1
|
Kaur M, Rehman HM, Wu Y, Kaur G, Hammad HM, Usmani YS, Kaur A, Bansal M. Comprehensive analysis and outcomes of hybridization of physiologically active heterocycles targeting epidermal growth factor receptor (EGFR). Comput Biol Med 2025; 184:109347. [PMID: 39531924 DOI: 10.1016/j.compbiomed.2024.109347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Epidermal growth factor receptors (EGFR) are primarily engaged in the regulation of fundamental cellular processes. Overexpression and mutations in these tyrosine kinases cause a variety of malignancies, including lung cancer. The current study addresses the suppression of inactive and mutant variants of the EGFR target site via two primary proposals: (1) To prevent the formation of its mutant form by inhibiting inactive EGFR. (2) To suppress the mutant EGFR directly. After the virtual screening of a newly designed series of hybrid models, selected molecules were synthesized and well-characterized from various spectroscopic and spectrometric methods. The critical analysis and chemistry behind the structural interactions of the selected compounds with three target sites were discussed i.e., inactive EGFR (PDB code: 1XKK), mutant EGFR (PDB code: 3W2O), and allosteric site of mutant EGFR (PDB code: 6P1L). It was observed that compound 7 showed effective results in terms of docking score, structural interactions as well as orientation in the binding pocket towards the inactive target site. Whereas, compound 8 exhibited all the above-mentioned features excellently against mutant EGFR. Apart from that, the investigations were expanded to study the structural behaviour in the allosteric site, where compound 8 once again performed effectively. Such proposals were further clarified by running molecular dynamics (MD) simulation for 100 ns towards inactive, mutant, and allosteric sites of mutant EGFR. Where compounds 7, and 8 demonstrated highly consistence behaviour during the whole simulation trajectory. Further, in vitro results of EGFR inhibition assay and anti-proliferative activity were found in accordance with the computational findings. For the EGFR inhibition assay, compounds 7, and 8 showed excellent IC50 values of 20.7, and 22.5 μM respectively. Moreover, IC50 values exhibited by both the compounds in anti-proliferative activity were observed to be 27.5, and 11.7 μM respectively. Thus, compounds 7 and 8 may have potential to become good anticancer agents.
Collapse
Affiliation(s)
- Mandeep Kaur
- Synthetic and Medicinal Chemistry Laboratory, Department of Chemistry, Punjabi University, Patiala, 147002, India
| | - Hafiz Muzzammel Rehman
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Yurong Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, China
| | - Gurmeet Kaur
- Synthetic and Medicinal Chemistry Laboratory, Department of Chemistry, Punjabi University, Patiala, 147002, India
| | - Hafiz Muhammad Hammad
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Yusuf Siraj Usmani
- Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Amandeep Kaur
- Synthetic and Medicinal Chemistry Laboratory, Department of Chemistry, Punjabi University, Patiala, 147002, India
| | - Manisha Bansal
- Synthetic and Medicinal Chemistry Laboratory, Department of Chemistry, Punjabi University, Patiala, 147002, India.
| |
Collapse
|
2
|
Zhu Y, Gong Y, Wang Y, Jiang Z, Yao Y, Miao X, Wang S, Zhang Y, Cao J. Flurbiprofen axetil is involved in basal-like breast cancer metastasis via suppressing the MEK/ERK signaling pathway. Cell Biol Int 2025; 49:68-78. [PMID: 39364685 DOI: 10.1002/cbin.12251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 07/12/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
Flurbiprofen axetil is commonly utilized in clinical practice as one of the nonsteroidal anti-inflammatory drugs (NSAIDs) and is included in multimodal analgesia regimens postbreast cancer surgery. Numerous NSAIDs have been studied for their potential to both promote and inhibit cancer. Given the variability in their effects on tumors, further investigation into the specific role of flurbiprofen axetil is warranted. Therefore, the primary objective of this study was to assess the impact of flurbiprofen axetil on basal-like breast cancer (BLBC) metastasis and elucidate the underlying molecular mechanisms involved. The BLBC metastasis mouse model was established by caudal vein injection of tumor cells. The lung metastasis of breast cancer in mice and the effect of flurbiprofen axetil were assessed by in vivo bioluminescence imaging, hematoxylin and eosin staining and immunohistochemistry. In vitro, the results of flurbiprofen axetil on the proliferation, migration, and invasion of MDA-MB-231 human breast cancer cells and BT-549 human breast cancer cells were assessed by colony formation assay and transwell assay. The effects of flurbiprofen axetil on several tumor metastasis-related signaling pathway proteins were examined by western blot, and the reversal extent of the flurbiprofen axetil effect by Ro 67-7476 (ERK phosphorylation agonist) was detected by transwell assay. The results showed that flurbiprofen axetil significantly inhibited BLBC lung metastasis in mice. Flurbiprofen axetil similarly inhibited breast cancer cell migration and invasion in vitro but did not affect their proliferation. Mechanistic investigations have revealed that flurbiprofen axetil exerts a noteworthy inhibitory influence on the MEK/ERK pathway while exhibiting no significant alteration in the expression of other pathway proteins intricately associated with epithelial-mesenchymal transition. In conclusion, the inhibitory effect of flurbiprofen axetil on BLBC metastasis is characterized by its selectivity in targeting the MEK/ERK signaling pathway rather than exerting a broad impact on the global signaling pathway.
Collapse
Affiliation(s)
- Yalin Zhu
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, China
- Changhai Hospital, Faculty of Anesthesiology, Naval Medical University, Shanghai, China
- Department of Anesthesiology, Naval Hospital of Eastern Theater, Zhoushan, China
| | - Yi Gong
- Department of Respiratory Diseases and Critical Medicine, Quzhou Hospital Affiliated to Wenzhou Medical University, Quzhou, Zhejiang, China
- Department of Respiratory Diseases and Critical Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yifei Wang
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Zhengyu Jiang
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, China
- Changhai Hospital, Faculty of Anesthesiology, Naval Medical University, Shanghai, China
| | - Ying Yao
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Xiaoyong Miao
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Shuoer Wang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Zhang
- Changhai Hospital, Faculty of Anesthesiology, Naval Medical University, Shanghai, China
| | - Jianping Cao
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Samuels E, Parks J, Chu J, McDonald T, Spinelli J, Murphy RA, Bhatti P. Metabolites Associated with Polygenic Risk of Breast Cancer. Metabolites 2024; 14:295. [PMID: 38921430 PMCID: PMC11205321 DOI: 10.3390/metabo14060295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
While hundreds of germline genetic variants have been associated with breast cancer risk, the mechanisms underlying the impacts of most of these variants on breast cancer remain uncertain. Metabolomics may offer valuable insights into the mechanisms underlying genetic risks of breast cancer. Among 143 cancer-free female participants, we used linear regression analyses to explore associations between the genetic risk of breast cancer, as determined by a previously developed polygenic risk score (PRS) that included 266 single-nucleotide polymorphisms (SNPs), and 223 measures of metabolites obtained from blood samples using nuclear magnetic resonance (NMR). A false discovery rate of 10% was applied to account for multiple comparisons. PRS was statistically significantly associated with 45 metabolite measures. These were primarily measures of very low-density lipoproteins (VLDLs) and high-density lipoproteins (HDLs), including triglycerides, cholesterol, and phospholipids. For example, the strongest effect was observed with the percent ratio of medium VLDL triglycerides to total lipids (0.53 unit increase in mean-standardized ln-transformed percent ratio per unit increase in PRS; q = 0.1). While larger-scale studies are needed to confirm these results, this exploratory study presents biologically plausible findings that are consistent with previously reported associations between lipids and breast cancer risk. If confirmed, these lipids could be targeted for lifestyle and pharmaceutical interventions among women at increased genetic risk of breast cancer.
Collapse
Affiliation(s)
- Elizabeth Samuels
- Cancer Control Research, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jaclyn Parks
- Cancer Control Research, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Jessica Chu
- Cancer Control Research, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Treena McDonald
- Cancer Control Research, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - John Spinelli
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Rachel A. Murphy
- Cancer Control Research, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Park HM, Park JY, Kim NY, Kim J, Pham TH, Hong JT, Yoon DY. Modulatory effects of point-mutated IL-32θ (A94V) on tumor progression in triple-negative breast cancer cells. Biofactors 2024; 50:294-310. [PMID: 37658685 DOI: 10.1002/biof.2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Breast cancer is a frequently diagnosed cancer and the leading cause of death among women worldwide. Tumor-associated macrophages stimulate cytokines and chemokines, which induce angiogenesis, metastasis, proliferation, and tumor-infiltrating immune cells. Although interleukin-32 (IL-32) has been implicated in the development and modulation of several cancers, its function in breast cancer remains elusive. Mutation of interleukin-32θ (IL-32θ) in the tissues of patients with breast cancer was detected by Sanger sequencing. RT-qPCR was used to detect the mRNA levels of inflammatory cytokines, chemokines, and mediators. The secreted proteins were detected using respective enzyme-linked immunosorbent assays. Evaluation of the inhibitory effect of mutant IL-32θ on proliferation, migration, epithelial-mesenchymal transition (EMT), and cell cycle arrest in breast cancer cells was conducted using MTS assays, migration assays, and Western blotting. A point mutation (281C>T, Ala94Val) was detected in IL-32θ in both breast tumors and adjacent normal tissues, which suppressed the expression of pro-inflammatory factors, EMT factors, and cell cycle related factors. Mutated IL-32θ inhibited the expression of inflammatory factors by regulating the NF-κB pathway. Furthermore, mutated IL-32θ suppressed EMT markers and cell cycle related factors through the FAK/PI3K/AKT pathway. It was inferred that mutated IL-32θ modulates breast cancer progression. Mutated IL-32θ (A94V) inhibited inflammation, EMT, and proliferation in breast cancer by regulating the NF-κB (p65/p50) and FAK-PI3K-GSK3 pathways.
Collapse
Affiliation(s)
- Hyo-Min Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jae-Young Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Na-Yeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jinju Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Thu-Huyen Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Gamal H, Tawfik W, El-Sayyad HI, Emam AN, Fahmy HM, El-Ghaweet HA. A new vision of photothermal therapy assisted with gold nanorods for the treatment of mammary cancers in adult female rats. NANOSCALE ADVANCES 2023; 6:170-187. [PMID: 38125593 PMCID: PMC10729923 DOI: 10.1039/d3na00595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
Over the past decade, the therapeutic landscape has markedly changed for patients with breast cancers (BCs), yet few studies have evaluated the power of the photothermal therapy (PTT) technique. The present study aimed to assess the potency of 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary cancer treatment with this technique. In total, forty-two adult virgin female Wistar rats were categorized into seven groups, negative control, polyvinylpyrrolidone-capped gold nanorods (PVP-AuNRs) positive control (400 μL per rat ∼ 78 ppm), NIR laser irradiation 808 nm positive control with an intensity of (808 nm NIR CW diode laser, 200 mW cm-2 for 5 min), DMBA-treatment, DMBA-induced mammary cancer group treated with polyvinylpyrrolidone-capped gold nanorods, DMBA-induced mammary cancer group treated with NIR laser irradiation, and DMBA-induced mammary cancer group treated with polyvinylpyrrolidone-capped gold nanorods and NIR laser irradiation. Treatment with polyvinylpyrrolidone-capped gold nanorods and/or NIR laser irradiation was performed after three weeks of DMBA-induced mammary cancer. The mammary tumor lesions in the rat model induced with DMBA are highly invasive. Synthesis and characterization of gold nanorods (AuNRs) with an aspect ratio ranging from 2.8 to 3 were employed to validate the nanostructure and polyvinylpyrrolidone capping and their stability in absorbing near-infrared light. As a result, the therapy strategy, DMBA + PVP-AuNRs + NIR, effectively treated the tumor and halted its growth. The mammary glands were dissected and subjected to biochemical analysis for serum and tissue. Our treatment technique improved the histological aspects of mammary cancer in various forms of mammary cancer detected. Immuno-histochemical localization and TEM images supported these results reflecting the efficacy of this technique. Finally, our findings uncover for the first time the revolutionary effect of the PTT strategy using PVP-capped AuNRs in selectively destroying mammary cancer cells in rats.
