1
|
Xu M, Liu H, Zhang J, Xu M, Zhao X, Wang J. Functionalized zeolite regulates bone metabolic microenvironment. Mater Today Bio 2025; 31:101558. [PMID: 40034985 PMCID: PMC11874869 DOI: 10.1016/j.mtbio.2025.101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
The regulation of bone metabolic microenvironment imbalances in diseases such as osteoporosis, bone defects, infections, and tumors remains a significant challenge in orthopedics. Therefore, it has become urgent to develop biomaterials with effective bone metabolic microenvironmental regulatory functions. Zeolites, as advanced biomedical materials, possess distinctive physicochemical properties such as multi-level pore structures, adjustable frameworks, easily modifiable surfaces, and excellent adsorption capabilities. These advantageous characteristics give zeolites broad application prospects in regulating the bone metabolic microenvironment. Therefore, this paper first classifies zeolites used to regulate the bone metabolic microenvironment based on their topological structures and compositional frameworks. Subsequently, it provides a detailed description of modification strategies for zeolite materials aimed at regulating this microenvironment. Next, a comprehensive summary was provided on the preparation strategies for zeolite materials aimed at regulating the bone metabolic microenvironment. Additionally, the paper focuses on the specific applications of zeolite materials in conditions of bone metabolic imbalance, such as osteoporosis, bone defects, orthopedic infections, and bone tumors, highlighting their potential in enhancing osteogenic microenvironments, controlling infections, and treating bone tumors. Finally, it outlines the prospects and challenges associated with the application of zeolites in regulating the bone metabolic microenvironment. This review comprehensively summarizes zeolites used for bone metabolic regulation, aiming to provide guidance for future research and application development.
Collapse
Affiliation(s)
| | | | - Jiaxin Zhang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Meng Xu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xin Zhao
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Jincheng Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| |
Collapse
|
2
|
Garzón I, Muñoz-Hurtado J, Pereira-Martínez J, Ionescu AM, Cardona JDLC, Tejada-Casado M, Pérez MDM, Campos F, Chato-Astrain J, Alaminos M. Development of Novel Squid Gladius Biomaterials for Cornea Tissue Engineering. Mar Drugs 2024; 22:535. [PMID: 39728110 DOI: 10.3390/md22120535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Cornea tissue engineering is strictly dependent on the development of biomaterials that fulfill the strict biocompatibility, biomechanical, and optical requirements of this organ. In this work, we generated novel biomaterials from the squid gladius (SG), and their application in cornea tissue engineering was evaluated. Results revealed that the native SG (N-SG) was biocompatible in laboratory animals, although a local inflammatory reaction was driven by the material. Cellularized biomaterials (C-SG) demonstrated that the SG provides an adequate substrate for cell attachment and growth, and corneal epithelial cells cultured on this biomaterial were able to express crystallin alpha, a marker for this type of cells. Biomechanical analyses showed that N-SG biomaterials have higher Young modulus and lower traction deformation than control native corneas (CTR), and C-SG showed a similar Young modulus than CTR. Analysis of the optical properties of these samples revealed that the diffuse transmittance of N-SG and C-SG were higher than CTR, with the diffuse reflectance showing the opposite behavior. These results confirm the putative usefulness of this abundant marine-derived biomaterial that can be obtained as a byproduct of the fishing industry.
