1
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 3: Heat and cold tolerance during exercise. Eur J Appl Physiol 2024; 124:1-145. [PMID: 37796292 DOI: 10.1007/s00421-023-05276-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/04/2023] [Indexed: 10/06/2023]
Abstract
In this third installment of our four-part historical series, we evaluate contributions that shaped our understanding of heat and cold stress during occupational and athletic pursuits. Our first topic concerns how we tolerate, and sometimes fail to tolerate, exercise-heat stress. By 1900, physical activity with clothing- and climate-induced evaporative impediments led to an extraordinarily high incidence of heat stroke within the military. Fortunately, deep-body temperatures > 40 °C were not always fatal. Thirty years later, water immersion and patient treatments mimicking sweat evaporation were found to be effective, with the adage of cool first, transport later being adopted. We gradually acquired an understanding of thermoeffector function during heat storage, and learned about challenges to other regulatory mechanisms. In our second topic, we explore cold tolerance and intolerance. By the 1930s, hypothermia was known to reduce cutaneous circulation, particularly at the extremities, conserving body heat. Cold-induced vasodilatation hindered heat conservation, but it was protective. Increased metabolic heat production followed, driven by shivering and non-shivering thermogenesis, even during exercise and work. Physical endurance and shivering could both be compromised by hypoglycaemia. Later, treatments for hypothermia and cold injuries were refined, and the thermal after-drop was explained. In our final topic, we critique the numerous indices developed in attempts to numerically rate hot and cold stresses. The criteria for an effective thermal stress index were established by the 1930s. However, few indices satisfied those requirements, either then or now, and the surviving indices, including the unvalidated Wet-Bulb Globe-Thermometer index, do not fully predict thermal strain.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 2: physiological measurements. Eur J Appl Physiol 2023; 123:2587-2685. [PMID: 37796291 DOI: 10.1007/s00421-023-05284-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/14/2023] [Indexed: 10/06/2023]
Abstract
In this, the second of four historical reviews on human thermoregulation during exercise, we examine the research techniques developed by our forebears. We emphasise calorimetry and thermometry, and measurements of vasomotor and sudomotor function. Since its first human use (1899), direct calorimetry has provided the foundation for modern respirometric methods for quantifying metabolic rate, and remains the most precise index of whole-body heat exchange and storage. Its alternative, biophysical modelling, relies upon many, often dubious assumptions. Thermometry, used for >300 y to assess deep-body temperatures, provides only an instantaneous snapshot of the thermal status of tissues in contact with any thermometer. Seemingly unbeknownst to some, thermal time delays at some surrogate sites preclude valid measurements during non-steady state conditions. To assess cutaneous blood flow, immersion plethysmography was introduced (1875), followed by strain-gauge plethysmography (1949) and then laser-Doppler velocimetry (1964). Those techniques allow only local flow measurements, which may not reflect whole-body blood flows. Sudomotor function has been estimated from body-mass losses since the 1600s, but using mass losses to assess evaporation rates requires precise measures of non-evaporated sweat, which are rarely obtained. Hygrometric methods provide data for local sweat rates, but not local evaporation rates, and most local sweat rates cannot be extrapolated to reflect whole-body sweating. The objective of these methodological overviews and critiques is to provide a deeper understanding of how modern measurement techniques were developed, their underlying assumptions, and the strengths and weaknesses of the measurements used for humans exercising and working in thermally challenging conditions.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- College of Human Ecology, Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Zhu M, Liu W, Wargocki P. Changes in EEG signals during the cognitive activity at varying air temperature and relative humidity. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:285-298. [PMID: 31235789 DOI: 10.1038/s41370-019-0154-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/04/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
In this study, we examined changes in EEG signals during the cognitive activity at different air temperatures and relative humidities (RH). Thirty-two healthy young people acclimatized to the subtropical climate of Changsha, China, were recruited as subjects. They experienced four air temperature levels (26, 30, 33, and 37 °C) and two relative humidity levels (50 and 70%) in a climate chamber. During 175 min-long exposures to each thermal condition, they performed cognitive tasks and their EEG signals were measured. Relative humidity of 70% and increased temperature at this relative humidity significantly increased the relative power of δ-band and significantly decreased relative power of θ-band, α-band, and β-band. This may suggest that subjects were more sleepy but less drowsy, and it was more difficult for them to think clearly. At the same time, subjective evaluations indicated that they could be less alert and it was harder for them to think. However, no changes in performance of tasks measuring cognitive abilities were observed. It remains therefore unclear whether EEG can be a credible marker of changes in cognitive activity as a result of changes in indoor environmental quality in buildings and the future experiments should closely examine this issue.
