1
|
Awad K, Abdelhadi M, Awad AM. High Glucose Reduces Influenza and Parainfluenza Virus Productivity by Altering Glycolytic Pattern in A549 Cells. Int J Mol Sci 2025; 26:2975. [PMID: 40243606 PMCID: PMC11989181 DOI: 10.3390/ijms26072975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Influenza A virus is responsible for annual epidemics and occasional pandemics leading to significant mortality and morbidity in human populations. Parainfluenza viruses also contribute to lung infections and chronic lung disease. In this study, we investigated the effect of high glucose on the productivity of influenza A and Sendai (murine parainfluenza type 1) viruses in A549 immortalized cells. A glycolytic pattern of infection was determined by monitoring the release of lactate and phosphofructokinase (PFK) activity in infected and uninfected cells. qRT-PCR was used to analyze the expression of viral and cellular cytokine mRNA levels in cultured cells. The data show that the productivity of both influenza and Sendai viruses was reduced in A549 cells cultured in high-glucose conditions. This was accompanied by increased lactate production and altered PFK activity profile. Endogenous or virus infection-induced interferon β (IFN-β) mRNA expression was significantly decreased in high glucose compared to normal glucose status during early times of infection. Unlike in Sendai virus-infected cells, H1N1 virus reversed the significant increase in transforming growth factor β1 (TGF-β1) mRNA expression due to increased glucose concentration during early infection times. In conclusion, high glucose may have a negative effect on influenza and parainfluenza productivity in vitro. This effect may be considered when evaluating personalized therapeutic/diagnostic markers in infection-accompanied hyperglycemic status.
Collapse
Affiliation(s)
- Kareem Awad
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20520 Turku, Finland
- Institute of Pharmaceutical and Drug Industries Research, National Research Centre, Giza 12622, Egypt
- Medical Faculty, Ruprecht-Karls-University of Heidelberg, 69117 Heidelberg, Germany
- Academy of Scientific Research & Technology (ASRT-STARS), Cairo 11516, Egypt
| | - Maha Abdelhadi
- Institute of Medical Research and Clinical Studies, National Research Center, Giza 12622, Egypt;
| | - Ahmed M. Awad
- Research and Innovation Office, California State University Channel Islands, Camarillo, CA 93012, USA;
| |
Collapse
|
2
|
Thieulent CJ, Balasuriya UBR, Tseng A, Crossland NA, Stephens JM, Dittmar W, Staszkiewicz J, Richt JA, Carossino M. Diabetes exacerbates SARS-CoV-2 replication through ineffective pulmonary interferon responses, delayed cell-mediated immunity, and disruption of leptin signaling. Front Cell Infect Microbiol 2025; 15:1513687. [PMID: 40125513 PMCID: PMC11925909 DOI: 10.3389/fcimb.2025.1513687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/06/2025] [Indexed: 03/25/2025] Open
Abstract
Comorbidities, including obesity and type 2 diabetes mellitus (T2DM), are associated with increased disease severity and mortality following SARS-CoV-2 infection. Here, we investigated virus-host interactions under the effects of these comorbidities in diet-induced obesity (DIO) and leptin receptor-deficient (T2DM) mice following infection with SARS-CoV-2. DIO mice, as well as their lean counterparts, showed limited susceptibility to SARS-CoV-2 infection. In contrast, T2DM mice showed exacerbated pulmonary SARS-CoV-2 replication and delayed viral clearance associated with down-regulation of innate and adaptative immune gene signatures, ineffective type I interferon response, and delayed SARS-CoV-2-specific cell-mediated immune responses. While T2DM mice showed higher and prolonged SARS-CoV-2-specific immunoglobulin isotype responses compared to their lean counterparts, neutralizing antibody levels were equivalent. By silencing the leptin receptor in vitro using a human alveolar epithelial cell line, we observed an increase in SARS-CoV-2 replication and type I interferons. Altogether, our data provides for the first time evidence that disruption of leptin receptor signaling leading to obesity and T2DM induces altered type I interferon and cell-mediated responses against SARS-CoV-2, mediating increased viral replication and delayed clearance. These data shed light on the alteration of the innate immune pathway in the lung using in-depth transcriptomic analysis and on adaptive immune responses to SARS-CoV-2 under T2DM conditions. Finally, this study provides further insight into this risk factor aggravating SARS-CoV-2 infection and understanding the underlying cellular mechanisms that could help identify potential intervention points for this at-risk population.
