1
|
Doodmani SM, Safari MH, Akbari M, Farahani N, Alimohammadi M, Aref AR, Tajik F, Maghsoodlou A, Daneshi S, Tabari T, Taheriazam A, Entezari M, Nabavi N, Hashemi M. Metastasis and chemoresistance in breast cancer: Crucial function of ZEB1/2 proteins. Pathol Res Pract 2025; 267:155838. [PMID: 39954369 DOI: 10.1016/j.prp.2025.155838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/20/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Breast cancer remains one of the leading causes of mortality worldwide. While advancements in chemotherapy, immunotherapy, radiotherapy, and targeted therapies have significantly improved breast cancer treatment, many patients are diagnosed at advanced stages, where tumor cells exhibit aggressive behavior and therapy resistance. Understanding the mechanisms driving breast cancer progression is therefore critical. Metastasis is a major factor that drastically reduces patient prognosis and survival, accounting for most breast cancer-related deaths. ZEB proteins have emerged as key regulators of cancer metastasis. Beyond their role in metastasis, ZEB proteins also influence drug resistance. This review focuses on the role of ZEB1 and ZEB2 in regulating breast cancer metastasis. These proteins interact with components of the tumor microenvironment (TME) to drive cancer progression and metastasis. Additionally, ZEB proteins regulate angiogenesis through interactions with VEGF. Targeting ZEB proteins offers potential therapeutic benefits, particularly for aggressive breast cancer subtypes such as triple-negative breast cancer (TNBC), which often show poor therapeutic response. ZEB proteins also influence the sensitivity of breast cancer cells to chemotherapy, making them promising targets for enhancing treatment efficacy. Given their upregulation in breast cancer, ZEB proteins can serve as valuable diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Seyed Mohammad Doodmani
- Department of Pathobiology, Faculty of Specialized Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohamad Hosein Safari
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Mohammadarian Akbari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences,Tehran, Iran
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX, Inc, Boston, MA, USA
| | - Fatemeh Tajik
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA, USA
| | - Amin Maghsoodlou
- Young Researchers and Elite Club, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Liu X, Chen Y, Li Y, Bai J, Zeng Z, Wang M, Dong Y, Zhou Y. STAU1-mediated CNBP mRNA degradation by LINC00665 alters stem cell characteristics in ovarian cancer. Biol Direct 2024; 19:59. [PMID: 39080743 PMCID: PMC11288052 DOI: 10.1186/s13062-024-00506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND To investigate the role of lncRNA LINC00665 in modulating ovarian cancer stemness and its influence on treatment resistance and cancer development. METHODS We isolated ovarian cancer stem cells (OCSCs) from the COC1 cell line using a combination of chemotherapeutic agents and growth factors, and verified their stemness through western blotting and immunofluorescence for stem cell markers. Employing bioinformatics, we identified lncRNAs associated with ovarian cancer, with a focus on LINC00665 and its interaction with the CNBP mRNA. In situ hybridization, immunohistochemistry, and qPCR were utilized to examine their expression and localization, alongside functional assays to determine the effects of LINC00665 on CNBP. RESULTS LINC00665 employs its Alu elements to interact with the 3'-UTR of CNBP mRNA, targeting it for degradation. This molecular crosstalk enhances stemness by promoting the STAU1-mediated decay of CNBP mRNA, thereby modulating the Wnt and Notch signaling cascades that are pivotal for maintaining CSC characteristics and driving tumor progression. These mechanistic insights were corroborated by a series of in vitro assays and validated in vivo using tumor xenograft models. Furthermore, we established a positive correlation between elevated CNBP levels and increased disease-free survival in patients with ovarian cancer, underscoring the prognostic value of CNBP in this context. CONCLUSIONS lncRNA LINC00665 enhances stemness in ovarian cancer by mediating the degradation of CNBP mRNA, thereby identifying LINC00665 as a potential therapeutic target to counteract drug resistance and tumor recurrence associated with CSCs.
Collapse
Affiliation(s)
- Xiaofang Liu
- Department of Anus and Intestine Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yang Chen
- Department of General Surgery, The First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
| | - Ying Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Jinling Bai
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Zhi Zeng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yaodong Dong
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China.
| | - Yingying Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
3
|
Tahmasebi Dehkordi H, Khaledi F, Ghasemi S. Immunological processes of enhancers and suppressors of long non-coding RNAs associated with brain tumors and inflammation. Int Rev Immunol 2024; 43:178-196. [PMID: 37974420 DOI: 10.1080/08830185.2023.2280581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Immunological processes, such as inflammation, can both cause tumor suppression and cancer progression. Moreover, deregulated levels of long non-coding RNA (lncRNA) expression in the brain may cause inflammation and lead to the growth of tumors. Like other biological processes, the immune system's role in cancer is complicated, varies, and can help or hurt the cancer's maintenance. According to research, inflammation and brain cancer are correlated via several signaling pathways. A variety of lncRNAs have recently been revealed to influence cancer by modulating inflammatory pathways. As a result, lncRNAs have the potential to influence carcinogenesis, tumor formation, or tumor suppression via an increase or decrease in inflammation functions. Although the study and targeting of lncRNAs have made great progress in the treatment of cancer, there are definitely limitations and challenges. Using new technologies like nanocarriers and cell-penetrating peptides (CPPs) to target treatments without hurting healthy body tissues has shown to be very effective. In this review article, we have collected significantly related lncRNAs and their inhibitory or stimulating roles in inflammation and brain cancer for the first time. However, there are limitations, such as side effects and damage to normal tissues. With the advancement of new targeting technologies, these lncRNAs may be candidates for the specific targeting therapy of brain cancers by limiting inflammation or stimulating the immune system against them in the future.
Collapse
Affiliation(s)
- Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Khaledi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
4
|
Ma D, Chen J, Shi Y, Gao H, Wei Z, Fan J, Wang L. Dysregulation of TCONS_00006091 contributes to the elevated risk of oral squamous cell carcinoma by upregulating SNAI1, IRS and HMGA2. Sci Rep 2024; 14:9616. [PMID: 38671227 PMCID: PMC11053020 DOI: 10.1038/s41598-024-60310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/21/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, we aimed to study the role of TCONS_00006091 in the pathogenesis of oral squamous cellular carcinoma (OSCC) transformed from oral lichen planus (OLP). This study recruited 108 OSCC patients which transformed from OLP as the OSCC group and 102 OLP patients with no sign of OSCC as the Control group. ROC curves were plotted to measure the diagnostic values of TCONS_00006091, miR-153, miR-370 and let-7g, and the changes in gene expressions were measured by RT-qPCR. Sequence analysis and luciferase assays were performed to analyze the molecular relationships among these genes. Cell proliferation and apoptosis were observed via MTT and FCM. TCONS_00006091 exhibited a better diagnosis value for OSCC transformed from OLP. OSCC group showed increased TCONS_00006091 expression and decreased expressions of miR-153, miR-370 and let-7g. The levels of SNAI1, IRS and HMGA2 was all significantly increased in OSCC patients. And TCONS_00006091 was found to sponge miR-153, miR-370 and let-7g, while these miRNAs were respectively found to targe SNAI1, IRS and HMGA2. The elevated TCONS_00006091 suppressed the expressions of miR-153, miR-370 and let-7g, leading to the increased expression of SNAI1, IRS and HMGA2. Also, promoted cell proliferation and suppressed apoptosis were observed upon the over-expression of TCONS_00006091. This study demonstrated that the expressions of miR-153, miR-370 and let-7g were down-regulated by the highly expressed TCONS_00006091 in OSCC patients, which accordingly up-regulated the expressions of SNAI1, IRS and HMGA2, resulting in the promoted cell proliferation and suppressed cell apoptosis.
Collapse
Affiliation(s)
- Danhua Ma
- Department of Stomatology, Ningbo No. 2 Hospital, No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China
| | - Jijun Chen
- Department of Stomatology, Ningbo No. 2 Hospital, No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China
| | - Yuyuan Shi
- Department of Stomatology, Ningbo No. 2 Hospital, No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China
| | - Hongyan Gao
- Department of Stomatology, Ningbo No. 2 Hospital, No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China
| | - Zhen Wei
- Department of Stomatology, Ningbo No. 2 Hospital, No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China
| | - Jiayan Fan
- Department of Stomatology, Ningbo No. 2 Hospital, No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China
| | - Liang Wang
- Department of Stomatology, Ningbo No. 2 Hospital, No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
5
|
Khalafizadeh A, Hashemizadegan SD, Shokri F, Bakhshinejad B, Jabbari K, Motavaf M, Babashah S. Competitive endogenous RNA networks: Decoding the role of long non-coding RNAs and circular RNAs in colorectal cancer chemoresistance. J Cell Mol Med 2024; 28:e18197. [PMID: 38506091 PMCID: PMC10951891 DOI: 10.1111/jcmm.18197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/17/2023] [Accepted: 02/04/2024] [Indexed: 03/21/2024] Open
Abstract
Colorectal cancer (CRC) is recognized as one of the most common gastrointestinal malignancies across the globe. Despite significant progress in designing novel treatments for CRC, there is a pressing need for more effective therapeutic approaches. Unfortunately, many patients undergoing chemotherapy develop drug resistance, posing a significant challenge for cancer treatment. Non-coding RNAs (ncRNAs) have been found to play crucial roles in CRC development and its response to chemotherapy. However, there are still gaps in our understanding of interactions among various ncRNAs, such as long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs). These ncRNAs can act as either oncogenes or tumour suppressors, affecting numerous biological functions in different cancers including CRC. A class of ncRNA molecules known as competitive endogenous RNAs (ceRNAs) has emerged as a key player in various cellular processes. These molecules form networks through lncRNA/miRNA/mRNA and circRNA/miRNA/mRNA interactions. In CRC, dysregulation of ceRNA networks has been observed across various cellular processes, including proliferation, apoptosis and angiogenesis. These dysregulations are believed to play a significant role in the progression of CRC and, in certain instances, may contribute to the development of chemoresistance. Enriching our knowledge of these dysregulations holds promise for advancing the field of diagnostic and therapeutic modalities for CRC. In this review, we discuss lncRNA- and circRNA-associated ceRNA networks implicated in the emergence and advancement of drug resistance in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Ali Khalafizadeh
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | | | - Fatemeh Shokri
- Research and Development Center of BiotechnologyTarbiat Modares UniversityTehranIran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Keyvan Jabbari
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
- Research and Development Center of BiotechnologyTarbiat Modares UniversityTehranIran
| |
Collapse
|
6
|
Akram F, Tanveer R, Andleeb S, Shah FI, Ahmad T, Shehzadi S, Akhtar AM, Syed G. Deciphering the Epigenetic Symphony of Cancer: Insights and Epigenetic Therapies Implications. Technol Cancer Res Treat 2024; 23:15330338241250317. [PMID: 38780251 PMCID: PMC11119348 DOI: 10.1177/15330338241250317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Epigenetic machinery is a cornerstone in normal cell development, orchestrating tissue-specific gene expression in mammalian cells. Aberrations in this intricate landscape drive substantial changes in gene function, emerging as a linchpin in cancer etiology and progression. While cancer was conventionally perceived as solely a genetic disorder, its contemporary definition encompasses genetic alterations intertwined with disruptive epigenetic abnormalities. This review explores the profound impact of DNA methylation, histone modifications, and noncoding RNAs on fundamental cellular processes. When these pivotal epigenetic mechanisms undergo disruption, they intricately guide the acquisition of the 6 hallmark characteristics of cancer within seemingly normal cells. Leveraging the latest advancements in decoding these epigenetic intricacies holds immense promise, heralding a new era in developing targeted and more efficacious treatment modalities against cancers driven by aberrant epigenetic modifications.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Rida Tanveer
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Sahar Andleeb
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Fatima Iftikhar Shah
- Department of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | - Tayyab Ahmad
- Department of Medicine, Fatima Memorial Hospital, Lahore, Pakistan
| | - Somia Shehzadi
- Department of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | | | - Ghania Syed
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
7
|
Maharati A, Moghbeli M. Long non-coding RNAs as the critical regulators of PI3K/AKT, TGF-β, and MAPK signaling pathways during breast tumor progression. J Transl Med 2023; 21:556. [PMID: 37596669 PMCID: PMC10439650 DOI: 10.1186/s12967-023-04434-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023] Open
Abstract
Breast cancer (BC) as one of the most common causes of human deaths among women, is always considered one of the global health challenges. Despite various advances in diagnostic and therapeutic methods, a significant percentage of BC patients have a poor prognosis due to the lack of therapeutic response. Therefore, investigating the molecular mechanisms involved in BC progression can improve the therapeutic and diagnostic strategies in these patients. Cytokine and growth factor-dependent signaling pathways play a key role during BC progression. In addition to cytokines and growth factors, long non-coding RNAs (lncRNAs) have also important roles in regulation of such signaling pathways. Therefore, in the present review we discussed the role of lncRNAs in regulation of PI3K/AKT, MAPK, and TGF-β signaling pathways in breast tumor cells. It has been shown that lncRNAs mainly have an oncogenic role through the promotion of these signaling pathways in BC. This review can be an effective step in introducing the lncRNAs inhibition as a probable therapeutic strategy to reduce tumor growth by suppression of PI3K/AKT, MAPK, and TGF-β signaling pathways in BC patients. In addition, considering the oncogenic role and increased levels of lncRNAs expressions in majority of the breast tumors, lncRNAs can be also considered as the reliable diagnostic markers in BC patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Xia J, Liu Y, Ma Y, Yang F, Ruan Y, Xu JF, Pi J. Advances of Long Non-Coding RNAs as Potential Biomarkers for Tuberculosis: New Hope for Diagnosis? Pharmaceutics 2023; 15:2096. [PMID: 37631310 PMCID: PMC10458399 DOI: 10.3390/pharmaceutics15082096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB), one of the top ten causes of death globally induced by the infection of Mycobacterium tuberculosis (Mtb), remains a grave public health issue worldwide. With almost one-third of the world's population getting infected by Mtb, between 5% and 10% of these infected individuals are predicted to develop active TB disease, which would not only result in severe tissue damage and necrosis, but also pose serious threats to human life. However, the exact molecular mechanisms underlying the pathogenesis and immunology of TB remain unclear, which significantly restricts the effective control of TB epidemics. Despite significant advances in current detection technologies and treatments for TB, there are still no appropriate solutions that are suitable for simultaneous, early, rapid, and accurate screening of TB. Various cellular events can perturb the development and progression of TB, which are always associated with several specific molecular signaling events controlled by dysregulated gene expression patterns. Long non-coding RNAs (lncRNAs), a kind of non-coding RNA (ncRNA) with a transcript of more than 200 nucleotides in length in eukaryotic cells, have been found to regulate the expression of protein-coding genes that are involved in some critical signaling events, such as inflammatory, pathological, and immunological responses. Increasing evidence has claimed that lncRNAs might directly influence the susceptibility to TB, as well as the development and progression of TB. Therefore, lncRNAs have been widely expected to serve as promising molecular biomarkers and therapeutic targets for TB. In this review, we summarized the functions of lncRNAs and their regulatory roles in the development and progression of TB. More importantly, we widely discussed the potential of lncRNAs to act as TB biomarkers, which would offer new possibilities in novel diagnostic strategy exploration and benefit the control of the TB epidemic.
