1
|
Pando MM, Debner EK, Jacobs BA, Jamshidi RJ, Jennings EM, Clarke WP, Berg KA. Activation of G protein gated inwardly rectifying potassium (GIRK) channels in keratinocytes mediates peripheral kappa opioid receptor-mediated antinociception. Neuropharmacology 2025; 268:110326. [PMID: 39880327 DOI: 10.1016/j.neuropharm.2025.110326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/08/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
Kappa opioid receptors (KOR) expressed by peripheral pain-sensing neurons (nociceptors) are a promising target for development of effective and safer analgesics for inflammatory pain that are devoid of central nervous system adverse effects. Here we sought to delineate the signaling pathways that underlie peripheral KOR-mediated antinociception in adult male and female Sprague-Dawley rats. In an inflammatory model of pain, local intraplantar (i.pl.) injection of pertussis toxin prevented antinociception induced by the KOR agonist, U50488, indicating that members of the Gi/o family mediate the antinociceptive response. Furthermore, i.pl. injection of the G protein-coupled inward-rectifying potassium (GIRK) channel blocker, TPNQ, as well as GIRK2 subunit-targeted siRNA abolished U50488-mediated antinociceptive behavioral responses in both male and female rats. Consistent with these data, i.pl. injection of ML297, a direct activator of GIRK1 subunit-containing channels, elicited peripheral antinociceptive behavior. It is well known that intraepidermal nerve fibers (IENF) that innervate the hindpaw propagate nociceptive signals to the spinal cord. However, recent studies suggest that keratinocytes, the major cell type in the epidermis, also play an active role in pain and sensory processing. Results from RT-qPCR, RNAscope and immunohistochemistry experiments confirmed that both KOR and GIRK are expressed in keratinocytes in the epidermal layer of the rat hindpaw. Knockdown of either KOR or GIRK2 subunits selectively in keratinocytes by i.pl. injection of shRNA plasmids, prevented the antinociceptive response to U50488. Taken together, these data suggest that KOR-mediated activation of GIRK channels in keratinocytes is required for peripherally-mediated antinociception.
Collapse
Affiliation(s)
- Miryam M Pando
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Emily K Debner
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Blaine A Jacobs
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Raehannah J Jamshidi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Elaine M Jennings
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - William P Clarke
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kelly A Berg
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
2
|
Krishna MM, Waghmare SG, Franitza AL, Maccoux EC, E L. Epidermal Collagen Reduction Drives Selective Aspects of Aging in Sensory Neurons. Aging Cell 2025; 24:e14459. [PMID: 39731224 PMCID: PMC11984697 DOI: 10.1111/acel.14459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
Despite advances in understanding molecular and cellular changes in the aging nervous system, the upstream drivers of these changes remain poorly defined. Here, we investigate the roles of non-neural tissues in neuronal aging, using the cutaneous PVD polymodal sensory neuron in Caenorhabditis elegans as a model. We demonstrate that during normal aging, PVD neurons progressively develop excessive dendritic branching, functionally correlated with age-related proprioceptive deficits. Our study reveals that decreased collagen expression, a common age-related phenomenon across species, triggers this process. Specifically, loss-of-function in dpy-5 or col-120, genes encoding cuticular collagens secreted to the epidermal apical surface, induces early-onset excessive dendritic branching and proprioceptive deficits. Adulthood-specific overexpression of dpy-5 or col-120 mitigates excessive branching in aged animals without extending lifespan, highlighting their specific roles in promoting neuronal health span. Notably, collagen reduction specifically drives excessive branching in select sensory neuron subclasses but does not contribute to PVD dendritic beading, another aging-associated neurodegenerative phenotype associated with distinct mechanosensitive dysfunction. Lastly, we identify that rig-3, an immunoglobulin superfamily member expressed in interneurons, acts upstream of collagen genes to maintain PVD dendritic homeostasis during aging, with collagen's regulatory role requiring daf-16/FOXO. These findings reveal that age-related collagen reduction cues neuronal aging independently of collagen's traditional structural support function, possibly involving bi-directional communication processes between neurons and non-neuronal cells. Our study also offers new insights into understanding selective neuron vulnerability in aging, emphasizing the importance of multi-tissue strategies to address the complexities of neuronal aging.
Collapse
Affiliation(s)
- Meera M. Krishna
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWisconsinUSA
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Swapnil G. Waghmare
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWisconsinUSA
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Ariel L. Franitza
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Emily C. Maccoux
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Lezi E
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWisconsinUSA
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
3
|
Ching K, Sagasti A. Caliber of zebrafish touch-sensory axons is dynamic in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.04.626901. [PMID: 39713467 PMCID: PMC11661087 DOI: 10.1101/2024.12.04.626901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Cell shape is crucial to cell function, particularly in neurons. The cross-sectional diameter, also known as caliber, of axons and dendrites is an important parameter of neuron shape, best appreciated for its influence on the speed of action potential propagation. Many studies of axon caliber focus on cell-wide regulation and assume that caliber is static. Here, we have characterized local variation and dynamics of axon caliber in vivo using the peripheral axons of zebrafish touch-sensing neurons at embryonic stages, prior to sex determination. To obtain absolute measurements of caliber in vivo, we paired sparse membrane labeling with super-resolution microscopy of neurons in live fish. We observed that axon segments had varicose or "pearled" morphologies, and thus vary in caliber along their length, consistent with reports from mammalian systems. Sister axon segments originating from the most proximal branch point in the axon arbor had average calibers that were uncorrelated with each other. Axon caliber also tapered across the branch point. Varicosities and caliber, overall, were dynamic on the timescale of minutes, and dynamicity changed over the course of development. By measuring the caliber of axons adjacent to dividing epithelial cells, we found that skin cell division is one aspect of the cellular microenvironment that may drive local differences and dynamics in axon caliber. Our findings support the possibility that spatial and temporal variation in axon caliber could significantly influence neuronal physiology.
Collapse
Affiliation(s)
- Kaitlin Ching
- Department of Cell, Molecular, and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Alvaro Sagasti
- Department of Cell, Molecular, and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
4
|
Tann JY, Xu F, Kimura M, Wilkes OR, Yoong LF, Skibbe H, Moore AW. Study of Dendrite Differentiation Using Drosophila Dendritic Arborization Neurons. Cold Spring Harb Protoc 2024; 2024:pdb.top108146. [PMID: 38148165 DOI: 10.1101/pdb.top108146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Neurons receive, process, and integrate inputs. These operations are organized by dendrite arbor morphology, and the dendritic arborization (da) neurons of the Drosophila peripheral sensory nervous system are an excellent experimental model for examining the differentiation processes that build and shape the dendrite arbor. Studies in da neurons are enabled by a wealth of fly genetic tools that allow targeted neuron manipulation and labeling of the neuron's cytoskeletal or organellar components. Moreover, as da neuron dendrite arbors cover the body wall, they are highly accessible for live imaging analysis of arbor patterning. Here, we outline the structure and function of different da neuron types and give examples of how they are used to elucidate central mechanisms of dendritic arbor formation.
Collapse
Affiliation(s)
- Jason Y Tann
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| | - Fangke Xu
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| | - Minami Kimura
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| | - Oliver R Wilkes
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
- Department of Cellular and Molecular Biology, Institute for Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Li-Foong Yoong
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| | - Henrik Skibbe
- Brain Image Analysis Unit, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| | - Adrian W Moore
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| |
Collapse
|
5
|
Fister AM, Horn A, Lasarev MR, Huttenlocher A. Damage-induced basal epithelial cell migration modulates the spatial organization of redox signaling and sensory neuron regeneration. eLife 2024; 13:RP94995. [PMID: 39207919 PMCID: PMC11361710 DOI: 10.7554/elife.94995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Epithelial damage leads to early reactive oxygen species (ROS) signaling, which regulates sensory neuron regeneration and tissue repair. How the initial type of tissue injury influences early damage signaling and regenerative growth of sensory axons remains unclear. Previously we reported that thermal injury triggers distinct early tissue responses in larval zebrafish. Here, we found that thermal but not mechanical injury impairs sensory axon regeneration and function. Real-time imaging revealed an immediate tissue response to thermal injury characterized by the rapid Arp2/3-dependent migration of keratinocytes, which was associated with tissue scale ROS production and sustained sensory axon damage. Isotonic treatment was sufficient to limit keratinocyte movement, spatially restrict ROS production, and rescue sensory neuron function. These results suggest that early keratinocyte dynamics regulate the spatial and temporal pattern of long-term signaling in the wound microenvironment during tissue repair.
