed-location lacunes and cerebral microbleeds were associated with lower CBF. Higher total, anterior, and posterior white matter hyperintensity volumes were associated with a higher spatial coefficient of variation. No association was observed between enlarged perivascular spaces and arterial spin-labeling parameters. A higher spatial coefficient of variation was associated with the diagnosis of vascular cognitive impairment no dementia, Alzheimer's disease, and vascular dementia. CONCLUSIONS Reduced CBF and an increased spatial coefficient of variation were associated with cerebral small-vessel disease, and more specifically lacunes, whereas cerebral microbleeds and white matter hyperintensities were associated with WM-CBF and GM spatial coefficient of variation. The spatial coefficient of variation was associated with cognitive impairment and dementia, suggesting that hypoperfusion might be the key underlying mechanism for vascular brain damage.
Collapse
Affiliation(s)
- B Gyanwali
- From the Memory Aging and Cognition Centre (B.G., C.C., S.H.), National University Health System, Singapore
| | - C S Tan
- Saw Swee Hock School of Public Health (C.S.T., L.L.T.E., S.H.), National University of Singapore, and National University Health System, Singapore
| | - J Petr
- Helmholtz-Zentrum Dresden-Rossendorf (J.P.), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - L L T Escobosa
- Saw Swee Hock School of Public Health (C.S.T., L.L.T.E., S.H.), National University of Singapore, and National University Health System, Singapore
| | - H Vrooman
- Department of Radiology and Nuclear Medicine (H.V.), Erasmus University Medical Center, Rotterdam, The Netherlands
| | - C Chen
- From the Memory Aging and Cognition Centre (B.G., C.C., S.H.), National University Health System, Singapore
- Department of Pharmacology (C.C., S.H.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - H J Mutsaerts
- Department of Radiology (H.J.M.), VU University Medical Center, Amsterdam, the Netherlands
- Department of Radiology (H.J.M.), Brain Center Rudolf Magnus, University Medical Center, Utrecht, the Netherlands
| | - S Hilal
- From the Memory Aging and Cognition Centre (B.G., C.C., S.H.), National University Health System, Singapore
- Saw Swee Hock School of Public Health (C.S.T., L.L.T.E., S.H.), National University of Singapore, and National University Health System, Singapore
- Department of Pharmacology (C.C., S.H.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
38
|
Pseudocontinuous Arterial Spin Labeling: Clinical Applications and Usefulness in Head and Neck Entities. Cancers (Basel) 2022; 14:cancers14163872. [PMID: 36010866 PMCID: PMC9405982 DOI: 10.3390/cancers14163872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Conventional imaging methods, such as ultrasonography, computed tomography, and magnetic resonance imaging may be inadequate to accurately diagnose lesions of the head and neck because they vary widely. Recently, the arterial spin labeling technique, especially pseudocontinuous arterial spin labeling (pCASL) with the three-dimensional (3D) readout method, has been dramatically developed to improve diagnostic performance for lesion differentiation, which can show prominent blood flow characteristics. Here, we demonstrate the clinical usefulness of 3D pCASL for diagnosing various entities, including inflammatory lesions, hypervascular lesions, and neoplasms in the head and neck, for evaluating squamous cell carcinoma (SCC) treatment responses, and for predicting SCC prognosis. Abstract As functional magnetic resonance imaging, arterial spin labeling (ASL) techniques have been developed to provide quantitative tissue blood flow measurements, which can improve the performance of lesion diagnosis. ASL does not require contrast agents, thus, it can be applied to a variety of patients regardless of renal impairments and contrast agent allergic reactions. The clinical implementation of head and neck lesions is limited, although, in recent years, ASL has been increasingly utilized in brain lesions. Here, we review the development of the ASL techniques, including pseudocontinuous ASL (pCASL). We compare readout methods between three-dimensional (3D) turbo spin-echo and 2D echo planar pCASL for the clinical applications of pCASL to head and neck lesions. We demonstrate the clinical usefulness of 3D pCASL for diagnosing various entities, including inflammatory lesions, hypervascular lesions, and neoplasms; for evaluating squamous cell carcinoma (SCC) treatment responses, and for predicting SCC prognosis.