Collapse
Affiliation(s)
- Jiaojiao Xia
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Fen Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
9
|
Giannuzzi F, Maiullari S, Gesualdo L, Sallustio F. The Mission of Long Non-Coding RNAs in Human Adult Renal Stem/Progenitor Cells and Renal Diseases. Cells 2023; 12:cells12081115. [PMID: 37190024 DOI: 10.3390/cells12081115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a large, heterogeneous class of transcripts and key regulators of gene expression at both the transcriptional and post-transcriptional levels in different cellular contexts and biological processes. Understanding the potential mechanisms of action of lncRNAs and their role in disease onset and development may open up new possibilities for therapeutic approaches in the future. LncRNAs also play an important role in renal pathogenesis. However, little is known about lncRNAs that are expressed in the healthy kidney and that are involved in renal cell homeostasis and development, and even less is known about lncRNAs involved in human adult renal stem/progenitor cells (ARPC) homeostasis. Here we give a thorough overview of the biogenesis, degradation, and functions of lncRNAs and highlight our current understanding of their functional roles in kidney diseases. We also discuss how lncRNAs regulate stem cell biology, focusing finally on their role in human adult renal stem/progenitor cells, in which the lncRNA HOTAIR prevents them from becoming senescent and supports these cells to secrete high quantities of α-Klotho, an anti-aging protein capable of influencing the surrounding tissues and therefore modulating the renal aging.
Collapse
Affiliation(s)
- Francesca Giannuzzi
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Silvia Maiullari
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
10
|
Hakiminia F, Jannat Alipoor F, Keshavarz M, Asadi MH. LncRNA PNKY Is Upregulated in Breast Cancer and Promotes Cell Proliferation and EMT in Breast Cancer Cells. Noncoding RNA 2023; 9:ncrna9020025. [PMID: 37104007 PMCID: PMC10143469 DOI: 10.3390/ncrna9020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/16/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are known to be important regulators in different cellular processes and are implicated in various human diseases. Recently, lncRNA PNKY has been found to be involved in pluripotency and differentiation of embryonic and postnatal neural stem cells (NSCs); however, its expression and function in cancer cells is still unclear. In the present study, we observed the expression of PNKY in various cancer tissues, including brain, breast, colorectal, and prostate cancers. In particular, we demonstrated that lncRNA PNKY was significantly upregulated in breast tumors, especially high-grade tumors. Knock down experiments indicated that the suppression of PNKY in breast cancer cells could restrict their proliferation by promoting apoptosis, senescence, and cell cycle disruption. Moreover, the results demonstrated that PNKY may play a crucial role in the cell migration of breast cancer cells. We further found that PNKY may trigger EMT in breast cancer cells by upregulating miR-150 and restricting the expression of Zeb1 and Snail. This study is the first to provide new evidence on the expression and biological function of PNKY in cancer cells and its potential contribution to tumor growth and metastasis.
Collapse
Affiliation(s)
- Forough Hakiminia
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | - Firooz Jannat Alipoor
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | - Mostafa Keshavarz
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | - Malek Hossein Asadi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| |
Collapse
|
11
|
Deng W, Zhang Y, Fang P, Shi H, Yang S. Silencing lncRNA Snhg6 mitigates bleomycin-induced pulmonary fibrosis in mice via miR-26a-5p/TGF-β1-smads axis. ENVIRONMENTAL TOXICOLOGY 2022; 37:2375-2387. [PMID: 35785413 DOI: 10.1002/tox.23603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial pulmonary disease with slow onset and high mortality. Epithelial-mesenchymal transition (EMT) is a significant condition for tissue fibrosis, and lncRNA-Snhg6 (small nucleolar RNA host gene 6) is related to EMT in some cancer cells, but its role in pulmonary fibrosis remains obscure. Here, we found that TGF-β1 and Snhg6 were up-regulated in lung tissues of BLM-induced lung fibrosis mouse, and Snhg6 expression was significantly increased in primary lung fibroblasts after BLM treatment. Snhg6 knockdown notably alleviated the pulmonary dysfunction, and the increase of fibrosis area and collagen deposition induced by BLM. MiR-26a-5p was downregulated in BLM-induced fibrotic lung tissues, and it was negatively regulated by Snhg6. Silencing Snhg6 markedly alleviated the TGF-β1-induced increase in fibrotic marker expression, cell proliferation, migration and differentiation, as well as the nuclear transport of p-Smad2/3 by modulating miR-26a-5p expression in mouse lung fibroblasts. Moreover, overexpressing Snhg6-induced collagen accumulation and fibroblast activation in fibroblasts, which was reversed by treatment with miR-26a-5p mimic or oxymatrine (an inhibitor of TGF-β1-Smads pathway). Interestingly, silencing Snhg6 in vivo mitigated BLM-driven pulmonary fibrosis by regulating the miR-26a-5p/TGF-β1-Smads axis. Our data revealed that Snhg6 contributed to the process of BLM-driven lung fibrosis in mouse by modulating the miR-26a-5p/TGF-β1-Smads axis, suggesting that Snhg6 might be a therapeutic target for lung fibrosis.
Collapse
Affiliation(s)
- Wenjing Deng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yalong Zhang
- Department of Pediatrics, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Ping Fang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongyang Shi
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuanying Yang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Hussen BM, Kheder RK, Abdullah ST, Hidayat HJ, Rahman HS, Salihi A, Taheri M, Ghafouri-Fard S. Functional interplay between long non-coding RNAs and Breast CSCs. Cancer Cell Int 2022; 22:233. [PMID: 35864503 PMCID: PMC9306174 DOI: 10.1186/s12935-022-02653-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) represents aggressive cancer affecting most women’s lives globally. Metastasis and recurrence are the two most common factors in a breast cancer patient's poor prognosis. Cancer stem cells (CSCs) are tumor cells that are able to self-renew and differentiate, which is a significant factor in metastasis and recurrence of cancer. Long non-coding RNAs (lncRNAs) describe a group of RNAs that are longer than 200 nucleotides and do not have the ability to code for proteins. Some of these lncRNAs can be mainly produced in various tissues and tumor forms. In the development and spread of malignancies, lncRNAs have a significant role in influencing multiple signaling pathways positively or negatively, making them promise useful diagnostic and prognostic markers in treating the disease and guiding clinical therapy. However, it is not well known how the interaction of lncRNAs with CSCs will affect cancer development and progression. Here, in this review, we attempt to summarize recent findings that focus on lncRNAs affect cancer stem cell self-renewal and differentiation in breast cancer development and progression, as well as the strategies and challenges for overcoming lncRNA's therapeutic resistance.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil , Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Ramiar Kamal Kheder
- Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq.,Medical Laboratory Science, College of Science, University of Raparin, Rania, KGR, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Republic of Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Republic of Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Identification of lncRNAs and Their Regulatory Relationships with mRNAs in Response to Cryptococcus neoformans Infection of THP-1 Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5532118. [PMID: 35378790 PMCID: PMC8976626 DOI: 10.1155/2022/5532118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 12/27/2021] [Accepted: 03/03/2022] [Indexed: 11/17/2022]
Abstract
Aims. Cryptococcosis is an invasive fungal disease that is associated with an increasing prevalence along with a very high fatality and is primarily caused by Cryptococcus. However, its mechanism to cause pathogenicity is not yet completely understood. In this study, we aim to screen the lncRNA markers in human monocytic (THP-1) cells infected by Cryptococcus neoformans (C. neoformans) through high-throughput sequencing technology and to explore its effects on biological functions. Methods. We initially conducted an lncRNA microarray analysis of the THP-1 cells infected by C. neoformans and normal THP-1 cells. Based upon these data, RT-qPCR was used to verify the expressions of the selected lncRNAs and mRNAs. We then performed functional and pathway enrichment analyses. Lastly, target prediction was performed by using the lncRNA target tool which was based on the differentially expressed lncRNAs. Results. We determined 81 upregulated and 96 downregulated lncRNAs using microarray. In addition, the profiling data showed 42 upregulated and 57 downregulated genes and discovered that neuroactive ligand-receptor interaction, tyrosine metabolism, and phenylalanine metabolism are extremely impaired in the regulation of C. neoformans infection. GO enrichment analysis of the 99 differentially expressed mRNAs exhibited that these modules showed different signaling pathways and biological mechanisms like protein binding and metal ion binding. Moreover, lncRNAs and mRNAs were analyzed for their coexpression relations. A qRT-PCR analysis confirmed that the expression of the top 10 differently expressed mRNA and lincRNA. The expressions of the lncRNAs after C. neoformans infection in THP-1 cells were detected by RNA-sequence, suggesting that microarray analysis could reveal lncRNAs having functional significance that might be linked with the progression of patients. Conclusion. The current study analyzed the differential lncRNAs and mRNAs in C. neoformans infection and predicted the corresponding pathways and their correlations that can offer new potential insights into the mechanistic basis of this condition.
Collapse
|
14
|
LINC00707 Regulates miR-382-5p/VEGFA Pathway to Enhance Cervical Cancer Progression. J Immunol Res 2021; 2021:5524632. [PMID: 34258298 PMCID: PMC8261168 DOI: 10.1155/2021/5524632] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/17/2021] [Indexed: 11/18/2022] Open
Abstract
Long noncoding RNAs (LncRNAs) are reported to exhibit crucial roles in cancer progression. LINC00707 is recently indicated to be a significant oncogene in various cancers. Up to now, the mechanism of LINC00707 in cervical cancer is still unclear. In this study, our present work was designed to study the biological effects of LINC00707 in cervical cancer. Firstly, the expression level of LINC00707 in cervical cancer was tested. We observed LINC00707 expression was greatly increased in cervical cancer. Then, we assessed the detailed effect of LINC00707 on the development of cervical cancer using CCK-8 assay, Transwell assays, and tumor xenograft experiments. Gain-of-function and loss-of-function assays revealed the function of LINC00707 in cervical cancer progression. In addition, the action of LINC00707 in cervical cancer cells was studied using bioinformatic tools and luciferase reporter experiment. It was displayed that loss of LINC00707 significantly repressed cell growth of cervical cancer. Meanwhile, restoration of LINC00707 expression obviously induced cervical cancer cell growth. Then, we predicted that LINC00707 could serve as a molecular sponge for miR-382-5p to modulate VEGFA expression in cervical cancer. Subsequently, lack of VEGFA expression reversed the influence of miR-382-5p knockdown on cervical cancer cells. In conclusion, our findings evidenced the significant role of LINC00707-miR-382-5p-VEGFA network in cervical cancer and it can provide an attractive target.