Collapse
Affiliation(s)
- Ingrid Garzón
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, E18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, E18011 Granada, Spain
| | - Juan Muñoz-Hurtado
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, E18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, E18011 Granada, Spain
| | - Juan Pereira-Martínez
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, E18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, E18011 Granada, Spain
| | - Ana M Ionescu
- Instituto de Investigación Biosanitaria ibs.GRANADA, E18011 Granada, Spain
- Laboratory of Biomaterials Optics, Department of Optics, Faculty of Science, University of Granada, E18071 Granada, Spain
| | - Juan de la Cruz Cardona
- Instituto de Investigación Biosanitaria ibs.GRANADA, E18011 Granada, Spain
- Laboratory of Biomaterials Optics, Department of Optics, Faculty of Science, University of Granada, E18071 Granada, Spain
| | - María Tejada-Casado
- Instituto de Investigación Biosanitaria ibs.GRANADA, E18011 Granada, Spain
- Laboratory of Biomaterials Optics, Department of Optics, Faculty of Science, University of Granada, E18071 Granada, Spain
| | - María Del Mar Pérez
- Instituto de Investigación Biosanitaria ibs.GRANADA, E18011 Granada, Spain
- Laboratory of Biomaterials Optics, Department of Optics, Faculty of Science, University of Granada, E18071 Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, E18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, E18011 Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, E18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, E18011 Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, E18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, E18011 Granada, Spain
| |
Collapse
|
3
|
Sharma P, Saurav S, Tabassum Z, Sood B, Kumar A, Malik T, Mohan A, Girdhar M. Applications and interventions of polymers and nanomaterials in alveolar bone regeneration and tooth dentistry. RSC Adv 2024; 14:36226-36245. [PMID: 39534053 PMCID: PMC11555558 DOI: 10.1039/d4ra06092j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Inflammatory diseases exert a significant influence on the periodontium, serving as a primary contributor to the development of periodontitis. The advancement of periodontitis, characterized by manifestations, such as gingival recession, increased periodontal pocket depth and resorption across the alveolar bone, cementum and periodontal ligaments, poses a significant risk of dental detachment. Untreated or delayed treatment further worsens these deleterious outcomes. This emphasizes the critical importance of timely and effective interventions in reducing the consequences associated with periodontitis. Addressing these challenges requires to focus on the fabrication of bioactive materials, particularly scaffolds, as pivotal elements in tissue engineering processes aimed at alveolar bone regeneration. The incorporation of natural polymers, particularly their amalgamation with clays and clay minerals, such as montmorillonite and LAPONITE®, has been identified as a prospective pathway for advancing biomaterials in the realm of dentistry. This amalgamation holds significant potential for the production of biomaterials with enhanced properties, underscoring its relevance and applicability in dental research. This review paper explores the current advancements in natural polymer-based biomaterials employed in various dental applications, including oral caries, regenerative medicine and alveolar bone regeneration. The principal aim of this investigation is to briefly compile and present the existing knowledge while updating information on the utilization of natural polymers in the formulation of biomaterials. Additionally, the paper aims to elucidate their applications within contemporary research trends and developments in the field of odontology. This article extensively delves into pertinent research to assess the progress of nanotechnology in the context of tissue regeneration and the treatment of oral diseases.
Collapse
Affiliation(s)
- Prashish Sharma
- School of Bioengineering and Biosciences, Lovely Professional University Phagwara 144401 Punjab India
| | - Sushmita Saurav
- School of Bioengineering and Biosciences, Lovely Professional University Phagwara 144401 Punjab India
| | - Zeba Tabassum
- School of Bioengineering and Biosciences, Lovely Professional University Phagwara 144401 Punjab India
| | - Bhawana Sood
- School of Physical and Chemical Engineering, Lovely Professional University Phagwara 144401 Punjab India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology New Delhi 110067 India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University Jimma 0000 Ethiopia
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University Phagwara 144401 Punjab India
| | - Madhuri Girdhar
- Division of Research and Development, Lovely Professional University Phagwara 144401 Punjab India
| |
Collapse
|
4
|
Zhang W, Zhang J, Zhang J, Chu J, Zhang Z. Novel combination therapy using recombinant oncolytic adenovirus silk hydrogel and PD-L1 inhibitor for bladder cancer treatment. J Nanobiotechnology 2024; 22:638. [PMID: 39420389 PMCID: PMC11487847 DOI: 10.1186/s12951-024-02903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Recombinant oncolytic adenovirus offers a novel and promising cancer treatment approach, but its standalone efficacy remains limited. This study investigates a combination treatment strategy by co-administering recombinant oncolytic Adv-loaded silk hydrogel with a PD-L1 inhibitor for patients with bladder cancer to enhance treatment outcomes. Bladder cancer tissues from mice were collected and subjected to single-cell sequencing, identifying CRB3 as a key gene in malignant cells. Differential expression and functional enrichment analyses were performed, validating CRB3's inhibitory role through in vitro experiments showing suppression of bladder cancer cell proliferation, migration, and invasion. Recombinant oncolytic adenoviruses encoding CRB3 and GM-CSF were constructed and encapsulated in silk hydrogel to enhance drug loading and release efficiency. In vivo experiments demonstrated that the nano-composite hydrogel significantly inhibited tumor growth and increased immune infiltration in tumor tissues. Co-administration of adenovirus silk hydrogel (Adv-CRB3@gel) with a PD-L1 inhibitor significantly enhanced T-cell infiltration and tumor killing. The combination of recombinant oncolytic Adv-loaded nano-composite hydrogel encoding CRB3 and GM-CSF with a PD-L1 inhibitor improves bladder cancer treatment outcomes by effectively recruiting T cells, providing a novel therapeutic strategy.