Collapse
|
39
|
Daftari Besheli L, Ahmed A, Hamam O, Luna L, Sun LR, Urrutia V, Hillis AE, Tekes-Brady A, Yedavalli V. Arterial Spin Labeling technique and clinical applications of the intracranial compartment in stroke and stroke mimics - A case-based review. Neuroradiol J 2022; 35:437-453. [PMID: 35635512 PMCID: PMC9437493 DOI: 10.1177/19714009221098806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Magnetic resonance imaging perfusion (MRP) techniques can improve the selection of acute ischemic stroke patients for treatment by estimating the salvageable area of decreased perfusion, that is, penumbra. Arterial spin labeling (ASL) is a noncontrast MRP technique that is used to assess cerebral blood flow without the use of intravenous gadolinium contrast. Thus, ASL is of particular interest in stroke imaging. This article will review clinical applications of ASL in stroke such as assessment of the core infarct and penumbra, localization of the vascular occlusion, and collateral status. Given the nonspecific symptoms that patients can present with, differentiating between stroke and a stroke mimic is a diagnostic dilemma. ASL not only helps in differentiating stroke from stroke mimic but also can be used to specify the exact mimic when used in conjunction with the symptomatology and structural imaging. In addition to a case-based overview of clinical applications of the ASL in stroke and stroke mimics in this article, the more commonly used ASL labeling techniques as well as emerging ASL techniques, future developments, and limitations will be reviewed.
Collapse
Affiliation(s)
| | - Amara Ahmed
- Florida State University College of
Medicine, Tallahassee, FL, USA
| | - Omar Hamam
- Johns Hopkins School of
Medicine, Baltimore, MD, USA
| | - Licia Luna
- Johns Hopkins School of
Medicine, Baltimore, MD, USA
| | - Lisa R Sun
- Johns Hopkins School of
Medicine, Baltimore, MD, USA
| | | | - Argye E Hillis
- Johns Hopkins University School of
Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
40
|
Wilson H, de Natale ER, Politis M. Concise Review: Recent advances in neuroimaging techniques to assist clinical trials on cell-based therapies in neurodegenerative diseases. Stem Cells 2022; 40:724-735. [PMID: 35671344 DOI: 10.1093/stmcls/sxac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/17/2022] [Indexed: 11/14/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are progressive disorders for which a curative therapy is still lacking. Cell-based therapy aims at replacing dysfunctional cellular populations by repairing damaged tissue and by enriching the microenvironment of selective brain areas, and thus constitutes a promising disease-modifying treatment of neurodegenerative diseases. Scientific research has engineered a wide range of human-derived cellular populations to help overcome some of the logistical, safety, and ethical issues associated with this approach. Open-label studies and clinical trials in human participants have employed neuroimaging techniques, such as positron emission tomography (PET) and magnetic resonance imaging (MRI), to assess the success of the transplantation, to evaluate the functional integration of the implanted tissue into the host environment and to understand the pathophysiological changes associated with the therapy. Neuroimaging has constituted an outcome measure of large, randomized clinical trials, and has given answers to clarify the pathophysiology underlying some of the complications linked with this therapy. Novel PET radiotracers and MRI sequences for the staging of neurodegenerative diseases and to study alterations at molecular level significantly expands the translational potential of neuroimaging to assist pre-clinical and clinical research on cell-based therapy in these disorders. This concise review summarizes the current use of neuroimaging in human studies of cell-based replacement therapy and focuses on future application of PET and MRI techniques to evaluate the pathophysiology and treatment efficacy, as well as to aid patient selection and as an outcome measure to improve treatment success.
Collapse
Affiliation(s)
- Heather Wilson
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK
| | | | - Marios Politis
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK
| |
Collapse
|
41
|
Li R, Jin S, Wang Y, Li JF, Xiao HF, Wang YL, Ma L. Brain Perfusion Alterations on 3D Pseudocontinuous Arterial Spin-Labeling MR Imaging in Patients with Autoimmune Encephalitis: A Case Series and Literature Review. AJNR Am J Neuroradiol 2022; 43:701-706. [PMID: 35393361 PMCID: PMC9089268 DOI: 10.3174/ajnr.a7478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/08/2022] [Indexed: 01/26/2023]
Abstract
Autoimmune encephalitis is a heterogeneous group of newly identified disorders that are being diagnosed with increasing frequency. Early recognition and treatment of autoimmune encephalitis are crucial for patients, but diagnosis remains challenging and time-consuming. In this retrospective case series, we describe the findings of conventional MR imaging and 3D pseudocontinuous arterial spin-labeling in patients with autoimmune encephalitis confirmed by antibody testing. All patients with autoimmune encephalitis showed increased CBF in the affected area, even when some of them presented with normal or slightly abnormal findings on conventional MR imaging. Additionally, serial 3D pseudocontinuous arterial spin-labeling showed perfusion reduction in 1 patient after therapy. For patients with highly suspected autoimmune encephalitis, 3D pseudocontinuous arterial spin-labeling may be added to the clinical work-up. Further studies and longitudinal data are needed to corroborate whether and to what extent 3D pseudocontinuous arterial spin-labeling improves the diagnostic work-up in patients with autoimmune encephalitis compared with conventional MR imaging.