Collapse
|
15
|
Hu S, Liu J, Feng S, Wang Y, Liu H. LncRNA SUMO1P3 acts as a prognostic biomarker and promotes hepatocellular carcinoma growth and metastasis. Aging (Albany NY) 2021; 13:12479-12492. [PMID: 33902004 PMCID: PMC8148505 DOI: 10.18632/aging.202921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 01/04/2021] [Indexed: 04/10/2023]
Abstract
Long noncoding RNAs (lncRNAs) are involved in the progression of various cancers, including hepatocellular carcinoma (HCC). However, the biological functions of lncRNA small ubiquitin-like modifier 1 pseudogene 3 (SUMO1P3) and the underlying mechanisms remain unclear. In this study, we revealed that SUMO1P3 expression was enhanced in HCC tissues and cell lines, positively associating with tumor size and number, poor differentiation, lymphatic and distant metastasis, TNM stage, and poor prognosis in HCC patients. In vitro assays showed that SUMO1P3 depletion reduced HCC cell viability and proliferation by hindering cyclin D1 expression and Akt phosphorylation. SUMO1P3 knockdown induced HCC cell apoptosis, as indicated by increased Bax and cleaved caspase-3 expression and the decreased Bcl-2 level. SUMO1P3 silencing suppressed HCC cell migration and invasion by increasing epithelial marker E-cadherin expression and decreasing mesenchymal marker vimentin expression, as well as reducing matrix metalloproteinase (MMP)-2 and MMP-9 levels. Consistently, SUMO1P3 depletion in HCC cells retarded tumor growth and lung metastasis in vivo. Overall, these results supported the applicability of SUMO1P3 as a useful predictor of HCC prognosis and a potential therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Shu Hu
- Medical College, Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Jiancheng Liu
- Medical College, Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Shuying Feng
- Medical College, Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Yue Wang
- Medical College, Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Hongchao Liu
- Medical College, Henan University of Science and Technology, Luoyang 471003, Henan, China
| |
Collapse
|
16
|
Yang J, Huang Y, Dong B, Dai Y. Long noncoding RNA DLEU2 drives the malignant behaviors of thyroid cancer through mediating the miR-205-5p/TNFAIP8 axis. Endocr Connect 2021; 10:471-483. [PMID: 33764889 PMCID: PMC8111323 DOI: 10.1530/ec-21-0046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Considering the plight in thyroid cancer therapy, we aimed to find novel therapeutic targets from a molecular perspective. METHODS Quantitative real-time PCR (qRT-PCR) and Western blot assay were carried out to determine RNA and protein expression. Cell counting kit-8 (CCK8) assay, flow cytometry, transwell migration assay and aerobic glycolysis analysis were performed to analyze cell proliferation, apoptosis, migration and aerobic glycolysis of thyroid cancer cells. MiRcode and Starbase software were used to search the downstream genes of long noncoding RNA (lncRNA) deleted in lymphocytic leukemia 2 (DLEU2) and microRNA-205-5p (miR-205-5p), and the intermolecular combination was confirmed by dual-luciferase reporter assay. The in vivo role of DLEU2 in tumor growth was verified using the murine xenograft model. RESULTS DLEU2 and tumor necrosis factor-α-induced protein 8 (TNFAIP8) were highly expressed in thyroid cancer tissues and cell lines. DLEU2 and TNRAIP8 promoted the proliferation, migration and aerobic glycolysis and restrained the apoptosis of thyroid cancer cells. DLEU2/miR-205-5p/TNFAIP8 signaling axis was identified in thyroid cancer cells. TNFAIP8 overexpression largely rescued the malignant phenotypes in DLEU2-silenced thyroid cancer cells. DLEU2 positively regulated TNFAIP8 expression by acting as miR-205-5p sponge in thyroid cancer cells. DLEU2 silencing blocked the growth of xenograft tumors in vivo. CONCLUSION lncRNA DLEU2 exerted a pro-tumor role to promote proliferation, migration and aerobic glycolysis while repressing the apoptosis of thyroid cancer cells via miR-205-5p/TNFAIP8 axis.
Collapse
Affiliation(s)
- Jiwen Yang
- Department of Nuclear Medicine, Yijishan Hospital of Wannan Medical College, Wuhu City, Anhui Province, China
| | - Yayin Huang
- Department of Clinical Laboratory, The Second People’s Hospital of Wuhu, Wuhu City, Anhui Province, China
| | - Bohan Dong
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu City, Anhui Province, China
| | - Yunhai Dai
- Department of Nuclear Medicine, Yijishan Hospital of Wannan Medical College, Wuhu City, Anhui Province, China
- Correspondence should be addressed to Y Dai:
| |
Collapse
|
17
|
Rahnama S, Bakhshinejad B, Farzam F, Bitaraf A, Ghazimoradi MH, Babashah S. Identification of dysregulated competing endogenous RNA networks in glioblastoma: A way toward improved therapeutic opportunities. Life Sci 2021; 277:119488. [PMID: 33862117 DOI: 10.1016/j.lfs.2021.119488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 04/04/2021] [Indexed: 12/17/2022]
Abstract
Glioblastoma is recognized as one of the leading causes of death worldwide. Although there have been considerable advancements in understanding the causative molecular mechanisms of this malignancy, effective therapeutic strategies are still in limited use. It has been revealed that non-coding RNAs (ncRNAs) play critical roles in glioblastoma development, while interactions between the regulatory molecules such as long ncRNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs) remain to be fully deciphered. Over the recent years, researchers have discovered a new category of RNA molecules called competing endogenous RNA (ceRNA). This kind of RNA can contribute to molecular interactions in the form of ceRNA networks (ceRNETs). Multiple lines of evidence have demonstrated that dysregulation of various ceRNA networks is involved in glioblastoma development. Therefore, gaining insights into these dysregulations might offer potential for the early diagnosis of glioblastoma patients and identification of efficient therapeutic targets. In this review, we provide an overview of recent discoveries on ceRNA networks and the involvement of dysregulated networks in posing limitations to temozolomide therapy. We also describe signaling pathways relevant to the progression of glioblastoma.
Collapse
Affiliation(s)
- Saghar Rahnama
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
18
|
STAT3-induced up-regulation of lncRNA NEAT1 as a ceRNA facilitates abdominal aortic aneurysm formation by elevating TULP3. Biosci Rep 2021; 40:221717. [PMID: 31868202 PMCID: PMC6960067 DOI: 10.1042/bsr20193299] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) were viewed as crucial participants in the pathogenesis of abdominal aortic aneurysm (AAA). LncRNA NEAT1 was recognized as an oncogenic gene in various diseases. However, its function and mechanism in AAA were not precisely documented. Here, we explored the functional role and molecular mechanism of NEAT1 in AAA. Functionally, the effect of NEAT1 on the proliferation was assessed by CCK-8 and EdU assay, while its impact on the apoptosis was evaluated through caspase-3/9 activity and TUNEL assays. As a result, we found that NEAT1 knockdown enhanced the proliferation and impaired the apoptosis of vascular smooth muscle cells (VSMCs). Reversely, overexpressed NEAT1 exerted anti-proliferation and pro-apoptosis effects in VSMCs. Mechanically, we found that STAT3 acted as a transcription factor and contributed to NEAT1 transcription by ChIP and luciferase reporter assays. In addition, NEAT1 was confirmed as a sponge of miR-4688 and thereby increase the expression of TULP3 in VSMCs via RIP assay and RNA pull-down assay. Rescue experiments indicted that TULP3 overexpressing countervailed the impact of NEAT1 depletion on AAA biological processes. Conclusively, lncRNA NEAT1 induced by STAT3 was identified as a ceRNA and facilitated AAA formation by targeting miR-4688/TULP3 axis.
Collapse
|
19
|
Jahangiri L, Ishola T, Pucci P, Trigg RM, Pereira J, Williams JA, Cavanagh ML, Gkoutos GV, Tsaprouni L, Turner SD. The Role of Autophagy and lncRNAs in the Maintenance of Cancer Stem Cells. Cancers (Basel) 2021; 13:cancers13061239. [PMID: 33799834 PMCID: PMC7998932 DOI: 10.3390/cancers13061239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer stem cells (CSCs) represent a distinct cancer subpopulation that can influence the tumour microenvironment, in addition to cancer progression and relapse. A multitude of factors including CSC properties, long noncoding RNAs (lncRNAs), and autophagy play pivotal roles in maintaining CSCs. We discuss the methods of detection of CSCs and how our knowledge of regulatory and cellular processes, and their interaction with the microenvironment, may lead to more effective targeting of these cells. Autophagy and lncRNAs can regulate several cellular functions, thereby promoting stemness factors and CSC properties, hence understanding this triangle and its associated signalling networks can lead to enhanced therapy response, while paving the way for the development of novel therapeutic approaches. Abstract Cancer stem cells (CSCs) possess properties such as self-renewal, resistance to apoptotic cues, quiescence, and DNA-damage repair capacity. Moreover, CSCs strongly influence the tumour microenvironment (TME) and may account for cancer progression, recurrence, and relapse. CSCs represent a distinct subpopulation in tumours and the detection, characterisation, and understanding of the regulatory landscape and cellular processes that govern their maintenance may pave the way to improving prognosis, selective targeted therapy, and therapy outcomes. In this review, we have discussed the characteristics of CSCs identified in various cancer types and the role of autophagy and long noncoding RNAs (lncRNAs) in maintaining the homeostasis of CSCs. Further, we have discussed methods to detect CSCs and strategies for treatment and relapse, taking into account the requirement to inhibit CSC growth and survival within the complex backdrop of cellular processes, microenvironmental interactions, and regulatory networks associated with cancer. Finally, we critique the computationally reinforced triangle of factors inclusive of CSC properties, the process of autophagy, and lncRNA and their associated networks with respect to hypoxia, epithelial-to-mesenchymal transition (EMT), and signalling pathways.
Collapse
Affiliation(s)
- Leila Jahangiri
- Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK; (T.I.); (M.L.C.); (L.T.)
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK; (P.P.); (R.M.T.); (S.D.T.)
- Correspondence: (L.J.); (G.V.G.)
| | - Tala Ishola
- Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK; (T.I.); (M.L.C.); (L.T.)
| | - Perla Pucci
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK; (P.P.); (R.M.T.); (S.D.T.)
| | - Ricky M. Trigg
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK; (P.P.); (R.M.T.); (S.D.T.)
- Department of Functional Genomics, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Joao Pereira
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - John A. Williams
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK;
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2SY, UK
| | - Megan L. Cavanagh
- Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK; (T.I.); (M.L.C.); (L.T.)
| | - Georgios V. Gkoutos
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK;
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2SY, UK
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Oxfordshire OX110RD, UK
- MRC Health Data Research Midlands, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Experimental Cancer Medicine Centre, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham B15 2TT, UK
- NIHR Biomedical Research Centre, Birmingham B15 2TT, UK
- Correspondence: (L.J.); (G.V.G.)
| | - Loukia Tsaprouni
- Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK; (T.I.); (M.L.C.); (L.T.)
| | - Suzanne D. Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK; (P.P.); (R.M.T.); (S.D.T.)
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
20
|
Ghasemi S, Xu S, Nabavi SM, Amirkhani MA, Sureda A, Tejada S, Lorigooini Z. Epigenetic targeting of cancer stem cells by polyphenols (cancer stem cells targeting). Phytother Res 2021; 35:3649-3664. [PMID: 33619811 DOI: 10.1002/ptr.7059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022]
Abstract
Epigenetic alterations are one of the main factors that disrupt the expression of genes and consequently, they have an important role in the carcinogenicity and the progression of different cancers. Cancer stem cells (CSCs) are accountable for the recurrence, metastasis, and therapeutic failure of cancer. The noticeable and specific pathways in CSCs can be organized by epigenetic mechanisms such as DNA methylation, chromatin remodeling, regulatory RNAs, among others. Since epigenetics modifications can be changed and reversed, it is a possible tool for cancer control and treatment. Epigenetic therapies against CSCs are emerging as a very new strategy with a good future expectation to treat cancer patients. Phenolic compounds are a vast group of substances with anticarcinogenic functions, antiinflammatory, and antioxidative activities. It seems these characteristics are related to neutralizing CSCs development, their microenvironment, and metabolism through epigenetic mechanisms. In the current work, the types of epigenetic changes known in these cells are introduced. In addition, some studies about the use of polyphenols acting through a variety of epigenetic mechanisms to counteract these cells will be reviewed. The reported results seem to indicate that the use of these phenolic compounds may be useful for CSCs defeat.