Collapse
MESH Headings
- Animals
- SARS-CoV-2/physiology
- SARS-CoV-2/immunology
- Mice
- COVID-19/immunology
- COVID-19/virology
- Virus Replication
- Receptors, Leptin/genetics
- Receptors, Leptin/metabolism
- Obesity/immunology
- Obesity/complications
- Signal Transduction
- Humans
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/complications
- Leptin/metabolism
- Interferon Type I/immunology
- Interferon Type I/metabolism
- Lung/immunology
- Lung/virology
- Immunity, Cellular
- Mice, Inbred C57BL
- Immunity, Innate
- Male
- Disease Models, Animal
- Antibodies, Neutralizing/blood
- Interferons
- Mice, Knockout
Collapse
Affiliation(s)
- Côme J. Thieulent
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- Louisiana Animal Disease Diagnostic Laboratory (LSU Diagnostics), School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- Louisiana Animal Disease Diagnostic Laboratory (LSU Diagnostics), School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Anna Tseng
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Nicholas A. Crossland
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, United States
| | - Jacqueline M. Stephens
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Wellesley Dittmar
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- Louisiana Animal Disease Diagnostic Laboratory (LSU Diagnostics), School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Jaroslaw Staszkiewicz
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Juergen A. Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- Louisiana Animal Disease Diagnostic Laboratory (LSU Diagnostics), School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
3
|
Zhang W, Zhang J, Liu H, Liu Y, Sheng X, Zhou S, Pei T, Li C, Wang J. Functional hydrogel empowering 3D printing titanium alloys. Mater Today Bio 2025; 30:101422. [PMID: 39830135 PMCID: PMC11742631 DOI: 10.1016/j.mtbio.2024.101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
Titanium alloys are widely used in the manufacture of orthopedic prosthesis given their excellent mechanical properties and biocompatibility. However, the primary drawbacks of traditional titanium alloy prosthesis are their much higher elastic modulus than cancellous bone and poor interfacial adhesion, which lead to poor osseointegration. 3D-printed porous titanium alloys can partly address these issues, but their bio-inertness still requires modifications to adapt to different physiological and pathological microenvironments. Hydrogels composed of three-dimensional networks of hydrophilic polymers can effectively simulate the extracellular matrix of natural bone and are capable of loading bioactive molecules such as proteins, peptides, growths factors, polysaccharides, or nucleotides for localized release within the human body, by directly participating in biological processes. Combining 3D-printed porous titanium alloys with hydrogels to construct a bioactive composite system that regulates cellular adhesion, proliferation, migration, and differentiation in the local microenvironment is of great significance for enhancing the bioactivity of the prosthesis surface. In this review, we focus on three aspects of the bioactive composite system: (Ⅰ) strategies for constructing bioactive interfaces with hydrogels, and (Ⅱ) how bioactive composite systems regulate the microenvironment under different physiological and pathological conditions to enhance the osteointegration and bone regeneration capability of prostheses. Considering the current research status in this field, innovations in orthopedic prosthesis can be achieved through material optimization, personalized customization, and the development of multifunctional composite systems. These advancements provide essential references for the clinical translation of osseointegration and bone regeneration in various physiological and pathological microenvironments.