Collapse
Affiliation(s)
- Alexandra M Fister
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-MadisonMadisonUnited States
| | - Adam Horn
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - Michael R Lasarev
- Department of Biostatistics and Medical Informatics, University of Wisconsin-MadisonMadisonUnited States
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
- Department of Pediatrics, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
6
|
Das A, Franco JA, Mulcahy B, Wang L, Chapman D, Jaisinghani C, Pruitt BL, Zhen M, Goodman MB. C. elegans touch receptor neurons direct mechanosensory complex organization via repurposing conserved basal lamina proteins. Curr Biol 2024; 34:3133-3151.e10. [PMID: 38964319 PMCID: PMC11283674 DOI: 10.1016/j.cub.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
The sense of touch is conferred by the conjoint function of somatosensory neurons and skin cells. These cells meet across a gap filled by a basal lamina, an ancient structure found in metazoans. Using Caenorhabditis elegans, we investigate the composition and ultrastructure of the extracellular matrix at the epidermis and touch receptor neuron (TRN) interface. We show that membrane-matrix complexes containing laminin, nidogen, and the MEC-4 mechano-electrical transduction channel reside at this interface and are central to proper touch sensation. Interestingly, the dimensions and spacing of these complexes correspond with the discontinuous beam-like extracellular matrix structures observed in serial-section transmission electron micrographs. These complexes fail to coalesce in touch-insensitive extracellular matrix mutants and in dissociated neurons. Loss of nidogen reduces the density of mechanoreceptor complexes and the amplitude of the touch-evoked currents they carry. Thus, neuron-epithelium cell interfaces are instrumental in mechanosensory complex assembly and function. Unlike the basal lamina ensheathing the pharynx and body wall muscle, nidogen recruitment to the puncta along TRNs is not dependent upon laminin binding. MEC-4, but not laminin or nidogen, is destabilized by point mutations in the C-terminal Kunitz domain of the extracellular matrix component, MEC-1. These findings imply that somatosensory neurons secrete proteins that actively repurpose the basal lamina to generate special-purpose mechanosensory complexes responsible for vibrotactile sensing.
Collapse
Affiliation(s)
- Alakananda Das
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Joy A Franco
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Lingxin Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Dail Chapman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Chandni Jaisinghani
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Beth L Pruitt
- Departments of Mechanical Engineering and Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Wang X, Cupo CM, Ostvar S, Countryman AD, Kasza KE. E-cadherin tunes tissue mechanical behavior before and during morphogenetic tissue flows. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592778. [PMID: 38766260 PMCID: PMC11100719 DOI: 10.1101/2024.05.07.592778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Adhesion between epithelial cells enables the remarkable mechanical behavior of epithelial tissues during morphogenesis. However, it remains unclear how cell-cell adhesion influences mechanics in static as well as in dynamically flowing epithelial tissues. Here, we systematically modulate E-cadherin-mediated adhesion in the Drosophila embryo and study the effects on the mechanical behavior of the germband epithelium before and during dramatic tissue remodeling and flow associated with body axis elongation. Before axis elongation, we find that increasing E-cadherin levels produces tissue comprising more elongated cells and predicted to be more fluid-like, providing reduced resistance to tissue flow. During axis elongation, we find that the dominant effect of E-cadherin is tuning the speed at which cells proceed through rearrangement events, revealing potential roles for E-cadherin in generating friction between cells. Before and during axis elongation, E-cadherin levels influence patterns of actomyosin-dependent forces, supporting the notion that E-cadherin tunes tissue mechanics in part through effects on actomyosin. Taken together, these findings reveal dual-and sometimes opposing-roles for E-cadherin-mediated adhesion in controlling tissue structure and dynamics in vivo that result in unexpected relationships between adhesion and flow.
Collapse
|
8
|
Nelson N, Vita DJ, Broadie K. Experience-dependent glial pruning of synaptic glomeruli during the critical period. Sci Rep 2024; 14:9110. [PMID: 38643298 PMCID: PMC11032375 DOI: 10.1038/s41598-024-59942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024] Open
Abstract
Critical periods are temporally-restricted, early-life windows when sensory experience remodels synaptic connectivity to optimize environmental input. In the Drosophila juvenile brain, critical period experience drives synapse elimination, which is transiently reversible. Within olfactory sensory neuron (OSN) classes synapsing onto single projection neurons extending to brain learning/memory centers, we find glia mediate experience-dependent pruning of OSN synaptic glomeruli downstream of critical period odorant exposure. We find glial projections infiltrate brain neuropil in response to critical period experience, and use Draper (MEGF10) engulfment receptors to prune synaptic glomeruli. Downstream, we find antagonistic Basket (JNK) and Puckered (DUSP) signaling is required for the experience-dependent translocation of activated Basket into glial nuclei. Dependent on this signaling, we find critical period experience drives expression of the F-actin linking signaling scaffold Cheerio (FLNA), which is absolutely essential for the synaptic glomeruli pruning. We find Cheerio mediates experience-dependent regulation of the glial F-actin cytoskeleton for critical period remodeling. These results define a sequential pathway for experience-dependent brain synaptic glomeruli pruning in a strictly-defined critical period; input experience drives neuropil infiltration of glial projections, Draper/MEGF10 receptors activate a Basket/JNK signaling cascade for transcriptional activation, and Cheerio/FLNA induction regulates the glial actin cytoskeleton to mediate targeted synapse phagocytosis.
Collapse
Affiliation(s)
- Nichalas Nelson
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA
| | - Dominic J Vita
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
| |
Collapse
|
9
|
Logan DR, Hall J, Bianchi L. A helping hand: roles for accessory cells in the sense of touch across species. Front Cell Neurosci 2024; 18:1367476. [PMID: 38433863 PMCID: PMC10904576 DOI: 10.3389/fncel.2024.1367476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
During touch, mechanical forces are converted into electrochemical signals by tactile organs made of neurons, accessory cells, and their shared extracellular spaces. Accessory cells, including Merkel cells, keratinocytes, lamellar cells, and glia, play an important role in the sensation of touch. In some cases, these cells are intrinsically mechanosensitive; however, other roles include the release of chemical messengers, the chemical modification of spaces that are shared with neurons, and the tuning of neural sensitivity by direct physical contact. Despite great progress in the last decade, the precise roles of these cells in the sense of touch remains unclear. Here we review the known and hypothesized contributions of several accessory cells to touch by incorporating research from multiple organisms including C. elegans, D. melanogaster, mammals, avian models, and plants. Several broad parallels are identified including the regulation of extracellular ions and the release of neuromodulators by accessory cells, as well as the emerging potential physical contact between accessory cells and sensory neurons via tethers. Our broader perspective incorporates the importance of accessory cells to the understanding of human touch and pain, as well as to animal touch and its molecular underpinnings, which are underrepresented among the animal welfare literature. A greater understanding of touch, which must include a role for accessory cells, is also relevant to emergent technical applications including prosthetics, virtual reality, and robotics.