Collapse
Affiliation(s)
- Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York, USA
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Amir Amirkhani
- Stem Cell and Regenerative Medicine Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain.,CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Tejada
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain.,Laboratory of neurophysiology. Biology Department, University of Balearic Islands & Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
21
|
Wan Q, Tang M, Sun SL, Hu J, Sun ZJ, Fang YT, He TC, Zhang Y. SNHG3 promotes migration, invasion, and epithelial-mesenchymal transition of breast cancer cells through the miR-186-5p/ZEB1 axis. Am J Transl Res 2021; 13:585-600. [PMID: 33594311 PMCID: PMC7868844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Increasing evidence suggests that the long non-coding RNAs (lncRNAs) participate in the development and progression of breast cancer. The lncRNA small nucleolar RNA host gene 3 (SNHG3) reportedly acts as an oncogene in hepatocellular carcinoma and colorectal cancer; however, little is known about the biological function and oncogenic mechanisms of SNHG3 in breast cancer. We demonstrated that the expression of SNHG3 was abnormally high in breast cancer tissues and cells, and transgenic expression of SNHG3 promoted the proliferation, migration, and invasion of breast cancer cell lines (MCF-7 and MDA-MB-231). The mean volume of the xenografts from the SNHG3-knockdown MCF-7 cells was lower than that of the control tumor cells. Moreover, the expression of zinc finger E-box binding homeobox 1 (ZEB1) increased after SNHG3 overexpression and vice versa. Overexpression of ZEB1 triggered cellular migration and invasion behaviors. Analysis of the mechanism underlying these effects suggested that SNHG3 is an effective sink for miR-186-5p and modulates ZEB1 repression, conferring an additional level to its post-transcriptional regulation. In conclusion, SNHG3 promotes the migration and invasion of breast cancer cells through miR-186-5p/ZEB1 regulation and the induction of the epithelial to mesenchymal transition, indicating that SNHG3 is a potential treatment target for breast cancer.
Collapse
Affiliation(s)
- Qun Wan
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400000, China
| | - Min Tang
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400000, China
| | - Shi-Lei Sun
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400000, China
| | - Jing Hu
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400000, China
| | - Zi-Jiu Sun
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400000, China
| | - Yu-Ting Fang
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400000, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Surgery, University of Chicago Medical CenterChicago, IL 60637, USA
| | - Yan Zhang
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400000, China
| |
Collapse
|
22
|
Tian S, Tang M, Li J, Wang C, Liu W. Identification of long non-coding RNA signatures for squamous cell carcinomas and adenocarcinomas. Aging (Albany NY) 2020; 13:2459-2479. [PMID: 33318305 PMCID: PMC7880362 DOI: 10.18632/aging.202278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/08/2020] [Indexed: 11/25/2022]
Abstract
Studies have demonstrated that both squamous cell carcinomas (SCCs) and adenocarcinomas (ACs) possess some common molecular characteristics. Evidence has accumulated to support the theory that long non-coding RNAs (lncRNAs) serve as novel biomarkers and therapeutic targets in complex diseases such as cancer. In this study, we aimed to identify pan lncRNA signatures that are common to squamous cell carcinomas or adenocarcinomas with different tissues of origin. With the aid of elastic-net regularized regression models, a 35-lncRNA pan discriminative signature and an 11-lncRNA pan prognostic signature were identified for squamous cell carcinomas, whereas a 6-lncRNA pan discriminative signature and a 5-lncRNA pan prognostic signature were identified for adenocarcinomas. Among them, many well-known cancer relevant genes such as MALAT1 and PVT1 were included. The identified pan lncRNA lists can help experimental biologists generate research hypotheses and adopt existing treatments for less prevalent cancers. Therefore, these signatures warrant further investigation.
Collapse
Affiliation(s)
- Suyan Tian
- Division of Clinical Research, First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| | - Mingbo Tang
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Jialin Li
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Chi Wang
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Wei Liu
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
23
|
Wang H, Hu A, Liang Y, Wang K, Zhou X, Dong J. Genome-wide analysis of long non-coding RNA expression profile in lung adenocarcinoma compared to spinal metastasis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1516. [PMID: 33313261 PMCID: PMC7729335 DOI: 10.21037/atm-20-7046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Long non-coding RNAs (lncRNAs) play important roles in tumor metastasis. The aim of the present study was to investigate their expression profile and potential functions in spinal metastasis (SM) of lung adenocarcinoma. Methods We conducted lncRNA and mRNA expression in lung adenocarcinoma and its SM tissue using microarray analysis. Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) revealed 10 differentially expressed lncRNAs. Gene ontology and pathway analysis were performed to test the gene effect. Possible target genes of lncRNAs were predicted based on precise algorithms. Results Microarray analysis found many significantly differentially expressed lncRNAs and mRNAs in lung adenocarcinoma compared with SM. qRT-PCR results aligned with those of the microarray analysis. The expression level of 10 lncRNAs showed the same trend (P<0.05). Biologic pathways known to be involved in cancer were identified among the differentially expressed mRNAs; these include cell adhesion molecules (related to 42 genes), focal adhesion (related to 31 genes), cytokine-cytokine receptor interaction (related to 48 genes), and extracellular matrix-receptor interaction (related to 23 genes). About 9,458 lncRNAs were found to have cis- or trans-genes. A total of 2,317 cis target genes were discovered to be abnormally expressed and could be regulated by lncRNAs in SM of lung adenocarcinoma. Conclusions Our results offer a genome-wide differential expression of lncRNA in lung adenocarcinoma and SM, as well as laying the foundation for further investigations of lncRNAs correlated with lung adenocarcinoma metastasis.
Collapse
Affiliation(s)
- Houlei Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Annan Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Liang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ketao Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaogang Zhou
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Xiao N, Hu Y, Juan L. Comprehensive Analysis of Differentially Expressed lncRNAs in Gastric Cancer. Front Cell Dev Biol 2020; 8:557. [PMID: 32695786 PMCID: PMC7338654 DOI: 10.3389/fcell.2020.00557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/11/2020] [Indexed: 01/26/2023] Open
Abstract
Gastric cancer (GC) is the fourth most common malignant tumor. The mechanism underlying GC occurrence and development remains unclear. Previous studies have indicated that long non-coding RNAs (lncRNAs) are significantly associated with gastric cancer, but a systematic understanding of the role of lncRNAs in gastric cancer is lacking. In recent years, with the development of next-generation sequencing technology, tens of thousands of lncRNAs have been discovered. However, a large number of unannotated lncRNAs remain unidentified in different tissues, including potential gastric cancer-related lncRNAs. In this study, RNA sequencing (RNA-seq) data from 16 samples of eight gastric cancer patients were obtained and analyzed. A total of 1,854 previously unannotated lncRNAs were identified by ab initio assembly, and 520 differentially expressed lncRNAs were validated in the TCGA expression dataset. Methylation and copy number variation (CNV) array data from the same sample were integrated in the analysis. Changes in DNA methylation levels and CNVs may be responsible for the differential expression of 91 lncRNAs. Differentially expressed lncRNAs were enriched in coexpressed clusters of genes related to functions such as cell signaling, cell cycle, immune response, metabolic processes, angiogenesis, and regulation of retinoic acid (RA) receptors. Finally, a differentially expressed lncRNA, AC004510.3, was identified as a potential biomarker for the prediction of the overall survival of gastric cancer patients.
Collapse
Affiliation(s)
- Nan Xiao
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yang Hu
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Liran Juan
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
25
|
Budkova Z, Sigurdardottir AK, Briem E, Bergthorsson JT, Sigurdsson S, Magnusson MK, Traustadottir GA, Gudjonsson T, Hilmarsdottir B. Expression of ncRNAs on the DLK1-DIO3 Locus Is Associated With Basal and Mesenchymal Phenotype in Breast Epithelial Progenitor Cells. Front Cell Dev Biol 2020; 8:461. [PMID: 32612992 PMCID: PMC7308478 DOI: 10.3389/fcell.2020.00461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) and its reversed process mesenchymal-to-epithelial transition (MET) play a critical role in epithelial plasticity during development and cancer progression. Among important regulators of these cellular processes are non-coding RNAs (ncRNAs). The imprinted DLK1-DIO3 locus, containing numerous maternally expressed ncRNAs including the lncRNA maternally expressed gene 3 (MEG3) and a cluster of over 50 miRNAs, has been shown to be a modulator of stemness in embryonic stem cells and in cancer progression, potentially through the tumor suppressor role of MEG3. In this study we analyzed the expression pattern and functional role of ncRNAs from the DLK1-DIO3 locus in epithelial plasticity of the breast. We studied their expression in various cell types of breast tissue and revisit the role of the locus in EMT/MET using a breast epithelial progenitor cell line (D492) and its isogenic mesenchymal derivative (D492M). Marked upregulation of ncRNAs from the DLK1-DIO3 locus was seen after EMT induction in two cell line models of EMT. In addition, the expression of MEG3 and the maternally expressed ncRNAs was higher in stromal cells compared to epithelial cell types in primary breast tissue. We also show that expression of MEG3 is concomitant with the expression of the ncRNAs from the DLK1-DIO3 locus and its expression is therefore likely indicative of activation of all ncRNAs at the locus. MEG3 expression is correlated with stromal markers in normal tissue and breast cancer tissue and negatively correlated with the survival of breast cancer patients in two different cohorts. Overexpression of MEG3 using CRISPR activation in a breast epithelial cell line induced partial EMT and enriched for a basal-like phenotype. Conversely, knock down of MEG3 using CRISPR inhibition in a mesenchymal cell line reduced the mesenchymal and basal-like phenotype of the cell line. In summary our study shows that maternally expressed ncRNAs are markers of EMT and suggests that MEG3 is a novel regulator of EMT/MET in breast tissue. Nevertheless, further studies are needed to fully dissect the molecular pathways influenced by non-coding RNAs at the DLK1-DIO3 locus in breast tissue.
Collapse
Affiliation(s)
- Zuzana Budkova
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Anna Karen Sigurdardottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Eirikur Briem
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Jon Thor Bergthorsson
- Department of Laboratory Hematology, Landspitali - University Hospital, Reykjavik, Iceland
| | - Snævar Sigurdsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Magnus Karl Magnusson
- Department of Pharmacology and Toxicology, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gunnhildur Asta Traustadottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology, Landspitali - University Hospital, Reykjavik, Iceland
| | - Bylgja Hilmarsdottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Pathology, Landspitali - University Hospital, Reykjavik, Iceland
| |
Collapse
|
26
|
Kohansal M, Tang H, Xie X, Taghinezhad A, Ghanbariasad A. Circular RNAs as miRNA sponges in triple-negative breast cancer: a systematic review. MINERVA BIOTECNOL 2020. [DOI: 10.23736/s1120-4826.20.02604-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Brown JM, Wasson MCD, Marcato P. The Missing Lnc: The Potential of Targeting Triple-Negative Breast Cancer and Cancer Stem Cells by Inhibiting Long Non-Coding RNAs. Cells 2020; 9:E763. [PMID: 32244924 PMCID: PMC7140662 DOI: 10.3390/cells9030763] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Treatment decisions for breast cancer are based on staging and hormone receptor expression and include chemotherapies and endocrine therapy. While effective in many cases, some breast cancers are resistant to therapy, metastasize and recur, leading to eventual death. Higher percentages of tumor-initiating cancer stem cells (CSCs) may contribute to the increased aggressiveness, chemoresistance, and worse outcomes among breast cancer. This may be particularly true in triple-negative breast cancers (TNBCs) which have higher percentages of CSCs and are associated with worse outcomes. In recent years, increasing numbers of long non-coding RNAs (lncRNAs) have been identified as playing an important role in breast cancer progression and some of these have been specifically associated within the CSC populations of breast cancers. LncRNAs are non-protein-coding transcripts greater than 200 nucleotides which can have critical functions in gene expression regulation. The preclinical evidence regarding lncRNA antagonists for the treatment of cancer is promising and therefore, presents a potential novel approach for treating breast cancer and targeting therapy-resistant CSCs within these tumors. Herein, we summarize the lncRNAs that have been identified as functionally relevant in breast CSCs. Furthermore, our review of the literature and analysis of patient datasets has revealed that many of these breast CSC-associated lncRNAs are also enriched in TNBC. Together, this suggests that these lncRNAs may be playing a particularly important role in TNBC. Thus, certain breast cancer-promoting/CSC-associated lncRNAs could be targeted in the treatment of TNBCs and the CSCs within these tumors should be susceptible to anti-lncRNA therapy.
Collapse
Affiliation(s)
- Justin M Brown
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (J.M.B.); (M.-C.D.W.)
| | - Marie-Claire D Wasson
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (J.M.B.); (M.-C.D.W.)
| | - Paola Marcato
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (J.M.B.); (M.-C.D.W.)