Collapse
Affiliation(s)
- Weimin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Jiaxin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yang Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Xiao Sheng
- Huzhou Central Hospital, Fifth school of Clinical Medical Universtiy, Wuxing, Huzhou, Zhejiang 313000, PR China
| | - Sixing Zhou
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Tiansen Pei
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Chen Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| |
Collapse
|
4
|
Aisanjiang M, Dai W, Wu L, Yuan Y, Liu S, Liao G, Li L, Tong X, Zhang H, Chen Y, Liu J, Cheng J, Wang C, Lu Y. Ameliorating lung fibrosis and pulmonary function in diabetic mice: Therapeutic potential of mesenchymal stem cell. Biochem Biophys Res Commun 2024; 737:150495. [PMID: 39126861 DOI: 10.1016/j.bbrc.2024.150495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
This study aimed to investigate the potential of mesenchymal stem cells (MSCs) in alleviating diabetic lung injury by decreasing inflammation, fibrosis and recovering tissue macrophage homeostasis. To induce pulmonary injuries in an in vivo murine model, we utilized a streptozotocin (STZ), and high-fat diet (HFD) induced diabetic C57 mouse model. Subsequently, human umbilical cord-derived MSCs (hUC-MSCs) were administered through the tail vein on a weekly basis for a duration of 4 weeks. In addition, in vitro experiments involved co-culturing of isolated primary abdominal macrophages from diabetic mice and high glucose-stimulated MLE-12 cells with hUC-MSCs. The objective was to evaluate if hUC-MSCs co-culturing could effectively mitigate cell inflammation and fibrosis. Following hUC-MSCs injection, diabetic mice displayed enhanced pulmonary functional parameters, reduced pulmonary fibrosis, and diminished inflammation. Notably, the dynamic equilibrium of lung macrophages shifted from the M1 phenotype to the M2 phenotype, accompanied by a notable reduction in various indicators associated with inflammation and fibrosis. Results from cell co-culturing experiments further supported this trend, demonstrating a reduction in inflammatory and fibrotic indicators. In conclusion, our findings suggest that hUC-MSCs treatment holds promise in mitigating diabetic pulmonary injury by significantly reducing inflammation, fibrosis and maintain tissue macrophage homeostasis within the lungs. This study sheds light on the therapeutic potential of hUC-MSCs in managing diabetic complications affecting the pulmonary system.
Collapse
Affiliation(s)
- Maikeliya Aisanjiang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wenshu Dai
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Luna Wu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyun Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Animal experimental center of West China hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Tong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Heteng Zhang
- Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, China
| | - Younan Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chengshi Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China.
| | - Yanrong Lu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Transplant Engineering and Immunology, NHFPC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Tong MZ, Hulme KD, Law SC, Noye E, Dorey ES, Chew KY, Rowntree LC, van de Sandt CE, Kedzierska K, Goeijenbier M, Ronacher K, Alzaid F, Julla JB, Riveline JP, Lineburg KE, Smith C, Grant EJ, Gras S, Gallo LA, Barrett HL, Short KR. High glycemic variability is associated with a reduced T cell cytokine response to influenza A virus. iScience 2024; 27:111166. [PMID: 39524368 PMCID: PMC11550119 DOI: 10.1016/j.isci.2024.111166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus significantly increases the risk of severe respiratory virus disease like influenza and COVID-19. Early evidence suggests that this susceptibility to respiratory viral disease is driven by glycemic variability, rather than average blood glucose levels. Here, we use blood samples and constant glucose monitoring (CGM) data obtained from people living with type 1 diabetes (T1D) to determine the effects of glycemic variability on the ex vivo T cell response to influenza virus. We show that high glycemic variability in participants living with T1D is associated with a reduced proportion of CD8+CD107a-IFNγ-MIP1β-TNF+ T cells in response to stimulation with influenza virus and an influenza virus peptide pool. Thus, this study provides evidence that glycemic variability affects the ex vivo T cell response to respiratory viruses. These data suggest that monitoring glycemic variability may have important implications in understanding the antiviral immune response in people with diabetes.