Collapse
Affiliation(s)
| | | | - Laura Bianchi
- Department of Physiology and Biophysics, University of Miami, Miami, FL, United States
| |
Collapse
|
10
|
Erbacher C, Britz S, Dinkel P, Klein T, Sauer M, Stigloher C, Üçeyler N. Interaction of human keratinocytes and nerve fiber terminals at the neuro-cutaneous unit. eLife 2024; 13:e77761. [PMID: 38225894 PMCID: PMC10791129 DOI: 10.7554/elife.77761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 12/19/2023] [Indexed: 01/17/2024] Open
Abstract
Traditionally, peripheral sensory neurons are assumed as the exclusive transducers of external stimuli. Current research moves epidermal keratinocytes into focus as sensors and transmitters of nociceptive and non-nociceptive sensations, tightly interacting with intraepidermal nerve fibers at the neuro-cutaneous unit. In animal models, epidermal cells establish close contacts and ensheath sensory neurites. However, ultrastructural morphological and mechanistic data examining the human keratinocyte-nerve fiber interface are sparse. We investigated this exact interface in human skin applying super-resolution array tomography, expansion microscopy, and structured illumination microscopy. We show keratinocyte ensheathment of afferents and adjacent connexin 43 contacts in native skin and have applied a pipeline based on expansion microscopy to quantify these parameter in skin sections of healthy participants versus patients with small fiber neuropathy. We further derived a fully human co-culture system, visualizing ensheathment and connexin 43 plaques in vitro. Unraveling human intraepidermal nerve fiber ensheathment and potential interaction sites advances research at the neuro-cutaneous unit. These findings are crucial on the way to decipher the mechanisms of cutaneous nociception.
Collapse
Affiliation(s)
| | - Sebastian Britz
- Imaging Core Facility, Biocenter, University of WürzburgWürzburgGermany
| | - Philine Dinkel
- Department of Neurology, University Hospital of WürzburgWürzburgGermany
| | - Thomas Klein
- Department of Neurology, University Hospital of WürzburgWürzburgGermany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of WürzburgWürzburgGermany
| | | | - Nurcan Üçeyler
- Department of Neurology, University Hospital of WürzburgWürzburgGermany
| |
Collapse
|
11
|
Mehta AS, Teymoori S, Recendez C, Fregoso D, Gallegos A, Yang HY, Aslankoohi E, Rolandi M, Isseroff RR, Zhao M, Gomez M. Quantifying innervation facilitated by deep learning in wound healing. Sci Rep 2023; 13:16885. [PMID: 37803028 PMCID: PMC10558471 DOI: 10.1038/s41598-023-42743-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/14/2023] [Indexed: 10/08/2023] Open
Abstract
The peripheral nerves (PNs) innervate the dermis and epidermis, and are suggested to play an important role in wound healing. Several methods to quantify skin innervation during wound healing have been reported. Those usually require multiple observers, are complex and labor-intensive, and the noise/background associated with the immunohistochemistry (IHC) images could cause quantification errors/user bias. In this study, we employed the state-of-the-art deep neural network, Denoising Convolutional Neural Network (DnCNN), to perform pre-processing and effectively reduce the noise in the IHC images. Additionally, we utilized an automated image analysis tool, assisted by Matlab, to accurately determine the extent of skin innervation during various stages of wound healing. The 8 mm wound is generated using a circular biopsy punch in the wild-type mouse. Skin samples were collected on days 3, 7, 10 and 15, and sections from paraffin-embedded tissues were stained against pan-neuronal marker- protein-gene-product 9.5 (PGP 9.5) antibody. On day 3 and day 7, negligible nerve fibers were present throughout the wound with few only on the lateral boundaries of the wound. On day 10, a slight increase in nerve fiber density appeared, which significantly increased on day 15. Importantly, we found a positive correlation (R2 = 0.926) between nerve fiber density and re-epithelization, suggesting an association between re-innervation and re-epithelization. These results established a quantitative time course of re-innervation in wound healing, and the automated image analysis method offers a novel and useful tool to facilitate the quantification of innervation in the skin and other tissues.
Collapse
Affiliation(s)
- Abijeet Singh Mehta
- Department of Dermatology, University of California, Davis, CA, 95616, USA.
- Department of Ophthalmology, University of California, Davis, CA, 95616, USA.
| | - Sam Teymoori
- Department of Applied Mathematics, University of California, Santa Cruz, CA, 95064, USA
| | - Cynthia Recendez
- Department of Dermatology, University of California, Davis, CA, 95616, USA
- Department of Ophthalmology, University of California, Davis, CA, 95616, USA
| | - Daniel Fregoso
- Department of Dermatology, University of California, Davis, CA, 95616, USA
| | - Anthony Gallegos
- Department of Dermatology, University of California, Davis, CA, 95616, USA
| | - Hsin-Ya Yang
- Department of Dermatology, University of California, Davis, CA, 95616, USA
| | - Elham Aslankoohi
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, 95064, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, 95064, USA
| | | | - Min Zhao
- Department of Dermatology, University of California, Davis, CA, 95616, USA.
- Department of Ophthalmology, University of California, Davis, CA, 95616, USA.
| | - Marcella Gomez
- Department of Applied Mathematics, University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
12
|
Mehta AS, Teymoori S, Recendez C, Fregoso D, Gallegos A, Yang HY, Isseroff RR, Zhao M, Gomez M. Quantifying innervation facilitated by deep learning in wound healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544960. [PMID: 37398108 PMCID: PMC10312705 DOI: 10.1101/2023.06.14.544960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The peripheral nerves (PNs) innervate the dermis and epidermis, which have been suggested to play an important role in wound healing. Several methods to quantify skin innervation during wound healing have been reported. Those usually require multiple observers, are complex and labor-intensive, and noise/background associated with the Immunohistochemistry (IHC) images could cause quantification errors/user bias. In this study, we employed the state-of-the-art deep neural network, DnCNN, to perform pre-processing and effectively reduce the noise in the IHC images. Additionally, we utilized an automated image analysis tool, assisted by Matlab, to accurately determine the extent of skin innervation during various stages of wound healing. The 8mm wound is generated using a circular biopsy punch in the wild-type mouse. Skin samples were collected on days 3,7,10 and 15, and sections from paraffin-embedded tissues were stained against pan-neuronal marker- protein-gene-product 9.5 (PGP 9.5) antibody. On day 3 and day 7, negligible nerve fibers were present throughout the wound with few only on the lateral boundaries of the wound. On day 10, a slight increase in nerve fiber density appeared, which significantly increased on day 15. Importantly we found a positive correlation (R- 2 = 0.933) between nerve fiber density and re-epithelization, suggesting an association between re-innervation and re-epithelization. These results established a quantitative time course of re-innervation in wound healing, and the automated image analysis method offers a novel and useful tool to facilitate the quantification of innervation in the skin and other tissues.
Collapse
|
13
|
Kanaoka Y, Onodera K, Watanabe K, Hayashi Y, Usui T, Uemura T, Hattori Y. Inter-organ Wingless/Ror/Akt signaling regulates nutrient-dependent hyperarborization of somatosensory neurons. eLife 2023; 12:79461. [PMID: 36647607 PMCID: PMC9844989 DOI: 10.7554/elife.79461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/11/2022] [Indexed: 01/18/2023] Open
Abstract
Nutrition in early life has profound effects on an organism, altering processes such as organogenesis. However, little is known about how specific nutrients affect neuronal development. Dendrites of class IV dendritic arborization neurons in Drosophila larvae become more complex when the larvae are reared on a low-yeast diet compared to a high-yeast diet. Our systematic search for key nutrients revealed that the neurons increase their dendritic terminal densities in response to a combined deficiency in vitamins, metal ions, and cholesterol. The deficiency of these nutrients upregulates Wingless in a closely located tissue, body wall muscle. Muscle-derived Wingless activates Akt in the neurons through the receptor tyrosine kinase Ror, which promotes the dendrite branching. In larval muscles, the expression of wingless is regulated not only in this key nutrient-dependent manner, but also by the JAK/STAT signaling pathway. Additionally, the low-yeast diet blunts neuronal light responsiveness and light avoidance behavior, which may help larvae optimize their survival strategies under low-nutritional conditions. Together, our studies illustrate how the availability of specific nutrients affects neuronal development through inter-organ signaling.