- Departments of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
28
|
Guo X, Zhang Y, Liu L, Yang W, Zhang Q. HNF1A-AS1 Regulates Cell Migration, Invasion and Glycolysis via Modulating miR-124/MYO6 in Colorectal Cancer Cells. Onco Targets Ther 2020; 13:1507-1518. [PMID: 32110048 PMCID: PMC7035897 DOI: 10.2147/ott.s231249] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/17/2019] [Indexed: 12/17/2022] Open
Abstract
Background Accumulating evidence determined that lncRNAs play multiple roles in cell progression in colorectal cancer (CRC). Long noncoding RNA (lncRNA) hepatocyte nuclear factor 1 homeobox A (HNF1A)-antisense RNA 1 (AS1) has been identified to affect cell growth and disease diagnosis in various cancers, including CRC. However, the underlying regulatory mechanism of HNF1A-AS1 in cell progression and glycolysis has not been fully explored in CRC. Materials and Methods The expression of HNF1A-AS1, microRNA-124 (miR-124) and Myosins of class VI (MYO6) was detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The analysis of glucose consumption, lactate production and hexokinase 2 (HK2) protein level was used to assess glycolysis in cells. The protein level of HK2 and MYO6 was measured with Western blot. Cell migration and invasion were evaluated using the transwell assay. The relationship among HNF1A-AS1, miR-124 and MYO6 was determined via luciferase reporter and RNA immunoprecipitation (RIP) assay. Results In this study, we found that HNF1A-AS1 was upregulated in CRC tissues and cell lines. Functional experiments determined that reduction of HNF1A-AS1 or promotion of miR-124 inhibited cell migration and invasion as well as glycolysis in CRC cells. What’ more, luciferase reporter assay manifested that miR-124 was a target of HNF1A-AS1 and MYO6 was a target mRNA of miR-124 in CRC cells. Additionally, reverse experiments showed that the effects of si-HNF1A-AS1 on colorectal cancer cells were impaired by anti-miR-124 and the effects of high miR-124 expression on CRC cells were rescued by upregulating MYO6. HNF1A-AS1 regulated MYO6 expression via targeting miR-124 in CRC cells. Conclusion In this study, we first found that HNF1A-AS1 regulated cell migration, invasion and glycolysis via modulating miR-124/MYO6 in CRC cells.
Collapse
Affiliation(s)
- Xiong Guo
- Colorectal and Anal Surgical Department, Xiangya Hospital Central South University, Changsha 410008, People's Republic of China
| | - Yang Zhang
- Colorectal and Anal Surgical Department, Xiangya Hospital Central South University, Changsha 410008, People's Republic of China
| | - Ling Liu
- Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital Central South University, Changsha 410008, People's Republic of China
| | - Weiming Yang
- Colorectal and Anal Surgical Department, Xiangya Hospital Central South University, Changsha 410008, People's Republic of China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital Central South University, Changsha 410008, People's Republic of China
| |
Collapse
|
29
|
Ma Z, Gu G, Pan W, Chen X. LncRNA PCAT6 Accelerates the Progression and Chemoresistance of Cervical Cancer Through Up-Regulating ZEB1 by Sponging miR-543. Onco Targets Ther 2020; 13:1159-1170. [PMID: 32103984 PMCID: PMC7012330 DOI: 10.2147/ott.s232354] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022] Open
Abstract
Background Cervical cancer (CC) is a common cancer with a poor prognosis due to the chemoresistance of CC cells to cisplatin. This study aimed to investigate the biological significance of lncRNA prostate cancer-associated transcript 6 (PCAT6) in the carcinogenesis of CC. Materials and Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was carried out to measure the abundance of PCAT6, miR-543 and zinc finger E-box binding protein 1 (ZEB1) in CC tissues and cells. The combination between miR-543 and lncRNA PCAT6 or ZEB1 was predicted by Starbase and was verified by dual-luciferase reporter assay, RNA-pull down assay and RNA immunoprecipitation (RIP) assay. Cell proliferation and chemoresistance to cisplatin were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell apoptosis and metastasis were determined by flow cytometry, Western blot and transwell migration and invasion assays. Results The abundance of ZEB1 protein was measured by Western blot assay. Murine xenograft model was established to confirm the function of lncRNA PCAT6 in vivo. The abundance of lncRNA PCAT6 was enhanced in CC tissues and cells compared with that in corresponding normal tissues and normal cervical epithelial cells Ect1/E6E7. MiR-543 was a target of PCAT6 and was negatively regulated by PCAT6. PCAT6 accelerated the proliferation, metastasis and the chemoresistance of CC cells to cisplatin while suppressed the apoptosis of CC cells. The overexpression of PCAT6 reversed the inhibitory effects of miR-543 accumulation on the proliferation, metastasis and chemoresistance of CC cells to cisplatin and the promoting impact on the apoptosis of CC cells. ZEB1 was a direct target of miR-543, and it functioned as the downstream gene of PCAT6/miR-543 to exert its oncogenic role in CC. PCAT6 promoted the growth of murine xenograft tumor through miR-543/ZEB1 axis in vivo. Conclusion LncRNA PCAT6 facilitated the proliferation, metastasis and chemoresistance of CC cells to cisplatin while impeded the apoptosis of CC cells via PCAT6/miR-543/ZEB1 axis. PCAT6/miR-543/ZEB1 axis might be a promising target for CC therapy.
Collapse
Affiliation(s)
- Zhongping Ma
- Department of Obstetrics and Gynecology, Liyang Branch of Jiangsu Provincial People's Hospital, Changzhou, People's Republic of China
| | - Guanghua Gu
- Department of Obstetrics and Gynecology, Liyang Branch of Jiangsu Provincial People's Hospital, Changzhou, People's Republic of China
| | - Weikang Pan
- Department of Obstetrics and Gynecology, Liyang Branch of Jiangsu Provincial People's Hospital, Changzhou, People's Republic of China
| | - Xiaoxiang Chen
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, People's Republic of China
| |
Collapse
|
30
|
Guo Q, Xu L, Peng R, Ma Y, Wang Y, Chong F, Song M, Dai L, Song C. Characterization of lncRNA LINC00520 and functional polymorphisms associated with breast cancer susceptibility in Chinese Han population. Cancer Med 2020; 9:2252-2268. [PMID: 31997582 PMCID: PMC7064040 DOI: 10.1002/cam4.2893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/24/2022] Open
Abstract
Background The aim was to evaluate the association between the LINC00520 genetic polymorphisms and breast cancer (BC) susceptibility. Methods Nine single‐nucleotide polymorphisms (SNPs) on LINC00520 genotyping were performed in 504 BC patients and 505 cancer‐free controls in Chinese Han population to study the relationship between LINC00520 polymorphism and BC susceptibility. qRT‐PCR and luciferase tests were used to explore how rs12880540 affected the expression of LINC00520. Results The genotype GG (OR:3.58, 95%CI:1.32‐9.69) in rs8012083 increased the risk of triple‐negative BC. The genotype GG (OR:0.31, 95%CI:0.14‐0.69) in rs8012083, the genotype AA (OR:2.74, 95%CI:1.01‐7.42) in rs2152275, and genotype TG (OR:1.62, 95%CI:1.04‐2.52) in rs12880540 were associated with HER‐2 status. The dominant (OR:0.65, 95%CI:0.45‐0.95) and overdominant genetic model (OR:0.67, 95%CI:0.46‐0.98) consistently showed that rs11622641 T was significantly associated with lower risk of BC. Similarly, the recessive genetic model (OR:1.57, 95%CI:1.07‐2.30) of rs12880540 and the dominant (OR:1.62, 95%CI:1.24‐2.11) and overdominant (OR:1.56, 95%CI:1.19‐2.03) genetic model of rs2152278 may increase the risk of BC. The relative expression of LINC00520 increased linearly with the increase in the number of rs12880540 mutations. rs12880540 alleles were due to the interaction between LINC00520 and miR‐3122 at T, but the mutation of rs12880540 G > T had no effect on the binding ability of LINC00520 and miR‐3122. Conclusion A genetic variant of rs8012083 in LINC00520 may be used as a biomarker for triple‐negative BC after further evaluation of diagnostic tests. The genetic variant of LINC00520 was related to the susceptibility of BC, and rs12880540 might affect the corresponding mRNA expression of lncRNA LINC00520.
Collapse
Affiliation(s)
- Qiaoyun Guo
- Department for Endemic Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Zhengzhou, Henan, PR China.,Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, Henan, PR China
| | - Linping Xu
- Department of Teaching and Research, Henan Tumor Hospital, Zhengzhou, Henan, PR China
| | - Rui Peng
- Department of Teaching and Research, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yan Ma
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China.,Henan Provincial Orthopedic Institute, Zhengzhou, China
| | - Yanli Wang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, Henan, PR China
| | - Feifei Chong
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, Henan, PR China
| | - Mengmeng Song
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, Henan, PR China
| | - Liping Dai
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, Henan, PR China
| | - Chunhua Song
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, Henan, PR China
| |
Collapse
|
31
|
Li S, Wu T, Zhang D, Sun X, Zhang X. The long non-coding RNA HCG18 promotes the growth and invasion of colorectal cancer cells through sponging miR-1271 and upregulating MTDH/Wnt/β-catenin. Clin Exp Pharmacol Physiol 2020; 47:703-712. [PMID: 31854468 DOI: 10.1111/1440-1681.13230] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 01/03/2023]
Abstract
Long non-coding RNAs (lncRNAs) have recently emerged as key regulators of the occurrence and progression of various human cancers, including colorectal cancer. However, the regulatory mechanism of lncRNAs in the tumorigenesis of colorectal cancer remains poorly understood. In this study, we aimed to elucidate the potential role of lncRNA HCG18 in colorectal cancer. Herein, we found that HCG18 expression was significantly upregulated in colorectal cancer tissues and cell lines. Knockdown of HCG18 significantly inhibited the growth and invasion of colorectal cancer cells, while its overexpression had the opposite effect. Moreover, HCG18 was identified as a sponge of miR-1271. Our results showed that knockdown of HCG18 markedly upregulated miR-1271 expression in colorectal cancer cells. Notably, HCG18 expression was inversely correlated with miR-1271 expression in colorectal cancer specimens. Further investigation revealed that HCG18 contributed to the enhancement of MTDH/Wnt/β-catenin signalling in colorectal cancer cells. The antitumour effect of HCG18 inhibition was significantly reversed by miR-1271 inhibition or MTDH overexpression. Overall, the results of our study demonstrate that HCG18 exerts a potential oncogenic function in colorectal cancer by enhancing MTDH/Wnt/β-catenin signalling via sponging of miR-1271, highlighting the importance of HCG18/miR-1271/ MTDH/Wnt/β-catenin signalling in the progression of colorectal cancer.
Collapse
Affiliation(s)
- Shunle Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Wu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Di Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Sun
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinwu Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Li B, Guo Z, Liang Q, Zhou H, Luo Y, He S, Lin Z. lncRNA DGCR5 Up-Regulates TGF-β1, Increases Cancer Cell Stemness and Predicts Survival of Prostate Cancer Patients. Cancer Manag Res 2019; 11:10657-10663. [PMID: 31920375 PMCID: PMC6939399 DOI: 10.2147/cmar.s231112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/14/2019] [Indexed: 11/24/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) DiGeorge syndrome critical region gene 5 (DGCR5) plays different roles in different types of human cancer, but its role in prostate cancer (PC) has not been reported. Methods DGCR5 and TGF-β1 expression in paired tumor and adjacent healthy tissues from 64 PC patients was analyzed by performing RT-qPCR. A 5-year follow-up study was performed to analyze the prognostic value of DGCR5 for PC. The interaction between DGCR5 and TGF-β1 was analyzed by overexpression experiments. Cell stemness was analyzed by cell stemness assay. Results In our study, we found that DGCR5 was down-regulated in tumor tissues than in adjacent healthy tissues of PC patients, but TGF-β1 was up-regulated in the tumor tissues. DGCR5 expression was not affected by clinical stages, but low DGCR5 level in the tumor was correlated with poor survival. DGCR5 and TGF-β1 were inversely correlated in tumor tissues but not in adjacent healthy tissues. DGCR5 over-expression resulted in down-regulation of TGF-β1, while TGF-β1 treatment did not significantly affect DGCR5 expression. DGCR5 over-expression led to decreased stemness of PC cells, but TGF-β1 treatment played a reverse role and attenuated the effects of DGCR5 over-expression. DGCR5 may decrease the stemness of PC cells by down-regulating TGF-β1.
Collapse
Affiliation(s)
- Bin Li
- Department of Urology, The First Peoples' Hospital of Foshan, Foshan City, Guangdong Province 528000, People's Republic of China
| | - Zhirui Guo
- Department of Radiology, The First Peoples' Hospital of Foshan, Foshan City, Guangdong Province 528000, People's Republic of China
| | - Quan Liang
- Department of Urology, The First Peoples' Hospital of Foshan, Foshan City, Guangdong Province 528000, People's Republic of China
| | - Huiling Zhou
- Department of Infectious Disease, The First Peoples' Hospital of Foshan, Foshan City, Guangdong Province 528000, People's Republic of China
| | - Yanping Luo
- Department of Anesthesiology Surgery, The First Peoples' Hospital of Foshan, Foshan City, Guangdong Province 528000, People's Republic of China
| | - Shuyun He
- Department of Radiology, The First Peoples' Hospital of Foshan, Foshan City, Guangdong Province 528000, People's Republic of China
| | - Zhe Lin
- Department of Urology, The First Peoples' Hospital of Foshan, Foshan City, Guangdong Province 528000, People's Republic of China
| |
Collapse
|
33
|
Zhou J, Jiang H. Livin is involved in TGF-β1-induced renal tubular epithelial-mesenchymal transition through lncRNA-ATB. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:463. [PMID: 31700899 DOI: 10.21037/atm.2019.08.29] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Renal interstitial fibrosis is accepted as a crucial component of chronic kidney diseases (CKD). Epithelial-mesenchymal transition (EMT) is an important factor contributing to renal interstitial fibrosis. Livin, due to its ability to induce EMT, is an important regulator of many types of tumors and might also be involved in human renal tubular EMT. Methods We confirmed that Livin and lncRNA-ATB could aggravate EMT in vivo and in vitro, lncRNA-ATB could be suppressed by the silencing of Livin whereas Livin expression was nearly stable when lncRNA-ATB was overexpressed or knocked out. Results Livin was upregulated in vivo and in vitro at the similar rate as the occurrence of EMT, which could be relieved when Livin was silenced. LncRNA-ATB, which is another important regulator of EMT, was also found highly expressed during this process. The silencing of lncRNA-ATB could lessen the severity of EMT, and the overexpression of lncRNA-ATB could aggravate EMT without affecting the expression of Livin. Conclusions Livin promotes EMT through the regulation of lncRNA-ATB. The silencing of Livin might be an effective targeted therapy for renal fibrosis.