Collapse
Affiliation(s)
- Marcus Z.W. Tong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Katina D. Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Soi Cheng Law
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Ellesandra Noye
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Emily S. Dorey
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Louise C. Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Marco Goeijenbier
- Department of Intensive Care, Erasmus MC, Rotterdam, the Netherlands
- Department of Intensive Care, Spaarne Gasthuis, Haarlem, Hoofddorp, the Netherlands
| | - Katharina Ronacher
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Fawaz Alzaid
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Dasman Diabetes Institute, Kuwait, Kuwait
| | - Jean-Baptiste Julla
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Department of Diabetes, Clinical Investigation Centre (CIC-9504), Lariboisière Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Jean-Pierre Riveline
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Department of Diabetes, Clinical Investigation Centre (CIC-9504), Lariboisière Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | - Corey Smith
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Queensland Immunology Research Centre, St Lucia, QLD, Australia
| | - Emma J. Grant
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Stephanie Gras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Linda A. Gallo
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Petrie, QLD, Australia
| | - Helen L. Barrett
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- University of New South Wales Medicine, Kensington, NSW, Australia
- Obstetric Medicine, Royal Hospital for Women, Randwick, NSW, Australia
| | - Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
- Queensland Immunology Research Centre, St Lucia, QLD, Australia
| |
Collapse
|
6
|
Wu W, Alexander JS, Booth JL, Miller CA, Metcalf JP, Drevets DA. Influenza virus infection exacerbates gene expression related to neurocognitive dysfunction in brains of old mice. Immun Ageing 2024; 21:39. [PMID: 38907247 PMCID: PMC11191167 DOI: 10.1186/s12979-024-00447-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Age > 65 years is a key risk factor for poor outcomes after human influenza infection. Specifically, in addition to respiratory disease, non-neurotropic influenza A virus (IAV) causes neuro-cognitive complications, e.g. new onset depression and increases the risk of dementia after hospitalization. This study aimed to identify potential mechanisms of these effects by determining differences between young and old mice in brain gene expression in a mouse model of non-neurotropic IAV infection. METHODS Young (12 weeks) and old (70 weeks) C57Bl/6J mice were inoculated intranasally with 200 PFU H1N1 A/PR/34/8 (PR8) or sterile PBS (mock). Gene expression in lung and brain was measured by qRT-PCR and normalized to β-actin. Findings were confirmed using the nCounter Mouse Neuroinflammation Array (NanoString) and analyzed with nSolver 4.0 and Ingenuity Pathway Analysis (IPA, Qiagen). RESULTS IAV PR8 did not invade the central nervous system. Young and old mice differed significantly in brain gene expression at baseline and during non-neurotropic IAV infection. Expression of brain Ifnl, Irf7, and Tnf mRNAs was upregulated over baseline control at 3 days post-infection (p.i.) only in young mice, but old mice expressed more Ifnl than young mice 7 days p.i. Gene arrays showed down-regulation of the Epigenetic Regulation, Insulin Signaling, and Neurons and Neurotransmission pathways in old mice 3 days p.i. while young mice demonstrated no change or induction of these pathways at the same time point. IPA revealed marked baseline differences between old and young mice. Gene expression related to Cognitive Impairment, Memory Deficits and Learning worsened in old mice relative to young mice during IAV infection. Aged mice demonstrate more severe changes in gene expression related to memory loss and cognitive dysfunction by IPA. CONCLUSIONS These data suggest the genes and pathways related to learning and cognitive performance that were worse at baseline in old mice were further worsened by IAV infection, similar to old patients. Early events in the brain triggered by IAV infection portend downstream neurocognitive pathology in old adults.
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1 800 N. Research Pkwy, Oklahoma City, OK, 73104, USA
| | - Jeremy S Alexander
- Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1 800 N. Research Pkwy, Oklahoma City, OK, 73104, USA
| | - J Leland Booth
- Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1 800 N. Research Pkwy, Oklahoma City, OK, 73104, USA
| | - Craig A Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Oklahoma State University, Stillwater, OK, USA
| | - Jordan P Metcalf
- Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1 800 N. Research Pkwy, Oklahoma City, OK, 73104, USA.
- Veterans Affairs Medical Center, Oklahoma City, OK, USA.