Collapse
Affiliation(s)
| | - Koun Onodera
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Kaori Watanabe
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Yusaku Hayashi
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Tadao Usui
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
- Research Center for Dynamic Living Systems, Kyoto UniversityKyotoJapan
- AMED-CRESTTokyoJapan
| | - Yukako Hattori
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
- JST FORESTTokyoJapan
| |
Collapse
|
14
|
Towards a mechanistic understanding of axon transport and endocytic changes underlying paclitaxel-induced peripheral neuropathy. Exp Neurol 2023; 359:114258. [PMID: 36279934 DOI: 10.1016/j.expneurol.2022.114258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022]
Abstract
Paclitaxel is a common chemotherapeutic agent widely used to treat solid cancer. However, it frequently causes peripheral sensory neuropathy, resulting in sensory abnormalities and pain in patients receiving treatment for cancer. As one of the most widely used chemotherapeutics, many preclinical studies on paclitaxel-induced peripheral neuropathy (PIPN) have been performed. Yet, there remain no effective options for treatment or prevention. Due to paclitaxel's ability to bind to and stabilize microtubules, a change in microtubule dynamics and subsequent disruptions in axonal transport has been predicted as a major underlying cause of paclitaxel-induced toxicity. However, the systemic understanding of PIPN mechanisms is largely incomplete, and various phenotypes have not been directly attributed to microtubule-related effects. This review aims to provide an overview of the literature involving paclitaxel-induced alteration in microtubule dynamics, axonal transport, and endocytic changes. It also aims to provide insights into how the microtubule-mediated hypothesis may relate to various phenotypes reported in PIPN studies.
Collapse
|
15
|
Rosa JB, Nassman KY, Sagasti A. Sensory axons induce epithelial lipid microdomain remodeling and determine the distribution of junctions in the epidermis. Mol Biol Cell 2023; 34:ar5. [PMID: 36322392 PMCID: PMC9816649 DOI: 10.1091/mbc.e22-09-0396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Epithelial cell properties are determined by the polarized distribution of membrane lipids, the cytoskeleton, and adhesive junctions. Epithelia are often profusely innervated, but little work has addressed how neurites affect epithelial organization. We previously found that basal keratinocytes in the zebrafish epidermis enclose axons in ensheathment channels sealed by autotypic junctions. Here we characterized how axons remodel cell membranes, the cytoskeleton, and junctions in basal keratinocytes. At the apical surface of basal keratinocytes, axons organized lipid microdomains quantitatively enriched in reporters for PI(4,5)P2 and liquid-ordered (Lo) membranes. Lipid microdomains supported the formation of cadherin-enriched, F-actin protrusions, which wrapped around axons, likely initiating ensheathment. In the absence of axons, cadherin-enriched microdomains formed on basal cells but did not organize into contiguous domains. Instead, these isolated domains formed heterotypic junctions with periderm cells, a distinct epithelial cell type. Thus, axon endings dramatically remodel polarized epithelial components and regulate epidermal adhesion.
Collapse
Affiliation(s)
- Jeffrey B. Rosa
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Khaled Y. Nassman
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Alvaro Sagasti
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
16
|
Xu X, Yu C, Xu L, Xu J. Emerging roles of keratinocytes in nociceptive transduction and regulation. Front Mol Neurosci 2022; 15:982202. [PMID: 36157074 PMCID: PMC9500148 DOI: 10.3389/fnmol.2022.982202] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 01/07/2023] Open
Abstract
Keratinocytes are the predominant block-building cells in the epidermis. Emerging evidence has elucidated the roles of keratinocytes in a wide range of pathophysiological processes including cutaneous nociception, pruritus, and inflammation. Intraepidermal free nerve endings are entirely enwrapped within the gutters of keratinocyte cytoplasm and form en passant synaptic-like contacts with keratinocytes. Keratinocytes can detect thermal, mechanical, and chemical stimuli through transient receptor potential ion channels and other sensory receptors. The activated keratinocytes elicit calcium influx and release ATP, which binds to P2 receptors on free nerve endings and excites sensory neurons. This process is modulated by the endogenous opioid system and endothelin. Keratinocytes also express neurotransmitter receptors of adrenaline, acetylcholine, glutamate, and γ-aminobutyric acid, which are involved in regulating the activation and migration, of keratinocytes. Furthermore, keratinocytes serve as both sources and targets of neurotrophic factors, pro-inflammatory cytokines, and neuropeptides. The autocrine and/or paracrine mechanisms of these mediators create a bidirectional feedback loop that amplifies neuroinflammation and contributes to peripheral sensitization.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China
| | - Catherine Yu
- Department of Pain Management, Anesthesiology Institute, Cleveland, OH, United States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, United States
- Cleveland Clinic, Case Western Reserve University, Cleveland, OH, United States
| | - Li Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China
| | - Jijun Xu
- Department of Pain Management, Anesthesiology Institute, Cleveland, OH, United States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, United States
- Cleveland Clinic, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
17
|
Hale C, Moulton JK, Otis Y, Ganter G. ARMADILLO REGULATES NOCICEPTIVE SENSITIVITY IN THE ABSENCE OF INJURY. Mol Pain 2022; 18:17448069221111155. [PMID: 35712882 PMCID: PMC9500252 DOI: 10.1177/17448069221111155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abnormal pain has recently been estimated to affect ∼50 million adults each year within the United States. With many treatment options for abnormal pain, such as opioid analgesics, carrying numerous deleterious side effects, research into safer and more effective treatment options is crucial. To help elucidate the mechanisms controlling nociceptive sensitivity, the Drosophila melanogaster larval nociception model has been used to characterize well-conserved pathways through the use of genetic modification and/or injury to alter the sensitivity of experimental animals. Mammalian models have provided evidence of β-catenin signaling involvement in neuropathic pain development. By capitalizing on the conserved nature of β-catenin functions in the fruit fly, here we describe a role for Armadillo, the fly homolog to mammalian β-catenin, in regulating baseline sensitivity in the primary nociceptor of the fly, in the absence of injury, using under- and over-expression of Armadillo in a cell-specific manner. Underexpression of Armadillo resulted in hyposensitivity, while overexpression of wild-type Armadillo or expression of a degradation-resistant Armadillo resulted in hypersensitivity. Neither underexpression nor overexpression of Armadillo resulted in observed dendritic morphological changes that could contribute to behavioral phenotypes observed. These results showed that focused manipulation of Armadillo expression within the nociceptors is sufficient to modulate baseline response in the nociceptors to a noxious stimulus and that these changes are not shown to be associated with a morphogenetic effect.
Collapse
Affiliation(s)
- Christine Hale
- Graduate School of Biomedical Science and Engineering6251University of Maine System
| | | | - Yvonne Otis
- School of Biological Sciences172741University of New England College of Arts and Sciences
| | | |
Collapse
|
18
|
Kapoor A, Padmavathi A, Madhwal S, Mukherjee T. Dual control of dopamine in Drosophila myeloid-like progenitor cell proliferation and regulation of lymph gland growth. EMBO Rep 2022; 23:e52951. [PMID: 35476897 PMCID: PMC9171693 DOI: 10.15252/embr.202152951] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 11/09/2022] Open
Abstract
In Drosophila, definitive haematopoiesis takes place in a specialized organ termed "lymph gland". It harbours multi-potent stem-like blood progenitor cells whose development controls overall growth of this haematopoietic tissue and formation of mature blood cells. With respect to its development, neurotransmitters have emerged as potent regulators of blood-progenitor cell development and function. In this study, we extend our understanding of neurotransmitters and show that progenitors are self-sufficient with regard to synthesizing dopamine, a well-established neurotransmitter. These cells also have modules for dopamine sensing through the receptor and transporter. We found that modulating expression of these components in progenitor cells affected lymph gland growth, which suggested growth-promoting function of dopamine in blood-progenitor cells. Cell-cycle analysis of developing lymph glands revealed an unexpected requirement for intracellular dopamine in moderating the progression of early progenitor cells from S to G2 phase of the cell cycle, while activation of dopamine receptor signalling later in development regulated their progression from G2 and entry into mitosis. The dual capacity in which dopamine operated, first intracellularly to coordinate S/G2 transition and later extracellularly in G2/M transition, was critical for the growth of the lymph gland. Overall, the data presented highlight a novel non-canonical use of dopamine in the myeloid system that reveals an uncharacterized function of intracellular dopamine in cell-cycle phasing with outcomes on haematopoietic growth and immunity as well.