Collapse
Affiliation(s)
- Hend Gamal
- Department of Zoology, Faculty of Science, Mansoura University Mansoura Egypt
| | - Walid Tawfik
- National Institute of Laser Enhanced Sciences (NILES), Cairo University Cairo Egypt
| | - Hassan Ih El-Sayyad
- Department of Zoology, Faculty of Science, Mansoura University Mansoura Egypt
| | - Ahmed N Emam
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre (NRC) El Bohouth St. Dokki Cairo Egypt
- Nanomedicine & Tissue Engineering Research Lab, Medical Research Centre of Excellence, National Research Centre El Bohouth St., Dokki 12622 Cairo Egypt
| | - Heba Mohamed Fahmy
- Department of Biophysics, Faculty of Science Cairo University Cairo Egypt
| | - Heba A El-Ghaweet
- Department of Zoology, Faculty of Science, Mansoura University Mansoura Egypt
| |
Collapse
|
6
|
Fadaly WAA, Zidan TH, Kahk NM, Mohamed FEA, Abdelhakeem MM, Khalil RG, Nemr MTM. New pyrazolyl-thiazolidinone/thiazole derivatives as celecoxib/dasatinib analogues with selective COX-2, HER-2 and EGFR inhibitory effects: design, synthesis, anti-inflammatory/anti-proliferative activities, apoptosis, molecular modelling and ADME studies. J Enzyme Inhib Med Chem 2023; 38:2281262. [PMID: 38010912 PMCID: PMC11003491 DOI: 10.1080/14756366.2023.2281262] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023] Open
Abstract
Two new series of pyrazolyl-thiazolidinone/thiazole derivatives 16a-b and 18a-j were synthesised, merging the scaffolds of celecoxib and dasatinib. Compounds 16a, 16b and 18f inhibit COX-2 with S.I. 134.6, 26.08 and 42.13 respectively (celecoxib S.I. = 24.09). Compounds 16a, 16b, 18c, 18d and 18f inhibit MCF-7 with IC50 = 0.73-6.25 μM (dasatinib IC50 = 7.99 μM) and (doxorubicin IC50 = 3.1 μM) and inhibit A549 with IC50 = 1.64-14.3 μM (dasatinib IC50 = 11.8 μM and doxorubicin IC50 = 2.42 μM) with S.I. (F180/MCF7) of 33.15, 7.13, 18.72, 13.25 and 8.28 respectively higher than dasatinib (4.03) and doxorubicin (3.02) and S.I. (F180/A549) of 14.75, 12.96, 4.16, 7.07 and 18.88 respectively higher than that of dasatinib (S.I. = 2.72) and doxorubicin (S.I = 3.88). Derivatives 16a, 18c, 18d, 18f inhibit EGFR and HER-2 IC50 for EGFR of 0.043, 0.226, 0.388, 0.19 μM respectively and for HER-2 of 0.032, 0.144, 0.195, 0.201 μM respectively.
Collapse
Affiliation(s)
- Wael A. A. Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Taha H. Zidan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nesma M. Kahk
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma E. A. Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M. Abdelhakeem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab G. Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed T. M. Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Jannuzzi AT, Yilmaz Goler AM, Shilkar D, Mondal S, Basavanakatti VN, Yıldırım H, Yıldız M, Çelik Onar H, Bayrak N, Jayaprakash V, TuYuN AF. Cytotoxic activity of quinolinequinones in cancer: In vitro studies, molecular docking, and ADME/PK profiling. Chem Biol Drug Des 2023; 102:1133-1154. [PMID: 37537000 DOI: 10.1111/cbdd.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Lead molecules containing 1,4-quinone moiety are intriguing novel compounds that can be utilized to treat cancer owing to their antiproliferative activities. Nine previously reported quinolinequinones (AQQ1-9) were studied to better understand their inhibitory profile to produce potent and possibly safe lead molecules. The National Cancer Institute (NCI) of Bethesda chose all quinolinequinones (AQQ1-9) based on the NCI Developmental Therapeutics Program and tested them against a panel of 60 cancer cell lines. At a single dose and five further doses, AQQ7 significantly inhibited the proliferation of all leukemia cell lines and some breast cancer cell lines. We investigated the in vitro cytotoxic activities of the most promising compounds, AQQ2 and AQQ7, in MCF7 and T-47D breast cancer cells, DU-145 prostate cancer cells, HCT-116 and COLO 205 colon cancer cell lines, and HaCaT human keratinocytes using the MTT assay. AQQ7 showed particularly high cytotoxicity against MCF7 cells. Further analysis showed that AQQ7 exhibits anticancer activity through the induction of apoptosis without causing cell cycle arrest or oxidative stress. Molecular docking simulations for AQQ2 and AQQ7 were conducted against the COX, PTEN, and EGFR proteins, which are commonly overexpressed in breast, cervical, and prostate cancers. The in vitro ADME and in vivo PK profiling of these compounds have also been reported.
Collapse
Affiliation(s)
- Ayse Tarbin Jannuzzi
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, İstanbul University, Istanbul, Turkey
| | - Ayse Mine Yilmaz Goler
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Subodh Mondal
- Bioanalysis, Eurofins Advinus BioPharma Services India Pvt Ltd., Bengaluru, Karnataka, India
| | | | - Hatice Yıldırım
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mahmut Yıldız
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Hülya Çelik Onar
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nilüfer Bayrak
- Department of Chemistry, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Amaç Fatih TuYuN
- Department of Chemistry, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
8
|
Vazquez E, Lipovka Y, Cervantes-Arias A, Garibay-Escobar A, Haby MM, Queiroga FL, Velazquez C. Canine Mammary Cancer: State of the Art and Future Perspectives. Animals (Basel) 2023; 13:3147. [PMID: 37835752 PMCID: PMC10571550 DOI: 10.3390/ani13193147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Mammary cancer is the most frequently diagnosed neoplasia in women and non-spayed female dogs and is one of the leading causes of death in both species. Canines develop spontaneous mammary tumors that share a significant number of biological, clinical, pathological and molecular characteristics with human breast cancers. This review provides a detailed description of the histological, molecular and clinical aspects of mammary cancer in canines; it discusses risk factors and currently available diagnostic and treatment options, as well as remaining challenges and unanswered questions. The incidence of mammary tumors is highly variable and is impacted by biological, pathological, cultural and socioeconomic factors, including hormonal status, breed, advanced age, obesity and diet. Diagnosis is mainly based on histopathology, although several efforts have been made to establish a molecular classification of canine mammary tumors to widen the spectrum of treatment options, which today rely heavily on surgical removal of tumors. Lastly, standardization of clinical study protocols, development of canine-specific biological tools, establishment of adequate dog-specific disease biomarkers and identification of targets for the development of new therapies that could improve survival and have less adverse effects than chemotherapy are among the remaining challenges.
Collapse
Affiliation(s)
- Eliza Vazquez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| | - Yulia Lipovka
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| | - Alejandro Cervantes-Arias
- Department of Small Animal Medicine and Surgery, Small Animal Teaching Hospital, The National University of Mexico (UNAM), Ciudad Universitaria, Investigación Científica 3000, Coyoacán, Mexico City 04360, Mexico;
| | - Adriana Garibay-Escobar
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| | - Michelle M. Haby
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| | - Felisbina Luisa Queiroga
- CECAV—Animal and Veterinary Research Center, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| |
Collapse
|
9
|
Kuzu TE, Öztürk K, Gürgan CA, Yay A, Göktepe Ö, Kantarcı A. Anti-inflammatory and pro-regenerative effects of a monoterpene glycoside on experimental periodontitis in a rat model of diabetes. J Periodontal Res 2023; 58:932-938. [PMID: 37340760 DOI: 10.1111/jre.13151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
OBJECTIVE Paeoniflorin (Pae) is a monoterpene glycoside with immune-regulatory effects. Several studies have already demonstrated the impact of Pae on periodontitis, but its effect on diabetic periodontitis is unclear. In this study, our aim was to test the hypothesis that Pae had a strong anti-inflammatory effect that prevented bone loss in diabetic periodontitis. METHODS Thirty male Wistar albino rats were randomly divided into control (healthy, n = 10), periodontitis (PD) + diabetes (DM; n = 10), and PD + DM + Pae (n = 10) groups. Ligature-induced periodontitis was created by placing 4-0 silk ligatures around the lower first molars on both sides of the mandibulae. Experimental DM was created via an injection of 50 mg/kg and streptozotocin (STZ). Hyperglycemia was confirmed by the blood glucose levels of rats (>300 mg/dL). The bone mineral density (BMD), trabecular number, trabecular thickness, and bone loss were measured by micro-CT. The expression levels of IL-1β, IL-6, and TNF-α were measured in tissue homogenates by ELISA. RESULTS The PD + DM + Pae group had significantly less alveolar crest resorption when compared to the PD + DM group. There was also a significant difference between the PD + DM + Pae group compared to PD + DM group in trabecular thickness, BMD, and the number of trabeculae. Pae application led to a statistically significant decrease in IL-1β, IL-6, and TNF-α levels in diabetic periodontitis. CONCLUSION Systemic application of Pae suppressed inflammation caused by PD and DM, leading to reduced bone loss and enhanced bone quality.
Collapse
Affiliation(s)
- Turan Emre Kuzu
- Department of Periodontology, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Kübra Öztürk
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Cem A Gürgan
- Department of Periodontology, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Özge Göktepe
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | |
Collapse
|
10
|
Chen Y, Li L, Liu Z, Liu M, Wang Q. A series of ligustrazine platinum(IV) complexes with potent anti-proliferative and anti-metastatic properties that exert chemotherapeutic and immunotherapeutic effects. Dalton Trans 2023; 52:13097-13109. [PMID: 37664893 DOI: 10.1039/d3dt02358c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The development of novel anticancer drugs with antiproliferative and antimetastatic activities is of great importance in the pharmaceutical field. Herein, a series of ligustrazine (LSZ) platinum(IV) complexes with chemotherapeutic and immunotherapeutic effects were designed, prepared and evaluated as antitumor agents for the first time. Complex 4 with potent antitumor activities both in vitro and in vivo was screened out as a candidate. Notably, it displays significantly more effective anti-metastatic activities than the platinum(II) drugs cisplatin and oxaliplatin. Mechanism detection discloses that it causes serious DNA damage and increases the expression of γ-H2AX and P53. Then, the apoptosis of tumor cells is promoted by activating the mitochondrial apoptotic pathway Bcl-2/Bax/caspase-3 and causing autophagy via modulating LC3-I/II and P62 expression. Furthermore, the immune therapeutic responses are significantly elevated by blocking HIF-1α, ERK 1/2 and COX-2 pathways to reduce PD-L1 expression, and further increasing CD3+ and CD8+ T cells to elevate T cell immunity in tumors. Tumor metastasis is blocked by the synergistic functions of DNA damage, hypoxia modulation and immune activation.
Collapse
Affiliation(s)
- Yan Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Linming Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China.
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China.
| | - Meifeng Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China.
| |
Collapse
|
11
|
Siddiqui SS, Hodeify R, Mathew S, Alsawaf S, Alghfeli A, Matar R, Merheb M, Marton J, Al Zouabi HA, Sethuvel DPM, Ragupathi NKD, Vazhappilly CG. Differential dose-response effect of cyclosporine A in regulating apoptosis and autophagy markers in MCF-7 cells. Inflammopharmacology 2023:10.1007/s10787-023-01247-4. [PMID: 37204695 DOI: 10.1007/s10787-023-01247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/06/2023] [Indexed: 05/20/2023]
Abstract
Cyclosporine A (CsA) is an immunosuppressant primarily used at a higher dosage in transplant medicine and autoimmune diseases with a higher success rate. At lower doses, CsA exhibits immunomodulatory properties. CsA has also been reported to inhibit breast cancer cell growth by downregulating the expression of pyruvate kinase. However, differential dose-response effects of CsA in cell growth, colonization, apoptosis, and autophagy remain largely unidentified in breast cancer cells. Herein, we showed the cell growth-inhibiting effects of CsA by preventing cell colonization and enhancing DNA damage and apoptotic index at a relatively lower concentration of 2 µM in MCF-7 breast cancer cells. However, at a higher concentration of 20 µM, CsA leads to differential expression of autophagy-related genes ATG1, ATG8, and ATG9 and apoptosis-associated markers, such as Bcl-2, Bcl-XL, Bad, and Bax, indicating a dose-response effect on differential cell death mechanisms in MCF-7 cells. This was confirmed in the protein-protein interaction network of COX-2 (PTGS2), a prime target of CsA, which had close interactions with Bcl-2, p53, EGFR, and STAT3. Furthermore, we investigated the combined effect of CsA with SHP2/PI3K-AKT inhibitors showing significant MCF-7 cell growth reduction, suggesting its potential to use as an adjuvant during breast cancer therapy.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, UK
| | - Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Shimy Mathew
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Seba Alsawaf
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Anood Alghfeli
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Rachel Matar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Maxime Merheb
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - John Marton
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Hussain AbdulKarim Al Zouabi
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | | | - Naveen Kumar Devanga Ragupathi
- Department of Research and Development, Bioberrys Healthcare and Research Centre, Vellore, India
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Cijo George Vazhappilly
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates.