Collapse
Affiliation(s)
- Minghui Zhu
- School of Energy Science & Engineering, Central South University, Changsha, Hunan, China
| | - Weiwei Liu
- School of Energy Science & Engineering, Central South University, Changsha, Hunan, China.
| | - Pawel Wargocki
- Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Syndicus M, Wiese BS, van Treeck C. Too hot to carry on? Disinclination to persist at a task in a warm office environment. ERGONOMICS 2018; 61:476-481. [PMID: 28682156 DOI: 10.1080/00140139.2017.1353141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
We investigated the effect of an elevated ambient temperature on performance in a persistence task. The task involved the coding of incorrect symbols and participants were free to decide how long to spend performing this task. Applying a between-subject design, we tested 125 students in an office-like environment in one of the three temperature conditions. The comfort condition (Predicted Mean Vote [PMV] = 0.01) featured an average air temperature of 24 °C. The elevated ambient temperature condition was 28 °C (PMV = 1.17). Condition three employed an airstream of approximately 0.8 m/s, intended to compensate for performance decrements at the elevated air temperature (28 °C, PMV = 0.13), according to Fanger's thermal comfort equation. Participants in the warm condition were significantly less persistent compared with participants in the control and compensation conditions. As predicted by the thermal comfort equation, the airstream seemed to compensate for the higher temperature. Participants' persistence in the compensation and comfort conditions did not differ. Practitioner Summary: A laboratory experiment involving a simulated office environment and three ambient temperature conditions (24 °C, 28 °C and 28 °C plus airstream) showed that persistence at a task is significantly impaired at 28 °C. An airstream of 0.8 m/s at 28 °C compensated for the disinclination to persist with the task.
Collapse
Affiliation(s)
- Marc Syndicus
- a Personnel and Organizational Psychology , RWTH Aachen University , Aachen , Germany
| | - Bettina S Wiese
- a Personnel and Organizational Psychology , RWTH Aachen University , Aachen , Germany
| | - Christoph van Treeck
- b Institute of Energy Efficiency and Sustainable Building E3D , RWTH Aachen University , Aachen , Germany
| |
Collapse
|
5
|
Abstract
There is little doubt that increases in thermal load beyond the thermo-neutral state prove progressively stressful to all living organisms. Increasing temperatures across the globe represent in some locales, and especially for outdoors workers, a significant source of such chronic load increase. However, increases in thermal load affect cognition as well as physical work activities. Such human cognition has perennially been viewed as the primary conduit through which to solve many of the iatrogenic challenges we now face. Yet, thermal stress degrades the power to think. Here, we advance and refine the isothermal description of such cognitive decrements, founded upon a synthesis of extant empirical evidence. We report a series of mathematical functions which describe task-specific patterns of performance deterioration, linking such degrees of decrement to the time/temperature conditions in which they occur. Further, we provide a simple, free software tool to support such calculations so that adverse thermal loads can be monitored, assessed and (where possible) mitigated to preserve healthy cognitive functioning.
Collapse
Affiliation(s)
| | - P A Hancock
- b Department of Psychology , Institute for Simulation and Training, University of Central Florida , Orlando , FL , USA
| |
Collapse
|
6
|
Bhattacharyya D, Pal M, Chatterjee T, Majumdar D. Effect of load carriage and natural terrain conditions on cognitive performance in desert environments. Physiol Behav 2017; 179:253-261. [PMID: 28668620 DOI: 10.1016/j.physbeh.2017.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/27/2017] [Accepted: 06/25/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Correct decision making is a critical component of cognitive performance of a soldier, which may be influenced by the load carriage and terrain conditions during their deployment in desert environment. PURPOSE The present study was aimed to investigate the effects of loads and terrain conditions on the cognitive performance in a group of twelve healthy heat acclimatized infantry soldiers under natural desert environment. METHODS The soldiers participated in a 10min walking trial during carrying no load and also carrying 10.7, 21.4 and 30kg at two terrain conditions viz., sandy and hard. We studied attention, memory and executive function, which are having immense functional importance in military operations. Standardized cognitive test battery was applied to the participants after carrying each magnitude of load at each terrain. Baseline cognitive performance was recorded on a separate day and was compared with the performances recorded after the load carriage trials. An attempt was made to reveal the relationship between physiological workload (relative workload) and cognitive performance at the point of completion of load carriage trials. RESULTS Load, terrains and load×terrain interaction did not produce any significant effect (p>0.05) on the cognitive performance. Attention and relative workload were found significantly correlated at hard terrain under no load, 21.4kg and 30kg. Significant correlation was found between executive function and relative workload at hard terrain under no load. CONCLUSION Carrying upto 30kg load for 10min at 3.5-4kmph walking speed resulted in improvement in attention at sandy terrain, decrement in memory at both sandy and hard terrains and improvement in executive function at sandy terrain.