Collapse
Affiliation(s)
- Ankita Kapoor
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Achalla Padmavathi
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Sukanya Madhwal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Tina Mukherjee
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| |
Collapse
|
19
|
Song C, Leahy SN, Rushton EM, Broadie K. RNA-binding FMRP and Staufen sequentially regulate the Coracle scaffold to control synaptic glutamate receptor and bouton development. Development 2022; 149:274991. [PMID: 35394012 PMCID: PMC9148565 DOI: 10.1242/dev.200045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/23/2022] [Indexed: 12/16/2022]
Abstract
Both mRNA-binding Fragile X mental retardation protein (FMRP; Fmr1) and mRNA-binding Staufen regulate synaptic bouton formation and glutamate receptor (GluR) levels at the Drosophila neuromuscular junction (NMJ) glutamatergic synapse. Here, we tested whether these RNA-binding proteins act jointly in a common mechanism. We found that both dfmr1 and staufen mutants, and trans-heterozygous double mutants, displayed increased synaptic bouton formation and GluRIIA accumulation. With cell-targeted RNA interference, we showed a downstream Staufen role within postsynaptic muscle. With immunoprecipitation, we showed that FMRP binds staufen mRNA to stabilize postsynaptic transcripts. Staufen is known to target actin-binding, GluRIIA anchor Coracle, and we confirmed that Staufen binds to coracle mRNA. We found that FMRP and Staufen act sequentially to co-regulate postsynaptic Coracle expression, and showed that Coracle, in turn, controls GluRIIA levels and synaptic bouton development. Consistently, we found that dfmr1, staufen and coracle mutants elevate neurotransmission strength. We also identified that FMRP, Staufen and Coracle all suppress pMad activation, providing a trans-synaptic signaling linkage between postsynaptic GluRIIA levels and presynaptic bouton development. This work supports an FMRP-Staufen-Coracle-GluRIIA-pMad pathway regulating structural and functional synapse development.
Collapse
Affiliation(s)
- Chunzhu Song
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Shannon N. Leahy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Emma M. Rushton
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA,Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA,Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA,Author for correspondence ()
| |
Collapse
|
20
|
Chen TA, Lin KY, Yang SM, Tseng CY, Wang YT, Lin CH, Luo L, Cai Y, Hsu HJ. Canonical Wnt Signaling Promotes Formation of Somatic Permeability Barrier for Proper Germ Cell Differentiation. Front Cell Dev Biol 2022; 10:877047. [PMID: 35517512 PMCID: PMC9062081 DOI: 10.3389/fcell.2022.877047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
Morphogen-mediated signaling is critical for proper organ development and stem cell function, and well-characterized mechanisms spatiotemporally limit the expression of ligands, receptors, and ligand-binding cell-surface glypicans. Here, we show that in the developing Drosophila ovary, canonical Wnt signaling promotes the formation of somatic escort cells (ECs) and their protrusions, which establish a physical permeability barrier to define morphogen territories for proper germ cell differentiation. The protrusions shield germ cells from Dpp and Wingless morphogens produced by the germline stem cell (GSC) niche and normally only received by GSCs. Genetic disruption of EC protrusions allows GSC progeny to also receive Dpp and Wingless, which subsequently disrupt germ cell differentiation. Our results reveal a role for canonical Wnt signaling in specifying the ovarian somatic cells necessary for germ cell differentiation. Additionally, we demonstrate the morphogen-limiting function of this physical permeability barrier, which may be a common mechanism in other organs across species.
Collapse
Affiliation(s)
- Ting-An Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Kun-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shun-Min Yang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Chen-Yuan Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Ting Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Hung Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Lichao Luo
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
| | - Yu Cai
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Hwei-Jan Hsu,
| |
Collapse
|
21
|
Bonacossa-Pereira I, Coakley S, Hilliard MA. Neuron-epidermal attachment protects hyper-fragile axons from mechanical strain. Cell Rep 2022; 38:110501. [PMID: 35263583 DOI: 10.1016/j.celrep.2022.110501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/06/2021] [Accepted: 02/15/2022] [Indexed: 11/03/2022] Open
Abstract
Axons experience significant strain caused by organismal development and movement. A combination of intrinsic mechanical resistance and external shielding by surrounding tissues prevents axonal damage, although the precise mechanisms are unknown. Here, we reveal a neuroprotective function of neuron-epidermal attachment in Caenorhabditis elegans. We show that a gain-of-function mutation in the epidermal hemidesmosome component LET-805/myotactin, in combination with a loss-of-function mutation in UNC-70/β-spectrin, disrupts the uniform attachment and subsequent embedment of sensory axons within the epidermis during development. This generates regions of high tension within axons, leading to spontaneous axonal breaks and degeneration. Completely preventing attachment, by disrupting HIM-4/hemicentin or MEC-5/collagen, eliminates tension and alleviates damage. Finally, we demonstrate that progressive neuron-epidermal attachment via LET-805/myotactin is induced by the axon during development, as well as during regeneration after injury. Together, these results reveal that establishment of uniform neuron-epidermal attachment is critical to protect axons from mechanical strain during development.
Collapse
Affiliation(s)
- Igor Bonacossa-Pereira
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sean Coakley
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
22
|
Imambocus BN, Soba P. The elegance of prickly sensations. eLife 2022; 11:84161. [PMID: 36409070 PMCID: PMC9678355 DOI: 10.7554/elife.84161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neurons sensing harmful mechanical forces in the larvae of fruit flies have a striking architecture of dendrites that are optimized to detect pointy objects.
Collapse
Affiliation(s)
- Bibi Nusreen Imambocus
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of BonnBonnGermany
| | - Peter Soba
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of BonnBonnGermany,Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
| |
Collapse
|
23
|
Scepanovic G, Hunter MV, Kafri R, Fernandez-Gonzalez R. p38-mediated cell growth and survival drive rapid embryonic wound repair. Cell Rep 2021; 37:109874. [PMID: 34686334 DOI: 10.1016/j.celrep.2021.109874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/02/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022] Open
Abstract
Embryos repair wounds rapidly, with no inflammation or scarring, in a process that involves polarization of the actomyosin cytoskeleton. Actomyosin polarization results in the assembly of a contractile cable around the wound that drives wound closure. Here, we demonstrate that a contractile actomyosin cable is not sufficient for rapid wound repair in Drosophila embryos. We show that wounding causes activation of the serine/threonine kinase p38 mitogen-activated protein kinase (MAPK) in the cells adjacent to the wound. p38 activation reduces the levels of wound-induced reactive oxygen species in the cells around the wound, limiting wound size. In addition, p38 promotes an increase in volume in the cells around the wound, thus facilitating the collective cell movements that drive rapid wound healing. Our data indicate that p38 regulates cell volumes through the sodium-potassium-chloride cotransporter NKCC1. Our work reveals cell growth and cell survival as cell behaviors critical for embryonic wound repair.
