1
|
Palandurkar GS, Kumar S. Biofilm's Impact on Inflammatory Bowel Diseases. Cureus 2023; 15:e45510. [PMID: 37868553 PMCID: PMC10585119 DOI: 10.7759/cureus.45510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
The colon has a large surface area covered with a thick mucus coating. Colon's biomass consists of about 1,012 colony-forming units per gram of feces and 500-1,000 distinct bacterial species. The term inflammatory bowel disease (IBD) indicates the collection of intestinal illnesses in which the digestive system (esophagus, large intestine, mouth, stomach, and small intestine) experiences persistent inflammation. IBD development is influenced by environmental (infections, stress, and nutrition) and genetic factors. The microbes present in gut microbiota help maintain intestinal homeostasis and support immune and epithelial cell growth, differentiation, as well as proliferation. It has been discovered that a variety of variables and microorganisms are crucial for the development of biofilms and mucosal colonization during IBD. An extracellular matrix formed by bacteria supports biofilm production in our digestive system and harms the host's immunological response. Irritable bowel syndrome (IBS) and IBD considerably affect human socioeconomic well-being and the standard of living. IBD is a serious public health issue, affecting millions of people across the globe. The gut microbiome may significantly influence IBS pathogenesis, even though few diagnostic and treatment options are available. As a result, current research focuses more on disrupting biofilm in IBD patients and stresses primarily on drugs that help improve the quality of life for human well-being. We evaluate studies on IBD and bacterial biofilm to add fresh insights into the existing state of knowledge of biofilm formation in IBD, incidence of IBD patients, molecular level of investigations, bacteria that are involved in the formation of biofilm, and present and down the line regimens and probiotics. Planning advanced ways to control and eradicate bacteria in biofilms should be the primary goal to add fresh insights into generating innovative diagnostic and alternative therapy options for IBD.
Collapse
Affiliation(s)
- Gopal S Palandurkar
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sunil Kumar
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
2
|
Biofilms and Benign Colonic Diseases. Int J Mol Sci 2022; 23:ijms232214259. [PMID: 36430737 PMCID: PMC9698058 DOI: 10.3390/ijms232214259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
The colon has a very large surface area that is covered by a dense mucus layer. The biomass in the colon includes 500-1000 bacterial species at concentrations of ~1012 colony-forming units per gram of feces. The intestinal epithelial cells and the commensal bacteria in the colon have a symbiotic relationship that results in nutritional support for the epithelial cells by the bacteria and maintenance of the optimal commensal bacterial population by colonic host defenses. Bacteria can form biofilms in the colon, but the exact frequency is uncertain because routine methods to undertake colonoscopy (i.e., bowel preparation) may dislodge these biofilms. Bacteria in biofilms represent a complex community that includes living and dead bacteria and an extracellular matrix composed of polysaccharides, proteins, DNA, and exogenous debris in the colon. The formation of biofilms occurs in benign colonic diseases, such as inflammatory bowel disease and irritable bowel syndrome. The development of a biofilm might serve as a marker for ongoing colonic inflammation. Alternatively, the development of biofilms could contribute to the pathogenesis of these disorders by providing sanctuaries for pathogenic bacteria and reducing the commensal bacterial population. Therapeutic approaches to patients with benign colonic diseases could include the elimination of biofilms and restoration of normal commensal bacteria populations. However, these studies will be extremely difficult unless investigators can develop noninvasive methods for measuring and identifying biofilms. These methods that might include the measurement of quorum sensing molecules, measurement of bile acids, and identification of bacteria uniquely associated with biofilms in the colon.
Collapse
|
3
|
Risk Factors, Diagnosis, and Management of Clostridioides difficile Infection in Patients with Inflammatory Bowel Disease. Microorganisms 2022; 10:microorganisms10071315. [PMID: 35889034 PMCID: PMC9319314 DOI: 10.3390/microorganisms10071315] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Clostridioides difficile infection (CDI) and inflammatory bowel disease (IBD) are two pathologies that share a bidirectional causal nexus, as CDI is known to have an aggravating effect on IBD and IBD is a known risk factor for CDI. The colonic involvement in IBD not only renders the host more prone to an initial CDI development but also to further recurrences. Furthermore, IBD flares, which are predominantly set off by a CDI, not only create a need for therapy escalation but also prolong hospital stay. For these reasons, adequate and comprehensive management of CDI is of paramount importance in patients with IBD. Microbiological diagnosis, correct evaluation of clinical status, and consideration of different treatment options (from antibiotics and fecal microbiota transplantation to monoclonal antibodies) carry pivotal importance. Thus, the aim of this article is to review the risk factors, diagnosis, and management of CDI in patients with IBD.
