1
|
Zhao S, Cao Y, Liu H, Liu A. Joint and independent associations of dietary antioxidant intakes with all-cause and cardiovascular mortality among patients with hypertension: a population-based cohort study. Nutr J 2025; 24:14. [PMID: 39856716 PMCID: PMC11761209 DOI: 10.1186/s12937-024-01062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/11/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The evidence regarding dietary antioxidant intake and all-cause and cardiovascular disease (CVD) mortality among patients with hypertension is scarce. METHODS AND RESULTS This study included 16,190 adults with hypertension from the National Health and Nutrition Examination Survey (NHANES) 1999-2018. Death outcomes were ascertained by linkage to National Death Index records through December 31, 2019. Overall dietary intake was estimated with composite dietary antioxidant index (CDAI). Cox proportional hazards models were used to estimate the risk for all-cause and CVD mortality. Kaplan-Meier curve was used to illustrate the survival probabilities among CDAI quartiles. Weighted quantile sum (WQS) regression was conducted to evaluate the joint and independent associations of antioxidants with all-cause and CVD mortality. The median (interquartile range) age of participants was 59.00 (47.00, 69.00) years. During a median of 94 months of follow-up, 3,858 deaths were documented. Compared to participants with the lowest quartile of CDAI, the multivariable adjusted HR and 95% CI for participants with the highest quartile was 0.76 (0.64, 0.91) for all-cause mortality. The highest quartile (Q4) of vitamin E (HR = 0.69; 95% CI, 0.59-0.80), selenium (HR = 0.84; 95% CI, 0.70-1.00) and total carotenoids (HR = 0.86; 95% CI, 0.75-0.98) intakes were negatively associated with all-cause mortality. Vitamin E and selenium intakes might be the major contributors to this negative relationship. The highest quartile (Q4) of vitamin E (HR = 0.72; 95% CI, 0.56-0.93) intake was negatively associated with CVD mortality. CONCLUSION Higher overall dietary antioxidant intake was significantly associated with decreased all-cause and CVD mortality among patients with hypertension. Further randomized controlled trials are required to confirm our findings.
Collapse
Affiliation(s)
- Songfeng Zhao
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yangbin Cao
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongyi Liu
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Aihua Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
2
|
Pereira BP, Silva AO, Awata WMC, Pimenta GF, Ribeiro JM, de Faria Almeida CA, Antonietto CRK, Dos Reis LFC, Esteves A, Torres LHL, de Araújo Paula FB, Ruginsk SG, Tirapelli CR, Rizzi E, Ceron CS. Curcumin Prevents Renal Damage of l-NAME Induced Hypertension in by Reducing MMP-2 and MMP-9. Cell Biochem Funct 2024; 42:e4119. [PMID: 39244707 DOI: 10.1002/cbf.4119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
In the present study, we investigated whether curcumin administration would interfere with the main renal features of l-NAME-induced hypertension model. For this purpose, we conducted both in vitro and in vivo experiments to evaluate renal indicators of inflammation, oxidative stress, and metalloproteinases (MMPs) expression/activity. Hypertension was induced by l-NAME (70 mg/kg/day), and Wistar rats from both control and hypertensive groups were treated with curcumin (50 or 100 mg/kg/day; gavage) or vehicle for 14 days. Blood and kidneys were collected to determine serum creatinine levels, histological alterations, oxidative stress, MMPs expression and activity, and ED1 expression. l-NAME increased blood pressure, but both doses of curcumin treatment reduced these values. l-NAME treatment increased creatinine levels, glomeruli area, Bowman's space, kidney MMP-2 activity, as well as MMP-9 and ED1 expression, and reduced the number of glomeruli. Curcumin treatment prevented the increase in creatinine levels, MMP-2 activity, and reduced MMP-2, MMP-9, ED1, and superoxide levels, as well as increased superoxide dismutase activity and partially prevented glomeruli alterations. Moreover, curcumin directly inhibited MMP-2 activity in vitro. Thus, our main findings demonstrate that curcumin reduced l-NAME-induced hypertension and renal glomerular alterations, inhibited MMP-2 and MMP-9 expression/activity, and reduced oxidative stress and inflammatory processes, which may indirectly impact hypertension-induced renal outcomes.
Collapse
Affiliation(s)
- Bruna Pinheiro Pereira
- Food and Medicines Department, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Alessandra Oliveira Silva
- Food and Medicines Department, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | | | - Gustavo Félix Pimenta
- Faculty of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, São Paulo, Brazil
| | - Jéssyca Milene Ribeiro
- Food and Medicines Department, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | | | | | - Luis Felipe Cunha Dos Reis
- Department of Structural Biology, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Alessandra Esteves
- Department of Anatomy, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | | | - Sílvia Graciela Ruginsk
- Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Carlos Renato Tirapelli
- Faculty of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, São Paulo, Brazil
| | - Ellen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto (UNAERP), Ribeirão Preto, Brazil
| | - Carla Speroni Ceron
- Department of Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
3
|
Junqueira A, Gomes MJ, Lima ARR, Pontes THD, Rodrigues EA, Damatto FC, Depra I, Paschoareli GL, Pagan LU, Fernandes AAH, Oliveira-Jr SA, Pacagnelli FL, Okoshi MP, Okoshi K. Effects of concurrent training and N-acetylcysteine supplementation on cardiac remodeling and oxidative stress in middle-aged spontaneously hypertensive rats. BMC Cardiovasc Disord 2024; 24:409. [PMID: 39103770 PMCID: PMC11299285 DOI: 10.1186/s12872-024-04075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND This study evaluated the effects of concurrent isolated training (T) or training combined with the antioxidant N-acetylcysteine (NAC) on cardiac remodeling and oxidative stress in spontaneously hypertensive rats (SHR). METHODS Six-month-old male SHR were divided into sedentary (S, n = 12), concurrent training (T, n = 13), sedentary supplemented with NAC (SNAC, n = 13), and concurrent training with NAC supplementation (TNAC, n = 14) groups. T and TNAC rats were trained three times a week on a treadmill and ladder; NAC supplemented groups received 120 mg/kg/day NAC in rat chow for eight weeks. Myocardial antioxidant enzyme activity and lipid hydroperoxide concentration were assessed by spectrophotometry. Gene expression of NADPH oxidase subunits Nox2, Nox4, p22 phox, and p47 phox was evaluated by real time RT-PCR. Statistical analysis was performed using ANOVA and Bonferroni or Kruskal-Wallis and Dunn. RESULTS Echocardiogram showed concentric remodeling in TNAC, characterized by increased relative wall thickness (S 0.40 ± 0.04; T 0.39 ± 0.03; SNAC 0.40 ± 0.04; TNAC 0.43 ± 0.04 *; * p < 0.05 vs T and SNAC) and diastolic posterior wall thickness (S 1.50 ± 0.12; T 1.52 ± 0.10; SNAC 1.56 ± 0.12; TNAC 1.62 ± 0.14 * mm; * p < 0.05 vs T), with improved contractile function (posterior wall shortening velocity: S 39.4 ± 5.01; T 36.4 ± 2.96; SNAC 39.7 ± 3.44; TNAC 41.6 ± 3.57 * mm/s; * p < 0.05 vs T). Myocardial lipid hydroperoxide concentration was lower in NAC treated groups (S 210 ± 48; T 182 ± 43; SNAC 159 ± 33 *; TNAC 110 ± 23 *# nmol/g tissue; * p < 0.05 vs S, # p < 0.05 vs T and SNAC). Nox 2 and p22 phox expression was higher and p47 phox lower in T than S [S 1.37 (0.66-1.66); T 0.78 (0.61-1.04) *; SNAC 1.07 (1.01-1.38); TNAC 1.06 (1.01-1.15) arbitrary units; * p < 0.05 vs S]. NADPH oxidase subunits did not differ between TNAC, SNAC, and S groups. CONCLUSION N-acetylcysteine supplementation alone reduces oxidative stress in untreated spontaneously hypertensive rats. The combination of N-acetylcysteine and concurrent exercise further decreases oxidative stress. However, the lower oxidative stress does not translate into improved cardiac remodeling and function in untreated spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Adriana Junqueira
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil.
- Physiotherapy Department, University of Western Sao Paulo, Presidente Prudente, SP, Brazil.
| | - Mariana J Gomes
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Aline R R Lima
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Thierres H D Pontes
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Eder A Rodrigues
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Felipe C Damatto
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Igor Depra
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Guilherme L Paschoareli
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Luana U Pagan
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Ana A H Fernandes
- Institute of Biosciences, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | | | - Francis L Pacagnelli
- Physiotherapy Department, University of Western Sao Paulo, Presidente Prudente, SP, Brazil
| | - Marina P Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| |
Collapse
|
4
|
Ajibade TO, Esan OO, Osawere IM, Adetona MO, Aina OO, Azeez OI, Obisesan AD, Oyagbemi AA, Ola-Davies OE, Omobowale TO, Saba AB, Adedapo AA, Yakubu MA, Oguntibeju OO. Cardiovascular and renal oxidative stress-mediated toxicities associated with bisphenol-A exposures are mitigated by Curcuma longa in rats. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:202-214. [PMID: 38966628 PMCID: PMC11221766 DOI: 10.22038/ajp.2023.23367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 07/06/2024]
Abstract
Objective Curcuma longa Rhizome (CLR), due to its potent antioxidant phytochemical constituents, was investigated for its effects on bisphenol A (BPA)-induced cardiovascular and renal damage. Materials and Methods Sixty rats were randomly selected, and grouped as control, BPA (100 mg/ kg), BPA and CLR 100 mg/kg, BPA and CLR 200 mg/kg, CLR 100 mg/kg, and CLR 200 mg/kg for 21 days. Oxidative stress indices, antioxidant status, blood pressure parameters, genotoxicity, and immunohistochemistry were determined. Results Rats exposed to the toxic effects of BPA had heightened blood pressure, lowered frequency of micronucleated polychromatic erythrocytes, and decreased activities of antioxidant enzymes compared with rats treated with CLR. Moreover, administration of CLR significantly (p<0.05) lowered malondialdehyde content and reduced the serum myeloperoxidase activity. Immunohistochemical evaluation revealed significantly (p<0.05) increased expressions of cardiac troponin and Caspase 3 in the BPA group compared with the CLR-treated groups. Conclusion C. longa ameliorated cardiotoxic and nephrotoxic actions of bisphenol-A via mitigation of oxidative stress, hypertension, and genotoxicity.
Collapse
Affiliation(s)
- Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | | | - Israel Mark Osawere
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Moses Olusola Adetona
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria
| | | | - Odunayo Ibraheem Azeez
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Ayobami Deborah Obisesan
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | | | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, COPHS,Texas Southern University, Houston, TX, USA
| | - Oluwafemi Omoniyi Oguntibeju
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| |
Collapse
|
5
|
Martínez-Casales M, Hernanz R, González-Carnicero Z, Barrús MT, Martín A, Briones AM, Michalska P, León R, Pinilla E, Simonsen U, Alonso MJ. The Melatonin Derivative ITH13001 Prevents Hypertension and Cardiovascular Alterations in Angiotensin II-Infused Mice. J Pharmacol Exp Ther 2024; 388:670-687. [PMID: 38129126 DOI: 10.1124/jpet.123.001586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Inflammatory mechanisms and oxidative stress seem to contribute to the pathogenesis of hypertension. ITH13001 is a melatonin-phenyl-acrylate hybrid that moderately induces the antioxidant transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) and has a potent oxidant scavenging effect compared with other derivatives of its family. Here we investigated the effect of ITH13001 on hypertension and the associated cardiovascular alterations. Angiotensin II (AngII)-infused mice were treated with ITH13001 (1 mg/kg per day, i.p.) for 2 weeks. The ITH13001 treatment prevented: 1) the development of hypertension, cardiac hypertrophy, and increased collagen and B-type natriuretic peptide (Bnp) expression in the heart; 2) the reduction of elasticity, incremental distensibility, fenestrae area, intraluminal diameter, and endothelial cell number in mesenteric resistance arteries (MRA); 3) the endothelial dysfunction in aorta and MRA; 4) the plasma and cardiovascular oxidative stress and the reduced aortic nitric oxide (NO) bioavailability; 5) the increased cardiac levels of the cytokines interleukin (IL)-1β, IL-6, and C-C motif chemokine ligand 2 (Ccl2), the T cell marker cluster of differentiation 3 (Cd3), the inflammasome NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3), the proinflammatory enzymes inducible nitric oxide synthase (iNOS) and COX-2, the toll-like receptor 4 (TLR4) adapter protein myeloid differentiation primary response 88 (MyD88), and the nuclear factor kappa B (NF-κB) subunit p65; 6) the greater aortic expression of the cytokines tumor necrosis factor alpha (Tnf-α), Ccl2 and IL-6, Cd3, iNOS, MyD88, and NLRP3. Although ITH13001 increased nuclear Nrf2 levels and heme oxygenase 1 (HO-1) expression in vascular smooth muscle cells, both cardiac and vascular Nrf2, Ho-1, and NADPH quinone dehydrogenase 1 (Nqo1) levels remained unmodified irrespective of AngII infusion. Summarizing, ITH13001 improved hypertension-associated cardiovascular alterations independently of Nrf2 pathway activation, likely due to its direct antioxidant and anti-inflammatory properties. Therefore, ITH13001 could be a useful therapeutic strategy in patients with resistant hypertension. SIGNIFICANCE STATEMENT: Despite the existing therapeutic arsenal, only half of the patients treated for hypertension have adequately controlled blood pressure; therefore, the search for new compounds to control this pathology and the associated damage to end-target organs (cerebral, cardiac, vascular, renal) is of particular interest. The present study demonstrates that a new melatonin derivative, ITH13001, prevents hypertension development and the associated cardiovascular alterations due to its antioxidant and anti-inflammatory properties, making this compound a potential candidate for treatment of resistant hypertensive patients.