Collapse
Affiliation(s)
- Debojyoti Bhattacharyya
- Ergonomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research & Development Organization, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Madhusudan Pal
- Ergonomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research & Development Organization, Lucknow Road, Timarpur, Delhi 110054, India
| | - Tirthankar Chatterjee
- Ergonomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research & Development Organization, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Dhurjati Majumdar
- Institute of Nuclear Medicine and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India
| |
Collapse
|
7
|
Mazlomi A, Golbabaei F, Farhang Dehghan S, Abbasinia M, Mahmoud Khani S, Ansari M, Hosseini M. The influence of occupational heat exposure on cognitive performance and blood level of stress hormones: a field study report. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2016; 23:431-439. [PMID: 27852154 DOI: 10.1080/10803548.2016.1251137] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION This article aimed to investigate the effect of heat stress on cognitive performance and the blood concentration of stress hormones among workers of a foundry plant. METHODS Seventy workers within the exposed (35 people) and unexposed (35 people) groups were studied. The wet bulb globe temperature (WBGT) index was measured for heat stress assessment. The cognitive performance tests were conducted using the Stroop color word test (SCWT) before and during working hours. For the assessment of the serum level of cortisol and the plasma level of adrenaline and noradrenaline, blood samples were taken during working hours from both groups. RESULTS Only for SCWT III was there a significant relationship between heat stress and test duration, error rate and reaction time. The laboratory test results revealed significantly higher concentrations of cortisol, adrenaline and noradrenaline in the exposed subjects than in the unexposed group. There existed a positive correlation between cortisol, adrenaline, noradrenaline and WBGT index and also test duration and reaction time of SCWT III, and number of errors of SCWT I, SCWT II and SCWT III during work. CONCLUSION Heat stress can lead to an increase in the blood level of stress hormones, resulting in cognitive performance impairment.
Collapse
Affiliation(s)
- Adel Mazlomi
- a Department of Occupational Health , Tehran University of Medical Sciences , Iran
| | - Farideh Golbabaei
- a Department of Occupational Health , Tehran University of Medical Sciences , Iran
| | | | - Marzieh Abbasinia
- a Department of Occupational Health , Tehran University of Medical Sciences , Iran
| | | | - Mohammad Ansari
- b Department of Clinical Biochemistry , Tehran University of Medical Sciences , Iran
| | - Mostafa Hosseini
- c Department of Epidemiology and Biostatistics , Tehran University of Medical Sciences , Iran
| |
Collapse
|
8
|
Vasmatzidis I, Schlegel RE. A Methodology for Investigating Heat Stress Selectivity Effects on Mental Performance. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/154193129403800911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This paper outlines a methodology that can be used to investigate the selectivity patterns of heat stress effects. The adopted view is that heat stress causes performance to deteriorate because it depletes attentional resources. The term “selectivity” refers to the extent to which certain individual resource pools (the existence of which is postulated by multiple resource theories) are more susceptible to heat stress effects than others. The methodology consists of plotting performance of two time-shared tasks over time on the Performance Operating Characteristic (POC) space. Manipulating the difficulties of the paired tasks under the same environmental conditions (i.e., temperature level and exposure duration) produces a predictable change of the POC path. In particular, if the heat stress effects are non-selective, the POC path will rotate either clockwise or counter-clockwise depending on the task whose difficulty is increased. On the contrary, if the heat stress effects are selective, increasing the difficulty of a task will have no effect on the orientation of the POC path.
Collapse
|
9
|
Mathers JF, Grealy MA. The Effects of Increased Body Temperature on Motor Control during Golf Putting. Front Psychol 2016; 7:1246. [PMID: 27630588 PMCID: PMC5006063 DOI: 10.3389/fpsyg.2016.01246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/04/2016] [Indexed: 11/13/2022] Open
Abstract
This study investigated the effect of increased core temperature on the performance outcome and movement kinematics of elite golfers during a golf putting task. The study aimed to examine individual differences in the extent to which increased temperature influenced the rate of putting success, whether increased temperature speeded up the timing of the putting downswing and whether elite golfers changed their movement kinematics during times of thermal stress. Six participants performed 20 putts to each of four putt distances (1, 2, 3, and 4 m) under normal temperature conditions and when core body temperature was increased. There was no significant difference in the number of successful putts between the two temperature conditions, but there was an increase in putterhead velocity at ball impact on successful putts to distances of 1 and 4 m when temperature was elevated. This reflected an increase in swing amplitude rather than a reduction in swing duration as hypothesized. There were individual differences in the motor control response to thermal stress as three of the golfers changed the kinematic parameters used to scale their putting movements to achieve putts of different distances at elevated temperatures. Theoretical implications for these findings and the practical implications for elite golfers and future research are discussed.