Collapse
Affiliation(s)
- Jieqing Zhou
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang 110001, China
| | - Hong Jiang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
34
|
Liu Y, Gao X, Tian X. High expression of long intergenic non-coding RNA LINC00662 contributes to malignant growth of acute myeloid leukemia cells by upregulating ROCK1 via sponging microRNA-340-5p. Eur J Pharmacol 2019; 859:172535. [PMID: 31306637 DOI: 10.1016/j.ejphar.2019.172535] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/03/2019] [Accepted: 07/12/2019] [Indexed: 12/25/2022]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulatory factors in diverse pathological processes, especially in tumorigenesis. Accumulating evidence has demonstrated that long intergenic non-coding RNA 00662 (LINC00662) is overexpressed in multiple cancers and facilitates cancer development and progression. However, whether LINC00662 is involved in acute myeloid leukemia (AML) remains unknown. This study was aimed to explore the expression, biological function and regulatory mechanism of LINC00662 in AML. Here, we found that LINC00662 was significantly increased in AML tissues and cell lines. Knockdown of LINC00662 significantly reduced the growth of AML cells and upregulated AML cell apoptosis. In contrast, overexpression of LINC00662 promoted AML cell growth. MicroRNA-340-5p (miR-340-5p) was predicted as a target of LINC00662. Luciferase reporter assays and RNA pull-down assays confirmed that LINC00662 directly interacted with miR-340-5p. Expression of miR-340-5p was downregulated in AML and silencing of LINC00662 upregulated miR-340-5p expression in AML cells. Moreover, overexpression of miR-340-5p inhibited cell growth and increased apoptosis in AML cells. Inhibition of miR-340-5p significantly reversed the inhibitory effect of LINC00662 silencing on AML cell growth. In addition, Rho-associated protein kinase 1 (ROCK1) was verified as a target gene of miR-340-5p in AML cells. Restoration of ROCK1 expression partially reversed LINC00662 silencing or miR-340-5p overexpression-mediated inhibitory effect on AML cell growth. Overall, our results demonstrate that LINC00662 contributes to the malignant growth of AML cells by upregulating ROCK1 via sponging miR-340-5p, highlighting the important role of the LINC00662/miR-340-5p/ROCK1 axis in regulating the malignant behavior of AML cells.
Collapse
Affiliation(s)
- Yuan Liu
- Hematology, The First Hospital of Yulin, Yulin City, Shaanxi Province, 719000, China
| | - Xiaoyan Gao
- Hematology, Yulin No.2 Hospital, Yulin City, Shaanxi Province, 719000, China.
| | - Xiaoqing Tian
- Hematology, Yulin No.2 Hospital, Yulin City, Shaanxi Province, 719000, China
| |
Collapse
|
35
|
Li G, Cai Y, Wang C, Huang M, Chen J. LncRNA GAS5 regulates the proliferation, migration, invasion and apoptosis of brain glioma cells through targeting GSTM3 expression. The effect of LncRNA GAS5 on glioma cells. J Neurooncol 2019; 143:525-536. [PMID: 31172354 DOI: 10.1007/s11060-019-03185-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION To investigate the effects of lncRNA GAS5 on the proliferation, migration, invasion and apoptosis of brain glioma cells. METHODS The expression levels of lncRNA GAS5 and GSTM3 in normal glial cells (HEB) and glioma cells (U251 and U87) were detected by RT-qPCR and western blot, respectively. Glioma cells were transfected with ctrl vector, pcDNA-GAS5, siRNA ctrl (siNC) or GSTM3 siRNA and the effects of lncRNA GAS5 and GSTM3 on the proliferation, migration, invasion and apoptosis of glioma cells were detected by CCK-8 assay, transwell assay and Caspase 3/7 activity assay, respectively. RESULTS The expression of lncRNA GAS5 was significantly decreased in glioma cell lines U251 and U87 compared with normal glial cells HEB (p < 0.01). In addition, overexpression of lncRNA GAS5 inhibited the proliferation, migration and invasion of U251 and U87 cells, and promoted cell apoptosis as demonstrated by the increased activity of Caspase 3/7. Furthermore, GSTM3 was predicted as a target gene of lncRNA GAS5 by bioinformatics analysis and its expression was increased in glioma cells compared with the normal cells as indicated by western blotting and RT-qPCR experimental results. Silencing of GSTM3 with GSTM3 siRNA decreased the proliferation, migration and invasion but increased the apoptosis of glioma cell lines U251 and U87, which was similar to that the effect lncRNA GAS5 over-expression. CONCLUSION lncRNA GAS5 can effectively inhibit the proliferation, migration and invasion of glioma cells and promote cell apoptosis through targeting GSTM3 expression.
Collapse
Affiliation(s)
- Guoxiong Li
- Department of Neurosurgery, People's Hospital of Shiyan, Shenzhen, China.,Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Guangzhou, China
| | - Yingqian Cai
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Guangzhou, China
| | - Chuanmei Wang
- Department of Nutrition, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen, 518101, China.
| | - Min Huang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Guangzhou, China.
| | - Jiansheng Chen
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Guangzhou, China
| |
Collapse
|
36
|
Gao W, Lin S, Cheng C, Zhu A, Hu Y, Shi Z, Zhang X, Hong Z. Long non-coding RNA CASC2 regulates Sprouty2 via functioning as a competing endogenous RNA for miR-183 to modulate the sensitivity of prostate cancer cells to docetaxel. Arch Biochem Biophys 2019; 665:69-78. [DOI: 10.1016/j.abb.2018.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/13/2018] [Accepted: 01/21/2018] [Indexed: 02/01/2023]
|
37
|
Yan J, Song J, Qiao M, Zhao X, Li R, Jiao J, Sun Q. Long noncoding RNA expression profile and functional analysis in psoriasis. Mol Med Rep 2019; 19:3421-3430. [PMID: 30816535 PMCID: PMC6471922 DOI: 10.3892/mmr.2019.9993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) serve important roles in the biology of autoimmune diseases and immune-associated disorders. To identify lncRNAs specifically associated with psoriasis, the expression of lncRNAs from biopsies obtained from patients with psoriasis were compared with samples obtained from healthy volunteers using a microarray. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to detect the expression of 10 identified dysregulated lncRNAs. Cis- and trans-regulated target genes of lncRNAs were predicted. The results of microarray analysis indicated that 2,194 lncRNAs and 1,725 mRNAs were significantly dysregulated. Gene Ontology and pathway analyses among the dysregulated genes were performed. Co-expression network analysis was also performed to study molecular interactions. Several identified pathways were associated with psoriasis. Among the 2,194 dysregulated lncRNAs, 1,549 of these had cis- or trans-regulated predicted target genes. Among the 1,725 dysregulated mRNAs, 289 of the cis-regulated target genes and 262 of the trans-regulated target genes may be regulated by the differentially expressed lncRNAs; 10 differentially expressed lncRNAs were randomly selected and then validated. Of these lncRNAs, 7 exhibited the same expression profile as determined via microarray analysis, of which 3 lncRNAs were upregulated and 4 lncRNAs were downregulated. To the best of our knowledge, the present study is the first in which a microarray has been used to investigate the expression profile of lncRNAs associated with psoriasis. Additionally, the expression levels of the 10 aforementioned lncRNAs associated with psoriasis were validated in the present study for the first time using RT-qPCR. The findings demonstrated that lncRNAs may contribute to the pathogenesis of psoriasis and suggested their potential diagnostic and therapeutic value. Furthermore, the findings of the present study suggest that the combined actions of several lncRNAs may contribute to the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Jianjun Yan
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jie Song
- Department of Medical Insurance, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Meng Qiao
- Department of Dermatology, Shandong Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Xintong Zhao
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ronghua Li
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jian Jiao
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
38
|
The lncRNA UNC5B-AS1 promotes proliferation, migration, and invasion in papillary thyroid cancer cell lines. Hum Cell 2019; 32:334-342. [PMID: 30805847 DOI: 10.1007/s13577-019-00242-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
The incidence of thyroid cancer detection is continually improving worldwide with the spread of diagnostic imaging and surveillance. Although we have made great progress, there are still unknown mechanisms of papillary thyroid cancer. We found that UNC5B-AS1 is a potential oncogene in thyroid cancer. Therefore, our study aimed to investigate the biological functions of the lncRNA UNC5B-AS1 in papillary thyroid cancer. As a result, RNA-seq data on primary papillary thyroid cancer (PTC) in the TCGA database were obtained. RT-qPCR was performed to evaluate the expression levels in thyroid tissue. We then analysed the expression level of UNC5B-AS1 and its association with clinicopathologic characteristics in the TCGA database. We downregulated UNC5B-AS1 using small interfering RNA and carried out assays of cell proliferation, colony formation, migration and invasion to explore the function of UNC5B-AS1 in PTC cell lines (TPC1 and BCPAP). These results suggested that the lncRNA UNC5B-AS1 was significantly upregulated in both the TCGA cohort and our tissue cohort. Upregulated UNC5B-AS1 correlated with lymph node metastasis (P < 0.001), tumor size (P = 0.002) and histological type (P = 0.013). We also achieved an area under the ROC curve (AUC) of 93.2% for our validated cohort, which was consistent with the AUC of 94.5% for the TCGA cohort, for differentiating between PTC tissues and normal tissues. Downregulating UNC5B-AS1 expression at the RNA level significantly inhibited cell proliferation, colony formation, migration, and invasion in PTC cell lines (TPC1 and BCPAP). This study demonstrated that the lncRNA UNC5B-AS1 plays an important role in tumourigenesis and metastasis of PTC and may be a potential therapeutic target for PTC.
Collapse
|
39
|
Huang G, Liu J, Yang C, Xiang Y, Wang Y, Wang J, Cao M, Yang W. RNA sequencing discloses the genome‑wide profile of long noncoding RNAs in dilated cardiomyopathy. Mol Med Rep 2019; 19:2569-2580. [PMID: 30720098 PMCID: PMC6423559 DOI: 10.3892/mmr.2019.9937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a common type of non‑ischemic cardiomyopathy, of which the underlying mechanisms have not yet been fully elucidated. Long noncoding RNAs (lncRNAs) have been reported to serve crucial physiological roles in various cardiac diseases. However, the genome‑wide expression profile of lncRNAs remains to be elucidated in DCM. In the present study, a case‑control study was performed to identify expression deviations in circulating lncRNAs between patients with DCM and controls by RNA sequencing. Partial dysregulated lncRNAs were validated by reverse transcription‑polymerase chain reaction. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, and lncRNA‑messenger RNA (mRNA) co‑expression network analyses were employed to probe potential functions of these dysregulated lncRNAs in DCM. Comparison between 8 DCM and 8 control samples demonstrated that there were alterations in the expression levels of 988 lncRNAs and 1,418 mRNAs in total. The dysregulated lncRNAs were found to be mainly associated with system development, organ morphogenesis and metabolic regulation in terms of 'biological processes'. Furthermore, the analysis revealed that the gap junction pathway, phagosome, and dilated and hypertrophic cardiomyopathy pathways may serve crucial roles in the development of DCM. The lncRNA‑mRNA co‑expression network also suggested that the target genes of the lncRNAs were different in patients with DCM as compared with those in the controls. In conclusion, the present study revealed the genome‑wide profile of circulating lncRNAs in DCM by RNA sequencing, and explored the potential functions of these lncRNAs in DCM using bioinformatics analysis. These findings provide a theoretical foundation for future studies of lncRNAs in DCM.