| |
Collapse
|
12
|
Kaur M, Muzzammel Rehman H, Kaur G, Kaur A, Bansal M. Switching of newly synthesized linker-based derivatives of non-steroidal anti-inflammatory drugs toward anti-inflammatory and anticancer activity. Bioorg Chem 2023; 133:106406. [PMID: 36773455 DOI: 10.1016/j.bioorg.2023.106406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
A new series of linker-based derivatives of non-steroidal anti-inflammatory drugs were designed and synthesized. All the compounds were well characterized with the help of various spectroscopic techniques such as FT-IR, 1H NMR, 13C NMR, and HRMS. The main emphasis of this paper is to understand the switching of the most promising compounds 8 and 10 towards anti-inflammatory and anticancer activity in terms of in-silico and in-vitro studies in detail. During the molecular docking study, compounds 8 and 10 demonstrated the importance of hetero atoms as well as the perfect alignment of a compound in the binding pocket of a target site, which may affect their bioactivity. Here, the presence of 1,3‑dicarbonyl interactions with ASN 351 in compound 8 (not found in compound 10) may be responsible for its better inhibitory activity against the COX-2 target site. On the other hand, a slight increase in the potency of compound 10 towards anticancer activity may be due to the instantaneous participation of the OH group and carbonyl group to give conventional hydrogen bonds towards THR 149 amino acid residue, which was missing in compound 8. Molecular dynamics simulation was also performed for compounds 10 and 8 toward COX-2 and HER-2 protein sites. Further, compounds 8 and 10 were subjected to in-vitro COX-2 inhibition and cytotoxicity assay and the results obtained were in accordance with the in-silico study. Thus, compound 8 become more potent towards COX-2 inhibition with IC50 value of 48.51 µg/ml and compound 10 showed good bioactivity toward cytotoxic activity with IC50 value of 93.03 µg/ml.
Collapse
Affiliation(s)
- Mandeep Kaur
- Synthetic and Medicinal Chemistry Laboratory, Department of Chemistry, Punjabi University, Patiala 147002, India
| | - Hafiz Muzzammel Rehman
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Gurmeet Kaur
- Synthetic and Medicinal Chemistry Laboratory, Department of Chemistry, Punjabi University, Patiala 147002, India
| | - Amandeep Kaur
- Synthetic and Medicinal Chemistry Laboratory, Department of Chemistry, Punjabi University, Patiala 147002, India
| | - Manisha Bansal
- Synthetic and Medicinal Chemistry Laboratory, Department of Chemistry, Punjabi University, Patiala 147002, India.
| |
Collapse
|
13
|
Pathways Affected by Falcarinol-Type Polyacetylenes and Implications for Their Anti-Inflammatory Function and Potential in Cancer Chemoprevention. Foods 2023; 12:foods12061192. [PMID: 36981118 PMCID: PMC10048309 DOI: 10.3390/foods12061192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Polyacetylene phytochemicals are emerging as potentially responsible for the chemoprotective effects of consuming apiaceous vegetables. There is some evidence suggesting that polyacetylenes (PAs) impact carcinogenesis by influencing a wide variety of signalling pathways, which are important in regulating inflammation, apoptosis, cell cycle regulation, etc. Studies have shown a correlation between human dietary intake of PA-rich vegetables with a reduced risk of inflammation and cancer. PA supplementation can influence cell growth, gene expression and immunological responses, and has been shown to reduce the tumour number in rat and mouse models. Cancer chemoprevention by dietary PAs involves several mechanisms, including effects on inflammatory cytokines, the NF-κB pathway, antioxidant response elements, unfolded protein response (UPR) pathway, growth factor signalling, cell cycle progression and apoptosis. This review summarises the published research on falcarinol-type PA compounds and their mechanisms of action regarding cancer chemoprevention and also identifies some gaps in our current understanding of the health benefits of these PAs.
Collapse
|
14
|
Pereira VS, Alves BDCA, Waisberg J, Fonseca F, Gehrke F. Detection of COX-2 in liquid biopsy of patients with prostate cancer. J Clin Pathol 2023; 76:189-193. [PMID: 34782424 DOI: 10.1136/jclinpath-2021-207755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/14/2021] [Indexed: 01/10/2023]
Abstract
AIMS To determine the profile of COX-2 gene expression in patients with prostate cancer attended at the ABC University Health Center outpatient clinic and correlate the results with patients' anatomopathological examinations. Prostate cancer is the sixth most common type of cancer worldwide and the second in Brazil. COX-2 expression is associated with an unfavourable prognosis. METHODS 15.0 mL of peripheral blood were collected from 24 patients and 25 healthy men. RNA extraction was performed using the QIAamp RNA Blood Mini Kit. Complementary DNA synthesis was performed using SuperScript II RNAse Reverse Transcriptase. Quantitative real-time PCR was performed with specific COX-2 oligonucleotides and the endogenous GAPDH gene. RESULTS The mean age of the patients was 69 years old. The Gleason scoring system showed 37.5% of patients with Gleason 6 (slow growth, low risk), 45.8% with Gleason 7 (intermediate risk) and 16.7% with Gleason 8 or 9 (risk of high-grade cancer). The median COX-2 expression in the study group was 0.97, while in the control group it was 0.11 (p<0.045). CONCLUSIONS Patients with prostate cancer showed higher COX-2 expression at diagnosis compared with the control group. Since COX-2 detection associated with prostate-specific antigen dosage shows promise as a biomarker for diagnosis and prognosis in patients with prostate cancer, further research is required to confirm these findings.
Collapse
Affiliation(s)
| | | | - Jaques Waisberg
- Programa de Pós-Graduação em Ciência Cirúrgica Interdisciplinar, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil.,Cirurgia, Centro Universitário FMABC, Santo André, Brazil
| | - Fernando Fonseca
- Laboratório de Análises Clínicas, Centro Universitário FMABC, Santo André, Brazil.,Ciências Farmacêuticas, Universidade Federal de São Paulo/UNIFESP, Diadema, Brazil
| | - Flavia Gehrke
- Programa de Pós Graduação em Ciências da Saúde, Iamspe, São Paulo, Brazil .,Patologia, Centro Universitário FMABC, Santo André, Brazil
| |
Collapse
|
15
|
Hsieh CC, Wu CH, Peng SH, Chang CH. Seed-derived peptide lunasin suppressed breast cancer cell growth by regulating inflammatory mediators, aromatase, and estrogen receptors. Food Nutr Res 2023; 67:8991. [PMID: 36794014 PMCID: PMC9899045 DOI: 10.29219/fnr.v67.8991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/19/2022] [Indexed: 01/26/2023] Open
Abstract
Background Breast cancer is one of the most prevalent cancers in women. Its pathology comprises tumor cells and nearby stromal cells, accompanied by cytokines and stimulated molecules, resulting in a favorable microenvironment for tumor progression. Lunasin is a seed peptide with multiple bioactivities derived from seeds. However, the chemopreventive effect of lunasin on different characteristics of breast cancer has not been fully explored. Objective This study aims to explore the chemopreventive mechanisms of lunasin through inflammatory mediators and estrogen-related molecules in breast cancer cells. Design Estrogen-dependent MCF-7 and independent MDA-MB-231 breast cancer cells were used. The β-estradiol was used to mimic physiological estrogen. The gene expression, mediator secretion, cell vitality, and apoptosis impacting breast malignancy were explored. Results Lunasin did not affect normal MCF-10A cell growth but inhibited breast cancer cell growth, increased interleukin (IL)-6 gene expression and protein production at 24 h, and decreased its secretion at 48 h. In both breast cancer cells, aromatase gene and activity and estrogen receptor (ER)α gene expression were decreased by lunasin treatment, while ERβ gene levels were significantly increased in MDA-MB-231 cells. Moreover, lunasin decreased vascular endothelial growth factor (VEGF) secretion and cell vitality and induced cell apoptosis in both breast cancer cell lines. However, lunasin only decreased leptin receptor (Ob-R) mRNA expression in MCF-7 cells. Additionally, β-estradiol increased MCF-7-cell proliferation but not the proliferation of other cells; in particular, lunasin still inhibited MCF-7-cell growth and cell vitality in the presence of β-estradiol. Conclusion Seed peptide lunasin inhibited breast cancer cell growth by regulating inflammatory, angiogenic, and estrogen-related molecules, suggesting that lunasin is a promising chemopreventive agent.
Collapse
Affiliation(s)
- Chia-Chien Hsieh
- Department of Biochemical Science & Technology, National Taiwan University, Taipei, Taiwan,Chia-Chien Hsieh Department of Biochemical Science & Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.
| | - Chi-Hao Wu
- School of Life Science, Undergraduate and Graduate Programs of Nutrition Science, National Taiwan Normal University, Taipei, Taiwan
| | - Shih-Han Peng
- School of Life Science, Undergraduate and Graduate Programs of Nutrition Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chia-Hsin Chang
- School of Life Science, Undergraduate and Graduate Programs of Nutrition Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
16
|
Use of Nonsteroidal Anti-Inflammatory Drugs and Risk of Breast Cancer: Evidence from a General Female Population and a Mammographic Screening Cohort in Sweden. Cancers (Basel) 2023; 15:cancers15030692. [PMID: 36765650 PMCID: PMC9913077 DOI: 10.3390/cancers15030692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
A link has been proposed between the use of nonsteroidal anti-inflammatory drugs (NSAIDs) and the risk of breast cancer. There is, however, insufficient data regarding the subtype and stage of breast cancer, and few studies have assessed the interaction between the use of NSAIDs and breast density or previous breast disorders. There is also a lack of data from population-based studies. We first conducted a nested case-control study within the general female population of Sweden, including 56,480 women with newly diagnosed breast cancer during 2006-2015 and five breast cancer-free women per case as controls, to assess the association of NSAID use with the risk of incident breast cancer, focusing on subtype and stage of breast cancer as well as the interaction between NSAID use and previous breast disorders. We then used the Karolinska Mammography Project for Risk Prediction of Breast Cancer (Karma) cohort to assess the interaction between NSAID use and breast density in relation to the risk of breast cancer. Conditional logistic regression was used to estimate the hazard ratio (HR) and a 95% confidence interval (CI) was used for breast cancer in relation to the use of aspirin and non-aspirin NSAIDs. In the nested case-control study of the general population, exclusive use of aspirin was not associated with the risk of breast cancer, whereas exclusive use of non-aspirin NSAIDs was associated with a modestly higher risk of stage 0-2 breast cancer (HR: 1.05; 95% CI: 1.02-1.08) but a lower risk of stage 3-4 breast cancer (HR 0.80; 95% CI: 0.73-0.88). There was also a statistically significant interaction between the exclusive use of NSAIDs and previous breast disorders (p for interaction: <0.001). In the analysis of Karma participants, the exclusive use of non-aspirin NSAIDs was associated with a lower risk of breast cancer among women with a breast dense area of >40 cm2 (HR: 0.72; 95% CI: 0.59-0.89). However, the possibility of finding this by chance cannot be ruled out. Overall, we did not find strong evidence to support an association between the use of NSAIDs and the risk of breast cancer.
Collapse
|
17
|
Martínez-Puente DH, Garza-Morales R, Pérez-Trujillo JJ, Bernabé-Acosta F, Villanueva-Olivo A, García-García A, Zavala-Flores LM, Rodríguez-Rocha H, Valdés J, Saucedo-Cárdenas O, Montes de Oca-Luna R, Loera-Arias MDJ. Enhanced antitumor activity induced by a DNA vaccine encoding E7 antigen fused to an ERAD-targeting sequence. J Drug Target 2023; 31:100-108. [PMID: 35896308 DOI: 10.1080/1061186x.2022.2107651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The endoplasmic reticulum (ER) is a key organelle in cell homeostasis and cell health through antigen presentation to immune cells. Thus, the ER has become a therapeutic target to induce cellular immune responses. We previously reported the antitumor effect of a DNA vaccine that expresses the E7 antigen fused to the cyclooxygenase-2 (COX-2) protein. This inflammation-related enzyme contains a degradation cassette associated with the endoplasmic reticulum-associated degradation (ERAD) pathway. To avoid the use of full-length COX-2 and any risk of adverse effects due to the activity of its catalytic site, we designed new versions of the fusion protein. These new constructs encode the E7 antigen fused to the signal peptide and the ERAD sequence of COX-2 with or without the membrane-binding domain (MBD) as well as deletion of the catalytic site. We evaluated the antigen-specific antitumor effect of these DNA constructs in murine prophylactic and therapeutic cancer models. These assays showed that the ERAD cassette is the minimum sequence in the COX-2 protein that induces an antitumor effect when fused to the E7 antigen with the advantage of eliminating any potential adverse effects from the use of full-length COX-2.