Collapse
Affiliation(s)
| | - Madeleine A Grealy
- School of Psychological Sciences and Health, University of Strathclyde Glasgow, UK
| |
Collapse
|
10
|
Leach J. Psychological factors in exceptional, extreme and torturous environments. EXTREME PHYSIOLOGY & MEDICINE 2016; 5:7. [PMID: 27257476 PMCID: PMC4890253 DOI: 10.1186/s13728-016-0048-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/12/2016] [Indexed: 11/30/2022]
Abstract
Our cognitive system has adapted to support goal-directed behaviour within a normal environment. An abnormal environment is one to which we are not optimally adapted but can accommodate through the development of coping strategies. These abnormal environments can be ‘exceptional’, e.g., polar base, space station, submarine, prison, intensive care unit, isolation ward etc.; ‘extreme’, marked by more intense environmental stimuli and a real or perceived lack of control over the situation, e.g., surviving at sea in a life-raft, harsh prison camp etc.; or ‘tortuous’, when specific environmental stimuli are used deliberately against a person in an attempt to undermine his will or resistance. The main factors in an abnormal environment are: psychological (isolation, sensory deprivation, sensory overload, sleep deprivation, temporal disorientation); psychophysiological (thermal, stress positions), and psychosocial (cultural humiliation, sexual degradation). Each single factor may not be considered tortuous, however, if deliberately structured into a systemic cluster may constitute torture under legal definition. The individual experience of extremis can be pathogenic or salutogenic and attempts are being made to capitalise on these positive experiences whilst ameliorating the more negative aspects of living in an abnormal environment.
Collapse
Affiliation(s)
- John Leach
- Extreme Environmental Medicine & Science Group, Extreme Environments Laboratory, University of Portsmouth, Portsmouth, PO1 2ER UK
| |
Collapse
|
11
|
Occupational Heat Stress Profiles in Selected Workplaces in India. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 13:ijerph13010089. [PMID: 26729144 PMCID: PMC4730480 DOI: 10.3390/ijerph13010089] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 11/17/2022]
Abstract
Health and productivity impacts from occupational heat stress have significant ramifications for the large workforce of India. This study profiled occupational heat stress impacts on the health and productivity of workers in select organized and unorganized Indian work sectors. During hotter and cooler seasons, Wet Bulb Globe Temperatures (WBGT) were used to quantify the risk of heat stress, according to International workplace guidelines. Questionnaires assessed workers’ perceived health and productivity impacts from heat stress. A total of 442 workers from 18 Indian workplaces participated (22% and 78% from the organized and unorganized sector, respectively). Overall 82% and 42% of workers were exposed to higher than recommended WBGT during hotter and cooler periods, respectively. Workers with heavy workloads reported more heat-related health issues (chi square = 23.67, p ≤ 0.001) and reduced productivity (chi square = 15.82, p ≤ 0.001), especially the outdoor workers. Heat-rashes, dehydration, heat-syncope and urinogenital symptoms were self-reported health issues. Cited reasons for productivity losses were: extended-work hours due to fatigue/exhaustion, sickness/hospitalization and wages lost. Reducing workplace heat stress will benefit industries and workers via improving worker health and productivity. Adaptation and mitigation measures to tackle heat stress are imperative to protect the present and future workforce as climate change progresses.
Collapse
|
12
|
Bakır B, Babayiğit MA, Tekbaş ÖF, Oğur R, Kılıç A, Ulus S. Evaluation of some physical hazards which may affect health in primary schools. TURK PEDIATRI ARSIVI 2014; 49:217-23. [PMID: 26078666 PMCID: PMC4462303 DOI: 10.5152/tpa.2014.1815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 06/30/2014] [Indexed: 11/22/2022]
Abstract
AIM This study was performed with the objective to determine the levels of some physical hazards in primary schools. MATERIAL AND METHODS This study is a cross-sectional field survey. In this study which was conducted in 31 primary schools selected by appropriate sampling from the district of Keçiören of the province of Ankara, measurements related with temperature, light, electromagnetic field (EMF) and noise levels were done at hundreds of points. Approval was obtained from Gülhane Military Medical Faculty Ethics Committee (2007/97). RESULTS Only 47.1% of the classes had a temperature value within the recommended limits (20-21°C). It was found that the illumination levels in 96.8% of the schools were above the standard values. However, the levels of illumination were found to be statistically significantly decreased towards the door and the back line (p<0.05). It was found that electromagnetic field levels were significantly higher in the schools who had a source of electromagnetic field nearby compared to the schools who did not have such a source nearby (p<0.001). It was found that the electromagnetic field levels in computer classes were statistically significantly higher compared to the other classes (p<0.001). Noise levels were found to be statistically significantly higher in classes which had 35 and more students (p<0.05). No statistically significant difference was found in schools near intensive vehicle traffic in terms of noise levels (62.8±5.0 (n=72), 62.0±6.4 (n=79), respectively, p>0.05). CONCLUSIONS It was found that primary schools in the region of Keçiören had aspects which had to be improved in terms of building age, building location, brightness, electromagnetic field and noise levels. School health programs directed to improve negative enviromental factors should be developed.