Collapse
|
4
|
Yang B, He M, Chen X, Sun M, Pan T, Xu X, Zhang X, Gong Q, Zhao Y, Jin Z, Cheng Z. Acupuncture Effect Assessment in APP/PS1 Transgenic Mice: On Regulating Learning-Memory Abilities, Gut Microbiota, and Microbial Metabolites. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1527159. [PMID: 35432583 PMCID: PMC9012623 DOI: 10.1155/2022/1527159] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a brain illness that affects learning and memory capacities over time. In recent investigations, acupuncture has been shown to be an effective alternative treatment for AD. We investigated the effect of acupuncture on learning and memory abilities using a water maze in APP/PS1 transgenic mice. The amounts of Aβ and tau protein in mice's hippocampal tissue were determined using Western blot. The levels of IL-1β, IL-10, LPS and TNF-α in mice's serum were measured using ELISA. The variations of gut microbiota in mice's feces were determined using the 16SrDNA technique, and the metabolites were examined using a untargeted metabolomics methodology. The results showed that acupuncture treatment improved mice's learning and memory abilities substantially. Acupuncture therapy regulated the Aβ and tau protein concentration as well as the levels of IL-10 and LPS. Acupuncture treatment influenced the mouse microbiota and metabolites and had been linked to six biochemical pathways. This study adds to our understanding of the effect of acupuncture on AD and opens the door to further research into the alterations of intestinal bacteria in the presence of AD.
Collapse
Affiliation(s)
- Bo Yang
- Liaoning University of Traditional Chinese Medicine, No. 79, Chongshan Eastern Rd, Huanggu District, 110847 Shenyang, China
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117 Changchun, China
| | - Min He
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117 Changchun, China
| | - Xinhua Chen
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117 Changchun, China
| | - Mengmeng Sun
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117 Changchun, China
| | - Ting Pan
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117 Changchun, China
| | - Xiaohong Xu
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117 Changchun, China
| | - Xuesong Zhang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117 Changchun, China
| | - Qing Gong
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117 Changchun, China
| | - Ye Zhao
- Northwest University, No. 229, Taibai North Road, Xi' an 710069, China
| | - Ziqi Jin
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117 Changchun, China
| | - Zedong Cheng
- Liaoning University of Traditional Chinese Medicine, No. 79, Chongshan Eastern Rd, Huanggu District, 110847 Shenyang, China
| |
Collapse
|
5
|
Zhang Y, Gu Y, Wu R, Zheng Y, Wang Y, Nie L, Qiao R, He Y. Exploring the relationship between the signal molecule AI-2 and the biofilm formation of Lactobacillus sanfranciscensis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Xu X, Feng X, He M, Zhang Z, Wang J, Zhu H, Li T, Wang F, Sun M, Wang Z. The effect of acupuncture on tumor growth and gut microbiota in mice inoculated with osteosarcoma cells. Chin Med 2020; 15:33. [PMID: 32292489 PMCID: PMC7140491 DOI: 10.1186/s13020-020-00315-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer is a complex systemic disease. As a key component of traditional Chinese medicine, acupuncture is a clinically proven medical treatment for many diseases, and it also has preventative effects as it balances the body, allowing it to self-regulate. For cancer patients, acupuncture is widely used as complementary therapy to boost the immune system and reduce the side effects of radiotherapy and chemotherapy. However, few studies have determined how acupuncture against cancer, especially in regulating the intestinal flora of the tumor-burdened mice. METHODS We treated osteosarcoma tumor-burdened mice by using needling on different acupoints and acupoints combination, thereafter determined the effects of acupuncture on tumor growth by using imaging technology in vitro. In addition, intestinal bacteria were analyzed for further understanding the holistic and systemic treatment effects of acupuncture in osteosarcoma tumor-burdened mice. RESULTS Acupuncture treatment can delay tumor growth and changes of intestinal bacteria in osteosarcoma tumor-burdened mice. In detail, the loss of body weight and the development of tumor volume of mice have been postposed by needling specific acupoints. In addition, acupuncture treatment has delayed the changes of the relative abundance of Bacteroidetes, Firmicutes and Candidatus Saccharibacteria at the phylum level. Moreover, the relative abundance of many bacteria (e.g., Catabacter, Acetatifactor and Aestuariispira) has been regulated by using acupuncture treatment, and the trend of structural changes of these bacteria at the genus level has also been postposed compared to that of the tumor-burdened mice model group. CONCLUSION Our results suggest that acupuncture may provide a systemic treatment for cancer. Our findings encourage new and extensive research into the effects of acupuncture on changes of the intestinal microbiome associated with the development of cancer.
Collapse
Affiliation(s)
- Xiaoru Xu
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| | - Xiangru Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022 People’s Republic of China
| | - Min He
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| | - Zepeng Zhang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin China
| | - Jiajia Wang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| | - Haiyu Zhu
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| | - Tie Li
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| | - Fuchun Wang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| | - Mengmeng Sun
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
- SKL of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, N22 Avenida da Universidade, Taipa, Macau China
| | - Zhihong Wang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117 China
| |
Collapse
|