Collapse
Affiliation(s)
- Wenqiang Zhang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Jianqiang Zhang
- Department of Urology, The First People's Hospital of Nanning, Nanning, Guangxi, China
- Department of Urology, Ruikang Hospital, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Jingwei Zhang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Jing Chu
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China.
- Department of Urology, Guizhou Aerospace Hospital, Zunyi, Guizhou, China.
| | - Zhenxing Zhang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China.
| |
Collapse
|
5
|
Xue H, Chen S, Hu Y, Huang J, Shen Y. Advances in 3D printing for the repair of tympanic membrane perforation: a comprehensive review. Front Bioeng Biotechnol 2024; 12:1439499. [PMID: 39188376 PMCID: PMC11345550 DOI: 10.3389/fbioe.2024.1439499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/19/2024] [Indexed: 08/28/2024] Open
Abstract
Tympanic membrane perforation (TMP) is one of the most common conditions in otolaryngology worldwide, and hearing damage caused by inadequate or prolonged healing can be distressing for patients. This article examines the rationale for utilizing three-dimensional (3D) printing to produce scaffolds for repairing TMP, compares the advantages and disadvantages of 3D printed and bioprinted grafts with traditional autologous materials and other tissue engineering materials in TMP repair, and highlights the practical and clinical significance of 3D printing in TMP repair while discussing the current progress and promising future of 3D printing and bioprinting. There is a limited number of reviews specifically dedicated to 3D printing for TMP repair. The majority of reviews offer a general overview of the applications of 3D printing in the broader realm of tissue regeneration, with some mention of TMP repair. Alternatively, they explore the biopolymers, cells, and drug molecules utilized for TMP repair. However, more in-depth analysis is needed on the strategies for selecting bio-inks that integrate biopolymers, cells, and drug molecules for tympanic membrane repair.
Collapse
Affiliation(s)
- Hao Xue
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shengjia Chen
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Hu
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Juntao Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yi Shen
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Centre for Medical Research, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Li X, Li Y, Zhang X, Xu J, Kang J, Li B, Zhao B, Wang L. Cross-Linking Methods of the Silk Protein Hydrogel in Oral and Craniomaxillofacial Tissue Regeneration. Tissue Eng Regen Med 2024; 21:529-544. [PMID: 38294593 PMCID: PMC11087422 DOI: 10.1007/s13770-023-00624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Craniomaxillofacial tissue defects are clinical defects involving craniomaxillofacial and oral soft and hard tissues. They are characterized by defect-shaped irregularities, bacterial and inflammatory environments, and the need for functional recovery. Conventional clinical treatments are currently unable to achieve regeneration of high-quality oral craniomaxillofacial tissue. As a natural biomaterial, silk fibroin (SF) has been widely studied in biomedicine and has broad prospects for use in tissue regeneration. Hydrogels made of SF showed excellent water retention, biocompatibility, safety and the ability to combine with other materials. METHODS To gain an in-depth understanding of the current development of SF, this article reviews the structure, preparation and application prospects in oral and craniomaxillofacial tissue regenerative medicine. It first briefly introduces the structure of SF and then summarizes the principles, advantages and disadvantages of the different cross-linking methods (physical cross-linking, chemical cross-linking and double network structure) of SF. Finally, the existing research on the use of SF in tissue engineering and the prospects of using SF with different cross-linking methods in oral and craniomaxillofacial tissue regeneration are also discussed. CONCLUSIONS This review is intended to show the advantages of SF hydrogels in tissue engineering and provides theoretical support for establishing novel and viable silk protein hydrogels for regeneration.