Collapse
Affiliation(s)
- R. Li
- From the Department of Medical Imaging (R.L., S.J.), Tianjin Huanhu Hospital, Tianjin, China,Department of Radiology (R.L., Y.W., J.-F.L., H.-F.X., Y.-L.W., L.M.), The First Medical Center of PLA General Hospital, Beijing, China,Department of Medical Imaging (R.L., S.J.), Affiliated Huanhu Hospital of Nankai University, Tianjin, China
| | - S. Jin
- From the Department of Medical Imaging (R.L., S.J.), Tianjin Huanhu Hospital, Tianjin, China,Department of Medical Imaging (R.L., S.J.), Affiliated Huanhu Hospital of Nankai University, Tianjin, China
| | - Y. Wang
- Department of Radiology (R.L., Y.W., J.-F.L., H.-F.X., Y.-L.W., L.M.), The First Medical Center of PLA General Hospital, Beijing, China
| | - J.-F. Li
- Department of Radiology (R.L., Y.W., J.-F.L., H.-F.X., Y.-L.W., L.M.), The First Medical Center of PLA General Hospital, Beijing, China
| | - H.-F. Xiao
- Department of Radiology (R.L., Y.W., J.-F.L., H.-F.X., Y.-L.W., L.M.), The First Medical Center of PLA General Hospital, Beijing, China
| | - Y.-L. Wang
- Department of Radiology (R.L., Y.W., J.-F.L., H.-F.X., Y.-L.W., L.M.), The First Medical Center of PLA General Hospital, Beijing, China
| | - L. Ma
- Department of Radiology (R.L., Y.W., J.-F.L., H.-F.X., Y.-L.W., L.M.), The First Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
42
|
Bluemke E, Stride E, Bulte DP. A General Model to Calculate the Spin-Lattice Relaxation Rate (R1) of Blood, Accounting for Hematocrit, Oxygen Saturation, Oxygen Partial Pressure, and Magnetic Field Strength Under Hyperoxic Conditions. J Magn Reson Imaging 2022; 55:1428-1439. [PMID: 34596290 DOI: 10.1002/jmri.27938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Under normal physiological conditions, the spin-lattice relaxation rate (R1) in blood is influenced by many factors, including hematocrit, field strength, and the paramagnetic effects of deoxyhemoglobin and dissolved oxygen. In addition, techniques such as oxygen-enhanced magnetic resonance imaging (MRI) require high fractions of inspired oxygen to induce hyperoxia, which complicates the R1 signal further. A quantitative model relating total blood oxygen content to R1 could help explain these effects. PURPOSE To propose and assess a general model to estimate the R1 of blood, accounting for hematocrit, SO2 , PO2 , and B0 under both normal physiological and hyperoxic conditions. STUDY TYPE Mathematical modeling. POPULATION One hundred and twenty-six published values of R1 from phantoms and animal models. FIELD STRENGTH/SEQUENCE 5-8.45 T. ASSESSMENT We propose a two-compartment nonlinear model to calculate R1 as a function of hematocrit, PO2 , and B0. The Akaike Information Criterion (AIC) was used to select the best-performing model with the fewest parameters. A previous model of R1 as a function of hematocrit, SO2 , and B0 has been proposed by Hales et al, and our work builds upon this work to make the model applicable under hyperoxic conditions (SO2 > 0.99). Models were assessed using the AIC, mean squared error (MSE), coefficient of determination (R2 ), and Bland-Altman analysis. The effect of volume fraction constants W RBC and W plasma was assessed by the SD of resulting R1. The range of the model was determined by the maximum and minimum B0, hematocrit, SO2 , and PO2 of the literature data points. STATISTICAL TESTS Bland-Altman, AIC, MSE, coefficient of determination (R2 ), SD. RESULTS The model estimates agreed well with the literature values of R1 of blood (R2 = 0.93, MSE = 0.0013 s-2 ), and its performance was consistent across the range of parameters: B0 = 1.5-8.45 T, SO2 = 0.40-1, PO2 = 30-700 mmHg. DATA CONCLUSION Using the results from this model, we have quantified and explained the contradictory decrease in R1 reported in oxygen-enhanced MRI and oxygen-delivery experiments. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Emma Bluemke
- Department of Engineering Sciences, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Eleanor Stride
- Department of Engineering Sciences, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Daniel P Bulte