Collapse
Affiliation(s)
| | - Rodolfo Garza-Morales
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - José Juan Pérez-Trujillo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Federico Bernabé-Acosta
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Arnulfo Villanueva-Olivo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Aracely García-García
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Laura Mireya Zavala-Flores
- Department of Molecular Genetics, Northeast Biomedical Research Center (CIBIN) of IMSS, Nuevo Leon Delegation, Monterrey, México
| | - Humberto Rodríguez-Rocha
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Jesús Valdés
- Departamento de Bioquímica, CINVESTAV-México, México City, México
| | - Odila Saucedo-Cárdenas
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | | | | |
Collapse
|
18
|
Munj SA, Taz TA, Arslanturk S, Heath EI. Biomarker-driven drug repurposing on biologically similar cancers with DNA-repair deficiencies. Front Genet 2022; 13:1015531. [PMID: 36583025 PMCID: PMC9792769 DOI: 10.3389/fgene.2022.1015531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Similar molecular and genetic aberrations among diseases can lead to the discovery of jointly important treatment options across biologically similar diseases. Oncologists closely looked at several hormone-dependent cancers and identified remarkable pathological and molecular similarities in their DNA repair pathway abnormalities. Although deficiencies in Homologous Recombination (HR) pathway plays a significant role towards cancer progression, there could be other DNA-repair pathway deficiencies that requires careful investigation. In this paper, through a biomarker-driven drug repurposing model, we identified several potential drug candidates for breast and prostate cancer patients with DNA-repair deficiencies based on common specific biomarkers and irrespective of the organ the tumors originated from. Normalized discounted cumulative gain (NDCG) and sensitivity analysis were used to assess the performance of the drug repurposing model. Our results showed that Mitoxantrone and Genistein were among drugs with high therapeutic effects that significantly reverted the gene expression changes caused by the disease (FDR adjusted p-values for prostate cancer =1.225e-4 and 8.195e-8, respectively) for patients with deficiencies in their homologous recombination (HR) pathways. The proposed multi-cancer treatment framework, suitable for patients whose cancers had common specific biomarkers, has the potential to identify promising drug candidates by enriching the study population through the integration of multiple cancers and targeting patients who respond poorly to organ-specific treatments.
Collapse
Affiliation(s)
- Seeya Awadhut Munj
- Department of Computer Science, Wayne State University, Detroit, MI, United States
| | - Tasnimul Alam Taz
- Department of Computer Science, Wayne State University, Detroit, MI, United States
| | - Suzan Arslanturk
- Department of Computer Science, Wayne State University, Detroit, MI, United States,*Correspondence: Suzan Arslanturk,
| | - Elisabeth I. Heath
- Department of Oncology, Wayne State University, Detroit, MI, United States,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, United States
| |
Collapse
|
19
|
Harris RE, Schwartzbaum JA. Celecoxib may be a viable treatment option for breast cancer patients not treated with chemotherapy. Front Oncol 2022; 12:958308. [PMID: 36267976 PMCID: PMC9578006 DOI: 10.3389/fonc.2022.958308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Randall E. Harris
- College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- College of Public Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- *Correspondence: Randall E. Harris,
| | - Judith A. Schwartzbaum
- College of Public Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
20
|
Liu W, Liu Y, Fan H, Liu M, Han J, An Y, Dong Y, Sun B. Design, Synthesis, and Biological Evaluation of Dual-Target COX-2/CYP51 Inhibitors for the Treatment of Fungal Infectious Diseases. J Med Chem 2022; 65:12219-12239. [PMID: 36074863 DOI: 10.1021/acs.jmedchem.2c00878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The design of novel dual-target (COX-2/CYP51) inhibitors was proposed in the study, and three series of compounds were constructed though the pathway of skeleton screening and combination; their molecular structures were synthesized and evaluated. Most of the compounds exhibited significant antifungal ability. Among them, potential compounds (10a-2, 16b-3) with excellent antifungal and anti-drug-resistant fungal ability (MIC50, 0.125-2.0 μg/mL) were selected for the subsequent mechanistic study. On the one hand, these compounds could block the ergosterol biosynthesis pathway by inhibiting CYP51 and influence the internal physiological function of fungal cells, which included the increase of the ROS level, the anomaly of ΔΨm, and the emergence of an apoptotic state. On the other hand, these compounds also effectively showed COX-2 inhibition ability, eliminated the inflammatory reaction of the infected region, and activated the body's immune function. In summary, this study not only provided a novel antifungal drug design pathway but also discovered excellent target compounds.
Collapse
Affiliation(s)
- Wenxia Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| | - Yating Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| | - Haiyan Fan
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| | - Min Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| | - Yunfei An
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| | - Yue Dong
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| | - Bin Sun
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, P. R. China
| |
Collapse
|
21
|
Pi C, Jing P, Li B, Feng Y, Xu L, Xie K, Huang T, Xu X, Gu H, Fang J. Reversing PD-1 Resistance in B16F10 Cells and Recovering Tumour Immunity Using a COX2 Inhibitor. Cancers (Basel) 2022; 14:cancers14174134. [PMID: 36077671 PMCID: PMC9455073 DOI: 10.3390/cancers14174134] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Immunotherapy is an effective method for tumour treatment. Anti-programmed cell death protein 1 (PD-1) and anti-programmed death-ligand 1 (PD-L1) monoclonal antibodies play a significant role in immunotherapy of most tumours; however, some patients develop drug resistance to PD-1/PD-L1 therapy. Cyclooxygenase-2 (COX2) is expressed in various solid tumours, and prostaglandin E2 (PGE2) drives the development of malignant tumours. We developed a drug-resistant B16F10 (B16F10-R) tumour mouse model through four rounds of selection in vivo. Subsequently, we investigated changes in PD-L1 expression and lymphocyte infiltration in B16F10-NR and B16F10-R tumours. Additionally, we explored the role of COX2 in acquired resistance to pembrolizumab, an anti-PD-1 treatment. Immune cell infiltration was significantly decreased in resistant tumours compared to B16F10-NR tumours; however, ptgs2 gene expression was significantly elevated in resistant tumours. Aspirin or celecoxib combined with pembrolizumab can effectively reverse tumour drug resistance. In addition, ptgs2 knockout or the use of the EP4 inhibitor E7046 abrogated drug resistance to anti-PD-1 treatment in B16F10-R tumour cells. Our study showed that inhibition of the COX2/PGE2/EP4 axis could increase the number of immune cells infiltrating the tumour microenvironment and recover drug-resistant tumour sensitivity to pembrolizumab. Thus, we highlight COX2 inhibition as a promising therapeutic target for drug-resistant tumours for future consideration.
Collapse
Affiliation(s)
- Chenyu Pi
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ping Jing
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Bingyu Li
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- College of Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Yan Feng
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lijun Xu
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- College of Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Kun Xie
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Tao Huang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoqing Xu
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hua Gu
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Correspondence: (H.G.); (J.F.); Tel.: +86-021-6598-2878 (H.G. & J.F.)
| | - Jianmin Fang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Biomedical Research Center, Suzhou 230031, China
- Shanghai Tongji Hospital, Shanghai 200065, China
- Correspondence: (H.G.); (J.F.); Tel.: +86-021-6598-2878 (H.G. & J.F.)
| |
Collapse
|
22
|
Abdelhaleem EF, Kassab AE, El-Nassan HB, Khalil OM. Design, synthesis, and biological evaluation of new celecoxib analogs as apoptosis inducers and cyclooxygenase-2 inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200190. [PMID: 35976138 DOI: 10.1002/ardp.202200190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/06/2022]
Abstract
Series of new celecoxib analogs were synthesized to assess their anticancer activity against the MCF-7 cell line. Four compounds, 3a, 3c, 5b, and 5c, showed 1.4-9.2-fold more potent anticancer activity than celecoxib. The antiproliferative activity of the most potent compounds, 3c, 5b, and 5c, seems to be associated well with their ability to induce apoptosis in MCF-7 cells (18-24-fold). This evidence was supported by an increase in the expression of the tumor suppressor gene p53 (4-6-fold), the elevation in the Bax/BCL-2 ratio, and a significant increase in the level of active caspase-7 (4-7-fold). Moreover, compounds 3c and 5c showed significant cyclooxygenase-2 (COX-2) inhibitory activity. They were also docked into the crystal structure of the COX-2 enzyme (PDB ID: 3LN1) to understand their mode of binding.
Collapse
Affiliation(s)
- Eman F Abdelhaleem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hala B El-Nassan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Omneya M Khalil
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
23
|
Al-Maghrabi J, Khabaz MN. Cyclooxygenase-2 immunohistochemical expression is associated with worse prognosis in breast cancer: Retrospective study and literature review. Saudi Med J 2022; 43:687-693. [PMID: 35830999 PMCID: PMC9749694 DOI: 10.15537/smj.2022.43.7.20220052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To assess the immunohistochemistry phenotype of cyclooxygenase-2 (COX-2) in breast cancer (BC) and to correlate it with histological and clinical prognostic factors. METHODS This retrospective study utilized COX-2 monoclonal antibody in an immunohistochemistry staining of tissue microarrays slides of 570 cases of previously diagnosed BC and with 52 of normal breast tissues from breast specimens resected for benign lesions or reconstruction (fibroadenoma and normal breast epithelium). This project was carried out in the Laboratory of pathology, King Abdulaziz University, Jeddah, Saudi Arabia, between September 2019 and September 2021. RESULTS The present data showed an important connection between the COX-2 expression phenotype and BC compared to benign breast tissues (p=0.034). The expression pattern of COX-2 was allied significantly with some factors which distinguished aggressive subtypes of BC, such as stage, distant metastases, lymphovascular invasion, and poor survival. CONCLUSION Cyclooxygenase-2 is a valuable marker that could facilitate BC diagnosis and prognosis.
Collapse
Affiliation(s)
- Jaudah Al-Maghrabi
- From the Department of Pathology (Al-Maghrabi), Faculty of Medicine; from the Department of Pathology (Khabaz), Rabigh Faculty of Medicine, King Abdulaziz University, and from the Department of Pathology (Al-Maghrabi), King Faisal Specialist Hospital and Research Centre, Jeddah, Kingdom of Saudi Arabia.
- Address correspondence and reprint request to: Dr. Mohamad N. Khabaz, Department of Pathology, Rabigh Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia. E-mail: ORCID ID: https://orcid.org/0000-0002-5298-7690
| | - Mohamad N. Khabaz
- From the Department of Pathology (Al-Maghrabi), Faculty of Medicine; from the Department of Pathology (Khabaz), Rabigh Faculty of Medicine, King Abdulaziz University, and from the Department of Pathology (Al-Maghrabi), King Faisal Specialist Hospital and Research Centre, Jeddah, Kingdom of Saudi Arabia.
| |
Collapse
|
24
|
Benoit L, Jornod F, Zgheib E, Tomkiewicz C, Koual M, Coustillet T, Barouki R, Audouze K, Vinken M, Coumoul X. Adverse outcome pathway from activation of the AhR to breast cancer-related death. ENVIRONMENT INTERNATIONAL 2022; 165:107323. [PMID: 35660951 DOI: 10.1016/j.envint.2022.107323] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 05/15/2023]
Abstract
Adverse outcome pathways (AOPs) are formalized and structured linear concepts that connect one molecular initiating event (MIE) to an adverse outcome (AO) via different key events (KE) through key event relationships (KER). They are mainly used in eco-toxicology toxicology, and regulatory health issues. AOPs must respond to specific guidelines from the Organization for Economic Co-operation and Development (OECD) to weight the evidence between each KE. Breast cancer is the deadliest cancer in women with a poor prognosis in case of metastatic breast cancer. The role of the environments in the formation of metastasis has been suggested. We hypothesized that activation of the AhR (MIE), a xenobiotic receptor, could lead to breast cancer related death (AO), through different KEs, constituting a new AOP. An artificial intelligence tool (AOP-helpfinder), which screens the available literature, was used to collect all existing scientific abstracts to build a novel AOP, using a list of key words. Four hundred and seven abstracts were found containing at least a word from our MIE list and either one word from our AO or KE list. A manual curation retained 113 pertinent articles, which were also screened using PubTator. From these analyses, an AOP was created linking the activation of the AhR to breast cancer related death through decreased apoptosis, inflammation, endothelial cell migration, angiogenesis, and invasion. These KEs promote an increased tumor growth, angiogenesis and migration which leads to breast cancer metastasis and breast cancer related death. The evidence of the proposed AOP was weighted using the tailored Bradford Hill criteria and the OECD guidelines. The confidence in our AOP was considered strong. An in vitro validation must be carried out, but our review proposes a strong relationship between AhR activation and breast cancer-related death with an innovative use of an artificial intelligence literature search.