Collapse
Affiliation(s)
- Bilal Bakır
- Department of Public Health, Gülhane Military Medical Faculty, Ankara, Turkey
| | | | - Ömer Faruk Tekbaş
- Department of Public Health, Gülhane Military Medical Faculty, Ankara, Turkey
| | - Recai Oğur
- Department of Public Health, Gülhane Military Medical Faculty, Ankara, Turkey
| | - Abdullah Kılıç
- Department of Microbiology, Gülhane Military Medical Faculty, Ankara, Turkey
| | - Serdar Ulus
- The Turkish Naval Force, Naval Mediacal Research Center, İstanbul, Turkey
| |
Collapse
|
13
|
Cheng CC, Shih YC, Tsai YJ, Chi CF. The influence of cooling forearm/hand and gender on estimation of handgrip strength. ERGONOMICS 2014; 57:1499-1511. [PMID: 25030838 DOI: 10.1080/00140139.2014.934298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
UNLABELLED Handgrip strength is essential in manual operations and activities of daily life, but the influence of forearm/hand skin temperature on estimation of handgrip strength is not well documented. Therefore, the present study intended to investigate the effect of local cooling of the forearm/hand on estimation of handgrip strength at various target force levels (TFLs, in percentage of MVC) for both genders. A cold pressor test was used to lower and maintain the hand skin temperature at 14°C for comparison with the uncooled condition. A total of 10 male and 10 female participants were recruited. The results indicated that females had greater absolute estimation deviations. In addition, both genders had greater absolute deviations in the middle range of TFLs. Cooling caused an underestimation of grip strength. Furthermore, a power function is recommended for establishing the relationship between actual and estimated handgrip force. Statement of relevance: Manipulation with grip strength is essential in daily life and the workplace, so it is important to understand the influence of lowering the forearm/hand skin temperature on grip-strength estimation. Females and the middle range of TFL had greater deviations. Cooling the forearm/hand tended to cause underestimation, and a power function is recommended for establishing the relationship between actual and estimated handgrip force. Practitioner Summary: It is important to understand the effect of lowering the forearm/hand skin temperature on grip-strength estimation. A cold pressor was used to cool the hand. The cooling caused underestimation, and a power function is recommended for establishing the relationship between actual and estimated handgrip force. STATEMENT OF RELEVANCE Manipulation with grip strength is essential in daily life and the workplace, so it is important to understand the influence of lowering the forearm/hand skin temperature on grip-strength estimation. Females and the middle range of TFL had greater deviations. Cooling the forearm/hand tended to cause underestimation, and a power function is recommended for establishing the relationship between actual and estimated handgrip force. PRACTITIONER SUMMARY It is important to understand the effect of lowering the forearm/hand skin temperature on grip-strength estimation. A cold pressor was used to cool the hand. The cooling caused underestimation, and a power function is recommended for establishing the relationship between actual and estimated handgrip force
Collapse
Affiliation(s)
- Chih-Chan Cheng
- a Department of Industrial Management , National Taiwan University of Science and Technology , Taipei , Taiwan
| | | | | | | |
Collapse
|
14
|
Abstract
The purpose of this review is to describe the unique anatomical and physiological features of the hands and feet that support heat conservation and dissipation, and in so doing, highlight the importance of these appendages in human thermoregulation. For instance, the surface area to mass ratio of each hand is 4-5 times greater than that of the body, whilst for each foot, it is ~3 times larger. This characteristic is supported by vascular responses that permit a theoretical maximal mass flow of thermal energy of 6.0 W (136 W m(2)) to each hand for a 1 °C thermal gradient. For each foot, this is 8.5 W (119 W m(2)). In an air temperature of 27 °C, the hands and feet of resting individuals can each dissipate 150-220 W m(2) (male-female) of heat through radiation and convection. During hypothermia, the extremities are physiologically isolated, restricting heat flow to <0.1 W. When the core temperature increases ~0.5 °C above thermoneutral (rest), each hand and foot can sweat at 22-33 mL h(-1), with complete evaporation dissipating 15-22 W (respectively). During heated exercise, sweat flows increase (one hand: 99 mL h(-1); one foot: 68 mL h(-1)), with evaporative heat losses of 67-46 W (respectively). It is concluded that these attributes allow the hands and feet to behave as excellent radiators, insulators and evaporators.
Collapse
|
15
|
Hands and feet: physiological insulators, radiators and evaporators. Eur J Appl Physiol 2014; 114:2037-60. [DOI: 10.1007/s00421-014-2940-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 06/16/2014] [Indexed: 10/25/2022]
|
16
|
|
17
|
Abstract
This review focuses upon the past 8 years of research on hyperthermic effects on behavior. Heat stress and heat stoke become severe conditions when body temperatures exceed 40°C as this can lead to delirium, convulsions, coma, and death. The animal literature indicates that hyperthermia can increase glutamatergic and decrease GABAergic neurotransmission. Interestingly, µ-opiate receptor antagonists can attenuate the morphological and biochemical changes in brain, as well as, ameliorate some behavioral deficits induced by heart stress. In humans, heat stress can produce detrimental effects on motor and cognitive performance. Since most cognitive tasks require a motor response, some cognitive deficiencies may be attributed to decreased motor performance. Although hyperthermia may exert more deleterious effects on complex than simple cognitive tasks, systematic studies are needed to examine the effects of different levels and durations of hyperthermia (irrespective of dehydration) on cognition. Additionally, body temperatures should be carefully monitored where controls are run for baseline or brief exposures to a hyperthermic environment. Acute radiofrequency exposure can disrupt behavior when body temperatures increase >1°C with whole body SAR between 3.2-8.4 W/kg and time-averaged power densities at 8-140 mW/cm(2). Effects of lower levels of radiation are conflicting and some experiments fail to replicate even with the original investigators. This suggests either that brief exposure to the radiation is at a threshold where some individuals are affected while others are not, or that these levels are innocuous. Nevertheless, thermal changes appear to account for almost all of the behavioral effects reported.