- Department of Engineering Sciences, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Redel JM, DiFrancesco M, Lee GR, Ziv A, Dolan LM, Brady CC, Shah AS. Cerebral blood flow is lower in youth with type 2 diabetes compared to obese controls: A pilot study. Pediatr Diabetes 2022; 23:291-300. [PMID: 35001473 DOI: 10.1111/pedi.13313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/15/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022] Open
Abstract
AIM The cerebral vasculature may be susceptible to the adverse effects of type 2 diabetes. In this pilot study, we compared cerebral blood flow (CBF) in youth with type 2 diabetes to obese, euglycemic controls, and explored the association between CBF and a non-invasive measure of atherosclerosis, carotid intima-medial thickness (IMT). METHODS Global and regional CBF were compared between youth with type 2 diabetes (mean age 16.7 ± 2.0 years, n = 20) and age, race, and sex similar obese youth without diabetes (17.4 ± 1.9 years, n = 19) using arterial spin labeling magnetic resonance imaging. Mean CBF values were compared between groups. Voxel-wise results were evaluated for statistical significance (p < 0.05) after adjustment for multiple comparisons. Carotid IMT in the type 2 diabetes group was correlated with CBF. RESULTS Compared to obese controls, the type 2 diabetes group had significantly lower global CBF (49.7 ± 7.2 vs. 63.8 ± 11.5 ml/gm/min, p < 0.001). Significantly lower CBF was observed in multiple brain regions for the type 2 diabetes group, while no regions with higher CBF were identified. In the type 2 diabetes group, carotid IMT was inversely correlated with CBF, both globally (r = -0.70, p = 0.002) and in regional clusters. CONCLUSIONS In this pilot study, lower CBF was seen in youth with type 2 diabetes compared to youth with obesity and IMT was inversely correlated with CBF. Cerebrovascular impairment may be present in youth with type 2 diabetes. These findings could represent a mechanistic link to explain previously reported brain volume and neurocognitive differences.
Collapse
Affiliation(s)
- Jacob M Redel
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA.,Division of Endocrinology, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Mark DiFrancesco
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Gregory R Lee
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Adi Ziv
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Adolescent Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Adolescent Medicine Unit, Department of Day Care Hospitalization, Schneider Children's Hospital Medical Center of Israel, Petah Tikva, Israel
| | - Lawrence M Dolan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Cassandra C Brady
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Division of Endocrinology and Diabetes, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Amy S Shah
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
44
|
Malik DG, Rath TJ, Urcuyo Acevedo JC, Canoll PD, Swanson KR, Boxerman JL, Quarles CC, Schmainda KM, Burns TC, Hu LS. Advanced MRI Protocols to Discriminate Glioma From Treatment Effects: State of the Art and Future Directions. FRONTIERS IN RADIOLOGY 2022; 2:809373. [PMID: 37492687 PMCID: PMC10365126 DOI: 10.3389/fradi.2022.809373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/01/2022] [Indexed: 07/27/2023]
Abstract
In the follow-up treatment of high-grade gliomas (HGGs), differentiating true tumor progression from treatment-related effects, such as pseudoprogression and radiation necrosis, presents an ongoing clinical challenge. Conventional MRI with and without intravenous contrast serves as the clinical benchmark for the posttreatment surveillance imaging of HGG. However, many advanced imaging techniques have shown promise in helping better delineate the findings in indeterminate scenarios, as posttreatment effects can often mimic true tumor progression on conventional imaging. These challenges are further confounded by the histologic admixture that can commonly occur between tumor growth and treatment-related effects within the posttreatment bed. This review discusses the current practices in the surveillance imaging of HGG and the role of advanced imaging techniques, including perfusion MRI and metabolic MRI.