Collapse
Affiliation(s)
- Xiujuan Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
| | - Yuanjiao Li
- School of Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinsong Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
| | - Jie Xu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
| | - Jie Kang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
| | - Bing Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China.
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
7
|
Saurav S, Sharma P, Kumar A, Tabassum Z, Girdhar M, Mamidi N, Mohan A. Harnessing Natural Polymers for Nano-Scaffolds in Bone Tissue Engineering: A Comprehensive Overview of Bone Disease Treatment. Curr Issues Mol Biol 2024; 46:585-611. [PMID: 38248340 PMCID: PMC10814241 DOI: 10.3390/cimb46010038] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Numerous surgeries are carried out to replace tissues that have been harmed by an illness or an accident. Due to various surgical interventions and the requirement of bone substitutes, the emerging field of bone tissue engineering attempts to repair damaged tissues with the help of scaffolds. These scaffolds act as template for bone regeneration by controlling the development of new cells. For the creation of functional tissues and organs, there are three elements of bone tissue engineering that play very crucial role: cells, signals and scaffolds. For the achievement of these aims, various types of natural polymers, like chitosan, chitin, cellulose, albumin and silk fibroin, have been used for the preparation of scaffolds. Scaffolds produced from natural polymers have many advantages: they are less immunogenic as well as being biodegradable, biocompatible, non-toxic and cost effective. The hierarchal structure of bone, from microscale to nanoscale, is mostly made up of organic and inorganic components like nanohydroxyapatite and collagen components. This review paper summarizes the knowledge and updates the information about the use of natural polymers for the preparation of scaffolds, with their application in recent research trends and development in the area of bone tissue engineering (BTE). The article extensively explores the related research to analyze the advancement of nanotechnology for the treatment of bone-related diseases and bone repair.
Collapse
Affiliation(s)
- Sushmita Saurav
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Prashish Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi 110067, Delhi, India;
| | - Zeba Tabassum
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Madhuri Girdhar
- Division of Research and Development, Lovely Professional University, Phagwara 144401, Punjab, India;
| | - Narsimha Mamidi
- Wisconsin Centre for Nano Biosystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| |
Collapse
|
8
|
Hu J, Jiang Z, Zhang J, Yang G. Application of silk fibroin coatings for biomaterial surface modification: a silk road for biomedicine. J Zhejiang Univ Sci B 2023; 24:943-956. [PMID: 37961798 PMCID: PMC10646393 DOI: 10.1631/jzus.b2300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/18/2023] [Indexed: 11/15/2023]
Abstract
Silk fibroin (SF) as a natural biopolymer has become a popular material for biomedical applications due to its minimal immunogenicity, tunable biodegradability, and high biocompatibility. Nowadays, various techniques have been developed for the applications of SF in bioengineering. Most of the literature reviews focus on the SF-based biomaterials and their different forms of applications such as films, hydrogels, and scaffolds. SF is also valuable as a coating on other substrate materials for biomedicine; however, there are few reviews related to SF-coated biomaterials. Thus, in this review, we focused on the surface modification of biomaterials using SF coatings, demonstrated their various preparation methods on substrate materials, and introduced the latest procedures. The diverse applications of SF coatings for biomedicine are discussed, including bone, ligament, skin, mucosa, and nerve regeneration, and dental implant surface modification. SF coating is conducive to inducing cell adhesion and migration, promoting hydroxyapatite (HA) deposition and matrix mineralization, and inhibiting the Notch signaling pathway, making it a promising strategy for bone regeneration. In addition, SF-coated composite scaffolds can be considered prospective candidates for ligament regeneration after injury. SF coating has been proven to enhance the mechanical properties of the substrate material, and render integral stability to the dressing material during the regeneration of skin and mucosa. Moreover, SF coating is a potential strategy to accelerate nerve regeneration due to its dielectric properties, mechanical flexibility, and angiogenesis promotion effect. In addition, SF coating is an effective and popular means for dental implant surface modification to promote osteogenesis around implants made of different materials. Thus, this review can be of great benefit for further improvements in SF-coated biomaterials, and will undoubtedly contribute to clinical transformation in the future.