Collapse
Affiliation(s)
- Louise Benoit
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France; Assistance Publique-Hôpitaux de Paris, European Hospital Georges-Pompidou, Gynecologic and Breast Oncologic Surgery Department, Paris, France.
| | - Florence Jornod
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Elias Zgheib
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Celine Tomkiewicz
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Meriem Koual
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France; Assistance Publique-Hôpitaux de Paris, European Hospital Georges-Pompidou, Gynecologic and Breast Oncologic Surgery Department, Paris, France
| | - Thibaut Coustillet
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Robert Barouki
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France; Assistance Publique-Hôpitaux de Paris, European Hospital Georges-Pompidou, Gynecologic and Breast Oncologic Surgery Department, Paris, France
| | - Karine Audouze
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Xavier Coumoul
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| |
Collapse
|
25
|
Canbolat E, Cakıroglu FP. The importance of AMPK in obesity and chronic diseases and the relationship of AMPK with nutrition: a literature review. Crit Rev Food Sci Nutr 2022; 63:449-456. [PMID: 35708095 DOI: 10.1080/10408398.2022.2087595] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This review will examine the role of 5'-adenosine monophosphate-activated protein kinase (AMPK) in the treatment of obesity, medical nutrition and chronic diseases, and its relationship with nutrition. In the literature, the number of studies examining the direct relationship of AMPK with nutrition is negligible. For this reason, information on the subject has been compiled from all the studies that can be accessed by searching the terms AMPK and disease, AMPK and health, AMPK and exercise, AMPK and nutrition. It can be stated that AMPK is inhibited in many pathological conditions such as inflammation, diabetes, aging and cancer, and AMPK activation has positive effects in many diseases such as insulin resistance, diabetes, obesity, cancer and Alzheimer's. When the relationship between nutrition and AMPK is examined, it is seen that food intake inhibits AMPK, but especially high-carbohydrate and fatty diets are more effective at this point. In addition, high fructose corn sirup and long chain saturated fatty acids increased by consumption of industrial foods and frequent meals appear to be an inactivator for AMPK. For AMPK activation in medical nutrition therapy, it is recommended to use methods such as evening fasting and intermittent fasting, taking into account the human circadian rhythm.
Collapse
Affiliation(s)
- Eren Canbolat
- Faculty of Tourism, Department of Gastronomy and Culinary Arts, Ondokuz Mayıs University, Samsun, Turkey
| | - Funda Pınar Cakıroglu
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara University, Ankara, Turkey
| |
Collapse
|
26
|
Ortega MA, Fraile-Martinez O, García-Montero C, Borja-Vergel S, Torres-Carranza D, Pekarek L, Arribas CB, De León-Luis JA, Sánchez-Rojo C, Alvarez-Mon MA, García-Honduvilla N, Buján J, Coca S, Alvarez-Mon M, Saez MA, Guijarro LG. Patients with Invasive Lobular Carcinoma Show a Significant Increase in IRS-4 Expression Compared to Infiltrative Ductal Carcinoma—A Histopathological Study. Medicina (B Aires) 2022; 58:medicina58060722. [PMID: 35743985 PMCID: PMC9229273 DOI: 10.3390/medicina58060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background and Objectives: Breast cancer (BC) is the first diagnosed type of cancer and the second leading cause of cancer-related mortality in women. In addition, despite the improvement in treatment and survival in these patients, the global prevalence and incidence of this cancer are rising, and its mortality may be different according to the histological subtype. Invasive lobular carcinoma (ILC) is less common but entails a poorer prognosis than infiltrative ductal carcinoma (IDC), exhibiting a different clinical and histopathological profile. Deepening study on the molecular profile of both types of cancer may be of great aid to understand the carcinogenesis and progression of BC. In this sense, the aim of the present study was to explore the histological expression of Insulin receptor substrate 4 (IRS-4), cyclooxygenase 2 (COX-2), Cyclin D1 and retinoblastoma protein 1 (Rb1) in patients with ILC and IDC. Patients and Methods: Thus, breast tissue samples from 45 patients with ILC and from 45 subjects with IDC were analyzed in our study. Results: Interestingly, we observed that IRS-4, COX-2, Rb1 and Cyclin D1 were overexpressed in patients with ILC in comparison to IDC. Conclusions: These results may indicate a differential molecular profile between both types of tumors, which may explain the clinical differences among ILC and IDC. Further studies are warranted in order to shed light onto the molecular and translational implications of these components, also aiding to develop a possible targeted therapy to improve the clinical management of these patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
- Correspondence: (M.A.O.); (M.A.S.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Sandra Borja-Vergel
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain
| | - Coral Bravo Arribas
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain; (C.B.A.); (J.A.D.L.-L.)
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Juan A. De León-Luis
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain; (C.B.A.); (J.A.D.L.-L.)
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Cristina Sánchez-Rojo
- Department of Obstetrics and Gynecology, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain;
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Santiago Coca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (S.B.-V.); (D.T.-C.); (L.P.); (M.A.A.-M.); (N.G.-H.); (J.B.); (S.C.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
- Correspondence: (M.A.O.); (M.A.S.)
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology, University of Alcalá, 28801 Alcala de Henares, Spain
| |
Collapse
|
27
|
Pharmacological Properties to Pharmacological Insight of Sesamin in Breast Cancer Treatment: A Literature-Based Review Study. Int J Breast Cancer 2022; 2022:2599689. [PMID: 35223101 PMCID: PMC8872699 DOI: 10.1155/2022/2599689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 12/28/2022] Open
Abstract
The use of dietary phytochemical rather than conventional therapies to treat numerous cancers is now a well-known approach in medical science. Easily available and less toxic dietary phytochemicals present in plants should be introduced in the list of phytochemical-based treatment areas. Sesamin, a natural phytochemical, may be a promising chemopreventive agent aiming to manage breast cancer. In this study, we discussed the pharmacological properties of sesamin that determine its therapeutics opportunity to be used in breast cancer treatment and other diseases. Sesamin is available in medicinal plants, especially in Sesamum indicum, and is easily metabolized by the liver. To better understand the antibreast cancer consequence of sesamin, we postulate some putative pathways related to the antibreast cancer mechanism: (1) regulation of estrogen receptor (ER-α and ER-β) activities, (2) suppressing programmed death-ligand 1 (PD-L1) overexpression, (3) growth factor receptor inhibition, and (4) some tyrosine kinase pathways. Targeting these pathways, sesamin can modulate cell proliferation, cell cycle arrest, cell growth and viability, metastasis, angiogenesis, apoptosis, and oncogene inactivation in various in vitro and animal models. Although the actual tumor intrinsic signaling mechanism targeted by sesamin in cancer treatment is still unknown, this review summarized that this phytoestrogen suppressed NF-κB, STAT, MAPK, and PIK/AKT signaling pathways and activated some tumor suppressor protein in numerous breast cancer models. Cotreatment with γ-tocotrienol, conventional drugs, and several drug carriers systems increased the anticancer potentiality of sesamin. Furthermore, sesamin exhibited promising pharmacokinetics properties with less toxicity in the bodies. Overall, the shreds of evidence highlight that sesamin can be a potent candidate to design drugs against breast cancer. So, like other phytochemicals, sesamin can be consumed for better therapeutic advantages due to having the ability to target a plethora of molecular pathways until clinically trialed standard drugs are not available in pharma markets.
Collapse
|
28
|
Inflammation, Fibrosis and Cancer: Mechanisms, Therapeutic Options and Challenges. Cancers (Basel) 2022; 14:cancers14030552. [PMID: 35158821 PMCID: PMC8833582 DOI: 10.3390/cancers14030552] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 01/09/2023] Open
Abstract
Uncontrolled inflammation is a salient factor in multiple chronic inflammatory diseases and cancers. In this review, we provided an in-depth analysis of the relationships and distinctions between uncontrolled inflammation, fibrosis and cancers, while emphasizing the challenges and opportunities of developing novel therapies for the treatment and/or management of these diseases. We described how drug delivery systems, combination therapy and the integration of tissue-targeted and/or pathways selective strategies could overcome the challenges of current agents for managing and/or treating chronic inflammatory diseases and cancers. We also recognized the value of the re-evaluation of the disease-specific roles of multiple pathways implicated in the pathophysiology of chronic inflammatory diseases and cancers-as well as the application of data from single-cell RNA sequencing in the success of future drug discovery endeavors.
Collapse
|
29
|
Li Z, Wang Q, Li L, Chen Y, Cui J, Liu M, Zhang N, Liu Z, Han J, Wang Z. Ketoprofen and Loxoprofen Platinum(IV) Complexes Displaying Antimetastatic Activities by Inducing DNA Damage, Inflammation Suppression, and Enhanced Immune Response. J Med Chem 2021; 64:17920-17935. [PMID: 34852203 DOI: 10.1021/acs.jmedchem.1c01236] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metastasis is a major contributor of death in cancer patients, and there is an urgent need for effective treatments of metastatic malignancies. Herein, ketoprofen (KP) and loxoprofen (LP) platinum(IV) complexes with antiproliferative and antimetastatic properties were designed and prepared by integrating chemotherapy and immunotherapy targeting cyclooxygenase-2 (COX-2), matrix metalloproteinase-9 (MMP-9), and programmed death ligand 1 (PD-L1), besides DNA. A mono-KP platinum(IV) complex with a cisplatin core is screened out as a candidate possessing potent anti-proliferative and anti-metastasis activities both in vitro and in vivo. It induces serious DNA damage and further leads to high expression of γ-H2AX and p53. Moreover, it promotes apoptosis of tumor cells through mitochondrial apoptotic pathway Bcl-2/Bax/caspase3. Then, COX-2, MMP-9, NLRP3, and caspase1 as pivotal enzymes igniting inflammation and metastasis are obviously inhibited. Notably, it significantly improves immune response through restraining the expression of PD-L1 to increase CD3+ and CD8+ T infiltrating cells in tumor tissues.
Collapse
Affiliation(s)
- Zuojie Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.,Liaocheng High-Tech Biotechnology Co., Limited, Liaocheng 252059, P. R. China
| | - Linming Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Yan Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Jichun Cui
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.,Liaocheng High-Tech Biotechnology Co., Limited, Liaocheng 252059, P. R. China
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.,Liaocheng High-Tech Biotechnology Co., Limited, Liaocheng 252059, P. R. China
| |
Collapse
|
30
|
Valproic Acid Prodrug Affects Selective Markers, Augments Doxorubicin Anticancer Activity and Attenuates Its Toxicity in a Murine Model of Aggressive Breast Cancer. Pharmaceuticals (Basel) 2021; 14:ph14121244. [PMID: 34959644 PMCID: PMC8706415 DOI: 10.3390/ph14121244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
We studied the unique inhibitor of the histone deacetylases (HDAC) valproate-valpromide of acyclovir (AN446) that upon metabolic degradation release the HDAC inhibitor (HDACI) valproic acid (VPA). Among the HDAC inhibitors that we have tested, only AN446, and to a lesser extent VPA, synergized with doxorubicin (Dox) anti-cancer activity. Romidepsin (Rom) was additive and the other HDACIs tested were antagonistic. These findings led us to test and compare the anticancer activities of AN446, VPA, and Rom with and without Dox in the 4T1 triple-negative breast cancer murine model. A dose of 4 mg/kg once a week of Dox had no significant effect on tumor growth. Rom was toxic, and when added to Dox the toxicity intensified. AN446, AN446 + Dox, and VPA + Dox suppressed tumor growth. AN446 and AN446 + Dox were the best inhibitory treatments for tumor fibrosis, which promotes tumor growth and metastasis. Dox increased fibrosis in the heart and kidneys, disrupting their function. AN446 most effectively suppressed Dox-induced fibrosis in these organs and protected their function. AN446 and AN446 + Dox treatments were the most effective inhibitors of metastasis to the lungs, as measured by the gap area. Genes that control and regulate tumor growth, DNA damage and repair, reactive oxygen production, and generation of inflammation were examined as potential therapeutic targets. AN446 affected their expression in a tissue-dependent manner, resulting in augmenting the anticancer effect of Dox while reducing its toxicity. The specific therapeutic targets that emerged from this study are discussed.