Collapse
Affiliation(s)
- Dania G. Malik
- Department of Radiology, Mayo Clinic, Phoenix, AZ, United States
| | - Tanya J. Rath
- Department of Radiology, Mayo Clinic, Phoenix, AZ, United States
| | - Javier C. Urcuyo Acevedo
- Mathematical Neurooncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, United States
| | - Peter D. Canoll
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Kristin R. Swanson
- Mathematical Neurooncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, United States
| | - Jerrold L. Boxerman
- Department of Diagnostic Imaging, Brown University, Providence, RI, United States
| | - C. Chad Quarles
- Department of Neuroimaging Research & Barrow Neuroimaging Innovation Center, Barrow Neurologic Institute, Phoenix, AZ, United States
| | - Kathleen M. Schmainda
- Department of Biophysics & Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Terry C. Burns
- Departments of Neurologic Surgery and Neuroscience, Mayo Clinic, Rochester, MN, United States
| | - Leland S. Hu
- Department of Radiology, Mayo Clinic, Phoenix, AZ, United States
- Mathematical Neurooncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, United States
| |
Collapse
|
45
|
Comparison of test–retest reliability of BOLD and pCASL fMRI in a two-center study. BMC Med Imaging 2022; 22:62. [PMID: 35366813 PMCID: PMC8977011 DOI: 10.1186/s12880-022-00791-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background The establishment of test–retest reliability and reproducibility (TRR) is an important part of validating any research tool, including functional magnetic resonance imaging (fMRI). The primary objective of this study is to investigate the reliability of pseudo-Continuous Arterial Spin Labeling (pCASL) and Blood Oxygen Level Dependent (BOLD) fMRI data acquired across two different scanners in a sample of healthy adults. While single site/single scanner studies have shown acceptable repeatability, TRR of both in a practical multisite study occurring in two facilities spread out across the country with weeks to months between scans is critically needed. Methods Ten subjects were imaged with similar 3 T MRI scanners at the University of Pittsburgh and Massachusetts General Hospital. Finger-tapping and Resting-state data were acquired for both techniques. Analysis of the resting state data for functional connectivity was performed with the Functional Connectivity Toolbox, while analysis of the finger tapping data was accomplished with FSL. pCASL Blood flow data was generated using AST Toolbox. Activated areas and networks were identified via pre-defined atlases and dual-regression techniques. Analysis for TRR was conducted by comparing pCASL and BOLD images in terms of Intraclass correlation coefficients, Dice Similarity Coefficients, and repeated measures ANOVA. Results Both BOLD and pCASL scans showed strong activation and correlation between the two locations for the finger tapping tasks. Functional connectivity analyses identified elements of the default mode network in all resting scans at both locations. Multivariate repeated measures ANOVA showed significant variability between subjects, but no significant variability for location. Global CBF was very similar between the two scanning locations, and repeated measures ANOVA showed no significant differences between the two scanning locations. Conclusions The results of this study show that when similar scanner hardware and software is coupled with identical data analysis protocols, consistent and reproducible functional brain images can be acquired across sites. The variability seen in the activation maps is greater for pCASL versus BOLD images, as expected, however groups maps are remarkably similar despite the low number of subjects. This demonstrates that multi-site fMRI studies of task-based and resting state brain activity is feasible.