Collapse
Affiliation(s)
- Marta Martínez-Casales
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Raquel Hernanz
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Zoe González-Carnicero
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - María T Barrús
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Angela Martín
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Ana M Briones
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Patrycja Michalska
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Rafael León
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Estefano Pinilla
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - Ulf Simonsen
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| | - María J Alonso
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain (M.M.-C., R.H., Z.G.-C, M.T.B., A.M., M.J.A.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.H., A.M., A.M.B., M.J.A.); Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain (A.M.B.); Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK (P.M.); Instituto de Química Médica (IQM-CSIC), Madrid, Spain (R.L.); and Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark (E.P., U.S.)
| |
Collapse
|
6
|
Irondi EA, Bankole AO, Awoyale W, Ajani EO, Alamu EO. Antioxidant, enzymes inhibitory, physicochemical and sensory properties of instant bio-yoghurts containing multi-purpose natural additives. Front Nutr 2024; 10:1340679. [PMID: 38274204 PMCID: PMC10808348 DOI: 10.3389/fnut.2023.1340679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
This study aimed to assess the antioxidant, enzyme inhibitory, physicochemical and sensory properties of instant bio-yoghurts containing multi-purpose natural additives. Multi-purpose natural additives were formulated with three natural additives (sweet detar seed, ginger rhizome, and hibiscus calyx flours, as a thickener, flavourant and colourant, respectively) blends at proportions derived from the Design Expert. The additives' synthetic counterparts were formulated with sodium carboxymethylcellulose, vanilla flavor, and red colourant at the same proportions. After that, yoghurt was produced and the additives blends were incorporated into it either in aqueous extract or flour form, yielding bio-yoghurts designated multi-purpose natural additive extract-containing yoghurt (MNAE-yoghurt), multi-purpose natural additive flour-added yoghurt (MNAF-yoghurt), and their multi-purpose synthetic additives-containing counterparts (MSAE-yoghurt and MSAF-yoghurt). A commercially-available bio-yoghurt served as a control. All the yoghurts were lyophilized to obtain instant bio-yoghurts. Subsequently, bioactive components (total phenolics, tannins, total flavonoids and saponins), antioxidants and enzymes [alpha-amylase, alpha-glucosidase, pancreatic lipase, and angiotensin 1-converting enzyme (ACE)] inhibitory activities, as well as proximate, physicochemical and sensory qualities of the bio-yoghurts were determined. The MNAE-yoghurt and MNAF-yoghurt had higher bioactive constituents, total titratable acid levels, and more potent antioxidant and enzyme inhibitory properties, but a lower pH than their synthetic counterparts and the control. The total phenolics, tannins, total flavonoids and saponins levels of MNAE-yoghurt and MNAF-yoghurt were 14.40 ± 0.24 and 16.54 ± 0.62 mg/g, 1.65 ± 0.04 and 1.74 ± 0.08 mg/g, 4.25 ± 0.03 and 4.40 ± 0.02 mg/g, 0.64 ± 0.01 and 0.66 ± 0.02 mg/g, respectively. Among the natural multi-purpose additives-containing bio-yoghurts, MNAF-yoghurt had higher bioactive constituents and stronger antioxidant and enzymes inhibitory properties. Its α-amylase, α-glucosidase, ACE, and pancreatic lipase IC50 values were 72.47 ± 0.47, 74.07 ± 0.02, 25.58 ± 2.58, and 33.56 ± 29.66 μg/mL, respectively. In contrast, MNAE-yoghurt had the highest protein (13.70 ± 0.85%) and the lowest fat (2.63 ± 0.71%) contents. The sensory attributes of all the bio-yoghurts fell within an acceptable likeness range. Overall, the inclusion of multi-purpose natural additives blends enhanced the instant bio-yoghurts' nutritional, health-promoting, and sensory qualities.
Collapse
Affiliation(s)
| | | | - Wasiu Awoyale
- Department of Food Science and Technology, Kwara State University, Ilorin, Nigeria
| | | | - Emmanuel Oladeji Alamu
- Food and Nutrition Sciences Laboratory, International Institute of Tropical Agriculture, Oyo, Nigeria
- Food and Nutrition Sciences Laboratory, International Institute of Tropical Agriculture, Southern Africa Research and Administration Hub (SARAH), Lusaka, Zambia
| |
Collapse
|
7
|
Mudgal R, Singh S. Xanthine Oxidoreductase in the Pathogenesis of Endothelial Dysfunction: An Update. Curr Hypertens Rev 2024; 20:10-22. [PMID: 38318826 DOI: 10.2174/0115734021277772240124075120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024]
Abstract
Xanthine oxidoreductase (XOR) is a rate-limiting enzyme in the formation of uric acid (UA) and is involved in the generation of reactive oxygen species (ROS). Overproduction of ROS has been linked to the pathogenesis of hypertension, atherosclerosis, and cardiovascular disease, with multiple studies over the last 30 years demonstrating that XOR inhibition is beneficial. The involvement of XOR and its constituents in the advancement of chronic inflammation and ROS, which are responsible for endothelial dysfunction, is the focus of this evidence-based review. An overabundance of XOR products and ROS appears to drive the inflammatory response, resulting in significant endothelium damage. It has also been demonstrated that XOR activity and ED are connected. Diabetes, hypertension, and cardiovascular disease are all associated with endothelial dysfunction. ROS mainly modifies the activity of vascular cells and can be important in normal vascular physiology as well as the development of vascular disease. Suppressing XOR activity appears to decrease endothelial dysfunction, probably because it lessens the generation of reactive oxygen species and the oxidative stress brought on by XOR. Although there has long been a link between higher vascular XOR activity and worse clinical outcomes, new research suggests a different picture in which positive results are mediated by XOR enzymatic activity. Here in this study, we aimed to review the association between XOR and vascular endothelial dysfunction. The prevention and treatment approaches against vascular endothelial dysfunction in atherosclerotic disease.
Collapse
Affiliation(s)
- Rajat Mudgal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
8
|
Gallego-López MDC, Ojeda ML, Romero-Herrera I, Rua RM, Carreras O, Nogales F. Folic acid antioxidant supplementation to binge drinking adolescent rats improves hydric-saline balance and blood pressure, but fails to increase renal NO availability and glomerular filtration rate. FASEB J 2024; 38:e23341. [PMID: 38031982 DOI: 10.1096/fj.202301609r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Binge drinking (BD) is an especially pro-oxidant pattern of alcohol consumption, particularly widespread in the adolescent population. In the kidneys, it affects the glomerular filtration rate (GFR), leading to high blood pressure. BD exposure also disrupts folic acid (FA) homeostasis and its antioxidant properties. The aim of this study is to test a FA supplementation as an effective therapy against the oxidative, nitrosative, and apoptotic damage as well as the renal function alteration occurred after BD in adolescence. Four groups of adolescent rats were used: control, BD (exposed to intraperitoneal alcohol), control FA-supplemented group and BD FA-supplemented group. Dietary FA content in control groups was 2 ppm, and 8 ppm in supplemented groups. BD provoked an oxidative imbalance in the kidneys by dysregulating antioxidant enzymes and increasing the enzyme NADPH oxidase 4 (NOX4), which led to an increase in caspase-9. BD also altered the renal nitrosative status affecting the expression of the three nitric oxide (NO) synthase (NOS) isoforms, leading to a decrease in NO levels. Functionally, BD produced a hydric-electrolytic imbalance, a low GFR and an increase in blood pressure. FA supplementation to BD adolescent rats improved the oxidative, nitrosative, and apoptotic balance, recovering the hydric-electrolytic equilibrium and blood pressure. However, neither NO levels nor GFR were recovered, showing in this study for the first time that NO availability in the kidneys plays a crucial role in GFR regulation that the antioxidant effects of FA cannot repair.
Collapse
Affiliation(s)
| | - María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Inés Romero-Herrera
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Rui Manuel Rua
- Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
9
|
Kanclerska J, Szymańska-Chabowska A, Poręba R, Michałek-Zrąbkowska M, Lachowicz G, Mazur G, Martynowicz H. A Systematic Review of Publications on the Associations Between Sleep Architecture and Arterial Hypertension. Med Sci Monit 2023; 29:e941066. [PMID: 37665688 PMCID: PMC10487188 DOI: 10.12659/msm.941066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/22/2023] [Indexed: 09/06/2023] Open
Abstract
Sleep research has garnered substantial interest among scientists owing to its correlation with various diseases, particularly elevated blood pressure observed in patients with obstructive sleep apnea. This systematic review aims to identify and analyze publications exploring the associations between sleep architecture and arterial hypertension. A comprehensive search of PubMed (MEDLINE), Scopus, and Embase databases yielded 111 reports, of which 7 manuscripts were included in the review. Four of the studies reported a significant reduction in the duration of the N3 phase of sleep in hypertensive patients, while 2 studies found a statistically significant reduction in the duration of the N2 and rapid eye movement (REM) stages of sleep. Three studies indicated increased sleep fragmentation in hypertensive patients. They showed a longer duration of the N1 stage of sleep, shorter duration of overall sleep time, and an increased apnea-hypopnea index in hypertensive patients. These findings underscore the association between the duration of non-REM/REM sleep stages and elevated BP, providing substantial evidence. Moreover, a notable increase in sleep fragmentation was observed among patients with hypertension. However, further research is warranted to expand and deepen our understanding of this intricate relationship. This systematic review serves as a valuable resource, guiding future investigations and contributing to advancements in the field of sleep and arterial hypertension.
Collapse
|
10
|
Mohammed SAD, Liu H, Baldi S, Wang Y, Chen P, Lu F, Liu S. Antihypertensive, antioxidant, and renal protective impact of integrated GJD with captopril in spontaneously hypertensive rats. Sci Rep 2023; 13:10944. [PMID: 37414816 PMCID: PMC10326066 DOI: 10.1038/s41598-023-38020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
Hypertension is the most prevalent chronic disease World-wide, and the leading preventable risk factor for cardiovascular disease (CVD). Few patients accomplish the objective of decreasing blood pressure and avoiding hypertensive target organ damage after treatments with antihypertensive agents which opens the door for other treatments, such as herbal-and antihypertensive combination therapy. Captopril (CAP), as a-pril which inhibits angiotensin converting enzyme has long been used in the management of hypertension and CVD. Gedan Jiangya Decoction (GJD) is known for antihypertensive effects in prior studies. The research is aimed to determine whether GJD in combination with captopril has antihypertensive, kidney protective, antioxidant, and vasoactive effects in spontaneously hypertensive rats (SHR). Regular measurements of systolic and diastolic blood pressure (SBP and DBP), and body weight were monitored weekly. H&E staining was utilized to examine histopathology. The combined effects were studied using ELISA, immunohistochemistry, and qRT-PCR. Significant reductions in SBP, DBP, aortic wall thickness, and improvement in renal tissue were observed following GJD + CAP treatment, with increased serum levels of NO, SOD, GSH-Px, and CAT and decreases in Ang II, ET-1, and MDA. Similarly, GJD + CAP treatment of SHR's significantly decreased ET-1 and AGTR1 mRNA and protein expression while increasing eNOS mRNA and protein expression in thoracic aorta and kidney tissue. In conclusion, the present investigation found that GJD + CAP treatment decreases SHR blood pressure, improves aorta remodeling and renal protection, and that this effect could be attributable, in part, due to antioxidant and vascular tone improvement.
Collapse
Affiliation(s)
- Shadi A D Mohammed
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
- School of Pharmacy, Lebanese International University, 18644, Sana'a, Yemen
| | - Hanxing Liu
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Salem Baldi
- Research Center of Molecular Diagnostics and Sequencing, Axbio Biotechnology (Shenzhen) Co., Ltd., Shenzhen, 518057, Guangdong, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Pingping Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
11
|
Hajleh MNA, Al-Dujaili EAS. Effects of Turmeric Concentrate on Cardiovascular Risk Factors and Exercise-Induced Oxidative Stress in Healthy Volunteers; an Exploratory Study. Adv Pharm Bull 2023; 13:601-610. [PMID: 37646063 PMCID: PMC10460800 DOI: 10.34172/apb.2023.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/04/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose Evidence suggests that turmeric intake can improve antioxidant defense, blood pressure (BP), ageing and gut microbiota. The effects of turmeric concentrate (curcumin) intake on cardiovascular risk factors and exercise induced oxidative stress were investigated. Methods A randomized placebo-controlled study was performed to assess the effects of turmeric extract in healthy volunteers before and after a 30 min exercise bout. Participants (n=22) were given either turmeric concentrate or placebo supplements. Anthropometry, BP, pulse wave velocity (PWV), biomarkers of oxidative stress, perceived exertion and lipid peroxidation were assessed. Results In the turmeric group, the expected BP response to exercise following turmeric was blunted and the increase was not significant compared to basal values followed by a decrease in final BP and PWV values. There were no significant differences in all baseline parameters between the placebo and the curcumin groups (P>0.05). A significant increase was observed in urinary antioxidant power (P=0.031) and total polyphenol levels (P=0.022) post turmeric intervention. The distance ran by the participants taking turmeric was significantly longer (P=0.005) compared to basal value. Those who took the placebo did not show significant changes. Conclusion Our study suggests that turmeric concentrate intake can reduce BP and improve antioxidant, anti-inflammatory status and arterial compliance. Turmeric may improve exercise performance and ameliorates oxidative stress. Larger studies are warranted to validate these findings and test more cardiovascular risk factors.