Collapse
Affiliation(s)
- William C Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
18
|
Chen WL, Shih YC, Chi CF. Hand and finger dexterity as a function of skin temperature, EMG, and ambient condition. HUMAN FACTORS 2010; 52:426-440. [PMID: 21077564 DOI: 10.1177/0018720810376514] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
OBJECTIVE This article examines the changes in skin temperature (finger, hand, forearm), manual performance (hand dexterity and strength), and forearm surface electromyograph (EMG) through 40-min, 11 degrees C water cooling followed by 15-min, 34 degrees C water rewarming; additionally, it explores the relationship between dexterity and the factors of skin temperature, EMG, and ambient condition. BACKGROUND Hand exposure in cold conditions is unavoidable and significantly affects manual performance. METHOD Two tasks requiring gross and fine dexterity were designed, namely, nut loosening and pin insertion, respectively. The nested-factorial design includes factors of gender, participant (nested within gender), immersion duration, muscle type (for EMG), and location (for skin temperature). The responses are changes in dexterity, skin temperature, normalized amplitude of EMG, and grip strength. Finally, factor analysis and stepwise regression are used to explore factors affecting hand and finger dexterity. RESULTS Dexterity, EMG, and skin temperature fell with prolonged cooling, but the EMG of the flexor digitorum superficialis remained almost unchanged during the nut loosening task. All responses but the forearm skin temperature recovered to the baseline level at the end of rewarming. The three factors extracted by factor analysis are termed skin temperature, ambient condition, and EMG. They explain approximately two thirds of the variation of the linear models for both dexterities, and the factor of skin temperature is the most influential. CONCLUSION Sustained cooling and warming significantly decreases and increases finger, hand, and forearm skin temperature. Dexterity, strength, and EMG are positively correlated to skin temperature. Therefore, keeping the finger, hand, and forearm warm is important to maintaining hand performance. APPLICATION The findings could be helpful to building safety guidelines for working in cold environments.
Collapse
Affiliation(s)
- Wen-Lin Chen
- Department of Industrial Management, National Taiwan University of Science and Technology, Taipei, Taiwan
| | | | | |
Collapse
|
19
|
Adam GE, Carter R, Cheuvront SN, Merullo DJ, Castellani JW, Lieberman HR, Sawka MN. Hydration effects on cognitive performance during military tasks in temperate and cold environments. Physiol Behav 2007; 93:748-56. [PMID: 18166204 DOI: 10.1016/j.physbeh.2007.11.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 11/01/2007] [Accepted: 11/20/2007] [Indexed: 12/19/2022]
Abstract
Body water deficits or hypohydration (HYP) may degrade cognitive performance during heat exposure and perhaps temperate conditions. Cold exposure often induces HYP, but the combined effects of cold and HYP on cognitive performance are unknown. This study investigated whether HYP degrades cognitive performance during cold exposure and if physical exercise could mitigate any cold-induced performance decline. On four occasions, eight volunteers completed one hour of militarily-relevant cognitive testing: 30 min of simulated sentry duty/marksmanship, 20 min of a visual vigilance task, a self-report workload assessment, and a mood questionnaire. Testing was conducted in a cold (2 degrees C) or temperate (20 degrees C) environment before and after cycle ergometer (60 min at 60% of VO(2peak)) exercise. Each trial was preceded by 3 h of passive heat stress (45 degrees C) in the early morning with (euhydration, EUH) or without (hypohydration, HYP; 3% body mass) fluid replacement followed by prolonged recovery. HYP did not alter any cognitive, psychomotor, or self-report parameter in either environment before or after exercise. Cold exposure increased (p<0.05) target detection latency in the sentry duty task, adversely affected mood and workload ratings, but had no impact on any other cognitive or psychomotor measure. After completing the exercise bout, there were modest improvements in friend-foe discrimination and total response latency in the sentry duty task, but not on any other performance measures. Moderate HYP had no effect on cognitive and psychomotor performance in either environment, cold exposure produced equivocal effects, and aerobic exercise improved some aspects of military task performance.