Collapse
|
46
|
Gopinath G, Aslam M, Anusha P. Role of Magnetic Resonance Perfusion Imaging in Acute Stroke: Arterial Spin Labeling Versus Dynamic Susceptibility Contrast-Enhanced Perfusion. Cureus 2022; 14:e23625. [PMID: 35494896 PMCID: PMC9049761 DOI: 10.7759/cureus.23625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction: The role of perfusion neuroimaging in managing cases of acute ischemic stroke (AIS) is to identify ischemic penumbra and regions of hypo-perfusion, which can be salvaged. Dynamic susceptibility contrast (DSC) perfusion imaging techniques have been the main magnetic resonance imaging (MRI) perfusion techniques used to identify AIS. Arterial spin labelling (ASL) is an alternative non-invasive perfusion technique, which permits tissue perfusion measurement without any need for administration of exogenous contrast agents. The objective was to compare the diagnostic accuracy of ASL perfusion MRI versus DSC enhanced perfusion MRI in detecting perfusion-diffusion mismatch of varying volumes in acute ischemic stroke. Materials and methods: A hospital-based observational cross-sectional study was done in a tertiary care institute in Tamil Nadu between December 2018 to October 2019. Fifty-five subjects aged more than 18 years referred to the Radio-diagnosis department (less than 24 hours since the onset of weakness) for emergency assessment of suspected acute stroke were subjected to MRI stroke scan protocol. Then AIS cases were evaluated with ASL and DSC perfusion-weighted imaging. The collected data was entered in Excel (Microsoft, Redmond, WA, USA). IBM SPSS version 22 (IBM Corp., Armonk, NY, USA) was used for statistical analysis. Receiver operating characteristic (ROC) analysis was done to assess the predictive validity of ASL in predicting DSC mismatch. The diagnostic accuracy of ASL was the primary outcome variable. P-value < 0.05 was considered statistically significant. Results: Forty-four subjects confirmed as stroke were included in the final analysis. Their mean (±SD) age was 53.84 (±10.80) years. 72.7% were males. The majority (53.8%) presented during the acute stage of cerebral infarction (53.8%). The majority (45.5%) had hemiplegia followed by aphasia (27.3%). The major vascular territory involved was the middle cerebral artery (54.5%). The sensitivity, specificity, positive predictive value, and negative predictive value of ASL (non-contrast) in predicting DSC (contrast) mismatch was found to be 71.43%, 78.57%, 83.33%, and 64.71% respectively. Conclusion: ASL MR has the potential to replace MRI DSC perfusion in the future imaging diagnostic work-up for stroke. However, further studies are required to validate its role as the first-line imaging for stroke therapy.
Collapse
|
47
|
Ramachandran S, Delf J, Kasap C, Adair W, Rayt H, Bown M, Kandiyil N. Feasibility of arterial spin labeling in evaluating high- and low-flow peripheral vascular malformations: a case series. BJR Case Rep 2022; 8:20210083. [PMID: 35136637 PMCID: PMC8803223 DOI: 10.1259/bjrcr.20210083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/20/2021] [Accepted: 07/31/2021] [Indexed: 11/07/2022] Open
Abstract
We present a case series highlighting a novel use of arterial spin labeling (ASL), a MRI perfusion technique, to evaluate both high- and low-flow peripheral vascular malformations (PVMs) across a range of anatomical locations. While the role of ASL in assessing intracranial vascular malformations is more established, there is limited evidence for PVMs. Our results provide preliminary evidence for the feasibility of ASL in imaging PVMs and its potential ability to distinguish between high- and low-flow PVMs. In addition, we demonstrate its ability to identify focal high blood flow, which may indicate the nidus in arteriovenous malformations. Together, these findings have important implications for patient management. We also outline the potential benefits and limitations of ASL in the imaging of PVMs, and provide justification for further validation of its diagnostic performance.
Collapse
Affiliation(s)
- Sanjeev Ramachandran
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, United Kingdom
| | - Jonathan Delf
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, United Kingdom
| | - Christopher Kasap
- Siemens Healthineers, Sir William Siemens Square, Frimley, Surrey, United Kingdom
| | - William Adair
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, United Kingdom
| | - Harjeet Rayt
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, United Kingdom
| | - Matthew Bown
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, United Kingdom
| | - Neghal Kandiyil
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, United Kingdom
| |
Collapse
|
48
|
Orzyłowska A, Oakden W. Saturation Transfer MRI for Detection of Metabolic and Microstructural Impairments Underlying Neurodegeneration in Alzheimer's Disease. Brain Sci 2021; 12:53. [PMID: 35053797 PMCID: PMC8773856 DOI: 10.3390/brainsci12010053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia and difficult to study as the pool of subjects is highly heterogeneous. Saturation transfer (ST) magnetic resonance imaging (MRI) methods are quantitative modalities with potential for non-invasive identification and tracking of various aspects of AD pathology. In this review we cover ST-MRI studies in both humans and animal models of AD over the past 20 years. A number of magnetization transfer (MT) studies have shown promising results in human brain. Increased computing power enables more quantitative MT studies, while access to higher magnetic fields improves the specificity of chemical exchange saturation transfer (CEST) techniques. While much work remains to be done, results so far are very encouraging. MT is sensitive to patterns of AD-related pathological changes, improving differential diagnosis, and CEST is sensitive to particular pathological processes which could greatly assist in the development and monitoring of therapeutic treatments of this currently incurable disease.