Collapse
Affiliation(s)
- Maha Noordin Abu Hajleh
- Department of Cosmetic Science, Pharmacological and Diagnostic Research Centre, Faculty of Allied Medical Sciences, AlAhliyya Amman University, Zip code (19328), Amman, Jordan
| | - Emad Abdol Sahib Al-Dujaili
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
12
|
Masenga SK, Kabwe LS, Chakulya M, Kirabo A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int J Mol Sci 2023; 24:7898. [PMID: 37175603 PMCID: PMC10178199 DOI: 10.3390/ijms24097898] [Citation(s) in RCA: 165] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Metabolic syndrome is a cluster of conditions associated with the risk of diabetes mellitus type 2 and cardiovascular diseases (CVDs). Metabolic syndrome is closely related to obesity. Increased adiposity promotes inflammation and oxidative stress, which are precursors of various complications involving metabolic syndrome components, namely insulin resistance, hypertension, and hyperlipidemia. An increasing number of studies confirm the importance of oxidative stress and chronic inflammation in the etiology of metabolic syndrome. However, few studies have reviewed the mechanisms underlying the role of oxidative stress in contributing to metabolic syndrome. In this review, we highlight mechanisms by which reactive oxygen species (ROS) increase mitochondrial dysfunction, protein damage, lipid peroxidation, and impair antioxidant function in metabolic syndrome. Biomarkers of oxidative stress can be used in disease diagnosis and evaluation of severity.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
- Department of Medicine, Room 536 Robinson Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232-6602, USA
| | - Lombe S. Kabwe
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
| | - Martin Chakulya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
| | - Annet Kirabo
- Department of Medicine, Room 536 Robinson Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232-6602, USA
| |
Collapse
|
13
|
Effects of exergame and bicycle exercise intervention on blood pressure and executive function in older adults with hypertension: A three-group randomized controlled study. Exp Gerontol 2023; 173:112099. [PMID: 36681131 DOI: 10.1016/j.exger.2023.112099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Management of hypertension and prevention of cognitive decline are challenging public health problems. However, the effects of exergame intervention on blood pressure (BP) remain to be explored, and whether exergame intervention is an effective alternative to traditional physical exercise intervention for older adults with hypertension remains to be demonstrated. This study aimed to explore the effectiveness of moderate-intensity exergame intervention and bicycle exercise training on BP and executive function in older hypertensive patients. A total of 128 participants were randomly assigned to the exergame intervention group (n = 41), bicycle exercise intervention group (n = 44), and control group (n = 43). The intervention groups exercised for 60 min, 3 times per week, for 16 weeks, while the control group maintained their normal lifestyle. The results revealed that there were no significant differences between two intervention groups and control group in systolic BP and diastolic BP changes (ps > 0.05). Both intervention groups demonstrated significant improvements in working memory when compared with control group (exergame intervention group: -461.9 ms, p = 0.025; bicycle exercise intervention group: -470.1 ms, p = 0.021). There were no significant differences in systolic BP, diastolic BP, or working memory between the two intervention groups after 16 weeks of training (ps > 0.05). No difference in inhibition or cognitive flexibility was observed between the intervention and control groups (ps > 0.05). The current results showed that moderate-intensity exergame intervention did not produce significant benefits in reducing BP, but yielded similar beneficial effects in working memory to that of bicycle exercise intervention. More studies are needed on whether exergame intervention has the potential to be a promising supplemental therapeutic tool for older adults with hypertension.
Collapse
|
14
|
Rodríguez JL, Berrios P, Clavo ZM, Marin-Bravo M, Inostroza-Ruiz L, Ramos-Gonzalez M, Quispe-Solano M, Fernández-Alfonso MS, Palomino O, Goya L. Chemical Characterization, Antioxidant Capacity and Anti-Oxidative Stress Potential of South American Fabaceae Desmodium tortuosum. Nutrients 2023; 15:nu15030746. [PMID: 36771451 PMCID: PMC9921092 DOI: 10.3390/nu15030746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
It has been proposed that oxidative stress is a pathogenic mechanism to induce cytotoxicity and to cause cardiovascular and neuronal diseases. At present, natural compounds such as plant extracts have been used to reduce the cytotoxic effects produced by agents that induce oxidative stress. Our study aimed to evaluate the antioxidant and cytoprotective capacity of Desmodium tortuosum (D. tortuosum) extract in the co- and pre-treatment in EA.hy926 and SH-SY5Y cell lines subjected to oxidative stress induced by tert-butylhydroperoxide (t-BOOH). Cell viability, reactive oxygen species (ROS), nitric oxide (NO), caspase 3/7 activity, reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), and molecular expression of oxidative stress biomarkers (SOD2, NRF2 and NFκB1) and cell death (APAF1, BAX, Caspase3) were all evaluated. It was observed that the D. tortuosum extract, in a dose-dependent manner, was able to reduce the oxidative and cytotoxicity effects induced by t-BOOH, even normalized to a dose of 200 µg/mL, which would be due to the high content of phenolic compounds mainly phenolic acids, flavonoids, carotenoids and other antioxidant compounds. Finally, these results are indicators that the extract of D. tortuosum could be a natural alternative against the cytotoxic exposure to stressful and cytotoxic chemical agents.
Collapse
Affiliation(s)
- José-Luis Rodríguez
- Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
- Faculty of Veterinary, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence:
| | - Paola Berrios
- Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Zoyla-Mirella Clavo
- Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Manuel Marin-Bravo
- Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Luis Inostroza-Ruiz
- Faculty of Pharmacy, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | | | - Miguel Quispe-Solano
- Faculty of Engineering in Food Industries, Universidad Nacional del Centro del Perú, Huancayo 12006, Peru
| | | | - Olga Palomino
- Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Luis Goya
- Department of Metabolism and Nutrition, Spanish National Research Council (CSIC), Institute of Food Science, Technology and Nutrition (ICTAN), Jose Antonio Novais 10, 28040 Madrid, Spain
| |
Collapse
|
15
|
Lapi D, Federighi G, Lonardo MS, Chiurazzi M, Muscariello E, Tenore G, Colantuoni A, Novellino E, Scuri R. Effects of physical exercise associated with a diet enriched with natural antioxidants on cerebral hypoperfusion and reperfusion injury in spontaneously hypertensive rats. Front Physiol 2023; 14:1091889. [PMID: 36755790 PMCID: PMC9900024 DOI: 10.3389/fphys.2023.1091889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Oxidative stress is implicated in the pathogenesis of arterial hypertension. The reduction in the bioavailability of nitric oxide (NO) causes endothelial dysfunction, altering the functions of cerebral blood vessels. Physical exercise and intake of antioxidants improve the redox state, increasing the vascular NO production and/or the decrease in NO scavenging by reactive oxygen species (ROS). The present study was aimed at assessing the effects of physical exercise associated with a diet enriched with antioxidants from the Annurca apple in preventing the microvascular damage due to cerebral hypoperfusion and reperfusion injury in spontaneously hypertensive rats (SHRs). The rat pial microcirculation was investigated by intravital fluorescence microscopy through a parietal closed cranial window. As expected, SHRs subjected to physical exercise or an antioxidants-enriched diet showed a reduction of microvascular permeability, ROS formation, and leukocyte adhesion to venular walls, with a major effect of the antioxidants-enriched diet, when compared to untreated SHRs. Moreover, capillary perfusion was preserved by both treatments in comparison with untreated SHRs. Unexpectedly, the combined treatments did not induce higher effects than the single treatment. In conclusion, our results support the efficacy of physical activity or antioxidant supplement in reducing the microvascular alterations due to hypertension and ascribe to an antioxidants-enriched diet effective microvascular protection in SHRs.
Collapse
Affiliation(s)
- Dominga Lapi
- Department of Biology, University of Pisa, Pisa, Italy,*Correspondence: Dominga Lapi,
| | - Giuseppe Federighi
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maria Serena Lonardo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Martina Chiurazzi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Espedita Muscariello
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Giancarlo Tenore
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Antonio Colantuoni
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | | | - Rossana Scuri
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Birhan TA, Molla MD, Tesfa KH. The effect of angiotensin converting enzyme gene insertion/deletion polymorphism on anthropometric and biochemical parameters among hypertension patients: A case-control study from Northwest Ethiopia. PLoS One 2023; 18:e0285618. [PMID: 37200278 DOI: 10.1371/journal.pone.0285618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/26/2023] [Indexed: 05/20/2023] Open
Abstract
INTRODUCTION The angiotensin-converting enzyme (ACE) gene polymorphism has recently been linked with altered anthropometric and biochemical parameters in hypertensive patients. However, these links are still poorly understood and there is scarce evidence on the topic. Therefore, this study aimed to assess the effect of ACE gene insertion/deletion (I/D) polymorphism on anthropometric and biochemical parameters among essential hypertension patients at the University of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia. MATERIALS AND METHODS A case-control study with 64 cases and 64 controls was conducted from October 07, 2020, to June 02, 2021. The anthropometric measurements, biochemical parameters, and ACE gene polymorphism were determined using standard operating procedures, enzymatic colorimetric method, and polymerase chain reaction, respectively. A one-way analysis of variance was used to determine the association of genotypes with other study variables. P value < 0.05 was regarded as statistically significant. RESULT The systolic/diastolic blood pressure and blood glucose level (P-value<0.05) were significantly higher among study hypertensive patients with the DD genotype. However, anthropometric measures and lipid profiles of cases and controls were not associated with ACE gene polymorphism (P-value>0.05). CONCLUSION The DD genotype of the ACE gene polymorphism was found to have a significant association with high blood pressure and blood glucose levels in the study population. Advanced studies with a considerable sample size may be needed to utilize the ACE genotype as a biomarker for the early detection of hypertension-related complications.
Collapse
Affiliation(s)
- Tsegaye Adane Birhan
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Kibur Hunie Tesfa
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
17
|
Kachurov J, Stojanovska Z. Antihypertensive role of antioxidants. MAKEDONSKO FARMACEVTSKI BILTEN 2022. [DOI: 10.33320/maced.pharm.bull.2022.68.03.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Josif Kachurov
- Pliva/Teva pharmaceutical, Nikola Parapunov, 1000 Skopje, North Macedonia
| | | |
Collapse
|
18
|
Gao J, Akbari A, Wang T. Green tea could improve elderly hypertension by modulating arterial stiffness, the activity of the renin/angiotensin/aldosterone axis, and the sodium-potassium pumps in old male rats. J Food Biochem 2022; 46:e14398. [PMID: 36181277 DOI: 10.1111/jfbc.14398] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 01/13/2023]
Abstract
Hypertension is a major health problem common in the elderly people. Green tea is a popular beverage recommended in folk medicine for lowering blood pressure. However, the molecular mechanisms involved in the antihypertensive effects of green tea are not fully understood. Therefore, the aim of this study was to investigate the antihypertensive effects of green tea on high-salt diet-induced hypertension in old male rats. Forty old male rats were divided into five groups: control, hypertensive, and hypertensive-green tea (2, 4, and 6 g/kg). Heart rate (HR) and systolic blood pressure (SBP) were measured. Cardiac and renal histology were also performed. Lipid profile, NO, angiotensin II (Ang II), and aldosterone were determined, and the expression of eNOS, ATIR and ATIIR, aldosterone receptor, and Atp1a1 were measured. Green tea could significantly decrease HR and SBP, lipid profiles, renin-angiotensin II-aldosterone system activity, and Ang II signaling in kidney tissue of hypertensive rats (p < .01). It also increased Atp1a1, Nrf2, and eNOS expression along with antioxidant enzymes activity and NO concentration (p < .05) and decreased NF-ĸB and iNOS expression and IL-1β levels in the heart, kidneys, and aorta of rats with hypertension. It can be concluded that green tea can improve salt-induced blood pressure by modulating the function of the renin-angiotensin-aldosterone system, enhancing the synthesis of nitric oxide in the endothelium, increasing antioxidant activity and suppressing inflammation in the heart and kidney, improving the expression of the sodium-potassium pump, and reduction in serum lipids and glucose in aged male rats. PRACTICAL APPLICATIONS: The results of this study showed that green tea could improve hypertension in elderly rats by modulating (1) the expression of the sodium-potassium pump in the heart, kidney, and aortic tissues, (2) the activity of the renin-angiotensin II-aldosterone system in kidney, (3) enhancing antioxidant and anti-inflammatory activities in the heart, aorta, and kidneys, (4) enhancing the synthesis of nitric oxide in the endothelium, and (5) lowering lipid profile. The results of these studies show that the consumption of green tea and its products can be a good candidate for the prevention of cardiovascular diseases such as hypertension in the elderly. In addition, attention to its bioactive compounds can be considered by researchers as an independent therapeutic strategy or adjunctive therapy for the treatment of hypertension.