Collapse
|
31
|
Thompson PA, Huang C, Yang J, Wertheim BC, Roe D, Zhang X, Ding J, Chalasani P, Preece C, Martinez J, Chow HHS, Stopeck AT. Sulindac, a Nonselective NSAID, Reduces Breast Density in Postmenopausal Women with Breast Cancer Treated with Aromatase Inhibitors. Clin Cancer Res 2021; 27:5660-5668. [PMID: 34112707 DOI: 10.1158/1078-0432.ccr-21-0732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/26/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the effect of sulindac, a nonselective anti-inflammatory drug (NSAID), for activity to reduce breast density (BD), a risk factor for breast cancer. EXPERIMENTAL DESIGN An open-label phase II study was conducted to test the effect of 12 months' daily sulindac at 150 mg twice daily on change in percent BD in postmenopausal hormone receptor-positive breast cancer patients on aromatase inhibitor (AI) therapy. Change in percent BD in the contralateral, unaffected breast was measured by noncontrast magnetic resonance imaging (MRI) and reported as change in MRI percent BD (MRPD). A nonrandomized patient population on AI therapy (observation group) with comparable baseline BD was also followed for 12 months. Changes in tissue collagen after 6 months of sulindac treatment were explored using second-harmonic generated microscopy in a subset of women in the sulindac group who agreed to repeat breast biopsy. RESULTS In 43 women who completed 1 year of sulindac (86% of those accrued), relative MRPD significantly decreased by 9.8% [95% confidence interval (CI), -14.6 to -4.7] at 12 months, an absolute decrease of -1.4% (95% CI, -2.5 to -0.3). A significant decrease in mean breast tissue collagen fiber straightness (P = 0.032), an investigational biomarker of tissue inflammation, was also observed. MRPD (relative or absolute) did not change in the AI-only observation group (N = 40). CONCLUSIONS This is the first study to indicate that the NSAID sulindac may reduce BD. Additional studies are needed to verify these findings and determine if prostaglandin E2 inhibition by NSAIDs is important for BD or collagen modulation.
Collapse
Affiliation(s)
- Patricia A Thompson
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York. .,Department of Pathology, Stony Brook University, Stony Brook, New York
| | - Chuan Huang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Radiology, Stony Brook University, Stony Brook, New York.,Department of Psychiatry, Stony Brook University, Stony Brook, New York.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Jie Yang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, New York
| | | | - Denise Roe
- University of Arizona Cancer Center, Tucson, Arizona.,Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona
| | - Xiaoyue Zhang
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, New York
| | - Jie Ding
- Department of Psychiatry, Stony Brook University, Stony Brook, New York.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Pavani Chalasani
- University of Arizona Cancer Center, Tucson, Arizona.,Department of Medicine, University of Arizona, Tucson, Arizona
| | - Christina Preece
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Pathology, Stony Brook University, Stony Brook, New York
| | - Jessica Martinez
- University of Arizona Cancer Center, Tucson, Arizona.,Department of Nutritional Sciences, University of Arizona, Tucson, Arizona
| | | | - Alison T Stopeck
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
32
|
Molecular Interaction Analysis of COX-2 Against Aryl Amino Alcohol Derivatives from Isoeugenol as Anti Breast Cancer using Molecular Docking. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.3.10324.581-587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Breast cancer occurs due to uncontrolled cells proliferation. The Proliferation causes severe inflammatory which can be the initial stages of cancer symptoms. Aryl amino alcohol compounds from isoeugenol derivatives are proposed for the potential drugs of breast cancer. This study was conducted on iso-eugenol derivatives by adding carbonyl groups, hydroxyl groups, halide compounds and amines to determine the effect on anticancer activity through molecular docking studies. The molecular docking approach is carried out to see the interaction of ligands with protein compounds by using the minimized ligand energy bind with protein active site using protein data bank ID 5GMN. The docking result show that IE-Benzanilide-Cl (11) and IE-Benzanilide-OH (10) have the lowest binding energy (−8.3 kcal/mol and −8.6 kcal/mol) compare to another compounds. AdmetSAR computer simulations show that all compounds have very few toxic effects. The use of aryl amino alcohol derivatives (10 and 11) may be suggested as anti-breast cancer drugs. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
33
|
Berbecka M, Forma A, Baj J, Furtak-Niczyporuk M, Maciejewski R, Sitarz R. A Systematic Review of the Cyclooxygenase-2 (COX-2) Expression in Rectal Cancer Patients Treated with Preoperative Radiotherapy or Radiochemotherapy. J Clin Med 2021; 10:4443. [PMID: 34640461 PMCID: PMC8509380 DOI: 10.3390/jcm10194443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 02/05/2023] Open
Abstract
The main objective of this systematic review is to investigate the expression level of the cyclooxygenase-2 (COX-2) in rectal cancer treated with either preoperative radiotherapy or radiochemotherapy. In addition, we have summarized the effects of preoperative treatment of rectal cancer with regards to the expression levels of COX-2. A systematic literature review was performed in The Cochrane Library, PubMed, Web of Science, and Scopus databases on 1 January 2021 with the usage of the following search string-(cyclooxygenase-2) OR (COX-2) AND (rectal cancer) AND (preoperative radiochemotherapy) OR (preoperative radiotherapy). Among the 176 included in the analysis, only 13 studies were included for data extraction with a total number of 2095 patients. The results of the analysis are based on the articles concerning the expression of COX-2 in rectal cancer among patients treated with preoperative radiotherapy or radiochemotherapy. A COX-2 expression is an early event involved in rectal cancer development. In cases of negative COX-2 expression, radiotherapy and radiochemotherapy might contribute to the reduction of a local recurrence. Therefore, COX-2 may be considered as a biologic factor while selecting patients for more effective, less time-consuming and less expensive preoperative treatment. However, the utility of the administration of COX-2 inhibitors to patients with COX-2 overexpression, in an attempt to improve the patients' response rate to the neoadjuvant treatment, needs an assessment in further clinical trials.
Collapse
Affiliation(s)
- Monika Berbecka
- Department of Normal Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (M.B.); (J.B.); (R.M.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Jacek Baj
- Department of Normal Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (M.B.); (J.B.); (R.M.)
| | | | - Ryszard Maciejewski
- Department of Normal Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (M.B.); (J.B.); (R.M.)
| | - Robert Sitarz
- Department of Normal Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (M.B.); (J.B.); (R.M.)
- Department of Surgical Oncology, St. John’s Cancer Center, 20-090 Lublin, Poland
| |
Collapse
|
34
|
Shah H, Pang L, Qian S, Sathish V. Iminodibenzyl induced redirected COX-2 activity inhibits breast cancer progression. NPJ Breast Cancer 2021; 7:122. [PMID: 34535685 PMCID: PMC8448825 DOI: 10.1038/s41523-021-00330-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022] Open
Abstract
Knocking down delta-5-desaturase (D5D) by siRNA or shRNA is a promising strategy to achieve 8-hydroxyoctanoic acid (8-HOA) production for cancer inhibition. However, the RNAi-based strategy to stimulate 8-HOA is restricted due to endonucleases mediated physiological degradation and off-target effects. Thus, to get persistent 8-HOA in the cancer cell, we recognized a D5D inhibitor Iminodibenzyl. Here, we have postulated that Iminodibenzyl, by inhibiting D5D activity, could shift the di-homo-gamma-linolenic acid (DGLA) peroxidation from arachidonic acid to 8-HOA in high COX-2 microenvironment of 4T1 and MDA-MB-231 breast cancer cells. We observed that Iminodibenzyl stimulated 8-HOA caused HDAC activity reduction resulting in intrinsic apoptosis pathway activation. Additionally, reduced filopodia and lamellipodia, and epithelial-mesenchymal transition markers give rise to decreased cancer cell migration. In the orthotopic breast cancer model, the combination of Iminodibenzyl and DGLA reduced tumor size. From in vitro and in vivo studies, we concluded that Iminodibenzyl could reprogram COX-2 induced DGLA peroxidation to produce anti-cancer activity.
Collapse
Affiliation(s)
- Harshit Shah
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Lizhi Pang
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Steven Qian
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
35
|
Ganguly S, Arora I, Tollefsbol TO. Impact of Stilbenes as Epigenetic Modulators of Breast Cancer Risk and Associated Biomarkers. Int J Mol Sci 2021; 22:ijms221810033. [PMID: 34576196 PMCID: PMC8472542 DOI: 10.3390/ijms221810033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
With the recent advancement of genetic screening for testing susceptibility to mammary oncogenesis in women, the relevance of the gene−environment interaction has become progressively apparent in the context of aberrant gene expressions. Fetal exposure to external stressors, hormones, and nutrients, along with the inherited genome, impact its traits, including cancer susceptibility. Currently, there is increasing interest in the role of epigenetic biomarkers such as genomic methylation signatures, plasma microRNAs, and alterations in cell-signaling pathways in the diagnosis and primary prevention of breast cancer, as well as its prognosis. Polyphenols like natural stilbenes have been shown to be effective in chemoprevention by exerting cytotoxic effects that can stall cell proliferation. Besides possessing antioxidant properties against the DNA-damaging effects of reactive oxygen species, stilbenes have also been observed to modulate cell-signaling pathways. With the increasing trend of early-life screening for hereditary breast cancer risks, the potency of different phytochemicals in harnessing the epigenetic biomarkers of breast cancer risk demand more investigation. This review will explore means of exploiting the abilities of stilbenes in altering the underlying factors that influence breast cancer risk, as well as the appearance of associated biomarkers.
Collapse
Affiliation(s)
- Sebanti Ganguly
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.G.); (I.A.)
| | - Itika Arora
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.G.); (I.A.)
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.G.); (I.A.)
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Cell Senescence Culture Facility, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-205-934-4573
| |
Collapse
|
36
|
Escobar E, Peñafiel C, Gómez-Valenzuela F, Chimenos-Küstner E, Pérez-Tomás R. Cyclooxygenase-2 protein expression modulates cell proliferation and apoptosis in solid ameloblastoma and odontogenic keratocyst. An immunohistochemical study. J Oral Pathol Med 2021; 50:937-945. [PMID: 34398475 DOI: 10.1111/jop.13237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/03/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Cyclooxygenase-2 protein is a critically important mediator in inflammation that influences proliferation, apoptosis, angiogenesis and metastasis. Previous works showed a relationship between cyclooxygenase-2 and tumourigenesis in humans and animal models. In epithelial odontogenic tumours and cysts, increased cell proliferation and survival have been linked to its pathogenesis and tumour development. The aim of the present study was to analyse the immunohistochemical expression of cyclooxygenase-2 in solid ameloblastoma and odontogenic keratocyst and its association with proteins related to cell proliferation and apoptosis. METHODS This study was conducted on 40 cases from the Pathological Anatomy Service, University of Chile. The cases were diagnosed as solid ameloblastoma (n = 21) and odontogenic keratocyst (n = 19) according to WHO 2017. Slides prepared from paraffin-embedded sections were immunohistochemically stained for cyclooxygenase-2, cyclin D1, Ki-67, p63 and Bcl-2. Statistical evaluation was performed by the Shapiro-Wilk test, ANOVA Mann-Whitney test and Spearman's correlation coefficient (p < 0.05). RESULTS There were significant differences in the immunoexpression of cyclin D1, Ki-67 and Bcl-2 between solid ameloblastoma and odontogenic keratocyst. Likewise, there was a significant difference in the immunoexpression of p63 between follicular and plexiform histological types/subtypes of solid ameloblastoma. Lastly, there were statistical associations between cyclooxygenase-2 and Ki-67 for solid ameloblastoma and between cyclooxygenase-2 and p63 for odontogenic keratocyst. CONCLUSION A high level of cyclooxygenase-2 is related to increased cell survival and proliferative activity in solid ameloblastoma and odontogenic keratocyst. This event might contribute to tumoural progression and local invasiveness in these lesions.