Collapse
Affiliation(s)
- Guangyong Huang
- Department of Cardiology, Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong 252000, P.R. China
| | - Jingwen Liu
- Department of Cardiology, Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong 252000, P.R. China
| | - Chuansheng Yang
- Department of Cardiology, Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong 252000, P.R. China
| | - Youzhang Xiang
- Shandong Institute for Endemic Disease Control, Jinan, Shandong 250014, P.R. China
| | - Yuehai Wang
- Department of Cardiology, Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong 252000, P.R. China
| | - Jing Wang
- Shandong Institute for Endemic Disease Control, Jinan, Shandong 250014, P.R. China
| | - Miaomiao Cao
- Department of Cardiology, Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong 252000, P.R. China
| | - Wenbo Yang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
40
|
Xu D, Chen Y, Yuan C, Zhang S, Peng W. Long non-coding RNA LINC00662 promotes proliferation and migration in oral squamous cell carcinoma. Onco Targets Ther 2019; 12:647-656. [PMID: 30705593 PMCID: PMC6343512 DOI: 10.2147/ott.s188691] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Although increasing evidence has demonstrated important roles for long non-coding RNAs (lncRNAs) in cancer development, their functions in oral squamous cell carcinoma (OSCC) growth remain largely unknown. Therefore, we aimed to investigate the role of LINC00662 in OSCC. Methods The expression of LINC00662 in 61 OSCC tissues and four OSCC cell lines were detected by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Cell proliferation was detected using Cell Counting Kit-8 (CCK-8) and EdU staining methods. Migration and invasion abilities were analyzed using transwell and wound healing assay. Cell cycle distribution and apoptosis rate were evaluated by flow cytometry. Western blot method was performed to detect protein expression. Results We found that the expression of LINC00662 was significantly increased in OSCC tissues, and a higher expression of LINC00662 was detected in larger tumor size, higher stage tumors and with lymph node metastasis. Moreover, overexpression of LINC00662 induced OSCC cell proliferation, increased migration and invasion abilities, and suppressed cell apoptosis. Knockdown of LINC00662 decreased the proliferation, migration, and invasion abilities of OSCC cell, and induced apoptosis. Furthermore, LINC00662 regulated the Wnt/β-catenin pathway. Conclusion Our data indicate that LINC00662 may represent a novel indicator of OSCC and may be a potential therapeutic target for diagnosis and therapy.
Collapse
Affiliation(s)
- Debin Xu
- Department of Thyroid and Neck Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yunmei Chen
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China,
| | - Chunlei Yuan
- Department of Breast Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shuyong Zhang
- Department of Thyroid and Neck Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wei Peng
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China,
| |
Collapse
|
41
|
Abdollahzadeh R, Daraei A, Mansoori Y, Sepahvand M, Amoli MM, Tavakkoly-Bazzaz J. Competing endogenous RNA (ceRNA) cross talk and language in ceRNA regulatory networks: A new look at hallmarks of breast cancer. J Cell Physiol 2018; 234:10080-10100. [PMID: 30537129 DOI: 10.1002/jcp.27941] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023]
Abstract
Breast cancer (BC) is the most frequently occurring malignancy in women worldwide. Despite the substantial advancement in understanding the molecular mechanisms and management of BC, it remains the leading cause of cancer death in women. One of the main reasons for this obstacle is that we have not been able to find the Achilles heel for the BC as a highly heterogeneous disease. Accumulating evidence has revealed that noncoding RNAs (ncRNAs), play key roles in the development of BC; however, the involving of complex regulatory interactions between the different varieties of ncRNAs in the development of this cancer has been poorly understood. In the recent years, the newly discovered mechanism in the RNA world is "competing endogenous RNA (ceRNA)" which proposes regulatory dialogues between different RNAs, including long ncRNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs). In the latest BC research, various studies have revealed that dysregulation of several ceRNA networks (ceRNETs) between these ncRNAs has fundamental roles in establishing the hallmarks of BC development. And it is thought that such a discovery could open a new window for a better understanding of the hidden aspects of breast tumors. Besides, it probably can provide new biomarkers and potential efficient therapeutic targets for BC. This review will discuss the existing body of knowledge regarding the key functions of ceRNETs and then highlights the emerging roles of some recently discovered ceRNETs in several hallmarks of BC. Moreover, we propose for the first time the "ceRnome" as a new term in the present article for RNA research.
Collapse
Affiliation(s)
- Rasoul Abdollahzadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Daraei
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Masoumeh Sepahvand
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Endocrinology and Metabolism Molecular Cellular Sciences Institute, Metabolic Disorders Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Qiu YL, Liu YH, Ban JD, Wang WJ, Han M, Kong P, Li BH. Pathway analysis of a genome‑wide association study on a long non‑coding RNA expression profile in oral squamous cell carcinoma. Oncol Rep 2018; 41:895-907. [PMID: 30431131 PMCID: PMC6312939 DOI: 10.3892/or.2018.6870] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/01/2018] [Indexed: 01/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been consistently demonstrated to be involved in oral squamous cell carcinoma (OSCC) as either tumor oncogenes or tumor suppressors. However, the underlying mechanisms of OSCC tumorigenesis and development have not yet been fully elucidated. The expression profiles of mRNAs and lncRNAs in OSCC were analyzed by a microarray assay. To verify the results of the microarray, 10 differentially expressed lncRNAs were randomly selected and measured by quantitative RT-PCR (qRT-PCR). Gene Ontology (GO) and metabolic pathway analyses were performed to analyze gene function and identify enriched pathways. Subsequently, two independent algorithms were used to predict the target genes of the lncRNAs. We identified 2,294 lncRNAs and 1,938 mRNAs that were differentially expressed in all three OSCC tissues by a microarray assay. Through the construction of co-expression networks of differentially expressed genes, 4 critical lncRNAs nodes were identified as potential key factors in the pathogenesis of OSCC. Expression of the 4 critical lncRNA nodes was not associated with age, sex, smoking or tumor location (P>0.05) but was positively correlated with clinical stage, lymphatic metastasis, distant metastasis and survival status (P<0.05). Kaplan-Meier analysis demonstrated that low expression levels of these 4 critical lncRNA nodes contributed to poor median progression-free survival (PFS) and overall survival (OS) (P<0.05). GO and pathway analyses indicated that the functions and enriched pathways of many dysregulated genes are associated with cancer. Potential target genes of dysregulated lncRNAs were enriched in 43 metabolic pathways, with cancer pathways being the primary enrichment pathways. In summary, we analyzed the profile of lncRNAs in OSCC and identified the functions and enriched metabolic pathways of both dysregulated mRNAs and the target genes of dysregulated lncRNAs, providing new insights into molecular markers and therapeutic targets for OSCC.
Collapse
Affiliation(s)
- Yong-Le Qiu
- Department of Surgery, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Yuan-Hang Liu
- Department of Stomatology, Second Hospital of Shijiazhuang, Shijiazhuang, Hebei 050000, P.R. China
| | - Jian-Dong Ban
- Department of Stomatology, Hebei Eye Hospital, Xingtai, Hebei 054000, P.R. China
| | - Wen-Jing Wang
- Department of Surgery, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Peng Kong
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Bing-Hui Li
- Department of Surgery, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
43
|
Yang Y, Sun DM, Yu JF, Zhang M, Yi C, Yang R, Dan BH, Li AJ. Long noncoding RNA TUG1 promotes renal cell carcinoma cell proliferation, migration and invasion by downregulating microRNA‑196a. Mol Med Rep 2018; 18:5791-5798. [PMID: 30387842 DOI: 10.3892/mmr.2018.9608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 12/14/2017] [Indexed: 11/05/2022] Open
Abstract
Long noncoding RNA taurine upregulated gene 1 (lncRNA TUG1) and microRNA‑196a (miR‑196a) have been reported to serve important roles in the development of renal cell carcinoma (RCC). However, their potential mechanisms have not been completely elucidated. The aim of the present study was to clarify the biological functions of lncRNA‑TUG1 and miR‑196a, in addition to investigating the interaction between lncRNA‑TUG1 and microRNA‑196a, providing a novel insight into RCC tumorigenesis. The present study comprised two parts. In the first part, lncRNA‑TUG1 was confirmed as an oncogene, via reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis, MTT assay, flow cytometry analysis, and migration and invasion assays. In the second part, the association between lncRNA‑TUG1 and miR‑196a, and the molecular mechanism, was illustrated via RT‑qPCR analysis, MTT assay, dual luciferase reporter assay and western blotting. The results of the present study demonstrated that lncRNA‑TUG1 was able to promote RCC cell proliferation, migration and invasion in vitro by suppressing miR‑196a. Additionally, lncRNA‑TUG1 achieved its biological functions by regulating the expression levels of RAC‑α serine/threonine‑protein kinase, mitogen‑activated protein kinase and extracellular signal‑regulated kinase via inhibition of miR‑196a. In conclusion, the present findings proposed a novel potential therapeutic target, the lncRNA‑TUG1‑miR‑196a axis, which may be applicable to the treatment of RCC.
Collapse
Affiliation(s)
- Yang Yang
- Department of Urological Surgery, China Three Gorges University Affiliated Yichang City First People's Hospital, Yichang, Hubei 443000, P.R. China
| | - De-Ming Sun
- Department of Urological Surgery, China Three Gorges University Affiliated Yichang City First People's Hospital, Yichang, Hubei 443000, P.R. China
| | - Jun-Feng Yu
- Department of Urological Surgery, China Three Gorges University Affiliated Yichang City First People's Hospital, Yichang, Hubei 443000, P.R. China
| | - Man Zhang
- Department of Urological Surgery, China Three Gorges University Affiliated Yichang City First People's Hospital, Yichang, Hubei 443000, P.R. China
| | - Cheng Yi
- Department of Urological Surgery, China Three Gorges University Affiliated Yichang City First People's Hospital, Yichang, Hubei 443000, P.R. China
| | - Rui Yang
- Department of Urological Surgery, China Three Gorges University Affiliated Yichang City First People's Hospital, Yichang, Hubei 443000, P.R. China
| | - Bao-Hua Dan
- Department of Urological Surgery, China Three Gorges University Affiliated Yichang City First People's Hospital, Yichang, Hubei 443000, P.R. China
| | - Ai-Jun Li
- Department of Urological Surgery, China Three Gorges University Affiliated Yichang City First People's Hospital, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
44
|
Yang G, Fu Y, Lu X, Wang M, Dong H, Li Q. LncRNA HOTAIR/miR-613/c-met axis modulated epithelial-mesenchymal transition of retinoblastoma cells. J Cell Mol Med 2018; 22:5083-5096. [PMID: 30030888 PMCID: PMC6156449 DOI: 10.1111/jcmm.13796] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/16/2018] [Accepted: 05/26/2018] [Indexed: 12/13/2022] Open
Abstract
Since lncRNAs could modulate neoplastic development by modulating downstream miRNAs and genes, this study was carried out to figure out the synthetic contribution of HOTAIR, miR-613 and c-met to viability, apoptosis and proliferation of retinoblastoma cells. Totally 276 retinoblastoma tissues and tumour-adjacent tissues were collected, and human retinoblastoma cell lines (ie, Y79, HXO-Rb44, SO-Rb50 and WERI-RB1) were also gathered. Moreover, transfections of pcDNA3.1-HOTAIR, si-HOTAIR, miR-613 mimic, miR-613 inhibitor, pcDNA3.1/c-met were performed to evaluate the influence of HOTAIR, miR-613 and c-met on viability, apoptosis and epithelial-mesenchymal transition (EMT) of retinoblastoma cells. Dual-luciferase reporter gene assay was also arranged to confirm the targeted relationship between HOTAIR and miR-613, as well as between miR-613 and c-met. Consequently, up-regulated HOTAIR and down-regulated miR-613 expressions displayed associations with poor survival status of retinoblastoma patients (P < 0.05). Besides, inhibited HOTAIR and promoted miR-613 elevated E-cadherin expression, yet decreased Snail and Vimentin expressions (P < 0.05). Simultaneously, cell proliferation and cell viability were also less-motivated (P < 0.05). Nonetheless, c-met prohibited the functioning of miR-613, resulting in promoted cell proliferation and viability, along with inhibited cell apoptosis (P < 0.05). Finally, HOTAIR was verified to directly target miR-613, and c-met was the direct target gene of miR-613 (P < 0.05). In conclusion, the role of lncRNA HOTAIR/miR-613/c-met signalling axis in modulating retinoblastoma cells' viability, apoptosis and expressions of EMT-specific proteins might provide evidences for developing appropriate diagnostic and treatment strategies for retinoblastoma.
Collapse
Affiliation(s)
- Ge Yang
- Department of OphthalmologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou CityChina
| | - Yang Fu
- Department of General SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou CityChina
| | - Xiaoyan Lu
- Department of OphthalmologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou CityChina
| | - Menghua Wang
- Department of OphthalmologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou CityChina
| | - Hongtao Dong
- Department of OphthalmologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou CityChina
| | - Qiuming Li
- Department of OphthalmologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou CityChina
| |
Collapse
|
45
|
The emerging role of lncRNAs in the regulation of cancer stem cells. Cell Oncol (Dordr) 2018; 41:585-603. [PMID: 30218296 DOI: 10.1007/s13402-018-0406-4] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tumors contain a functional subpopulation of cells that exhibit stem cell properties. These cells, named cancer stem cells (CSCs), play significant roles in the initiation and progression of cancer. Long non-coding RNAs (lncRNAs) can act at the transcriptional, posttranscriptional and translational level. As such, they may be involved in various biological processes such as DNA damage repair, inflammation, metabolism, cell survival, cell signaling, cell growth and differentiation. Accumulating evidence indicates that lncRNAs are key regulators of the CSC subpopulation, thereby contributing to cancer progression. The aim of this review is to overview current knowledge about the functional role and the mechanisms of action of lncRNAs in the initiation, maintenance and regulation of CSCs derived from different neoplasms. These lncRNAs include CTCF7, ROR, DILC, HOTAIR, H19, HOTTIP, ATB, HIF2PUT, SOX2OT, MALAT-1, CUDR, Lnc34a, Linc00617, DYNC2H1-4, PVT1, SOX4 and ARSR Uc.283-plus. Furthermore, we will illustrate how lncRNAs may regulate asymmetric CSC division and contribute to self-renewal, drug resistance and EMT, thus affecting the metastasis and recurrence of different cancers. In addition, we will highlight the implications of targeting lncRNAs to improve the efficacy of conventional drug therapies and to hamper CSC survival and proliferation. CONCLUSIONS lncRNAs are valuable tools in the search for new targets to selectively eliminate CSCs and improve clinical outcomes. LncRNAs may serve as excellent therapeutic targets because they are stable, easily detectable and expressed in tissue-specific contexts.