Collapse
Affiliation(s)
- Jing Gao
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Abolfazl Akbari
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Tao Wang
- Department of Cardiology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
19
|
Franco C, Sciatti E, Favero G, Bonomini F, Vizzardi E, Rezzani R. Essential Hypertension and Oxidative Stress: Novel Future Perspectives. Int J Mol Sci 2022; 23:ijms232214489. [PMID: 36430967 PMCID: PMC9692622 DOI: 10.3390/ijms232214489] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Among cardiovascular diseases, hypertension is one of the main risk factors predisposing to fatal complications. Oxidative stress and chronic inflammation have been identified as potentially responsible for the development of endothelial damage and vascular stiffness, two of the primum movens of hypertension and cardiovascular diseases. Based on these data, we conducted an open-label randomized study, first, to evaluate the endothelial damage and vascular stiffness in hypertense patients; second, to test the effect of supplementation with a physiological antioxidant (melatonin 1 mg/day for 1 year) in patients with essential hypertension vs. hypertensive controls. Twenty-three patients of either gender were enrolled and randomized 1:1 in two groups (control and supplemented group). The plasmatic total antioxidant capacity (as a marker of oxidative stress), blood pressure, arterial stiffness, and peripheral endothelial function were evaluated at the beginning of the study and after 1 year in both groups. Our results showed that arterial stiffness improved significantly (p = 0.022) in supplemented patients. The endothelial function increased too, even if not significantly (p = 0.688), after 1 year of melatonin administration. Moreover, the supplemented group showed a significative reduction in TAC levels (p = 0.041) correlated with the improvement of arterial stiffness. These data suggest that melatonin may play an important role in reducing the serum levels of TAC and, consequently, in improving arterial stiffness.
Collapse
Affiliation(s)
- Caterina Franco
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Edoardo Sciatti
- Cardiology Unit 1, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Gaia Favero
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Francesca Bonomini
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (SISDO), 25123 Brescia, Italy
| | - Enrico Vizzardi
- Section of Cardiovascular Diseases, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy
- Correspondence: (E.V.); (R.R.)
| | - Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (SISDO), 25123 Brescia, Italy
- Correspondence: (E.V.); (R.R.)
| |
Collapse
|
20
|
Dawud F, Takyi SA, Arko-Mensah J, Basu N, Egbi G, Ofori-Attah E, Bawuah SA, Fobil JN. Relationship between Metal Exposures, Dietary Macronutrient Intake, and Blood Glucose Levels of Informal Electronic Waste Recyclers in Ghana. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12768. [PMID: 36232070 PMCID: PMC9564681 DOI: 10.3390/ijerph191912768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
While metal exposures are generally high among informal electronic waste (e-waste) recyclers, the joint effect of metals and dietary macronutrients on their metabolic health is unknown. Therefore, we investigated the relationship between metal exposures, dietary macronutrients intake, and blood glucose levels of e-waste recyclers at Agbogbloshie using dietary information (48-h recall survey), blood metals (Pb & Cd), and HbA1C levels of 151 participants (100 e-waste recyclers and 51 controls from the Accra, Ghana) in March 2017. A linear regression model was used to estimate the joint relationship between metal exposures, dietary macronutrient intake, and blood glucose levels. Except for dietary proteins, both groups had macronutrient deficiencies. Diabetes prevalence was significantly higher among controls. Saturated fat, OMEGA-3, and cholesterol intake were associated with significant increases in blood glucose levels of recyclers. In a joint model, while 1 mg of cholesterol consumed was associated with a 0.7% increase in blood glucose, 1 g/L of Pb was found to significantly increase blood glucose levels by 0.9% among recyclers. Although the dietary consumption of cholesterol and fat was not high, it is still possible that exposure to Pb and Cd may still increase the risk of diabetes among both e-waste recyclers and the general population.
Collapse
Affiliation(s)
- Fayizatu Dawud
- School of Public Health, University of Ghana, Legon, Accra P.O. Box LG13, Ghana
| | - Sylvia Akpene Takyi
- School of Public Health, University of Ghana, Legon, Accra P.O. Box LG13, Ghana
| | - John Arko-Mensah
- School of Public Health, University of Ghana, Legon, Accra P.O. Box LG13, Ghana
| | | | - Godfred Egbi
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra P.O. Box LG 581, Ghana
| | - Ebenezer Ofori-Attah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra P.O. Box LG 581, Ghana
| | - Serwaa Akoto Bawuah
- School of Public Health, University of Ghana, Legon, Accra P.O. Box LG13, Ghana
| | - Julius N. Fobil
- School of Public Health, University of Ghana, Legon, Accra P.O. Box LG13, Ghana
| |
Collapse
|
21
|
Grujić-Milanović J, Jaćević V, Miloradović Z, Milanović SD, Jovović D, Ivanov M, Karanović D, Vajić UJ, Mihailović-Stanojević N. Resveratrol improved kidney function and structure in malignantly hypertensive rats by restoration of antioxidant capacity and nitric oxide bioavailability. Biomed Pharmacother 2022; 154:113642. [PMID: 36942598 DOI: 10.1016/j.biopha.2022.113642] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The main cause of death among patients with malignant hypertension is a kidney failure. The promising field in essential and malignant hypertension therapy could be centered on the amelioration of oxidative stress using antioxidant molecules like resveratrol. Resveratrol is a potent antioxidative agent naturally occurred in many plants that possess health-promoting properties. METHODS In the present study, we investigated the therapeutic potential of resveratrol, a polyphenol with anti-oxidative activity, in NG-L-Arginine Methyl Ester (L-NAME) treated spontaneously hypertensive rats (SHR) - malignantly hypertensive rats (MHR). RESULTS Resveratrol significantly improves oxidative damages by modulation of antioxidant enzymes and suppression of prooxidant factors in the kidney tissue of MHR. Enhanced antioxidant defense in the kidney improves renal function and ameliorates the morphological changes in this target organ. Besides, protective properties of resveratrol are followed by the restoration of the nitrogen oxide (NO) pathway. 4) Conclusion: Antioxidant therapy with resveratrol could represent promising therapeutical approach in hypertension, especially malignant, against kidney damage.
Collapse
Affiliation(s)
- Jelica Grujić-Milanović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Vesna Jaćević
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, Belgrade, Serbia; Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia.
| | - Zoran Miloradović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Sladjan D Milanović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Biomechanics, biomedical engineering and physics of complex systems, Belgrade, Serbia.
| | - Djurdjica Jovović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Milan Ivanov
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Danijela Karanović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Una-Jovana Vajić
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Nevena Mihailović-Stanojević
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| |
Collapse
|
22
|
Silybin induces endothelium-dependent vasodilation via TRPV4 channels in mouse mesenteric arteries. Hypertens Res 2022; 45:1954-1963. [PMID: 36056206 DOI: 10.1038/s41440-022-01000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/08/2022]
Abstract
Silybin is a flavonolignan extracted from the seeds of Silybum marianum that has been used as a dietary supplement for treating hepatic diseases and components of metabolic syndrome such as diabetes, obesity and hypertension. Transient receptor potential vanilloid 4 (TRPV4) channels are Ca2+-permeable, nonselective cation channels that regulate vascular endothelial function and blood flow. However, the relationship between silybin and TRPV4 channels in small mesenteric arteries remains unknown. In our study, we carried out a molecular docking experiment by using Discovery Studio v3.5 to predict the binding of silybin to TRPV4. Activation of TRPV4 with silybin was detected via intracellular Ca2+ concentration ([Ca2+]i) measurement and patch clamp experiments. The molecular docking results showed that silybin was likely to bind to the ankyrin repeat domain of TPRV4. [Ca2+]i measurements in mesenteric arterial endothelial cells (MAECs) and TRPV4-overexpressing HEK293 (TRPV4-HEK293) cells demonstrated that silybin induced Ca2+ influx by activating TRPV4 channels. The patch clamp experiments indicated that in TRPV4-HEK293 cells, silybin induced TRPV4-mediated cation currents. In addition, in high-salt-induced hypertensive mice, oral administration of silybin decreased systolic blood pressure (SBP) and significantly improved the arterial dilatory response to acetylcholine. Our findings provide the first evidence that silybin could induce mesenteric endothelium-dependent vasodilation and reduce blood pressure in high-salt-induced hypertensive mice via TRPV4 channels, thereby revealing the potential effect of silybin on preventing endothelial dysfunction-related cardiovascular diseases.
Collapse
|
23
|
Li ZY, Ma Q, Li X, Yu SY, Zuo J, Wang CJ, Li WJ, Ba Y, Yu FF. Association of AGTR1 gene methylation and its genetic variant in Chinese farmer with hypertension: A case-control study. Medicine (Baltimore) 2022; 101:e29712. [PMID: 35866766 PMCID: PMC9302313 DOI: 10.1097/md.0000000000029712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The objective was to determine the potential associations of the angiotensin II receptor type 1 (AGTR1) gene polymorphism, methylation, and lipid metabolism in Chinese farmers with hypertension. A case-control study was conducted in Wuzhi county of Henan province in China in 2013 to 2014. A total of 1034 local residents (35-74 years, 386 hypertensive cases, and 648 normotensive subjects) were enrolled in this study. Triglyceride (TG), total cholesterol (TC), high-density lipoprotein, and low-density lipoprotein were measured using automatic chemistry analyzer. The AGTR1 gene promoter methylation level was measured using quantitative methylation-specific polymerase chain reaction method. The single nucleotide polymorphism rs275653 was genotyped with TaqMan probe assay at an applied biosystems platform. The gender, body mass index (BMI), TG, TC, and family history of hypertension in the hypertension group were significantly higher than those in control group (P < .05). No significant difference was observed in the distribution of AGTR1 rs275653 polymorphism in the hypertension and controls (P > .05). The AGTR1 gene methylation in subjects carrying different genotypes was not significantly observed (P > .05). The logistic regression analysis found the AGTR1 gene methylation level was negative correlation with hypertension in the present study (odds ratio, 0.946, 95% confidence interval, 0.896-0.999) through adjusting for age, gender, BMI, education, smoking, alcohol drinking, fruit and vegetable intake, pickles intake, and family history of hypertension. The association of AGTR1 gene hypomethylation and essential hypertension was observed in Chinese farmers; no significant difference was observed in the distribution of AGTR1 rs275653 polymorphism.
Collapse
Affiliation(s)
- Zhi-yuan Li
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiang Ma
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xing Li
- Yantai Municipal Commission of Health and Family Planning, Yantai, Shandong, China
| | - Shui-yuan Yu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Juan Zuo
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Chong-jian Wang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wen-jie Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Ba
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Fang-fang Yu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Fang-fang Yu, Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan Province, 450001 China (e-mail: )
| |
Collapse
|
24
|
Ojeda ML, Nogales F, Del Carmen Gallego-López M, Carreras O. Binge drinking during the adolescence period causes oxidative damage-induced cardiometabolic disorders: A possible ameliorative approach with selenium supplementation. Life Sci 2022; 301:120618. [PMID: 35533761 DOI: 10.1016/j.lfs.2022.120618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022]
Abstract
Binge drinking (BD) is the most common alcohol consumption model among adolescents. BD exposure during adolescence disrupts the nervous system function, being involved in the major mortality causes at this age: motor vehicle accidents, homicides and suicides. Recent studies have also shown that BD consumption during adolescence affects liver, renal and cardiovascular physiology, predisposing adolescents to future adult cardiometabolic damage. BD is a particularly pro-oxidant alcohol consumption pattern, because it leads to the production of a great source of reactive oxygen species (ROS) via the microsomal ethanol oxidizing system, also decreasing the antioxidant activity of glutathione peroxidase (GPx). Selenium (Se) is a mineral which plays a pivotal role against oxidation; it forms part of the catalytic center of different antioxidant selenoproteins such as GPxs (GPx1, GPx4, GPx3) and selenoprotein P (SelP). Specifically, GPx4 has an essential role in mitochondria, preventing their oxidation, apoptosis and NFkB-inflamative response, being this function even more relevant in heart's tissue. Se serum levels are decreased in acute and chronic alcoholic adult patients, being correlated to the severity of oxidation, liver damage and metabolic profile. Experimental studies have described that Se supplementation to alcohol exposed mice clearly decreases oxidative and liver damage. However, clinical BD effects on Se homeostasis and selenoproteins' tissue distribution related to oxidation during adolescence are not yet studied. In this narrative review we will describe the use of sodium selenite supplementation as an antioxidant therapy in adolescent BD rats in order to analyze Se homeostasis implication during BD exposure, oxidative balance, apoptosis and inflammation, mainly in liver, kidney, and heart. These biomolecular changes and the cardiovascular function will be analyzed. Se supplementation therapies could be a good strategy to prevent the oxidation, inflammation and apoptosis generated in tissues by BD during adolescence, such as liver, kidney and heart, improving cardiovascular functioning.