Collapse
Affiliation(s)
- Enrico Escobar
- Department of Oral Pathology and Medicine, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Cristian Peñafiel
- Department of Oral Pathology and Medicine, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Fernán Gómez-Valenzuela
- Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo Chimenos-Küstner
- Department of Odonto-Stomatology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapy - Bellvitge, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
37
|
MicroRNA and cyclooxygenase-2 in breast cancer. Clin Chim Acta 2021; 522:36-44. [PMID: 34389281 DOI: 10.1016/j.cca.2021.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 12/24/2022]
Abstract
Cancer remains a major public health problem worldwide and the latest statistics show that breast cancer (BC) is among the most frequent in women. MicroRNAs (miRNAs; miRs) and cyclooxygenase-2 (COX-2) are new diagnostic and therapeutic biomarkers for monitoring BC. COX-2 is a prominent tumor-associated inflammatory factor highly expressed in human tumor cells, including BC. Expression of COX-2 contributes to tumor growth, metastasis and recurrence. MiRs are a group of short (~22 nucleotides), noncoding regulatory RNAs that downregulate gene expression post-transcriptionally and play vital roles in regulating cancer development and progression. Interestingly, there are a group of miRNAs differentially expressed in breast tumor tissue. Understanding the pathway linking miRNAs to COX-2 can provide novel insight for suppressing COX-2 expression via gene silencing thereby leading to the development of selective miRNA inhibitors. Further research can also reveal key intermediate players and their potential as therapeutic targets. Given the association between different miRNAs and COX-2 expression in BC, this review presents a comprehensive overview of the current literature concerning how miRNAs and COX-2 signaling interact in BC progression.
Collapse
|
38
|
Tran PHL, Lee BJ, Tran TTD. Current Studies of Aspirin as an Anticancer Agent and Strategies to Strengthen its Therapeutic Application in Cancer. Curr Pharm Des 2021; 27:2209-2220. [PMID: 33138752 DOI: 10.2174/1381612826666201102101758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
Abstract
Aspirin has emerged as a promising intervention in cancer in the past decade. However, there are existing controversies regarding the anticancer properties of aspirin as its mechanism of action has not been clearly defined. In addition, the risk of bleeding in the gastrointestinal tract from aspirin is another consideration that requires medical and pharmaceutical scientists to work together to develop more potent and safe aspirin therapy in cancer. This review presents the most recent studies of aspirin with regard to its role in cancer prevention and treatment demonstrated by highlighted clinical trials, mechanisms of action as well as approaches to develop aspirin therapy best beneficial to cancer patients. Hence, this review provides readers with an overview of aspirin research in cancer that covers not only the unique features of aspirin, which differentiate aspirin from other non-steroidal anti-inflammatory drugs (NSAIDs), but also strategies that can be used in the development of drug delivery systems carrying aspirin for cancer management. These studies convey optimistic messages on the continuing efforts of the scientist on the way of developing an effective therapy for patients with a low response to current cancer treatments.
Collapse
Affiliation(s)
- Phuong H L Tran
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Australia
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon, Korea
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
39
|
Leonel ECR, Ruiz TFR, Bedolo CM, Campos SGP, Taboga SR. Inflammatory repercussions in female steroid responsive glands after perinatal exposure to bisphenol A and 17-β estradiol. Cell Biol Int 2021; 45:2264-2274. [PMID: 34288236 DOI: 10.1002/cbin.11665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022]
Abstract
The mammary gland (MG) and female prostate are plastic reproductive organs which are highly responsive to hormones. Thus, endocrine disruptors, such as bisphenol A (BPA) and exogenous estrogens, negatively affect glandular homeostasis. In addition to previously described alterations, changes in inflammatory markers expression also trigger the development of a microenvironment that contributes to tumor progression. The current work aimed to evaluate the inflammatory responses of the MG and prostate gland to BPA (50 µg/kg) and 17-β estradiol (35 µg/kg) exposure during the perinatal window of susceptibility. The results showed that at 6 months of age there was an increase in the number of phospho-STAT3 (P-STAT3) positive cells in the female prostate from animals perinatally exposed to 50 µg/kg BPA daily. In addition, the number of macrophages increased in these animals in comparison with nonexposed animals, as shown by the F4/80 marker. Despite an increase in the incidence of lobuloalveolar and intraductal hyperplasia, the MG did not show any difference in the expression of the four inflammatory markers evaluated: tumor necrosis factor-α, COX-2, P-STAT3, and F4/80. Analysis of both glands from the same animal led to the conclusion that exposure to endocrine disruptors during the perinatal window of susceptibility leads to different inflammatory responses in different reproductive organs. As the prostate is more susceptible to these inflammatory mechanisms, it is reasonable to affirm that possible neoplastic alterations in this organ are related to changes in the inflammatory pattern of the stroma, a characteristic that is not evident in the MG.
Collapse
Affiliation(s)
- Ellen Cristina Rivas Leonel
- Department of Biology, Humanities, and Exact Sciences, Institute of Biosciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.,Department of Histology, Embriology, and Cell Biology, Institute of Biological Sciences (ICB III), Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Thalles Fernando Rocha Ruiz
- Department of Biology, Humanities, and Exact Sciences, Institute of Biosciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Carolina Marques Bedolo
- Department of Biology, Humanities, and Exact Sciences, Institute of Biosciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Silvana Gisele Pegorin Campos
- Department of Biology, Humanities, and Exact Sciences, Institute of Biosciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Humanities, and Exact Sciences, Institute of Biosciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
40
|
The genomic architecture of metastasis in breast cancer: focus on mechanistic aspects, signalling pathways and therapeutic strategies. Med Oncol 2021; 38:95. [PMID: 34268641 DOI: 10.1007/s12032-021-01547-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is a multifactorial, heterogeneous disease and the second most frequent cancer amongst women worldwide. Metastasis is one of the most leading causes of death in these patients. Early-stage or locally advanced breast cancer is limited to the breast or nearby lymph nodes. When breast cancer spreads to farther tissues/organs from its original site, it is referred to as metastatic or stage IV breast cancer. Normal breast development is regulated by specific genes and signalling pathways controlling cell proliferation, cell death, cell differentiation and cell motility. Dysregulation of genes involved in various signalling pathways not only leads to the formation of primary tumour but also to the metastasis as well. The metastatic cascade is represented by a multi-step process including invasion of the local tumour cell followed by its entry into the vasculature, exit of malignant cells from the circulation and ultimately their colonization at the distant sites. These stages are referred to as formation of primary tumour, angiogenesis, invasion, intravasation and extravasation, respectively. The major sites of metastasis of breast cancer are the lymph nodes, bone, brain and lung. Only about 28% five-year survival rate has been reported for stage IV breast cancer. Metastasis is a serious concern for breast cancer and therefore, various therapeutic strategies such as tyrosine kinase inhibitors have been developed to target specific dysregulated genes and various signalling pathways involved in different steps of metastasis. In addition, other therapies like hyperbaric oxygen therapy, RNA interference and CRISPR/Cas9 are also being explored as novel strategies to cure the stage IV/metastatic breast cancer. Therefore, the current review has been compiled with an aim to evaluate the genetic basis of stage IV breast cancer with a focus on the molecular mechanisms. In addition, the therapeutic strategies targeting these dysregulated genes involved in various signalling pathways have also been discussed. Genome editing technologies that can target specific genes in the affected areas by making knock-in and knock-out alternations and thereby bring significant treatment outcomes in breast cancer have also been summarized.
Collapse
|
41
|
Mongiovi JM, Hong CC, Zirpoli GR, Khoury T, Omilian AR, Qin B, Bandera EV, Yao S, Ambrosone CB, Gong Z. Genetic Variants in COX2 and ALOX Genes and Breast Cancer Risk in White and Black Women. Front Oncol 2021; 11:679998. [PMID: 34249719 PMCID: PMC8263909 DOI: 10.3389/fonc.2021.679998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
COX and ALOX genes are involved in inflammatory processes and that may be related to breast cancer risk differentially between White and Black women. We evaluated distributions of genetic variants involved in COX2 and ALOX-related pathways and examined their associations with breast cancer risk among 1,275 White and 1,299 Black cases and controls who participated in the Women's Circle of Health Study. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using multivariable-adjusted logistic regression models. Our results showed differential associations of certain genetic variants with breast cancer according to menopausal and ER status in either White or Black women. In White women, an increased risk of breast cancer was observed for COX2-rs689470 (OR: 2.02, P = 0.01) in the dominant model, and was strongest among postmenopausal women (OR: 2.72, P = 0.02) and for estrogen receptor positive (ER+) breast cancers (OR: 2.60, P = 0.001). A reduced risk was observed for ALOX5-rs7099874 (OR: 0.75, P = 0.01) in the dominant model, and was stronger among postmenopausal women (OR: 0.68, P = 0.03) and for ER+ cancer (OR: 0.66, P = 0.001). Four SNPs (rs3840880, rs1126667, rs434473, rs1042357) in the ALOX12 gene were found in high LD (r2 >0.98) in White women and were similarly associated with reduced risk of breast cancer, with a stronger association among postmenopausal women and for ER- cancer. Among Black women, increased risk was observed for ALOX5-rs1369214 (OR: 1.44, P = 0.003) in the recessive model and was stronger among premenopausal women (OR: 1.57, P = 0.03) and for ER+ cancer (OR: 1.53, P = 0.003). Our study suggests that genetic variants of COX2 and ALOX genes are associated with breast cancer, and that these associations and genotype distributions differ in subgroups defined by menopausal and ER status between White and Black women. Findings may provide insights into the etiology of breast cancer and areas for further research into reasons for breast cancer differences between races.
Collapse
Affiliation(s)
- Jennifer M. Mongiovi
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, United States
| | - Chi-Chen Hong
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Gary R. Zirpoli
- Slone Epidemiology Center, Boston University, Boston, NY, United States
| | - Thaer Khoury
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Angela R. Omilian
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Bo Qin
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Elisa V. Bandera
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Song Yao
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Christine B. Ambrosone
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Zhihong Gong
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
42
|
Gómez-Valenzuela F, Escobar E, Pérez-Tomás R, Montecinos VP. The Inflammatory Profile of the Tumor Microenvironment, Orchestrated by Cyclooxygenase-2, Promotes Epithelial-Mesenchymal Transition. Front Oncol 2021; 11:686792. [PMID: 34178680 PMCID: PMC8222670 DOI: 10.3389/fonc.2021.686792] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment (TME) corresponds to a complex and dynamic interconnection between the extracellular matrix and malignant cells and their surrounding stroma composed of immune and mesenchymal cells. The TME has constant cellular communication through cytokines that sustain an inflammatory profile, which favors tumor progression, angiogenesis, cell invasion, and metastasis. Although the epithelial-mesenchymal transition (EMT) represents a relevant metastasis-initiating event that promotes an invasive phenotype in malignant epithelial cells, its relationship with the inflammatory profile of the TME is poorly understood. Previous evidence strongly suggests that cyclooxygenase-2 (COX-2) overexpression, a pro-inflammatory enzyme related to chronic unresolved inflammation, is associated with common EMT-signaling pathways. This review article summarizes how COX-2 overexpression, within the context of the TME, orchestrates the EMT process and promotes initial metastatic-related events.
Collapse
Affiliation(s)
- Fernán Gómez-Valenzuela
- Department of Hematology-Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrico Escobar
- Department of Oral Pathology and Medicine, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapy - Bellvitge, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Viviana P Montecinos
- Department of Hematology-Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
43
|
Combinatorial targeting of microRNA-26b and microRNA-101 exerts a synergistic inhibition on cyclooxygenase-2 in brain metastatic triple-negative breast cancer cells. Breast Cancer Res Treat 2021; 187:695-713. [PMID: 34041621 DOI: 10.1007/s10549-021-06255-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/04/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Extravasation of triple-negative (TN) metastatic breast cancer (BC) cells through the brain endothelium (BE) is a critical step in brain metastasis (BM). During extravasation, metastatic cells induce alteration in the inter-endothelial junctions and transmigrate through the endothelial barrier. Transmigration of metastatic cells is mediated by the upregulation of cyclooxygenase-2 (COX-2) that induces matrix metalloproteinase-1 (MMP-1) capable of degrading inter-endothelial junctional proteins. Despite their important role in BM, the molecular mechanisms upregulating COX-2 and MMP-1 in TNBC cells remain poorly understood. In this study, we unraveled a synergistic effect of a pair of micro-RNAs (miR-26b-5p and miR-101-3p) on COX-2 expression and the brain transmigration ability of BC cells. METHODS Using a gain-and-loss of function approach, we modulated levels of miR-26b-5p and miR-101-3p in two TNBC cell lines (the parental MDA-MB-231 and its brain metastatic variant MDA-MB-231-BrM2), and examined the resultant effect on COX-2/MMP-1 expression and the transmigration of cancer cells through the BE. RESULTS We observed that the dual inhibition of miR-26b-5p and miR-101-3p in BC cells results in higher increase of COX-2/MMP-1 expression and a higher trans-endothelial migration compared to either micro-RNA alone. The dual restoration of both micro-RNAs exerted a synergistic inhibition on COX-2/MMP-1 by targeting COX-2 and potentiated the suppression of trans-endothelial migration compared to single micro-RNA. CONCLUSION These findings provide new insights on a synergism between miR-26-5p and miR-101-3p in regulating COX-2 in metastatic TNBC cells and shed light on miR-26-5p and miR-101-3p as prognostic and therapeutic targets that can be exploited to predict or prevent BM.