Collapse
Affiliation(s)
- Gina E Adam
- U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Hancock PA, Ross JM, Szalma JL. A meta-analysis of performance response under thermal stressors. HUMAN FACTORS 2007; 49:851-77. [PMID: 17915603 DOI: 10.1518/001872007x230226] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Quantify the effect of thermal stressors on human performance. BACKGROUND Most reviews of the effect of environmental stressors on human performance are qualitative. A quantitative review provides a stronger aid in advancing theory and practice. METHOD Meta-analytic methods were applied to the available literature on thermal stressors and performance. A total of 291 references were collected. Forty-nine publications met the selection criteria, providing 528 effect sizes for analysis. RESULTS Analyses confirmed a substantial negative effect on performance associated with thermal stressors. The overall effect size for heat was comparable to that for cold. Cognitive performance was least affected by thermal stressors, whereas both psychomotor and perceptual task performance were degraded to a greater degree. Other variables were identified that moderated thermal effects. CONCLUSION Results confirmed the importance of task type, exposure duration, and stressor intensity as key variables impacting how thermal conditions affect performance. Results were consistent with the theory that stress forces the individual to allocate attentional resources to appraise and cope with the threat, which reduces the capacity to process task-relevant information. This represents a maladaptive extension of the narrowing strategy, which acts to maintain stable levels of response when stress is first encountered. APPLICATION These quantitative estimates can be used to design thermal tolerance limits for different task types. Although results indicate the necessity for further research on a variety of potentially influential factors such as acclimatization, the current summary provides effect size estimates that should be useful in respect to protecting individuals exposed to adverse thermal conditions.
Collapse
Affiliation(s)
- P A Hancock
- University of Central Florida, Orlando, Florida, USA.
| | | | | |
Collapse
|
21
|
Brajkovic D, Ducharme MB. Finger dexterity, skin temperature, and blood flow during auxiliary heating in the cold. J Appl Physiol (1985) 2003; 95:758-70. [PMID: 12730145 DOI: 10.1152/japplphysiol.00051.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The primary purpose of the present study was to compare the effectiveness of two forms of hand heating and to discuss specific trends that relate finger dexterity performance to variables such as finger skin temperature (T(fing)), finger blood flow (Q(fing)), forearm skin temperature (T(fsk)), forearm muscle temperature (Tfmus), mean weighted body skin temperature (Tsk), and change in body heat content (DeltaH(b)). These variables along with rate of body heat storage, toe skin temperature, and change in rectal temperature were measured during direct and indirect hand heating. Direct hand heating involved the use of electrically heated gloves to keep the fingers warm (heated gloves condition), whereas indirect hand heating involved warming the fingers indirectly by actively heating the torso with an electrically heated vest (heated vest condition). Seven men (age 35.6 +/- 5.6 yr) were subjected to each method of hand heating while they sat in a chair for 3 h during exposure to -25 degrees C air. Q(fing) was significantly (P < 0.05) higher during the heated vest condition compared with the heated gloves condition (234 +/- 28 and 33 +/- 4 perfusion units, respectively), despite a similar T(fing) (which ranged between 28 and 35 degrees C during the 3-h exposure). Despite the difference in Q(fing), there was no significant difference in finger dexterity performance. Therefore, finger dexterity can be maintained with direct hand heating despite a low Q(fing). DeltaH(b), Tsk, and T(fmus) reached a low of -472 +/- 18 kJ, 28.5 +/- 0.3 degrees C, and 29.8 +/- 0.5 degrees C, respectively, during the heated gloves condition, but the values were not low enough to affect finger dexterity.
Collapse
Affiliation(s)
- Dragan Brajkovic
- Human Protection and Performance Group, Defence Research and Development Canada-Toronto, Ontario, Canada M3M 3B9.
| | | |
Collapse
|
22
|
Faerevik H, Reinertsen RE. Effects of wearing aircrew protective clothing on physiological and cognitive responses under various ambient conditions. ERGONOMICS 2003; 46:780-799. [PMID: 12745979 DOI: 10.1080/0014013031000085644] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Heat stress can be a significant problem for pilots wearing protective clothing during flights, because they provide extra insulation which prevents evaporative heat loss. Heat stress can influence human cognitive activity, which might be critical in the flying situation, requiring efficient and error-free performance. This study investigated the effect of wearing protective clothing under various ambient conditions on physiological and cognitive performance. On several occasions, eight subjects were exposed for 3 h to three different environmental conditions; 0 degrees C at 80% RH, 23 degrees C at 63% RH and 40 degrees C at 19% RH. The subjects were equipped with thermistors, dressed as they normally do for flights (including helmet, two layers of underwear and an uninsulated survival suit). During three separate exposures the subjects carried out two cognitive performance tests (Vigilance test and DG test). Performance was scored as correct, incorrect, missed reaction and reaction time. Skin temperature, deep body temperature, heart rate, oxygen consumption, temperature and humidity inside the clothing, sweat loss, subjective sensation of temperature and thermal comfort were measured. Rises in rectal temperature, skin temperature, heart rate and body water loss indicated a high level of heat stress in the 40 degrees C ambient temperature condition in comparison with 0 degrees C and 23 degrees C. Performance of the DG test was unaffected by ambient temperature. However, the number of incorrect reactions in the Vigilance test was significantly higher at 40 degrees C than at 23 degrees C (p = 0.006) or 0 degrees C (p = 0.03). The effect on Vigilance performance correlated with changes in deep-body temperature, and this is in accordance with earlier studies that have demonstrated that cognitive performance is virtually unaffected unless environmental conditions are sufficient to change deep body temperature.