Collapse
Affiliation(s)
- Anna Orzyłowska
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8 (SPSK 4), 20-090 Lublin, Poland
| | - Wendy Oakden
- Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada;
| |
Collapse
|
49
|
Nelson T, Zhang LX, Guo H, Nacul L, Song X. Brainstem Abnormalities in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Scoping Review and Evaluation of Magnetic Resonance Imaging Findings. Front Neurol 2021; 12:769511. [PMID: 34975729 PMCID: PMC8718708 DOI: 10.3389/fneur.2021.769511] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a multisystem medical condition with heterogeneous symptom expression. Currently, there is no effective cure or treatment for the standard care of patients. A variety of ME/CFS symptoms can be linked to the vital life functions of the brainstem, the lower extension of the brain best known as the hub relaying information back and forth between the cerebral cortex and various parts of the body. Objective/Methods: Over the past decade, Magnetic Resonance Imaging (MRI) studies have emerged to understand ME/CFS with interesting findings, but there has lacked a synthesized evaluation of what has been found thus far regarding the involvement of the brainstem. We conducted this study to review and evaluate the recent MRI findings via a literature search of the MEDLINE database, from which 11 studies met the eligibility criteria. Findings: Data showed that MRI studies frequently reported structural changes in the white and gray matter. Abnormalities of the functional connectivity within the brainstem and with other brain regions have also been found. The studies have suggested possible mechanisms including astrocyte dysfunction, cerebral perfusion impairment, impaired nerve conduction, and neuroinflammation involving the brainstem, which may at least partially explain a substantial portion of the ME/CFS symptoms and their heterogeneous presentations in individual patients. Conclusions: This review draws research attention to the role of the brainstem in ME/CFS, helping enlighten future work to uncover the pathologies and mechanisms of this complex medical condition, for improved management and patient care.
Collapse
Affiliation(s)
- Todd Nelson
- Evaluation and Research, Surrey Memorial Hospital, Fraser Health, Surrey, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Lan-Xin Zhang
- Evaluation and Research, Surrey Memorial Hospital, Fraser Health, Surrey, BC, Canada
- Department of Human Biology, Physiology, University of Toronto, Toronto, ON, Canada
| | - Hui Guo
- Evaluation and Research, Surrey Memorial Hospital, Fraser Health, Surrey, BC, Canada
- Department of Diagnostic Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Luis Nacul
- Complex Chronic Diseases Program, BC Women's Hospital and Health Centre, Vancouver, BC, Canada
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Xiaowei Song
- Evaluation and Research, Surrey Memorial Hospital, Fraser Health, Surrey, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
50
|
k-space weighted image average (KWIA) for ASL-based dynamic MR angiography and perfusion imaging. Magn Reson Imaging 2021; 86:94-106. [PMID: 34871715 PMCID: PMC8713133 DOI: 10.1016/j.mri.2021.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/17/2021] [Accepted: 11/29/2021] [Indexed: 11/23/2022]
Abstract
A novel denoising algorithm termed k-space weighted image average (KWIA) was proposed to improve the signal-to-noise ratio (SNR) of dynamic MRI, such as arterial spin labeling (ASL)-based dynamic magnetic resonance angiography (dMRA) and perfusion imaging. KWIA divides the k-space of each time frame into multiple rings, the central ring of the k-space remains intact to preserve the image contrast and temporal resolution, while outer rings are progressively averaged with neighboring time frames to increase SNR. Simulations and in-vivo dMRA and multi-delay ASL studies were performed to evaluate the performance of KWIA under various MRI acquisition conditions. SNR ratios and temporal signal errors between KWIA-processed and the original data were measured. Visualization of dynamic blood flow signals as well as quantitative parametric maps were evaluated for KWIA-processed images as compared to the original images. KWIA achieved a SNR ratio of 1.73 for dMRA and 2.0 for multi-delay ASL respectively, which were in accordance with the theoretical predictions. Improved visualization of dynamic blood flow signals was demonstrated using KWIA in distal small vessels in dMRA and small brain structures in multi-delay ASL. Approximately 5% temporal errors were observed in both KWIA-processed dMRA and ASL signals. Fine anatomical features were revealed in the quantitative parametric maps of dMRA, and the residuals of model fitting were reduced for multi-delay ASL. Compared to other conventional denoising methods, KWIA is a flexible denoising algorithm that improves the SNR of ASL-based dMRA and perfusion MRI by up to 2-fold without compromising spatial and temporal resolution or quantification accuracy.
Collapse
|