Collapse
Affiliation(s)
- Gordana Scepanovic
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Miranda Victoria Hunter
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Ran Kafri
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
24
|
Comparing Automated Morphology Quantification Software on Dendrites of Uninjured and Injured Drosophila Neurons. Neuroinformatics 2021; 19:703-717. [PMID: 34342808 PMCID: PMC8566419 DOI: 10.1007/s12021-021-09532-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 10/28/2022]
Abstract
Dendrites shape inputs and integration of depolarization that controls neuronal activity in the nervous system. Neuron pathologies can damage dendrite architecture and cause abnormalities in morphologies after injury. Dendrite regeneration can be quantified by various parameters, including total dendrite length and number of dendrite branches using manual or automated image analysis approaches. However, manual quantification is tedious and time consuming and automated approaches are often trained using wildtype neurons, making them poorly suited for analysis of genetically manipulated or injured dendrite arbors. In this study, we tested how well automated image analysis software performed on class IV Drosophila neurons, which have several hundred individual dendrite branches. We applied each software to automatically quantify features of uninjured neurons and neurons that regenerated new dendrites after injury. Regenerated arbors exhibit defects across multiple features of dendrite morphology, which makes them challenging for automated pipelines to analyze. We compared the performances of three automated pipelines against manual quantification using Simple Neurite Tracer in ImageJ: one that is commercially available (Imaris) and two developed by independent research groups (DeTerm and Tireless Tracing Genie). Out of the three software tested, we determined that Imaris is the most efficient at reconstructing dendrite architecture, but does not accurately measure total dendrite length even after intensive manual editing. Imaris outperforms both DeTerm and Tireless Tracing Genie for counting dendrite branches, and is better able to recreate previous conclusions from this same dataset. This thorough comparison of strengths and weaknesses of each software demonstrates their utility for analyzing regenerated neuron phenotypes in future studies.
Collapse
|
25
|
van Loon AP, Erofeev IS, Goryachev AB, Sagasti A. Stochastic contraction of myosin minifilaments drives evolution of microridge protrusion patterns in epithelial cells. Mol Biol Cell 2021; 32:1501-1513. [PMID: 34081537 PMCID: PMC8351741 DOI: 10.1091/mbc.e21-05-0258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 01/05/2023] Open
Abstract
Actin-based protrusions vary in morphology, stability, and arrangement on cell surfaces. Microridges are laterally elongated protrusions on mucosal epithelial cells, where they form evenly spaced, mazelike patterns that dynamically remodel by fission and fusion. To characterize how microridges form their highly ordered, subcellular patterns and investigate the mechanisms driving fission and fusion, we imaged microridges in the maturing skin of zebrafish larvae. After their initial development, microridge spacing and alignment became increasingly well ordered. Imaging F-actin and non-muscle myosin II (NMII) revealed that microridge fission and fusion were associated with local NMII activity in the apical cortex. Inhibiting NMII blocked fission and fusion rearrangements, reduced microridge density, and altered microridge spacing. High-resolution imaging allowed us to image individual NMII minifilaments in the apical cortex of cells in live animals, revealing that minifilaments are tethered to protrusions and often connect adjacent microridges. NMII minifilaments connecting the ends of two microridges fused them together, whereas minifilaments oriented perpendicular to microridges severed them or pulled them closer together. These findings demonstrate that as cells mature, cortical NMII activity orchestrates a remodeling process that creates an increasingly orderly microridge arrangement.
Collapse
Affiliation(s)
- Aaron P. van Loon
- Department of Molecular, Cell and Developmental Biology, and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| | - Ivan S. Erofeev
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrew B. Goryachev
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Alvaro Sagasti
- Department of Molecular, Cell and Developmental Biology, and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
26
|
Yin C, Peterman E, Rasmussen JP, Parrish JZ. Transparent Touch: Insights From Model Systems on Epidermal Control of Somatosensory Innervation. Front Cell Neurosci 2021; 15:680345. [PMID: 34135734 PMCID: PMC8200473 DOI: 10.3389/fncel.2021.680345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
Somatosensory neurons (SSNs) densely innervate our largest organ, the skin, and shape our experience of the world, mediating responses to sensory stimuli including touch, pressure, and temperature. Historically, epidermal contributions to somatosensation, including roles in shaping innervation patterns and responses to sensory stimuli, have been understudied. However, recent work demonstrates that epidermal signals dictate patterns of SSN skin innervation through a variety of mechanisms including targeting afferents to the epidermis, providing instructive cues for branching morphogenesis, growth control and structural stability of neurites, and facilitating neurite-neurite interactions. Here, we focus onstudies conducted in worms (Caenorhabditis elegans), fruit flies (Drosophila melanogaster), and zebrafish (Danio rerio): prominent model systems in which anatomical and genetic analyses have defined fundamental principles by which epidermal cells govern SSN development.
Collapse
Affiliation(s)
| | | | | | - Jay Z. Parrish
- Department of Biology, University of Washington, Seattle, WA, United States
| |
Collapse
|
27
|
Integrins protect sensory neurons in models of paclitaxel-induced peripheral sensory neuropathy. Proc Natl Acad Sci U S A 2021; 118:2006050118. [PMID: 33876743 DOI: 10.1073/pnas.2006050118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect from cancer treatment with no known method for prevention or cure in clinics. CIPN often affects unmyelinated nociceptive sensory terminals. Despite the high prevalence, molecular and cellular mechanisms that lead to CIPN are still poorly understood. Here, we used a genetically tractable Drosophila model and primary sensory neurons isolated from adult mouse to examine the mechanisms underlying CIPN and identify protective pathways. We found that chronic treatment of Drosophila larvae with paclitaxel caused degeneration and altered the branching pattern of nociceptive neurons, and reduced thermal nociceptive responses. We further found that nociceptive neuron-specific overexpression of integrins, which are known to support neuronal maintenance in several systems, conferred protection from paclitaxel-induced cellular and behavioral phenotypes. Live imaging and superresolution approaches provide evidence that paclitaxel treatment causes cellular changes that are consistent with alterations in endosome-mediated trafficking of integrins. Paclitaxel-induced changes in recycling endosomes precede morphological degeneration of nociceptive neuron arbors, which could be prevented by integrin overexpression. We used primary dorsal root ganglia (DRG) neuron cultures to test conservation of integrin-mediated protection. We show that transduction of a human integrin β-subunit 1 also prevented degeneration following paclitaxel treatment. Furthermore, endogenous levels of surface integrins were decreased in paclitaxel-treated mouse DRG neurons, suggesting that paclitaxel disrupts recycling in vertebrate sensory neurons. Altogether, our study supports conserved mechanisms of paclitaxel-induced perturbation of integrin trafficking and a therapeutic potential of restoring neuronal interactions with the extracellular environment to antagonize paclitaxel-induced toxicity in sensory neurons.
Collapse
|
28
|
Sensational developments in somatosensory development? Curr Opin Neurobiol 2021; 66:212-223. [PMID: 33454646 DOI: 10.1016/j.conb.2020.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/25/2022]
Abstract
This is an overview of the most recent advances pertaining to the development of the cardinal components of the somatosensory system: the peripheral sensory neurons that perceive somatosensory stimuli, the first line central nervous system circuits that modulate them, and the higher structures such as the somatosensory cortex that eventually compute a motor response to them. Here, I also review the most recent findings concerning the role of neuronal activity in somatosensory development, formation of somatotopic maps, insights into human somatosensory development and the link between aberrant somatosensation and neurodevelopmental disorders.
Collapse
|
29
|
Talagas M, Lebonvallet N, Leschiera R, Sinquin G, Elies P, Haftek M, Pennec JP, Ressnikoff D, La Padula V, Le Garrec R, L'herondelle K, Mignen O, Le Pottier L, Kerfant N, Reux A, Marcorelles P, Misery L. Keratinocytes Communicate with Sensory Neurons via Synaptic-like Contacts. Ann Neurol 2020; 88:1205-1219. [PMID: 32951274 DOI: 10.1002/ana.25912] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Pain, temperature, and itch are conventionally thought to be exclusively transduced by the intraepidermal nerve endings. Although recent studies have shown that epidermal keratinocytes also participate in sensory transduction, the mechanism underlying keratinocyte communication with intraepidermal nerve endings remains poorly understood. We sought to demonstrate the synaptic character of the contacts between keratinocytes and sensory neurons and their involvement in sensory communication between keratinocytes and sensory neurons. METHODS Contacts were explored by morphological, molecular, and functional approaches in cocultures of epidermal keratinocytes and sensory neurons. To interrogate whether structures observed in vitro were also present in the human epidermis, in situ correlative light electron microscopy was performed on human skin biopsies. RESULTS Epidermal keratinocytes dialogue with sensory neurons through en passant synaptic-like contacts. These contacts have the ultrastructural features and molecular hallmarks of chemical synaptic-like contacts: narrow intercellular cleft, keratinocyte synaptic vesicles expressing synaptophysin and synaptotagmin 1, and sensory information transmitted from keratinocytes to sensory neurons through SNARE-mediated (syntaxin1) vesicle release. INTERPRETATION By providing selective communication between keratinocytes and sensory neurons, synaptic-like contacts are the hubs of a 2-site receptor. The permanent epidermal turnover, implying a specific en passant structure and high plasticity, may have delayed their identification, thereby contributing to the long-held concept of nerve endings passing freely between keratinocytes. The discovery of keratinocyte-sensory neuron synaptic-like contacts may call for a reassessment of basic assumptions in cutaneous sensory perception and sheds new light on the pathophysiology of pain and itch as well as the physiology of touch. ANN NEUROL 2020;88:1205-1219.