Collapse
Affiliation(s)
- María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain.
| | | | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain
| |
Collapse
|
25
|
Thongsroy J, Mutirangura A. The association between Alu hypomethylation and the severity of hypertension. PLoS One 2022; 17:e0270004. [PMID: 35802708 PMCID: PMC9269909 DOI: 10.1371/journal.pone.0270004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/02/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Epigenetic changes that cause genomic instability may be the basis of pathogenic processes of age-associated noncommunicable diseases (NCDs). Essential hypertension is one of the most common NCDs. Alu hypomethylation is an epigenetic event that is commonly found in elderly individuals. Epigenomic alterations are also found in age-associated NCDs such as osteoporosis and diabetes mellitus. Alu methylation prevents DNA from being damaged. Therefore, Alu hypomethylated DNA accumulates DNA damage and, as a result, causes organ function deterioration. Here, we report that Alu hypomethylation is a biomarker for essential hypertension. Results We investigated Alu methylation levels in white blood cells from normal controls, patients with prehypertension, and patients with hypertension. The hypertension group possessed the lowest Alu methylation level when classified by systolic blood pressure and diastolic blood pressure (P = 0.0002 and P = 0.0088, respectively). In the hypertension group, a higher diastolic blood pressure and a lower Alu methylation level were observed (r = -0.6278). Moreover, we found that changes in Alu hypomethylation in the four years of follow-up in the same person were directly correlated with increased diastolic blood pressure. Conclusions Similar to other age-associated NCDs, Alu hypomethylation is found in essential hypertension and is directly correlated with severity, particularly with diastolic blood pressure. Therefore, Alu hypomethylation may be linked with the molecular pathogenesis of high blood pressure and can be used for monitoring the clinical outcome of this disease.
Collapse
Affiliation(s)
- Jirapan Thongsroy
- School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- * E-mail:
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
26
|
Novel mitochondrial tRNA Leu(UUR) 3261A > g mutation in two pedigrees with essential hypertension. Ir J Med Sci 2022; 192:615-623. [PMID: 35657541 DOI: 10.1007/s11845-022-03039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Essential hypertension (EH) was associated with mitochondrial tRNA mutations. AIMS This study was designed to assess the association between EH and mitochondrial dysfunction. METHODS A total of 30 individuals from two different Chinese families exhibit maternally inherited EH were assessed for genetic, clinical, and biochemical phenotypes pertaining to EH and mitochondrial functionality. These analyses included assessments of tRNALeu(UUR) 3261A > G mutation status, mitochondrial membrane permeability, mitochondria-associated ATP and reactive oxygen species (ROS) generation, and electron transport chain functionality. RESULTS EH was detected in 6 total analyzed members of the two families assessed in the present study, with its initial age of onset and presentation varying among patients. These patients with EH exhibited the tRNALeu(UUR) 3261A > G mutation and were of the B5 and D4 Eastern Asian mitochondrial haplogroups. This 3261A > G mutation was predicted to result in disruption of normal tRNALeu(UUR) activity owing to the destabilization of conserved base pairing (30A-40U). Consistent with this prediction, we found that cybrid cell lines exhibiting this 3261A > G mutation exhibited a ~49.05% decrease in baseline tRNALeu(UUR) levels. These cells additionally exhibited ~44.81% reductions in rates of mitochondrial translation. CONCLUSIONS To facilitate future molecular diagnosis, the 3261A > G mutation should be included in the list of hereditary risk factors. Our findings will aid in the counseling of EH families.
Collapse
|
27
|
A Novel Rodent Model of Hypertensive Cerebral Small Vessel Disease with White Matter Hyperintensities and Peripheral Oxidative Stress. Int J Mol Sci 2022; 23:ijms23115915. [PMID: 35682594 PMCID: PMC9180536 DOI: 10.3390/ijms23115915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Cerebral small vessel disease (CSVD) is the second most common cause of stroke and a major contributor to dementia. Manifestations of CSVD include cerebral microbleeds, intracerebral hemorrhages (ICH), lacunar infarcts, white matter hyperintensities (WMH) and enlarged perivascular spaces. Chronic hypertensive models have been found to reproduce most key features of the disease. Nevertheless, no animal models have been identified to reflect all different aspects of the human disease. Here, we described a novel model for CSVD using salt-sensitive ‘Sabra’ hypertension-prone rats (SBH/y), which display chronic hypertension and enhanced peripheral oxidative stress. SBH/y rats were either administered deoxycorticosteroid acetate (DOCA) (referred to as SBH/y-DOCA rats) or sham-operated and provided with 1% NaCl in drinking water. Rats underwent neurological assessment and behavioral testing, followed by ex vivo MRI and biochemical and histological analyses. SBH/y-DOCA rats show a neurological decline and cognitive impairment and present multiple cerebrovascular pathologies associated with CSVD, such as ICH, lacunes, enlarged perivascular spaces, blood vessel stenosis, BBB permeability and inflammation. Remarkably, SBH/y-DOCA rats show severe white matter pathology as well as WMH, which are rarely reported in commonly used models. Our model may serve as a novel platform for further understanding the mechanisms underlying CSVD and for testing novel therapeutics.
Collapse
|
28
|
Bezerra LS, Magnani M, Pimentel TC, de Oliveira JCPL, Freire FMDS, de Almeida AJPO, Rezende MSDA, Gonçalves IGA, de Medeiros IA, Veras RC. Yeast carboxymethyl-glucan improves endothelial function and inhibits platelet aggregation in spontaneously hypertensive rats. Food Funct 2022; 13:5406-5415. [PMID: 35474367 DOI: 10.1039/d1fo03492h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carboxymethyl-glucan is a semi-synthetic derivative of β-D-glucan, a polysaccharide widely found in several natural sources, such as yeast, fungi, and cereals. This compound has beneficial effects on health and is considered an important immunomodulator. However, studies exploring carboxymethyl-glucan bioactivity in cardiovascular health remain lacking, mainly in hypertension. Thus, this study sought to expand understanding of the effects of carboxymethyl-glucan on vascular and platelet functions in a hypertensive animal model. Spontaneously hypertensive rats and their normotensive Wistar-Kyoto controls were assigned to five groups: control, carboxymethyl-glucan (60 mg kg-1), control spontaneously hypertensive rats, spontaneously hypertensive rats carboxymethyl-glucan (20 mg kg-1), and spontaneously hypertensive rats carboxymethyl-glucan (60 mg kg-1). Animals were treated for four weeks with carboxymethyl-glucan at doses of 20 and 60 mg kg-1 orally, and control rats received saline as a placebo. Vascular reactivity, platelet aggregation, and reactive oxygen species production were evaluated at the end of treatment. The results showed that carboxymethyl-glucan improved vascular function and reduced platelet aggregation, mainly at a 60 mg kg-1 dose. However, despite these effects, there was no reduction in levels of reactive oxygen species. These findings suggested that carboxymethyl-glucan modulates endothelial function. It also acts as a platelet antiaggregant, which is an interesting resource for managing hypertension and its thrombotic complications.
Collapse
Affiliation(s)
- Lorena Soares Bezerra
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba, Campus I, 58059-900, João Pessoa, Paraíba, Brazil.
| | - Marciane Magnani
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba, Campus I, 58059-900, João Pessoa, Paraíba, Brazil. .,Department of Food Engineering, Federal University of Paraíba (UFPB), Brazil
| | | | | | | | - Arthur José Pontes Oliveira de Almeida
- Post-Graduate Program in Development and Technological Innovation in Medicines, Health Sciences Center, Federal University of Paraíba, Campus I, 58059-900, João Pessoa, Paraíba - Brazil
| | - Mathania Silva de Almeida Rezende
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Federal University of Paraíba, Campus I, 58059-900, João Pessoa, Paraíba - Brazil
| | | | - Isac Almeida de Medeiros
- Department of Pharmaceutical Sciences, Health Sciences Center, UFPB, Campus I, 58059-900, João Pessoa, Paraíba - Brazil.,Post-Graduate Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Federal University of Paraíba, Campus I, 58059-900, João Pessoa, Paraíba - Brazil
| | - Robson Cavalcante Veras
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba, Campus I, 58059-900, João Pessoa, Paraíba, Brazil. .,Department of Pharmaceutical Sciences, Health Sciences Center, UFPB, Campus I, 58059-900, João Pessoa, Paraíba - Brazil
| |
Collapse
|
29
|
An ACE inhibitory peptide from Isochrysis zhanjiangensis exhibits antihypertensive effect via anti-inflammation and anti-apoptosis in HUVEC and hypertensive rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
30
|
Kawakami K, Matsuo H, Yamada T, Matsumoto KI, Sasaki D, Nomura M. Effects of hydrogen-rich water and ascorbic acid treatment on spontaneously hypertensive rats. Exp Anim 2022; 71:347-355. [PMID: 35264492 PMCID: PMC9388348 DOI: 10.1538/expanim.21-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Hydrogen-rich water (HW) has been suggested to possess antioxidant properties of value in treatments of lifestyle diseases and for prevention of latent pathologies. To date, the potential
benefits of HW against the deleterious effects of excessive salt intake and hypertension have not been investigated. Here, we first examined the effects of HW or HW supplemented with 0.1%
ascorbic acid (HWA) on spontaneously hypertensive rats (SHR) that had been fed a normal diet. In comparison to control rats given distilled water (DW), we found that HW did not significantly
influence systolic blood pressure (SBP) or diastolic blood pressure (DBP) in SHR; however, the increase in SBP and DBP were inhibited in the HWA group. Next, four groups of SHR were given
DW, 0.1% ascorbic acid-added DW (DWA), HW, or HWA in combination with a 4% NaCl-added diet. SHR fed the 4% NaCl-added diet showed increased hypertension; HWA treatment resulted in a
significant reduction in blood pressure. The HWA group tended to have lower plasma angiotensin II levels than the DW group. In addition, urinary volumes and urinary sodium levels were
significantly lower in the HWA group than the DW group. Urinary isoprostane, an oxidative stress marker, was also significantly lower in the HWA group, suggesting that the inhibitory effect
of HWA on blood pressure elevation was caused by a reduction in oxidative stress. These findings suggest a synergistic interaction between HW and ascorbic acid, and also suggest that HWA
ingestion has potential for prevention of hypertension.
Collapse
Affiliation(s)
- Kohei Kawakami
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University
| | - Hiroyuki Matsuo
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University
| | - Takaya Yamada
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University
| | | | | |
Collapse
|
31
|
Di Chiara T, Del Cuore A, Daidone M, Scaglione S, Norrito RL, Puleo MG, Scaglione R, Pinto A, Tuttolomondo A. Pathogenetic Mechanisms of Hypertension-Brain-Induced Complications: Focus on Molecular Mediators. Int J Mol Sci 2022; 23:ijms23052445. [PMID: 35269587 PMCID: PMC8910319 DOI: 10.3390/ijms23052445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
There is growing evidence that hypertension is the most important vascular risk factor for the development and progression of cardiovascular and cerebrovascular diseases. The brain is an early target of hypertension-induced organ damage and may manifest as stroke, subclinical cerebrovascular abnormalities and cognitive decline. The pathophysiological mechanisms of these harmful effects remain to be completely clarified. Hypertension is well known to alter the structure and function of cerebral blood vessels not only through its haemodynamics effects but also for its relationships with endothelial dysfunction, oxidative stress and inflammation. In the last several years, new possible mechanisms have been suggested to recognize the molecular basis of these pathological events. Accordingly, this review summarizes the factors involved in hypertension-induced brain complications, such as haemodynamic factors, endothelial dysfunction and oxidative stress, inflammation and intervention of innate immune system, with particular regard to the role of Toll-like receptors that have to be considered dominant components of the innate immune system. The complete definition of their prognostic role in the development and progression of hypertensive brain damage will be of great help in the identification of new markers of vascular damage and the implementation of innovative targeted therapeutic strategies.
Collapse
|
32
|
Leal PEDPT, da Silva AA, Rocha-Gomes A, Riul TR, Cunha RA, Reichetzeder C, Villela DC. High-Salt Diet in the Pre- and Postweaning Periods Leads to Amygdala Oxidative Stress and Changes in Locomotion and Anxiety-Like Behaviors of Male Wistar Rats. Front Behav Neurosci 2022; 15:779080. [PMID: 35058757 PMCID: PMC8763963 DOI: 10.3389/fnbeh.2021.779080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
High-salt (HS) diets have recently been linked to oxidative stress in the brain, a fact that may be a precursor to behavioral changes, such as those involving anxiety-like behavior. However, to the best of our knowledge, no study has evaluated the amygdala redox status after consuming a HS diet in the pre- or postweaning periods. This study aimed to evaluate the amygdala redox status and anxiety-like behaviors in adulthood, after inclusion of HS diet in two periods: preconception, gestation, and lactation (preweaning); and only after weaning (postweaning). Initially, 18 females and 9 male Wistar rats received a standard (n = 9 females and 4 males) or a HS diet (n = 9 females and 5 males) for 120 days. After mating, females continued to receive the aforementioned diets during gestation and lactation. Weaning occurred at 21-day-old Wistar rats and the male offspring were subdivided: control-control (C-C)—offspring of standard diet fed dams who received a standard diet after weaning (n = 9–11), control-HS (C-HS)—offspring of standard diet fed dams who received a HS diet after weaning (n = 9–11), HS-C—offspring of HS diet fed dams who received a standard diet after weaning (n = 9–11), and HS-HS—offspring of HS diet fed dams who received a HS diet after weaning (n = 9–11). At adulthood, the male offspring performed the elevated plus maze and open field tests. At 152-day-old Wistar rats, the offspring were euthanized and the amygdala was removed for redox state analysis. The HS-HS group showed higher locomotion and rearing frequency in the open field test. These results indicate that this group developed hyperactivity. The C-HS group had a higher ratio of entries and time spent in the open arms of the elevated plus maze test in addition to a higher head-dipping frequency. These results suggest less anxiety-like behaviors. In the analysis of the redox state, less activity of antioxidant enzymes and higher levels of the thiobarbituric acid reactive substances (TBARS) in the amygdala were shown in the amygdala of animals that received a high-salt diet regardless of the period (pre- or postweaning). In conclusion, the high-salt diet promoted hyperactivity when administered in the pre- and postweaning periods. In animals that received only in the postweaning period, the addition of salt induced a reduction in anxiety-like behaviors. Also, regardless of the period, salt provided amygdala oxidative stress, which may be linked to the observed behaviors.