Collapse
Affiliation(s)
- Hilde Faerevik
- Department of Health and Work Physiology, SINTEF Unimed, Trondheim, Norway.
| | | |
Collapse
|
23
|
Hancock PA, Vasmatzidis I. Human occupational and performance limits under stress: the thermal environment as a prototypical example. ERGONOMICS 1998; 41:1169-1191. [PMID: 9715675 DOI: 10.1080/001401398186469] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The authors wish to challenge the contemporary stress limits for workers exposed to adverse thermal conditions. Further, they wish to challenge the basis upon which all such occupational stress exposures are founded. It is their contention that task performance level should be the primary criterion for exposure. Change in behavioural performance efficiency is the most sensitive reflection of human response to stress. Such responses are superior as indices of incipient damaging effects compared with the traditional measurement of physiological function. Efficient and error-free performance is the principal criterion of contemporary work, especially in high-technology systems. Therefore, continuing exposure after work performance efficiency begins to fail, but before current physiological limits are reached, is inappropriate for both the safety and the productivity of the individual worker, their colleagues, and the systems within which they operate. Behavioural performance assessment should therefore supercede physiological assessment as the primary exposure criterion, although physiological measures still provide important supplementary information. A new description of such performance thresholds for heat stress is presented, together with its substantive theoretical foundation. Performance limits are of growing importance for prescriptions to all forms of occupational exposure and are critical necessities for future statements concerning comprehensive protective safety standards.
Collapse
Affiliation(s)
- P A Hancock
- Liberty Mutual Research Center for Safety and Health, Hopkinton, MA 01748, USA
| | | |
Collapse
|
24
|
Rammsayer TH. Effects of body core temperature and brain dopamine activity on timing processes in humans. Biol Psychol 1997; 46:169-92. [PMID: 9288412 DOI: 10.1016/s0301-0511(97)05251-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In a placebo-controlled study, the effects of experimentally induced increase in body core temperature and of the dopamine antagonist haloperidol on judgments of an apparent second, a speeded-tapping task, and temporal discrimination of intervals in the range of milliseconds and seconds were investigated in 40 healthy male subjects. A 0.7 degree C-increase in body core temperature due to 3-h exposure to an ambient temperature of 52 degrees C did not cause any statistically significant changes in timing tasks. Unlike heat exposure, 3 mg of haloperidol caused a pronounced impairment of performance on the temporal discrimination of intervals in the range of milliseconds and seconds (P < 0.01 and P < 0.001, respectively) as well as speeded tapping (P < 0.05). For temporal discrimination of intervals in the range of seconds, a significant interaction between ambient temperature and haloperidol could be established (P < 0.05) indicating that haloperidol caused a significant performance decrement only in subjects exposed to an ambient temperature of 28 degrees C but not in those exposed to 52 degrees C. The overall pattern of results suggests that temporal processing of intervals in the range of milliseconds can be considered a function of dopaminergic activity in the basal ganglia while temporal processing of longer intervals appears to be cognitively mediated. Furthermore, the hypothesis that timing processes in humans are modulated by changes in body core temperature could not be established.
Collapse
Affiliation(s)
- T H Rammsayer
- Institute of Psychology, University of Jena, Germany.
| |
Collapse
|
25
|
Rammsayer TH, Bahner E, Netter P. Effects of cold on human information processing: application of a reaction time paradigm. INTEGRATIVE PHYSIOLOGICAL AND BEHAVIORAL SCIENCE : THE OFFICIAL JOURNAL OF THE PAVLOVIAN SOCIETY 1995; 30:34-45. [PMID: 7794784 DOI: 10.1007/bf02691388] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Only a very few studies on the effects of cold on human information processing appear to exist. Therefore, the present experiment was designed to study the effects of the experimentally induced lowering of body core temperature on information processing, while applying a reaction time paradigm. Thirty healthy male volunteers performed a stimulus evaluation-response selection reaction time task after exposure to ambient temperatures of either 28 or 5 degrees C. A 0.5 degree C-decrease in body core temperature resulted in a significant increase in both reaction and movement time indicating a general deteriorating effect of lowering of body core temperature on information processing. Mean reaction times were 538 ms and 549 ms for the control and the cold group, respectively (p < .05). The respective mean movement times were 298 ms and 269 ms (p < .001). Speed of stimulus evaluation was not sensitive to decreases in body core temperature. However, response complexity and body core temperature showed a significant interaction in their effect on movement time (p < .05), indicating that lowering of body core temperature is more likely to affect response-related stages of central information processing rather than stimulus evaluation. Furthermore, movement time appeared to be more sensitive to cold-induced effects on information processing as compared to reaction time. Additional correlational analyses suggest that the observed effects can be considered as independent of changes in skin temperature and experienced levels of thermal discomfort. Taken together, the results indicate that lowering of body core temperature differentially affects various stages of information processing.
Collapse
|