Collapse
|
44
|
Pt(IV) Prodrugs with NSAIDs as Axial Ligands. Int J Mol Sci 2021; 22:ijms22083817. [PMID: 33917027 PMCID: PMC8067705 DOI: 10.3390/ijms22083817] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
A chemo-anti-inflammatory strategy is of interest for the treatment of aggressive cancers. The platinum (IV) prodrug with non-steroidal anti-inflammatory drugs (NSAIDs) as axial ligands is designed to efficiently enter tumor cells due to high lipophilicity and release the cytotoxic metabolite and NSAID intracellularly, thereby reducing side effects and increasing the therapeutic efficacy of platinum chemotherapy. Over the last 7 years, a number of publications have been devoted to the design of such Pt(IV) prodrugs in combination with anti-inflammatory chemotherapy, with high therapeutic efficacy in vitro and In vivo. In this review, we summarize the studies devoted to the development of Pt(IV) prodrugs with NSAIDs as axial ligands, the study of the mechanism of their cytotoxic action and anti-inflammatory activity, the structure-activity ratio, and therapeutic efficacy.
Collapse
|
45
|
Mworia JK, Kibiti CM, Ngeranwa JJN, Ngugi MP. Anti-inflammatory potential of dichloromethane leaf extracts of Eucalyptus globulus (Labill) and Senna didymobotrya (Fresenius) in mice. Afr Health Sci 2021; 21:397-409. [PMID: 34394322 PMCID: PMC8356592 DOI: 10.4314/ahs.v21i1.50] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Inflammation is an immune response characterized by swelling, redness, pain and heat. Inflammation is mainly managed using conventional medicines that are associated with many side effects. Plant-based remedies are considerably better alternative therapies for they have fewer side effects. Objective This study aimed at determining the anti-inflammatory potential of dichloromethane (DCM) leaf extracts of Eucalyptus globulus and Senna didymobotrya in mice. Methods Fresh leaves of these plants were harvested from Embu County, Kenya. Quantitative phytochemical analysis was done using Gas Chromatography-Mass Spectrometry (GC-MS). Anti-inflammatory test comprised nine groups of five animals each: normal, negative, positive controls and 6 experimental groups. Inflammation was induced with Carrageenan. One hour post-treatment, the different groups were intraperitoneally administered with the reference drug, diclofenac, 3% DMSO and six DCM leaf extracts at doses of 25, 50, 100, 150, 200 and 250mg/kgbw. Results GC-MS results revealed α-phellandrene, camphene, terpinolene, and limonene among others. Anti-inflammatory effects showed that extract doses of 100,150,200 and 250mg/kg bw significantly reduced the inflamed paw. Doses of 200 and 250mg/kgbw in both plants were more potent and compared with diclofenac. E. globulus extract dose of 250mg kg bw reduced inflamed paw in the 1st, 2nd, 3rd and 4th hours, by 2.27,6.52,9.09 and 10.90% respectively while S.didymobotrya at similar dose ranges, inflamed paw reduced by 2.41, 5.43, 8.31 and 9.05% respectively. Conclusion E. globulus and S. didymobotrya have potent anti-inflammatory activities, attributed to their constituent phytochemicals. This study confirms the traditional use of these plants in treating inflammation.
Collapse
Affiliation(s)
- Joseph Kiambi Mworia
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O Box 43844-00100, Nairobi, Kenya
| | - Cromwell Mwiti Kibiti
- Department of Pure and Applied Sciences, Technical University of Mombasa, P.O Box 90420-80100, Mombasa, Kenya
| | - Joseph JN Ngeranwa
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O Box 43844-00100, Nairobi, Kenya
| | - Mathew Piero Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O Box 43844-00100, Nairobi, Kenya
| |
Collapse
|
46
|
Pacheco-Torres J, Penet MF, Mironchik Y, Krishnamachary B, Bhujwalla ZM. The PD-L1 metabolic interactome intersects with choline metabolism and inflammation. Cancer Metab 2021; 9:10. [PMID: 33608051 PMCID: PMC7893974 DOI: 10.1186/s40170-021-00245-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Background Harnessing the power of the immune system by using immune checkpoint inhibitors has resulted in some of the most exciting advances in cancer treatment. The full potential of this approach has, however, not been fully realized for treating many cancers such as pancreatic and breast cancer. Cancer metabolism influences many aspects of cancer progression including immune surveillance. An expanded understanding of how cancer metabolism can directly impact immune checkpoints may allow further optimization of immunotherapy. We therefore investigated, for the first time, the relationship between the overexpression of choline kinase-α (Chk-α), an enzyme observed in most cancers, and the expression of the immune checkpoint PD-L1. Methods We used small interfering RNA to downregulate Chk-α, PD-L1, or both in two triple-negative human breast cancer cell lines (MDA-MB-231 and SUM-149) and two human pancreatic ductal adenocarcinoma cell lines (Pa09C and Pa20C). The effects of the downregulation were studied at the genomic, proteomic, and metabolomic levels. The findings were compared with the results obtained by the analysis of public data from The Cancer Genome Atlas Program. Results We identified an inverse dependence between Chk-α and PD-L1 at the genomic, proteomic, and metabolomic levels. We also found that prostaglandin-endoperoxide synthase 2 (COX-2) and transforming growth factor beta (TGF-β) play an important role in this relationship. We independently confirmed this relationship in human cancers by analyzing data from The Cancer Genome Atlas Program. Conclusions Our data identified previously unknown roles of PD-L1 in cancer cell metabolic reprogramming, and revealed the immunosuppressive increased PD-L1 effect of Chk-α downregulation. These data suggest that PD-L1 regulation of metabolism may be mediated through Chk-α, COX-2, and TGF-β. The observations provide new insights that can be applied to the rational design of combinatorial therapies targeting immune checkpoints and cancer metabolism. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00245-w.
Collapse
Affiliation(s)
- Jesus Pacheco-Torres
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA
| | - Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD, 21205, USA. .,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
47
|
Deng L, Feng DQ, Ling B. Cyclooxygenase-2 promotes ovarian cancer cell migration and cisplatin resistance via regulating epithelial mesenchymal transition. J Zhejiang Univ Sci B 2021; 21:315-326. [PMID: 32253841 DOI: 10.1631/jzus.b1900445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Drug-resistance and metastasis are major reasons for the high mortality of ovarian cancer (OC) patients. Cyclooxygenase-2 (COX-2) plays a critical role in OC development. This study was designed to evaluate the effects of COX-2 on migration and cisplatin (cis-dichloro diammine platinum, CDDP) resistance of OC cells and explore its related mechanisms. METHODS Cell counting kit-8 (CCK-8) assay was used to detect the cytotoxicity effects of celecoxib (CXB) and CDDP on SKOV3 and ES2 cells. The effect of COX-2 on migration was evaluated via the healing test. Western blot and real-time quantitative polymerase chain reaction (qPCR) were used to analyze E-cadherin, vimentin, Snail, and Slug levels. RESULTS COX-2 promoted drug-resistance and cell migration. CXB inhibited these effects. The combination of CDDP and CXB increased tumor cell sensitivity, reduced the amount of CDDP required, and shortened treatment administration time. COX-2 upregulation increased the expression of Snail and Slug, resulting in E-cadherin expression downregulation and vimentin upregulation. CONCLUSIONS COX-2 promotes cancer cell migration and CDDP resistance and may serve as a potential target for curing OC.
Collapse
Affiliation(s)
- Lin Deng
- China-Japan Friendship Hospital, Beijing 100029, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | | | - Bin Ling
- China-Japan Friendship Hospital, Beijing 100029, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
48
|
Gut microbiota homeostasis restoration may become a novel therapy for breast cancer. Invest New Drugs 2021; 39:871-878. [PMID: 33454868 DOI: 10.1007/s10637-021-01063-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/06/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is the most diagnosed cancer in women. It significantly impairs a patient's physical and mental health. Gut microbiota comprise the bacteria residing in a host's gastrointestinal tract. Through studies over the last decade, we now know that alterations in the composition of the gut microbiome are associated with protection against colonization by pathogens and other diseases, such as diabetes and cancer. This review focuses on how gut microbiota can affect breast cancer development through estrogen activity and discusses the types of bacteria that may be involved in the onset and the progression of breast cancer. We also describe potential therapies to curtail the risk of breast cancer by restoring gut microbiota homeostasis and reducing systemic estrogen levels. This review will further explore the relationship between intestinal microbes and breast cancer and propose a method to treat breast cancer by improving intestinal microbes. We aimed at discovering new methods to prevent or treat BC by changing intestinal microorganisms.
Collapse
|
49
|
Mori N, Mironchik Y, Wildes F, Wu SY, Mori K, Krishnamachary B, Bhujwalla ZM. HIF and COX-2 expression in triple negative breast cancer cells with hypoxia and 5-fluorouracil. CURRENT CANCER REPORTS 2020; 2:54-63. [PMID: 35814639 PMCID: PMC9262285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Our purpose was to understand the effects of normoxia or hypoxia on 5-fluorouracil (5-FU) treatment in triple negative breast cancer (TNBC) cells, and characterize the molecular changes in hypoxia inducible factors (HIFs) and cyclooxygenase-2 (COX-2) following treatment. Cell viability and protein levels of HIFs and COX-2 were determined after wild type and HIF silenced MDA-MB-231 cells, and wild type SUM-149 cells, were treated with 5-FU under normoxia or hypoxia. 5-FU reduced cell viability to the same levels irrespective of normoxia or hypoxia. HIF silenced MDA-MB-231 cells showed comparable changes in cell viability, supporting observations that hypoxia and the HIF pathways did not significantly influence cell viability reduction by 5-FU. Our data suggest that HIF-2α accumulation may predispose cancer cells to cell death under hypoxia. SUM-149 cells that have higher COX-2 and HIF-2α following 24 h of hypoxia, were more sensitive to 96 h of hypoxia compared to MDA-MB-231 cells, and were more sensitive to 5-FU than MDA-MB-231 cells. COX-2 levels changed with hypoxia and with 5-FU treatment but patterns were different between the two cell lines. At 96 h, COX-2 increased in both untreated and 5-FU treated cells under hypoxia in MDA-MB-231 cells. In SUM-149 cells, only treatment with 5-FU increased COX-2 at 96 h of hypoxia. Cells that survive hypoxia and 5-FU treatment may exhibit a more aggressive phenotype. Our results support understanding interactions between HIF and COX-2 with chemotherapeutic agents under normoxia and hypoxia, and investigating the use of COX-2 inhibitors in these settings.
Collapse
Affiliation(s)
- Noriko Mori
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Yelena Mironchik
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Flonné Wildes
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Sherry Y. Wu
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Kanami Mori
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Zaver M. Bhujwalla
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
50
|
Natural Phenolic Acid, Product of the Honey Bee, for the Control of Oxidative Stress, Peritoneal Angiogenesis, and Tumor Growth in Mice. Molecules 2020; 25:molecules25235583. [PMID: 33261130 PMCID: PMC7730286 DOI: 10.3390/molecules25235583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 01/24/2023] Open
Abstract
Tumor-associated macrophages (TAM) are key regulators of the link between inflammation and cancer, and the interplay between TAM and tumor cells represents a promising target of future therapeutic approaches. We investigated the effect of gallic acid (GA) and caffeic acid (CA) as strong antioxidant and anti-inflammatory agents on tumor growth, angiogenesis, macrophage polarization, and oxidative stress on the angiogenic model caused by the intraperitoneal (ip) inoculation of Ehrlich ascites tumor (EAT) cells (2.5 × 106) in Swiss albino mouse. Treatment with GA or CA at a dose of 40 mg/kg and 80 mg/kg ip was started in exponential tumor growth phase on days 5, 7, 9, and 11. On day 13, the ascites volume and the total number and differential count of the cells present in the peritoneal cavity, the functional activity of macrophages, and the antioxidant and anti-angiogenic parameters were determined. The results show that phenolic acids inhibit the processes of angiogenesis and tumor growth, leading to the increased survival of EAT-bearing mice, through the protection of the tumoricidal efficacy of M1 macrophages and inhibition of proangiogenic factors, particularly VEGF, metalloproteinases -2 and -9, and cyclooxygenase-2 activity.
Collapse
|