Collapse
Affiliation(s)
- Pedro Ernesto de Pinho Tavares Leal
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- Laboratório de Nutrição Experimental – LabNutrex, Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Alexandre Alves da Silva
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- Laboratório de Nutrição Experimental – LabNutrex, Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Arthur Rocha-Gomes
- Laboratório de Nutrição Experimental – LabNutrex, Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental – LabNutrex, Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Rennan Augusto Cunha
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Christoph Reichetzeder
- Department of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- Christoph Reichetzeder,
| | - Daniel Campos Villela
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- *Correspondence: Daniel Campos Villela,
| |
Collapse
|
33
|
Cardiovascular protection effect of a Northeastern Brazilian lyophilized red wine in spontaneously hypertensive rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
Varghese R, George Priya Doss C, Kumar RS, Almansour AI, Arumugam N, Efferth T, Ramamoorthy S. Cardioprotective effects of phytopigments via multiple signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153859. [PMID: 34856476 DOI: 10.1016/j.phymed.2021.153859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are among the deadliest non-communicable diseases, and millions of dollars are spent every year to combat CVDs. Unfortunately, the multifactorial etiology of CVDs complicates the development of efficient therapeutics. Interestingly, phytopigments show significant pleiotropic cardioprotective effects both in vitro and in vivo. PURPOSE This review gives an overview of the cardioprotective effects of phytopigments based on in vitro and in vivo studies as well as clinical trials. METHODS A literature-based survey was performed to collect the available data on cardioprotective activities of phytopigments via electronic search engines such as PubMed, Google Scholar, and Scopus. RESULTS Different classes of phytopigments such as carotenoids, xanthophylls, flavonoids, anthocyanins, anthraquinones alleviate major CVDs (e.g., cardiac hypertrophy, atherosclerosis, hypertension, cardiotoxicities) via acting on signaling pathways related to AMPK, NF-κB, NRF2, PPARs, AKT, TLRs, MAPK, JAK/STAT, NLRP3, TNF-α, and RA. CONCLUSION Phytopigments represent promising candidates to develop novel and effective CVD therapeutics. More randomized, placebo-controlled clinical studies are recommended to establish the clinical efficacy of phytopigments.
Collapse
Affiliation(s)
- Ressin Varghese
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - C George Priya Doss
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
35
|
Shree J, Singh A, Choudhary R, Pandey DP, Bodakhe SH. Topical Administration of ACE Inhibitor Interrupts the Progression of Cataract in Two Kidney One Clip Induced Hypertensive Cataract Model. Curr Eye Res 2021; 47:399-408. [PMID: 34740310 DOI: 10.1080/02713683.2021.2002911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Previously, we assessed that hypertension increases cataractogenesis. In the present study, we evaluated the effect of oral and topical administration of enalapril on two kidney one clip (2K1C)-induced hypertensive cataract model by evaluating the biochemical alteration of lenticular antioxidants, ionic content, ATPase activity, protein content and careful examination of the lenticular opacity. MATERIALS AND METHOD Animals were divided into normal and hypertensive animals. Hypertensive animals were divided into hypertensive control group (0.3% CMC), enalapril (oral) treatment group (20 mg/kg/day; p.o), and enalapril (topical) treatment group (0.1% w/v on the eye cornea) for a period of twelve weeks. During experimental study blood pressure, heart rate and morphology of the eyes were monitored biweekly. After twelve weeks, lenses were photographed and various catractogenic biochemical parameters were assessed. RESULTS Enalapril (oral) treatment conserved the blood pressure (systolic and diastolic), restored the level of antioxidants, restored the lipid peroxidation marker, nitrite content, ionic content, ATPase function, protein content, and thus delayed the cataract formation. While, enalapril (topical) treatment exhibited anti-cataract effect without affecting the systolic and diastolic blood pressure that could be by restoring the antioxidant level, maintaining the ionic balance, balancing the protein levels, and by inhibiting the upregulated ocular renin angiotensin system. The overall results suggest that enalapril (topical) treatment showed conspicuous effect than enalapril (oral) treatment in adjourning the cataract formation. CONCLUSION Based on the results, it may be concluded that upregulated ocular RAS by increasing oxidative stress and by misbalancing the lenticular ionic and protein content may lead to cataract formation in hypertensive condition.
Collapse
Affiliation(s)
- Jaya Shree
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur, India.,Department of Pharmacology, Rungta Institute of Pharmaceutical Sciences and Research, Rungta Group of Colleges, Bhilai, India
| | - Amrita Singh
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur, India.,Department of Pharmacology, Isf College of Pharmacy Moga, IK Gujral Punjab Technical University, Jalandhar, India
| | - Rajesh Choudhary
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur, India.,Department of Pharmacology, Shri Shankaracharya College of Pharmaceutical Sciences, Shri Shankaracharya Technical Campus, Bhilai, India
| | | | - Surendra H Bodakhe
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur, India
| |
Collapse
|
36
|
Lifestyle-Induced Redox-Sensitive Alterations: Cross-Talk among the RAAS, Antioxidant/Inflammatory Status, and Hypertension. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3080863. [PMID: 34733402 PMCID: PMC8560269 DOI: 10.1155/2021/3080863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/29/2021] [Indexed: 12/17/2022]
Abstract
The development and progression of hypertension are closely linked to an unhealthy lifestyle; however, its underlying mechanisms are not fully elucidated. Our aim was to assess the effects of diet and exercise on the elements of the renin-angiotensin-aldosterone system (RAAS), redox-sensitive parameters, and the expression of the vascular tone regulator endothelial nitric oxide synthase (eNOS). Male control Wistar-Kyoto (WKY) and stroke-prone spontaneously hypertensive (SHRSP) rats were randomized based on the type of diet (standard chow, high-fat diet: HT, and fructose-enriched diet: HF) and exercise (voluntary wheel-running exercise or lack of exercise). After 12 weeks of experimental period, the concentrations of the RAAS elements, myeloperoxidase (MPO) activity, tumor necrosis factor alpha (TNF-α) concentrations, levels of superoxide dismutase (SOD) and glutathione (GSH), and expressions of extracellular signal-regulated kinase1/2 (ERK1/2) and phosphorylated ERK1/2 as well as eNOS were measured in the cardiac tissue of WKY and SHRSP rats. We found that the RAAS elements were overactivated under hypertension and were further elevated by HT or HF diet, while HT and HF diet enhanced MPO and TNF-α parameters as well as the expression of pERK1/2; SOD, GSH, and eNOS levels were decreased. These changes occurred in WKKY rats and reached the statistically significant level in SHRSP animals. 12 weeks of exercise compensated the adverse effects of HT and HF via alleviating the concentrations of the RAAS elements and inflammatory markers as well as increasing of antioxidants. Our findings prove that SHRSP rats are more vulnerable to lifestyle changes. Both the type of diet and exercise, as a nonpharmacological therapeutic tool, can have a significant impact on the progression of hypertension.
Collapse
|
37
|
Potnuri AG, Reddy KP, Suresh P, Husain GM, Kazmi MH, Harishankar N. Obesity Potentiates the Risk of Drug-Induced Long QT Syndrome - Preliminary Evidence from WNIN/Ob Spontaneously Obese Rat. Cardiovasc Toxicol 2021; 21:848-858. [PMID: 34302627 DOI: 10.1007/s12012-021-09675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Drug-induced long QT syndrome (DI-LQTS) is fatal and known to have a higher incidence in women rather than in men. Multiple risk factors potentiate the incidence of DI-LQTS, but the actual contribution of obesity remains largely unexplored. Correspondingly, the present study is aimed to evaluate the susceptibility of DI-LQTS in WNIN/Ob rat in comparison with its lean counterpart using 3-lead electrocardiography. Four- and eight-month-old female WNIN/Ob and their lean controls were used for the experimentation. Non-invasive blood pressure measurement and total body electric conductivity (TOBEC) analysis were carried out. After the baseline evaluations, animals were anesthetized with Ketamine (50 mg/kg). Haloperidol (12.5 mg/kg single dose) was administered intraperitoneally and ECG was taken at 0, 10, 20, 30, 60 min, and 24 h time points. Myocardial lystes were used to assess the BNP, protein carbonylation, and hydroxyproline content. Adiposity, as assessed by TOBEC, is higher in obese rats with elevated mean arterial blood pressure. Baseline-corrected QT interval (QTc) is significantly higher in the obese rat with a wider QRS complex. The incidence of PVC and VT are more intense in the obese rat. Haloperidol-induced QT prolongation in obese rats was rapidly induced than in lean, which was observed to remain till 24 h in obese groups while normalized in lean controls. Higher levels of BNP, protein carbonylation, hydroxyproline content, and relative heart weights indicated the presence of cardiac hypertrophy. The study provides preliminary evidence that obesity can be a potential risk factor for DI-LQTS with faster onset and longer subsistence.
Collapse
Affiliation(s)
- Ajay Godwin Potnuri
- Department of Animal Physiology and Pharmacology, ICMR- National Animal Resource Facility for Biomedical Research, Genome Valley, Shamirpet, Hyderabad, 500101, India
| | - Kallamadi Prathap Reddy
- Animal Facility, ICMR- National Institute of Nutrition, Jamai Osmania, Hyderabad, 500007, India
| | - Pothani Suresh
- Department of Animal Physiology and Pharmacology, ICMR- National Animal Resource Facility for Biomedical Research, Genome Valley, Shamirpet, Hyderabad, 500101, India
| | - Gulam Mohammed Husain
- Pharmacology Research Laboratory, National Research Institute of Unani Medicinefor Skin Disorders, Hyderabad, 500038, India
| | - Munawwar Husain Kazmi
- Pharmacology Research Laboratory, National Research Institute of Unani Medicinefor Skin Disorders, Hyderabad, 500038, India
| | - Nemani Harishankar
- Animal Facility, ICMR- National Institute of Nutrition, Jamai Osmania, Hyderabad, 500007, India.
| |
Collapse
|
38
|
Cadmium-induced hypertension is associated with renal myosin light chain phosphatase inhibition via increased T697 phosphorylation and p44 mitogen-activated protein kinase levels. Hypertens Res 2021; 44:941-954. [PMID: 33972751 DOI: 10.1038/s41440-021-00662-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/29/2020] [Accepted: 02/17/2021] [Indexed: 02/03/2023]
Abstract
Dietary intake of the heavy metal cadmium (Cd2+) is implicated in hypertension, but potassium supplementation reportedly mitigates hypertension. This study aims to elucidate the hypertensive mechanism of Cd2+. Vascular reactivity and protein expression were assessed in Cd2+-exposed rats for 8 weeks to determine the calcium-handling effect of Cd2+ and the possible signaling pathways and mechanisms involved. Cd2+ induced hypertension in vivo by significantly (p < 0.001) elevating systolic blood pressure (160 ± 2 and 155 ± 1 vs 120 ± 1 mm Hg), diastolic blood pressure (119 ± 2 and 110 ± 1 vs 81 ± 1 mm Hg), and mean arterial pressure (133 ± 2 and 125 ± 1 vs 94 ± 1 mm Hg) (SBP, DBP, and MAP, respectively), while potassium supplementation protected against elevation of these parameters. The mechanism involved augmentation of the phosphorylation of renal myosin light chain phosphatase targeting subunit 1 (MYPT1) at threonine 697 (T697) (2.58 ± 0.36 vs 1 ± 0) and the expression of p44 mitogen-activated protein kinase (MAPK) (1.78 ± 0.20 vs 1 ± 0). While acetylcholine (ACh)-induced relaxation was unaffected, 5 mg/kg b.w. Cd2+ significantly (p < 0.001) attenuated phenylephrine (Phe)-induced contraction of the aorta, and 2.5 mg/kg b.w. Cd2+ significantly (p < 0.05) augmented sodium nitroprusside (SNP)-induced relaxation of the aorta. These results support the vital role of the kidney in regulating blood pressure changes after Cd2+ exposure, which may be a key drug target for hypertension management. Given the differential response to Cd2+, it is apparent that its hypertensive effects could be mediated by myosin light chain phosphatase (MLCP) inhibition via phosphorylation of renal MYPT1-T697 and p44 MAPK. Further investigation of small arteries and the Rho-kinase/MYPT1 interaction is recommended.