Collapse
|
46
|
Wu F, Zhou D, Cui Y, Shen G, Li Y, Wei F. Long non-coding RNA UCA1 modulates the glycolysis of cervical cancer cells by miR-493-5p/HK2. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3943-3951. [PMID: 31949782 PMCID: PMC6962770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/14/2018] [Indexed: 06/10/2023]
Abstract
Long noncoding RNAs (lncRNAs) are associated with tumor development and progression. LncRNA UCA1 (UCA1) recently has been reported to take part in cancer cell proliferation. However, the expression and underlying molecular mechanism of UCA1 in cervical cancer cell glycolysis is unclear. This study aimed to investigate the role of UCA1 in cervical cancer. In order to explore the role of UCA1 in cervical cancer, first, the expression levels of UCA1 in cervical cancer tissues were measured, and the results showed that UCA1 levels were higher in cancer tissues compared to matched adjacent normal tissues. The inhibition of UCA1 expression suppressed human cervical cancer cell proliferation and glycolysis. Additionally, our experimental results indicated that UCA1 could directly bind to miR-493-5p and regulate miR-493-5p expression in an inverse manner. Namely, UCA1 could reverse the inhibitory effect of miR-493-5p on cervical cancer cells' proliferation and glycolysis. Moreover, we revealed that HK2 is a target gene of miR-493-5p through a Targetscan prediction. It was verified that miR-493-5p downregulated HK2 mRNA and protein levels using real time RT-PCR and Western blotting. In a summary, this study demonstrated that UCA1 functioned as an oncogene by UCA1/miR-493-5p/HK2 axis in cervical cancer.
Collapse
Affiliation(s)
- Fengli Wu
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology Beijing, China
| | - Dan Zhou
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology Beijing, China
| | - Ying Cui
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology Beijing, China
| | - Guihua Shen
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology Beijing, China
| | - Ye Li
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology Beijing, China
| | - Fenghua Wei
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology Beijing, China
| |
Collapse
|
47
|
Ge MH, Jiang LH, Wen QL, Tan Z, Chen C, Zheng CM, Zhu X, Chen JW, Zhu ZY, Cai XJ. Preliminary screening and analysis of metastasis-related lncRNA and co-expressed papillary thyroid carcinoma mRNA. Oncol Lett 2018; 16:3715-3725. [PMID: 30127982 PMCID: PMC6096112 DOI: 10.3892/ol.2018.9080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/27/2018] [Indexed: 01/12/2023] Open
Abstract
The objective of the present study was to investigate the long non-coding RNA (lncRNA) and mRNA expression profiles that are associated with the invasion and metastasis of papillary thyroid carcinoma (PTC). Transwell invasion assays were used to screen three highly invasive sub-strains of the human PTC IHH4 cell line: IHH4-M1, IHH4-M2 and IHH4-M3. In addition, tumor-bearing nude mice were used to identify the invasive and metastatic capacity of the three sub-strains. Agilent lncRNA microarray chips were used to screen 795 differentially expressed lncRNAs and 788 differentially expressed mRNAs. A total of 10 lncRNAs and 10 mRNAs were randomly selected for RT-qPCR validation to confirm that the results were consistent with the microarray chips, suggesting that the results of the microarray chip analysis were relatively accurate. Gene ontology enrichment-based cluster analysis revealed that the differentially expressed genes were mainly associated with steroid biosynthesis, bioadhesion, intercellular adhesion and other metastasis-associated biological processes. The results of the pathway cluster analysis identified that the differentially expressed genes were associated with tumor metastasis-associated signaling pathways, including the cholesterol metabolic signaling pathway, the sterol regulatory element-binding protein signaling pathway and the integrin signaling pathway, suggesting that lncRNA may regulate PTC metastasis through various signaling pathways. The present study screened and constructed PTC metastasis-associated lncRNA and mRNA expression profiles, and it provides a molecular basis for the future study of high-risk molecular markers of PTC.
Collapse
Affiliation(s)
- Ming-Hua Ge
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310016, P.R. China
| | - Lie-Hao Jiang
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310016, P.R. China
| | - Qing-Liang Wen
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310016, P.R. China
| | - Zhuo Tan
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310016, P.R. China
| | - Chao Chen
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310016, P.R. China
| | - Chuan-Ming Zheng
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310016, P.R. China
| | - Xin Zhu
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310016, P.R. China
| | - Jia-Wen Chen
- Donghai Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, P.R. China
| | - Zi-Yu Zhu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiu-Jun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
48
|
Aziz HA, Abdel-Salam ASG, Al-Obaide MAI, Alobydi HW, Al-Humaish S. Kynurenine 3-Monooxygenase Gene Associated With Nicotine Initiation and Addiction: Analysis of Novel Regulatory Features at 5' and 3'-Regions. Front Genet 2018; 9:198. [PMID: 29951083 PMCID: PMC6008986 DOI: 10.3389/fgene.2018.00198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/17/2018] [Indexed: 11/13/2022] Open
Abstract
Tobacco smoking is widespread behavior in Qatar and worldwide and is considered one of the major preventable causes of ill health and death. Nicotine is part of tobacco smoke that causes numerous health risks and is incredibly addictive; it binds to the α7 nicotinic acetylcholine receptor (α7nAChR) in the brain. Recent studies showed α7nAChR involvement in the initiation and addiction of smoking. Kynurenic acid (KA), a significant tryptophan metabolite, is an antagonist of α7nAChR. Inhibition of kynurenine 3-monooxygenase enzyme encoded by KMO enhances the KA levels. Modulating KMO gene expression could be a useful tactic for the treatment of tobacco initiation and dependence. Since KMO regulation is still poorly understood, we aimed to investigate the 5' and 3'-regulatory factors of KMO gene to advance our knowledge to modulate KMO gene expression. In this study, bioinformatics methods were used to identify the regulatory sequences associated with expression of KMO. The displayed differential expression of KMO mRNA in the same tissue and different tissues suggested the specific usage of the KMO multiple alternative promoters. Eleven KMO alternative promoters identified at 5'-regulatory region contain TATA-Box, lack CpG Island (CGI) and showed dinucleotide base-stacking energy values specific to transcription factor binding sites (TFBSs). The structural features of regulatory sequences can influence the transcription process and cell type-specific expression. The uncharacterized LOC105373233 locus coding for non-coding RNA (ncRNA) located on the reverse strand in a convergent manner at the 3'-side of KMO locus. The two genes likely expressed by a promoter that lacks TATA-Box harbor CGI and two TFBSs linked to the bidirectional transcription, the NRF1, and ZNF14 motifs. We identified two types of microRNA (miR) in the uncharacterized LOC105373233 ncRNA, which are like hsa-miR-5096 and hsa-miR-1285-3p and can target the miR recognition element (MRE) in the KMO mRNA. Pairwise sequence alignment identified 52 nucleotides sequence hosting MRE in the KMO 3' UTR untranslated region complementary to the ncRNA LOC105373233 sequence. We speculate that the identified miRs can modulate the KMO expression and together with alternative promoters at the 5'-regulatory region of KMO might contribute to the development of novel diagnostic and therapeutic algorithm for tobacco smoking.
Collapse
Affiliation(s)
- Hassan A Aziz
- College of Arts and Sciences, Qatar University, Doha, Qatar
| | | | - Mohammed A I Al-Obaide
- School of Medicine, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | | | | |
Collapse
|
49
|
Cipolla GA, de Oliveira JC, Salviano-Silva A, Lobo-Alves SC, Lemos DS, Oliveira LC, Jucoski TS, Mathias C, Pedroso GA, Zambalde EP, Gradia DF. Long Non-Coding RNAs in Multifactorial Diseases: Another Layer of Complexity. Noncoding RNA 2018; 4:E13. [PMID: 29751665 PMCID: PMC6027498 DOI: 10.3390/ncrna4020013] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/13/2018] [Accepted: 05/04/2018] [Indexed: 02/06/2023] Open
Abstract
Multifactorial diseases such as cancer, cardiovascular conditions and neurological, immunological and metabolic disorders are a group of diseases caused by the combination of genetic and environmental factors. High-throughput RNA sequencing (RNA-seq) technologies have revealed that less than 2% of the genome corresponds to protein-coding genes, although most of the human genome is transcribed. The other transcripts include a large variety of non-coding RNAs (ncRNAs), and the continuous generation of RNA-seq data shows that ncRNAs are strongly deregulated and may be important players in pathological processes. A specific class of ncRNAs, the long non-coding RNAs (lncRNAs), has been intensively studied in human diseases. For clinical purposes, lncRNAs may have advantages mainly because of their specificity and differential expression patterns, as well as their ideal qualities for diagnosis and therapeutics. Multifactorial diseases are the major cause of death worldwide and many aspects of their development are not fully understood. Recent data about lncRNAs has improved our knowledge and helped risk assessment and prognosis of these pathologies. This review summarizes the involvement of some lncRNAs in the most common multifactorial diseases, with a focus on those with published functional data.
Collapse
Affiliation(s)
- Gabriel A Cipolla
- Department of Genetics, Federal University of Parana, Curitiba 81531-980, Brazil.
| | | | | | - Sara C Lobo-Alves
- Department of Genetics, Federal University of Parana, Curitiba 81531-980, Brazil.
| | - Debora S Lemos
- Department of Genetics, Federal University of Parana, Curitiba 81531-980, Brazil.
| | - Luana C Oliveira
- Department of Genetics, Federal University of Parana, Curitiba 81531-980, Brazil.
| | - Tayana S Jucoski
- Department of Genetics, Federal University of Parana, Curitiba 81531-980, Brazil.
| | - Carolina Mathias
- Department of Genetics, Federal University of Parana, Curitiba 81531-980, Brazil.
| | - Gabrielle A Pedroso
- Department of Genetics, Federal University of Parana, Curitiba 81531-980, Brazil.
| | - Erika P Zambalde
- Department of Genetics, Federal University of Parana, Curitiba 81531-980, Brazil.
| | - Daniela F Gradia
- Department of Genetics, Federal University of Parana, Curitiba 81531-980, Brazil.
| |
Collapse
|
50
|
Dong HX, Wang R, Jin XY, Zeng J, Pan J. LncRNA DGCR5 promotes lung adenocarcinoma (LUAD) progression via inhibiting hsa-mir-22-3p. J Cell Physiol 2018; 233:4126-4136. [PMID: 29030962 DOI: 10.1002/jcp.26215] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022]
Abstract
Long non-coding RNAs (lncRNAs) serve critical roles in the pathogenesis of various cancers, including lung adenocarcinoma (LUAD). Herein, in this study, we aimed to investigate the biological and clinical significance of lncRNA DiGeorge syndrome critical region gene 5 (DGCR5) in LUAD. It was observed that DGCR5 was upregulated in LUAD tissues and LUAD cell lines. Inhibition of DGCR5 can prevent LUAD progression via playing anti-apoptosis roles. Both mRNA expression and protein levels of BCL-2 were increased by DGCR5 downregulation while reversely BAX was increased. Additionally, a novel microRNA target of DGCR5, hsa-mir-22-3p was identified through bioinformatics search and confirmed by dual-luciferase reporter system. Gain and loss-of-function studies were performed to verify whether DGCR5 exerts its biological functions through regulating hsa-mir-22-3p in vitro. Overexpression of DGCR5 was able to reverse the tumor inhibitory effect of hsa-mir-22-3p mimics. Furthermore, in vivo tests tumor xenografts were established to detect the function of DGCR5 in LUAD tumorigenesis. Downregulated DGCR5 expression was greatly associated with smaller tumor size, implying a favorable prognosis of LUAD patients. Taken these together, DGCR5 could be considered as a prognostic biomarker and therapeutic target in LUAD diagnosis and treatment.
Collapse
Affiliation(s)
- Hui-Xing Dong
- Department of Respiratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren Wang
- Department of Respiratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Yan Jin
- Department of Respiratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zeng
- Department of Respiratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Pan
- Department of Respiratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|