Collapse
Affiliation(s)
- Jinxing Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Jing Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
9
|
Huang L, Shi J, Zhou W, Zhang Q. Advances in Preparation and Properties of Regenerated Silk Fibroin. Int J Mol Sci 2023; 24:13153. [PMID: 37685960 PMCID: PMC10487664 DOI: 10.3390/ijms241713153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Over the years, silk fibroin (SF) has gained significant attention in various fields, such as biomedicine, tissue engineering, food processing, photochemistry, and biosensing, owing to its remarkable biocompatibility, machinability, and chemical modifiability. The process of obtaining regenerated silk fibroin (RSF) involves degumming, dissolving, dialysis, and centrifugation. RSF can be further fabricated into films, sponges, microspheres, gels, nanofibers, and other forms. It is now understood that the dissolution method selected greatly impacts the molecular weight distribution and structure of RSF, consequently influencing its subsequent processing and application. This study comprehensively explores and summarizes different dissolution methods of SF while examining their effects on the structure and performance of RSF. The findings presented herein aim to provide valuable insights and references for researchers and practitioners interested in utilizing RSF in diverse fields.
Collapse
Affiliation(s)
| | | | | | - Qing Zhang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Su X, Wei L, Xu Z, Qin L, Yang J, Zou Y, Zhao C, Chen L, Hu N. Evaluation and Application of Silk Fibroin Based Biomaterials to Promote Cartilage Regeneration in Osteoarthritis Therapy. Biomedicines 2023; 11:2244. [PMID: 37626740 PMCID: PMC10452428 DOI: 10.3390/biomedicines11082244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by cartilage damage and degeneration. Traditional treatments such as NSAIDs and joint replacement surgery only relieve pain and do not achieve complete cartilage regeneration. Silk fibroin (SF) biomaterials are novel materials that have been widely studied and applied to cartilage regeneration. By mimicking the fibrous structure and biological activity of collagen, SF biomaterials can promote the proliferation and differentiation of chondrocytes and contribute to the formation of new cartilage tissue. In addition, SF biomaterials have good biocompatibility and biodegradability and can be gradually absorbed and metabolized by the human body. Studies in recent years have shown that SF biomaterials have great potential in treating OA and show good clinical efficacy. Therefore, SF biomaterials are expected to be an effective treatment option for promoting cartilage regeneration and repair in patients with OA. This article provides an overview of the biological characteristics of SF, its role in bone and cartilage injuries, and its prospects in clinical applications to provide new perspectives and references for the field of bone and cartilage repair.
Collapse
Affiliation(s)
- Xudong Su
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Wei
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Zhenghao Xu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Leilei Qin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Jianye Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Yinshuang Zou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Ning Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
11
|
Lyu Y, Liu Y, He H, Wang H. Application of Silk-Fibroin-Based Hydrogels in Tissue Engineering. Gels 2023; 9:gels9050431. [PMID: 37233022 DOI: 10.3390/gels9050431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Silk fibroin (SF) is an excellent protein-based biomaterial produced by the degumming and purification of silk from cocoons of the Bombyx mori through alkali or enzymatic treatments. SF exhibits excellent biological properties, such as mechanical properties, biocompatibility, biodegradability, bioabsorbability, low immunogenicity, and tunability, making it a versatile material widely applied in biological fields, particularly in tissue engineering. In tissue engineering, SF is often fabricated into hydrogel form, with the advantages of added materials. SF hydrogels have mostly been studied for their use in tissue regeneration by enhancing cell activity at the tissue defect site or counteracting tissue-damage-related factors. This review focuses on SF hydrogels, firstly summarizing the fabrication and properties of SF and SF hydrogels and then detailing the regenerative effects of SF hydrogels as scaffolds in cartilage, bone, skin, cornea, teeth, and eardrum in recent years.
Collapse
Affiliation(s)
- Yihan Lyu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yusheng Liu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Houzhe He
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|