Collapse
|
39
|
Oxidative stress-responsive apoptosis-inducing protein in patients with heterozygous familial hypercholesterolemia. Heart Vessels 2021; 36:1923-1932. [PMID: 34308503 DOI: 10.1007/s00380-021-01898-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Oxidative stress, an inducer of apoptosis, plays a critical role in ischemia/reperfusion injury and atherosclerosis. We previously identified an apoptosis-inducing ligand, the post-translationally modified secreted form of eukaryotic translation initiation factor 5A (eIF5A), 'oxidative stress-responsive apoptosis-inducing protein' (ORAIP). In this study, we investigated the role of ORAIP in patients with heterozygous familial hypercholesterolemia (HeFH), a leading cause of premature cardiovascular disease. We analyzed plasma ORAIP and oxidized low-density lipoprotein (oxLDL) levels in 60 patients with HeFH (60% male, 57.0 ± 13.6 years of age) and 20 patients with LDL-C hypercholesterolemia (DL, 85% male, 64.1 ± 13.3 years of age). The coronary artery atherosclerosis from the patients with HeFH who had a coronary artery bypass graft was investigated by double immunostaining. The plasma ORAIP levels in the patients with HeFH were significantly elevated compared to those in the patients with DL (73.5 ± 46.0 vs. 48.3 ± 21.4 ng/mL, p = 0.0277). The plasma oxLDL levels in HeFH patients were also elevated (156.8 ± 65.2 vs. 123.7 ± 46.6 mg/dL, p = 0.0461) compared to those in DL patients and correlated with maxLDL-C levels (R = 0.4454, p = 0.00648). Double-immunostaining of ORAIP and oxLDL in the coronary artery from patients with HeFH who had a coronary artery bypass graft showed that ORAIP and oxLDL were colocalized with apoptotic vascular smooth muscle cells in the atherosclerotic plaque. ORAIP plays a role in the development of oxidative stress-induced atherosclerosis and may be an important therapeutic target for plaque rupture in patients with HeFH.
Collapse
|
40
|
Pathare G, Raju S, Mashru M, Shah V, Shalia K. Gene expression of klotho & antioxidative enzymes in peripheral blood mononuclear cells of essential hypertension patients in Indian population. Indian J Med Res 2021; 152:607-613. [PMID: 34145100 PMCID: PMC8224152 DOI: 10.4103/ijmr.ijmr_2112_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background & objectives: Oxidative stress is known to have a causal role in hypertension. Klotho has emerged as a novel anti-aging molecule to inhibit oxidative stress at cellular level. This study aimed at evaluating the gene expression of klotho and antioxidative enzymes, manganese superoxide dismutase (Mn-SOD) and catalase, in peripheral blood mononuclear cells of essential hypertensive patients as compared to normotensive healthy controls. Methods: Ninety-nine newly diagnosed hypertensives and 103 age- and BMI-matched controls were recruited. The participants were non-diabetic and not on any medication. Soluble α-klotho levels were detected using enzyme-linked immunosorbent assay. Gene expression was evaluated by quantitative real-time polymerase chain reaction. Results: Soluble α-klotho levels were significantly lower (27%, P=0.001) in patients as compared to controls. The trend remained same when compared against 44 out of 103 controls considered for gene expression analysis. Relative gene expression of klotho and catalase were 3-fold and 1.25-fold lower in patients as compared to controls, respectively. ΔCt value-based gene expression were also significantly lower for both genes (P=0.001). A decreasing but non-significant trend was observed for Mn-SOD gene expression. ΔCt value-based gene expression of catalase positively correlated with that of Mn-SOD in patient (rs=0.448) and control (rs=0.547) groups (P<0.001). In patients, the gene expression of Klotho positively correlated with that of catalase (rs=0.498, P=0.001), but not Mn-SOD (rs=0.155, P=0.126). Interpretation & conclusions: In the present study on newly diagnosed hypertensives, klotho and catalase gene expression were found to be significantly lower as compared to controls, indicating the role of oxidative stress in this patient group. In addition, a significant correlation between Klotho and catalase gene expression suggests a role for klotho in essential hypertension with respect to antioxidant defence.
Collapse
Affiliation(s)
- Gauri Pathare
- Department of Biochemistry, Sir H.N. Medical Research Society, Mumbai, Maharashtra, India
| | - Sunila Raju
- Department of Biochemistry, Sir H.N. Medical Research Society, Mumbai, Maharashtra, India
| | - Manoj Mashru
- Department of Cardiology, Sir H.N. Reliance Foundation Hospital & Research Center, Mumbai, Maharashtra, India
| | - Vinod Shah
- Department of Cardiology, Sir H.N. Reliance Foundation Hospital & Research Center, Mumbai, Maharashtra, India
| | - Kavita Shalia
- Department of Biochemistry, Sir H.N. Medical Research Society, Mumbai, Maharashtra, India
| |
Collapse
|
41
|
Martinelli I, Tomassoni D, Roy P, Di Cesare Mannelli L, Amenta F, Tayebati SK. Antioxidant Properties of Alpha-Lipoic (Thioctic) Acid Treatment on Renal and Heart Parenchyma in a Rat Model of Hypertension. Antioxidants (Basel) 2021; 10:antiox10071006. [PMID: 34201726 PMCID: PMC8300705 DOI: 10.3390/antiox10071006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023] Open
Abstract
Renal and cardiac impairments are frequent events in the presence of hypertension. Organ damage is mainly linked to oxidative stress due to high blood pressure and may be reduced by antioxidant supplementation. Alpha-lipoic acid (ALA) is one of most effective antioxidants. It is widely used as a nutritional supplement in a racemic mixture (+/–), even though the (+)-enantiomer is biologically active. This study was designed to investigate the effect of treatment with (+/–)-ALA and its enantiomers on renal and heart parenchyma in spontaneously hypertensive rats (SHR), using immunochemical and immunohistochemical techniques. The results confirmed that the oxidative mechanisms of organ alterations, due to hypertension, and characterized by glomerular and tubular lesions, left ventricular hypertrophy, and fibrosis but not by apoptosis were accompanied by proteins’ and nucleic acids’ oxidation. We found greater effectiveness of (+)-ALA compared to (+/−)-ALA in reducing oxidative stress, cardiac and renal damages in SHR. To conclude, these data propose (+)-ALA as one of the more appropriate antioxidant molecules to prevent renal and cardiac alterations associated with hypertension.
Collapse
Affiliation(s)
- Ilenia Martinelli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (I.M.); (F.A.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (P.R.)
| | - Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (P.R.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Pharmaceutical and Child Health Area (NEUROFARBA), University of Florence, 50139 Florence, Italy;
| | - Francesco Amenta
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (I.M.); (F.A.)
| | - Seyed Khosrow Tayebati
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (I.M.); (F.A.)
- Correspondence:
| |
Collapse
|
42
|
Zhang W, Azibani F, Okello E, Kayima J, Walusansa V, Orem J, Sliwa K. Rational and design of SATRACD study: detecting subclinical anthracycline therapy related cardiac dysfunction in low income country. Afr Health Sci 2021; 21:647-654. [PMID: 34795719 PMCID: PMC8568225 DOI: 10.4314/ahs.v21i2.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Anthracycline therapy-related cardiac dysfunction (ATRCD) is the most notorious adverse side-effect of chemotherapy. It has become a significant cardiovascular health concern for long-term cancer survivors. With the emerging concept of subclinical ATRCD and newer diagnostictools (Speckle Tracking Echocardiography (STE) and biomarkers), detecting anthracycline cardiac toxicity at an early stage has become an important step to prevent severe cardiac dysfunction and improve the cardiovascular outcome in cancer survivors. Despite the increasing population at risk in sub-Saharan Africa (SSA), there is no contemporary data in Uganda to address the burden, pathogenesis and risk factors of subclinical ATRCD. This big gap in knowledge has led to a lack of local guidelines for monitoring and management of ATRCD. Methods SATRACD (Detecting Subclinical Anthracycline Therapy Related Cardiac Dysfunction In Low Income Country) study is an observational prospective cohort study. Three hundred and fifty-three anthracycline naïve cancer patients will be recruited at baseline. Patients are followed up on completion of anthracycline-based chemotherapy and at 6 months after completion of anthracycline therapy. Data on demographics, cancer profile and clinical presentation will be collected at baseline. Comprehensive cardiac assessment will be performed at each visit, including electrocardiogram, conventional echocardiography, STE, cardiac and oxidative stress markers. We will be able to determine the incidence of subclinical and clinical ATRCD at 6 months after completion of anthracycline therapy, determine whether hypertension is a major risk factor for ATRCD, evaluate the role of conventional echocardiography parameters, and biomarkers for detecting subclinical ATRCD. Conclusion This SATRACD study will provide contemporary data on Ugandan cancer patients who have subclinical and clinical ATRCD, help in the development of local strategies to prevent and manage ATRCD, and improve cardiovascular outcome for Ugandan cancer survivors.
Collapse
Affiliation(s)
- Wanzhu Zhang
- Hatter Institute of Cardiovascular Research in Africa
- Uganda Heart Institute
| | - Feriel Azibani
- Hatter Institute of Cardiovascular Research in Africa
- UMRS 942 Inserm, Paris 75010, France
| | | | - James Kayima
- Uganda Heart Institute
- Makerere University, College of Health Science
| | | | | | - Karen Sliwa
- Hatter Institute of Cardiovascular Research in Africa
| |
Collapse
|
43
|
Brain Energy Deficit as a Source of Oxidative Stress in Migraine: A Molecular Basis for Migraine Susceptibility. Neurochem Res 2021; 46:1913-1932. [PMID: 33939061 DOI: 10.1007/s11064-021-03335-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
People with migraine are prone to a brain energy deficit between attacks, through increased energy demand (hyperexcitable brain) or decreased supply (mitochondrial impairment). However, it is uncertain how this precipitates an acute attack. Here, the central role of oxidative stress is adduced. Specifically, neurons' antioxidant defenses rest ultimately on internally generated NADPH (reduced nicotinamide adenine dinucleotide phosphate), whose levels are tightly coupled to energy production. Mitochondrial NADPH is produced primarily by enzymes involved in energy generation, including isocitrate dehydrogenase of the Krebs (tricarboxylic acid) cycle; and an enzyme, nicotinamide nucleotide transhydrogenase (NNT), that depends on the Krebs cycle and oxidative phosphorylation to function, and that works in reverse, consuming antioxidants, when energy generation fails. In migraine aura, cortical spreading depression (CSD) causes an initial severe drop in level of NADH (reduced nicotinamide adenine dinucleotide), causing NNT to impair antioxidant defense. This is followed by functional hypoxia and a rebound in NADH, in which the electron transport chain overproduces oxidants. In migraine without aura, a similar biphasic fluctuation in NADH very likely generates oxidants in cortical regions farthest from capillaries and penetrating arterioles. Thus, the perturbations in brain energy demand and/or production seen in migraine are likely sufficient to cause oxidative stress, triggering an attack through oxidant-sensing nociceptive ion channels. Implications are discussed for the development of new classes of migraine preventives, for the current use of C57BL/6J mice (which lack NNT) in preclinical studies of migraine, for how a microembolism initiates CSD, and for how CSD can trigger a migraine.
Collapse
|
44
|
The associations of the Palaeolithic diet alone and in combination with lifestyle factors with type 2 diabetes and hypertension risks in women in the E3N prospective cohort. Eur J Nutr 2021; 60:3935-3945. [PMID: 33909140 DOI: 10.1007/s00394-021-02565-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/16/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Patterns of change from the traditional Palaeolithic lifestyle to the modern lifestyle may partly explain the epidemic proportions of non-communicable diseases (NCDs). We investigated to what extent adherence to the Palaeolithic diet (PD) and the Palaeolithic-like lifestyle was associated with type 2 diabetes (T2D) and hypertension risks. METHODS A study of 70,991 women from the E3N (Etude Epidémiologique auprès de femmes de la Mutuelle Générale de l'Education Nationale) cohort, followed up for nearly 20 years. There were 3292 incident T2D and 12,504 incident hypertension cases that were validated. Dietary data were collected at baseline in 1993 via a food frequency questionnaire. The PD score and the Palaeolithic-like lifestyle score (PD, physical activity, smoking status, and body mass index [BMI]) were derived and considered in quintiles. Multivariable Cox regression models were employed to estimate hazard ratios (HR) and 95% confidence intervals (CI) for incident T2D and hypertension. RESULTS In the fully adjusted models, a 1-SD increase of the PD score was associated with 4% and 3% lower risks of T2D and hypertension, respectively. Those in the highest versus the lowest quintile of the score had HR (95% CI) of 0.88 (0.79, 0.98) and 0.91 (0.86, 0.96) for T2D and hypertension, respectively (P-trend < 0.0001). Associations were stronger for the Palaeolithic-like lifestyle score; in the fully adjusted model, a 1-SD increase of the score was associated with 19% and 6% lower risks of T2D and hypertension, respectively. Risks lowered successively with each increase in quintile; those in the highest versus the lowest quintile had HR (95% CI) of 0.58 (0.52, 0.65) and 0.85 (0.80, 0.90) for T2D and hypertension, respectively (P-trend < 0.0001). CONCLUSIONS Our data suggest that adhering to a PD based on fruit, vegetables, lean meats, fish, and nuts, and incorporating a Palaeolithic-like lifestyle could be promising options to prevent T2D and hypertension.