Collapse
Affiliation(s)
- Matthieu Talagas
- Univ Brest, LIEN, Brest University, F-29200 Brest, France.,Department of Pathology, Brest University Hospital, Brest, France.,Univ Brest, Brest Institute of Health Agro Matter, Brest University, F-29200 Brest, France
| | - Nicolas Lebonvallet
- Univ Brest, LIEN, Brest University, F-29200 Brest, France.,Univ Brest, Brest Institute of Health Agro Matter, Brest University, F-29200 Brest, France
| | - Raphael Leschiera
- Univ Brest, LIEN, Brest University, F-29200 Brest, France.,Univ Brest, Brest Institute of Health Agro Matter, Brest University, F-29200 Brest, France
| | - Gerard Sinquin
- Univ Brest, Imagery and Microscopic Measures Facility, Brest University, F-29200 Brest, France
| | - Philippe Elies
- Univ Brest, Imagery and Microscopic Measures Facility, Brest University, F-29200 Brest, France
| | - Marek Haftek
- Laboratory of Tissue Biology and Therapeutic Engineering, University of Lyon 1, UMR 5305 CNRS-UCBL1, Lyon, France
| | - Jean-Pierre Pennec
- Univ Brest, Brest Institute of Health Agro Matter, Brest University, F-29200 Brest, France.,Univ Brest, Movement Sport and Health (EA1274), Brest University, F-29200 Brest, France
| | - Denis Ressnikoff
- East Lyon Center of Quantitative Imagery, University of Lyon 1, INSERM US 7-CNRS UMS 3453, Lyon, France
| | - Veronica La Padula
- Technological Center of Microstructures, University of Lyon 1, Lyon, France
| | - Raphaele Le Garrec
- Univ Brest, LIEN, Brest University, F-29200 Brest, France.,Univ Brest, Brest Institute of Health Agro Matter, Brest University, F-29200 Brest, France
| | - Killian L'herondelle
- Univ Brest, LIEN, Brest University, F-29200 Brest, France.,Univ Brest, Brest Institute of Health Agro Matter, Brest University, F-29200 Brest, France
| | - Olivier Mignen
- Univ Brest, Brest Institute of Health Agro Matter, Brest University, F-29200 Brest, France.,Univ Brest, INSERM, UMR 1227, Brest University, F-29200 Brest, France
| | - Laetitia Le Pottier
- Univ Brest, Brest Institute of Health Agro Matter, Brest University, F-29200 Brest, France.,Univ Brest, INSERM, UMR 1227, Brest University, F-29200 Brest, France
| | - Nathalie Kerfant
- Department of Plastic, Reconstructive, and Esthetic Surgery, Brest University Hospital, Brest, France
| | - Alexia Reux
- Univ Brest, LIEN, Brest University, F-29200 Brest, France
| | - Pascale Marcorelles
- Univ Brest, LIEN, Brest University, F-29200 Brest, France.,Department of Pathology, Brest University Hospital, Brest, France.,Univ Brest, Brest Institute of Health Agro Matter, Brest University, F-29200 Brest, France
| | - Laurent Misery
- Univ Brest, LIEN, Brest University, F-29200 Brest, France.,Univ Brest, Brest Institute of Health Agro Matter, Brest University, F-29200 Brest, France.,Department of Dermatology, Brest University Hospital, Brest, France
| |
Collapse
|
30
|
Alsina B. Mechanisms of cell specification and differentiation in vertebrate cranial sensory systems. Curr Opin Cell Biol 2020; 67:79-85. [PMID: 32950922 DOI: 10.1016/j.ceb.2020.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/28/2022]
Abstract
Vertebrates sense a large variety of sensory stimuli that ranges from temperature, volatile and nonvolatile chemicals, touch, pain, light, sound and gravity. To achieve this, they use specialized cells present in sensory organs and cranial ganglia. Much of our understanding of the transcription factors and mechanisms responsible for sensory cell specification comes from cell-lineage tracing and genetic experiments in different species, but recent advances in single-cell transcriptomics, high-resolution imaging and systems biology approaches have allowed to study these processes in an unprecedented resolution. Here I will point to the transcription factor programs driving cell diversity in the different sensory organs of vertebrates to then discuss in vivo data of how cell specification is coupled with tissue morphogenesis.
Collapse
Affiliation(s)
- Berta Alsina
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain.
| |
Collapse
|
31
|
Inaba Y, Chauhan V, van Loon AP, Choudhury LS, Sagasti A. Keratins and the plakin family cytolinker proteins control the length of epithelial microridge protrusions. eLife 2020; 9:58149. [PMID: 32894222 PMCID: PMC7535935 DOI: 10.7554/elife.58149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
Actin filaments and microtubules create diverse cellular protrusions, but intermediate filaments, the strongest and most stable cytoskeletal elements, are not known to directly participate in the formation of protrusions. Here we show that keratin intermediate filaments directly regulate the morphogenesis of microridges, elongated protrusions arranged in elaborate maze-like patterns on the surface of mucosal epithelial cells. We found that microridges on zebrafish skin cells contained both actin and keratin filaments. Keratin filaments stabilized microridges, and overexpressing keratins lengthened them. Envoplakin and periplakin, plakin family cytolinkers that bind F-actin and keratins, localized to microridges, and were required for their morphogenesis. Strikingly, plakin protein levels directly dictate microridge length. An actin-binding domain of periplakin was required to initiate microridge morphogenesis, whereas periplakin-keratin binding was required to elongate microridges. These findings separate microridge morphogenesis into distinct steps, expand our understanding of intermediate filament functions, and identify microridges as protrusions that integrate actin and intermediate filaments.
Collapse
Affiliation(s)
- Yasuko Inaba
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Vasudha Chauhan
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Aaron Paul van Loon
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Lamia Saiyara Choudhury
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Alvaro Sagasti
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
32
|
Parlanti P, Pal-Ghosh S, Williams A, Tadvalkar G, Popratiloff A, Stepp MA. Axonal debris accumulates in corneal epithelial cells after intraepithelial corneal nerves are damaged: A focused Ion Beam Scanning Electron Microscopy (FIB-SEM) study. Exp Eye Res 2020; 194:107998. [PMID: 32209319 PMCID: PMC7697722 DOI: 10.1016/j.exer.2020.107998] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/13/2020] [Accepted: 03/07/2020] [Indexed: 12/15/2022]
Abstract
The intraepithelial corneal nerves (ICNs) that innervate the corneal epithelium are maintained through interactions with corneal epithelial cells and the extracellular matrix they produce. One to several axons bundle together within the basal cell layer and extend parallel to the ocular surface or branch and extend apically. Here we use 3-dimentional (3D) ultrastructural reconstructions of control and trephine injured mouse corneal epithelium and stroma produced using Focused Ion Beam Scanning Electron Microscope (FIB-SEM) to determine whether corneal epithelial or immune cells resident in the epithelium remove axonal debris and degrade it in their lysosomes after trephine injury to the cornea. We demonstrate that axonal fragments are internalized in the corneal epithelium and accumulate within electron dense structures consistent with lysosomes 3 h after trephine injury in both epithelial and immune cells located among the basal cells of the trephine injured cornea. Confocal imaging showed fewer CD45+ immune cells within the corneal epithelium after trephine injury compared to controls. The resolution obtained using FIB-SEM also allowed us to show that the presence of sensory axons at the basal aspect of the epithelial basal cells close to the anterior aspect of the epithelial basement membrane (EBM) is associated with a focal reduction in EBM thickness. In addition, we show using FIB-SEM and confocal imaging that superficial trephine injuries that do not penetrate the stroma, damage the integrity of anterior stromal nerves. These studies are the first to look at the mouse cornea following nerve injury using FIB-SEM.