Collapse
|
45
|
Asbaghi O, Naeini F, Moodi V, Najafi M, Shirinbakhshmasoleh M, Rezaei Kelishadi M, Hadi A, Ghaedi E, Fadel A. Effect of grape products on blood pressure: a systematic review and meta-analysis of randomized controlled trials. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1901731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Omid Asbaghi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Science, Tehran University of Medical Science, Tehran, Iran
| | - Vihan Moodi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Najafi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Hadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ehsan Ghaedi
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdulmnannan Fadel
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
46
|
Kurajoh M, Fukumoto S, Yoshida S, Akari S, Murase T, Nakamura T, Ishii H, Yoshida H, Nagata Y, Morioka T, Mori K, Imanishi Y, Hirata K, Emoto M. Uric acid shown to contribute to increased oxidative stress level independent of xanthine oxidoreductase activity in MedCity21 health examination registry. Sci Rep 2021; 11:7378. [PMID: 33795813 PMCID: PMC8016900 DOI: 10.1038/s41598-021-86962-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/23/2021] [Indexed: 01/07/2023] Open
Abstract
Uric acid has both antioxidant and pro-oxidant properties in vitro by scavenging and production of reactive oxygen species (ROS). This cross-sectional study examined whether uric acid possesses effects on oxidative stress under physiological conditions independent of xanthine oxidoreductase (XOR), which is involved in uric acid and ROS production. Serum uric acid level was measured, while plasma XOR activity was determined using our high-sensitive assay in 192 participants (91 males, 101 females) who underwent health examinations and were not taking an antihyperuricemic agent. For antioxidant potential and oxidative stress level, biological antioxidant potential (BAP) and derivative of reactive oxygen metabolites (d-ROMs) in serum, respectively, were measured. Median uric acid level and plasma XOR activity were 5.6 mg/dL and 26.1 pmol/h/mL, respectively, and BAP and d-ROMs levels were 2112.8 μmol/L and 305.5 Carr U, respectively. Multivariable regression analyses revealed no significant association of serum uric acid level with BAP level, whereas serum uric acid level showed a significant association with d-ROMs level independent of plasma XOR activity (p = 0.045), which was prominent in females (p = 0.036; p for interaction = 0.148). Uric acid might contribute to increased oxidative stress independent of XOR activity by increasing ROS production, without affecting ROS scavenging, especially in females.
Collapse
Affiliation(s)
- Masafumi Kurajoh
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Shinya Fukumoto
- Department of Premier Preventive Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shio Yoshida
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Seigo Akari
- Department of Research and Development, Sanwa Kagaku Kenkyusho Co., Ltd., Aichi, Japan
| | - Takayo Murase
- Department of Research and Development, Sanwa Kagaku Kenkyusho Co., Ltd., Aichi, Japan
| | - Takashi Nakamura
- Department of Research and Development, Sanwa Kagaku Kenkyusho Co., Ltd., Aichi, Japan
| | - Haruka Ishii
- Department of Medical Statistics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hisako Yoshida
- Department of Medical Statistics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yuki Nagata
- Department of Vascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tomoaki Morioka
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Katsuhito Mori
- Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yasuo Imanishi
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | | | - Masanori Emoto
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
47
|
Chen M, Zhang Y, Wang H, Yang H, Yin W, Xu S, Jiang T, Wang M, Wu F, Yu W. Inhibition of the norepinephrine transporter rescues vascular hyporeactivity to catecholamine in obstructive jaundice. Eur J Pharmacol 2021; 900:174055. [PMID: 33775645 DOI: 10.1016/j.ejphar.2021.174055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 11/18/2022]
Abstract
In patients with obstructive jaundice, the cardiovascular system exhibits hypotension and vascular hyporeactivity. Most norepinephrine is taken up through the neuronal norepinephrine transporter (NET), which is implicated in cardiovascular diseases. A previous study demonstrated that pharmacological NET inhibition could increase resting blood pressure. However, the role of NETs in vascular hyporeactivity induced by obstructive jaundice is poorly understood. This study used the NET inhibitor nisoxetine and a rat model of bile duct ligation (BDL) to investigate whether NET is associated with BDL-induced vascular hyporeactivity. Rats were injected with nisoxetine via the tail vein for 7 consecutive days after BDL. Samples of the superior cervical sympathetic ganglion (SCG) and thoracic aortic rings were processed for investigations. Our results showed that NET expression in the SCG was significantly increased after BDL. Nisoxetine prevented the augmentation of NET expression, increased α1-adrenoceptor activation, and enhanced the weakened contractile responses of thoracic aortic rings after BDL. Our study demonstrates that nisoxetine plays a protective role in BDL-induced vascular hyporeactivity through increased α1-adrenoceptor activation in rats.
Collapse
Affiliation(s)
- Mo Chen
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, No. 225 Changhai Road, Shanghai, China; Medical College of Soochow University, No. 199 Renai Street, Suzhou, Jiangsu, China
| | - Yan Zhang
- Department of Anesthesiology, Zhoushan Hospital, Wenzhou Medical University, No. 739 Dingshen Road, Zhoushan, Zhejiang, China
| | - Hongqian Wang
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, No. 225 Changhai Road, Shanghai, China
| | - Hao Yang
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pudian Road, Shanghai, China
| | - Wen Yin
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pudian Road, Shanghai, China
| | - Saihong Xu
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pudian Road, Shanghai, China
| | - Tao Jiang
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pudian Road, Shanghai, China
| | - Mansi Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, No. 399 Lingling Road, Shanghai, China
| | - Feixiang Wu
- Department of Intensive Care Medicine, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, No. 225 Changhai Road, Shanghai, China.
| | - Weifeng Yu
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, No. 225 Changhai Road, Shanghai, China; Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pudian Road, Shanghai, China.
| |
Collapse
|
48
|
Ordog K, Horvath O, Eros K, Bruszt K, Toth S, Kovacs D, Kalman N, Radnai B, Deres L, Gallyas F, Toth K, Halmosi R. Mitochondrial protective effects of PARP-inhibition in hypertension-induced myocardial remodeling and in stressed cardiomyocytes. Life Sci 2021; 268:118936. [PMID: 33421523 DOI: 10.1016/j.lfs.2020.118936] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/27/2020] [Accepted: 12/12/2020] [Indexed: 12/13/2022]
Abstract
AIMS During oxidative stress mitochondria become the main source of endogenous reactive oxygen species (ROS) production. In the present study, we aimed to clarify the effects of pharmacological PARP-1 inhibition on mitochondrial function and quality control processes. MAIN METHODS L-2286, a quinazoline-derivative PARP inhibitor, protects against cardiovascular remodeling and heart failure by favorable modulation of signaling routes. We examined the effects of PARP-1 inhibition on mitochondrial quality control processes and function in vivo and in vitro. Spontaneously hypertensive rats (SHRs) were treated with L-2286 or placebo. In the in vitro model, 150 μM H2O2 stress was applied on neonatal rat cardiomyocytes (NRCM). KEY FINDINGS PARP-inhibition prevented the development of left ventricular hypertrophy in SHRs. The interfibrillar mitochondrial network were less fragmented, the average mitochondrial size was bigger and showed higher cristae density compared to untreated SHRs. Dynamin related protein 1 (Drp1) translocation and therefore the fission of mitochondria was inhibited by L-2286 treatment. Moreover, L-2286 treatment increased the amount of fusion proteins (Opa1, Mfn2), thus preserving structural stability. PARP-inhibition also preserved the mitochondrial genome integrity. In addition, the mitochondrial biogenesis was also enhanced due to L-2286 treatment, leading to an overall increase in the ATP production and improvement in survival of stressed cells. SIGNIFICANCE Our results suggest that the modulation of mitochondrial dynamics and biogenesis can be a promising therapeutical target in hypertension-induced myocardial remodeling and heart failure.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Citrate (si)-Synthase/metabolism
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Electrocardiography
- Glutathione/metabolism
- Hypertension/physiopathology
- Hypertrophy, Left Ventricular/drug therapy
- Hypertrophy, Left Ventricular/etiology
- Male
- Membrane Potential, Mitochondrial/drug effects
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/ultrastructure
- Mitochondrial Proteins/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Natriuretic Peptide, Brain/blood
- Piperidines/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Quinazolines/pharmacology
- Rats, Inbred SHR
- Rats, Wistar
- Rats
Collapse
Affiliation(s)
- K Ordog
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - O Horvath
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - K Eros
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary; Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary; HAS-UP Nuclear-Mitochondrial Interactions Research Group, Budapest, Hungary
| | - K Bruszt
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Sz Toth
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary
| | - D Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary
| | - N Kalman
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary
| | - B Radnai
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary
| | - L Deres
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, Hungary; HAS-UP Nuclear-Mitochondrial Interactions Research Group, Budapest, Hungary
| | - F Gallyas
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary; Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary; HAS-UP Nuclear-Mitochondrial Interactions Research Group, Budapest, Hungary
| | - K Toth
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - R Halmosi
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, Hungary.
| |
Collapse
|
49
|
Pincemail J, Cavalier E, Charlier C, Cheramy–Bien JP, Brevers E, Courtois A, Fadeur M, Meziane S, Goff CL, Misset B, Albert A, Defraigne JO, Rousseau AF. Oxidative Stress Status in COVID-19 Patients Hospitalized in Intensive Care Unit for Severe Pneumonia. A Pilot Study. Antioxidants (Basel) 2021; 10:257. [PMID: 33562403 PMCID: PMC7914603 DOI: 10.3390/antiox10020257] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A key role of oxidative stress has been highlighted in the pathogenesis of COVID-19. However, little has been said about oxidative stress status (OSS) of COVID-19 patients hospitalized in intensive care unit (ICU). MATERIAL AND METHODS Biomarkers of the systemic OSS included antioxidants (9 assays), trace elements (3 assays), inflammation markers (4 assays) and oxidative damage to lipids (3 assays). RESULTS Blood samples were drawn after 9 (7-11) and 41 (39-43) days of ICU stay, respectively in 3 and 6 patients. Vitamin C, thiol proteins, reduced glutathione, γ-tocopherol, β-carotene and PAOT® score were significantly decreased compared to laboratory reference values. Selenium concentration was at the limit of the lower reference value. By contrast, the copper/zinc ratio (as a source of oxidative stress) was higher than reference values in 55% of patients while copper was significantly correlated with lipid peroxides (r = 0.95, p < 0.001). Inflammatory biomarkers (C-reactive protein and myeloperoxidase) were significantly increased when compared to normals. CONCLUSIONS The systemic OSS was strongly altered in critically ill COVID-19 patients as evidenced by increased lipid peroxidation but also by deficits in some antioxidants (vitamin C, glutathione, thiol proteins) and trace elements (selenium).
Collapse
Affiliation(s)
- Joël Pincemail
- Clinical Chemistry, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (E.C.); (E.B.); (C.L.G.)
| | - Etienne Cavalier
- Clinical Chemistry, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (E.C.); (E.B.); (C.L.G.)
| | - Corinne Charlier
- Toxicology Department, CHU of Liège, Sart Tilman, 4000 Liège, Belgium;
| | - Jean-Paul Cheramy–Bien
- Department of Cardiovascular Surgery, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (J.-P.C.-B.); (A.C.); (J.-O.D.)
| | - Eric Brevers
- Clinical Chemistry, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (E.C.); (E.B.); (C.L.G.)
| | - Audrey Courtois
- Department of Cardiovascular Surgery, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (J.-P.C.-B.); (A.C.); (J.-O.D.)
| | - Marjorie Fadeur
- Service of Diabetology, Nutrition and Metabolic Diseases, CHU of Liège, Sart Tilman, 4000 Liège, Belgium;
| | - Smail Meziane
- Institut Européen des Antioxydants, 54000 Nancy, France;
| | - Caroline Le Goff
- Clinical Chemistry, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (E.C.); (E.B.); (C.L.G.)
| | - Benoît Misset
- Intensive Care Department, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (B.M.); (A.-F.R.)
| | - Adelin Albert
- Biostatistics and Medico-economic Information Department, CHU of Liège, Sart Tilman, 4000 Liège, Belgium;
| | - Jean-Olivier Defraigne
- Department of Cardiovascular Surgery, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (J.-P.C.-B.); (A.C.); (J.-O.D.)
| | - Anne-Françoise Rousseau
- Intensive Care Department, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (B.M.); (A.-F.R.)
| |
Collapse
|
50
|
Jurcau A. The Role of Natural Antioxidants in the Prevention of Dementia-Where Do We Stand and Future Perspectives. Nutrients 2021; 13:282. [PMID: 33498262 PMCID: PMC7909256 DOI: 10.3390/nu13020282] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Dementia, and especially Alzheimer's disease (AD), puts significant burden on global healthcare expenditure through its increasing prevalence. Research has convincingly demonstrated the implication of oxidative stress in the pathogenesis of dementia as well as of the conditions which increase the risk of developing dementia. However, drugs which target single pathways have so far failed in providing significant neuroprotection. Natural antioxidants, due to their effects in multiple pathways through which oxidative stress leads to neurodegeneration and triggers neuroinflammation, could prove valuable weapons in our fight against dementia. Although efficient in vitro and in animal models of AD, natural antioxidants in human trials have many drawbacks related to the limited bioavailability, unknown optimal dose, or proper timing of the treatment. Nonetheless, trials evaluating several of these natural compounds are ongoing, as are attempts to modify these compounds to achieve improved bioavailability.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, nr 1 Universitatii Street, 410087 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “Dr. G. Curteanu”, nr 12 Corneliu Coposu Street, 410469 Oradea, Romania
| |
Collapse
|