Collapse
Affiliation(s)
- Paola Parlanti
- GW Nanofabrication and Imaging Center, The George Washington School of Medicine and Health Sciences, Washington DC, 20052, USA
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20052, USA
| | - Alexa Williams
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20052, USA
| | - Gauri Tadvalkar
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20052, USA
| | - Anastas Popratiloff
- GW Nanofabrication and Imaging Center, The George Washington School of Medicine and Health Sciences, Washington DC, 20052, USA; Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20052, USA
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20052, USA; Department of Ophthalmology, The George Washington School of Medicine and Health Sciences, Washington DC, 20052, USA.
| |
Collapse
|
33
|
Talagas M, Lebonvallet N, Leschiera R, Elies P, Marcorelles P, Misery L. Intra-epidermal nerve endings progress within keratinocyte cytoplasmic tunnels in normal human skin. Exp Dermatol 2020; 29:387-392. [PMID: 32003039 DOI: 10.1111/exd.14081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/10/2019] [Accepted: 01/21/2020] [Indexed: 12/29/2022]
Abstract
Intra-epidermal nerve endings, responsible for cutaneous perception of temperature, pain and itch, are conventionally described as passing freely between keratinocytes, from the basal to the granular layers of the epidermis. However, the recent discovery of keratinocyte contribution to cutaneous nociception implies that their anatomical relationships are much more intimate than what has been described so far. By studying human skin biopsies in confocal laser scanning microscopy, we show that intra-epidermal nerve endings are not only closely apposed to keratinocytes, but can also be enwrapped by keratinocyte cytoplasms over their entire circumference and thus progress within keratinocyte tunnels. As keratinocytes must activate intra-epidermal nerve endings to transduce nociceptive information, these findings may help understanding the interactions between the keratinocytes and nervous system. The discovery of these nerve portions progressing in keratinocyte tunnels is a strong argument to consider that contacts between epidermal keratinocytes and intra-epidermal nerve endings are not incidental and argue for the existence of specific and rapid paracrine communication from keratinocytes to sensory neurons.
Collapse
Affiliation(s)
- Matthieu Talagas
- Univ Brest, LIEN, Brest, France
- Department of Pathology, Brest University Hospital, Brest, France
| | | | | | - Philippe Elies
- Univ Brest, Imagery and Microscopic Measures Facility, Brest, France
| | - Pascale Marcorelles
- Univ Brest, LIEN, Brest, France
- Department of Pathology, Brest University Hospital, Brest, France
| | - Laurent Misery
- Univ Brest, LIEN, Brest, France
- Department of Dermatology, Brest University Hospital, Brest, France
| |
Collapse
|
34
|
Cokus SJ, De La Torre M, Medina EF, Rasmussen JP, Ramirez-Gutierrez J, Sagasti A, Wang F. Tissue-Specific Transcriptomes Reveal Gene Expression Trajectories in Two Maturing Skin Epithelial Layers in Zebrafish Embryos. G3 (BETHESDA, MD.) 2019; 9:3439-3452. [PMID: 31431477 PMCID: PMC6778804 DOI: 10.1534/g3.119.400402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/18/2019] [Indexed: 12/19/2022]
Abstract
Epithelial cells are the building blocks of many organs, including skin. The vertebrate skin initially consists of two epithelial layers, the outer periderm and inner basal cell layers, which have distinct properties, functions, and fates. The embryonic periderm ultimately disappears during development, whereas basal cells proliferate to form the mature, stratified epidermis. Although much is known about mechanisms of homeostasis in mature skin, relatively little is known about the two cell types in pre-stratification skin. To define the similarities and distinctions between periderm and basal skin epithelial cells, we purified them from zebrafish at early development stages and deeply profiled their gene expression. These analyses identified groups of genes whose tissue enrichment changed at each stage, defining gene flow dynamics of maturing vertebrate epithelia. At each of 52 and 72 hr post-fertilization (hpf), more than 60% of genes enriched in skin cells were similarly expressed in both layers, indicating that they were common epithelial genes, but many others were enriched in one layer or the other. Both expected and novel genes were enriched in periderm and basal cell layers. Genes encoding extracellular matrix, junctional, cytoskeletal, and signaling proteins were prominent among those distinguishing the two epithelial cell types. In situ hybridization and BAC transgenes confirmed our expression data and provided new tools to study zebrafish skin. Collectively, these data provide a resource for studying common and distinguishing features of maturing epithelia.
Collapse
Affiliation(s)
- Shawn J Cokus
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles and
| | | | - Eric F Medina
- Department of Biology, California State University, Dominguez Hills
| | - Jeffrey P Rasmussen
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles and
| | | | - Alvaro Sagasti
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles and
| | - Fang Wang
- Department of Biology, California State University, Dominguez Hills
| |
Collapse
|
35
|
Kanaoka Y, Skibbe H, Hayashi Y, Uemura T, Hattori Y. DeTerm: Software for automatic detection of neuronal dendritic branch terminals via an artificial neural network. Genes Cells 2019; 24:464-472. [PMID: 31095815 DOI: 10.1111/gtc.12700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/11/2019] [Accepted: 05/11/2019] [Indexed: 02/06/2023]
Abstract
Dendrites of neurons receive and process synaptic or sensory inputs. The Drosophila class IV dendritic arborization (da) neuron is an established model system to explore molecular mechanisms of dendrite morphogenesis. The total number of dendritic branch terminals is one of the frequently employed parameters to characterize dendritic arborization complexity of class IV neurons. This parameter gives a useful phenotypic readout of arborization during neurogenesis, and it is typically determined by laborious manual analyses of numerous images. Ideally, an automated analysis would greatly reduce the workload; however, it is challenging to automatically discriminate dendritic branch terminals from signals of surrounding tissues in whole-mount live larvae. Here, we describe our newly developed software, called DeTerm, which automatically recognizes and quantifies dendrite branch terminals via an artificial neural network. Once we input an image file of a neuronal dendritic arbor and its region of interest information, DeTerm is capable of labeling terminals of larval class IV neurons with high precision, and it also provides positional data of individual terminals. We further show that DeTerm is applicable to other types of neurons, including mouse cerebellar Purkinje cells. DeTerm is freely available on the web and was successfully tested on Mac, Windows and Linux.
Collapse
Affiliation(s)
| | - Henrik Skibbe
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Yusaku Hayashi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Research Center for Dynamic Living Systems, Kyoto University, Kyoto, Japan.,AMED-CREST, AMED, Tokyo, Japan
| | - Yukako Hattori
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
36
|
Rosa JB, Sagasti A. Developmental Neurobiology: It Takes Nrg to Separate Dendrites. Curr Biol 2019; 29:R327-R329. [PMID: 31063725 DOI: 10.1016/j.cub.2019.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The development of sensory receptive fields requires the coordinated spatial patterning of neurites from multiple sensory neuron subtypes. A new study identifies a role for neuron-skin cell interactions in preventing the bundling of dendritic arbors from distinct neurons.
Collapse
Affiliation(s)
- Jeffrey B Rosa
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA 90095-1606, USA
| | - Alvaro Sagasti
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA 90095-1606, USA.
| |
Collapse
|