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Douglas A Drevets
- Infectious Diseases, Department of Medicine, University of Oklahoma Health Sciences Center, 800 Stanton L. Young, Suite 7300, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
7
|
Joshi G, Das A, Verma G, Guchhait P. Viral infection and host immune response in diabetes. IUBMB Life 2024; 76:242-266. [PMID: 38063433 DOI: 10.1002/iub.2794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/05/2023] [Indexed: 04/24/2024]
Abstract
Diabetes, a chronic metabolic disorder disrupting blood sugar regulation, has emerged as a prominent silent pandemic. Uncontrolled diabetes predisposes an individual to develop fatal complications like cardiovascular disorders, kidney damage, and neuropathies and aggravates the severity of treatable infections. Escalating cases of Type 1 and Type 2 diabetes correlate with a global upswing in diabetes-linked mortality. As a growing global concern with limited preventive interventions, diabetes necessitates extensive research to mitigate its healthcare burden and assist ailing patients. An altered immune system exacerbated by chronic hyperinflammation heightens the susceptibility of diabetic individuals to microbial infections, including notable viruses like SARS-CoV-2, dengue, and influenza. Given such a scenario, we scrutinized the literature and compiled molecular pathways and signaling cascades related to immune compartments in diabetics that escalate the severity associated with the above-mentioned viral infections in them as compared to healthy individuals. The pathogenesis of these viral infections that trigger diabetes compromises both innate and adaptive immune functions and pre-existing diabetes also leads to heightened disease severity. Lastly, this review succinctly outlines available treatments for diabetics, which may hold promise as preventive or supportive measures to effectively combat these viral infections in the former.
Collapse
Affiliation(s)
- Garima Joshi
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Anushka Das
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Garima Verma
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
8
|
Liu Z, Annarapu G, Yazdani HO, Wang Q, Liu S, Luo JH, Yu YP, Ren B, Neal MD, Monga SP, Mota Alvidrez RI. Restoring glucose balance: Conditional HMGB1 knockdown mitigates hyperglycemia in a Streptozotocin induced mouse model. Heliyon 2024; 10:e23561. [PMID: 38187339 PMCID: PMC10770459 DOI: 10.1016/j.heliyon.2023.e23561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Diabetes mellitus (DM) poses a significant global health burden, with hyperglycemia being a primary contributor to complications and high morbidity associated with this disorder. Existing glucose management strategies have shown suboptimal effectiveness, necessitating alternative approaches. In this study, we explored the role of high mobility group box 1 (HMGB1) in hyperglycemia, a protein implicated in initiating inflammation and strongly correlated with DM onset and progression. We hypothesized that HMGB1 knockdown will mitigate hyperglycemia severity and enhance glucose tolerance. To test this hypothesis, we utilized a novel inducible HMGB1 knockout (iHMGB1 KO) mouse model exhibiting systemic HMGB1 knockdown. Hyperglycemic phenotype was induced using low dose streptozotocin (STZ) injections, followed by longitudinal glucose measurements and oral glucose tolerance tests to evaluate the effect of HMGB1 knockdown on glucose metabolism. Our findings showed a substantial reduction in glucose levels and enhanced glucose tolerance in HMGB1 knockdown mice. Additionally, we performed RNA sequencing analyses, which identified potential alternations in genes and molecular pathways within the liver and skeletal muscle tissue that may account for the in vivo phenotypic changes observed in hyperglycemic mice following HMGB1 knockdown. In conclusion, our present study delivers the first direct evidence of a causal relationship between systemic HMGB1 knockdown and hyperglycemia in vivo, an association that had remained unexamined prior to this research. This discovery positions HMGB1 knockdown as a potentially efficacious therapeutic target for addressing hyperglycemia and, by extension, the DM epidemic. Furthermore, we have revealed potential underlying mechanisms, establishing the essential groundwork for subsequent in-depth mechanistic investigations focused on further elucidating and harnessing the promising therapeutic potential of HMGB1 in DM management.
Collapse
Affiliation(s)
- Zeyu Liu
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Gowtham Annarapu
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hamza O. Yazdani
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Qinge Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jian-Hua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yan-Ping Yu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Baoguo Ren
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew D. Neal
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Satdarshan P. Monga
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Roberto Ivan Mota Alvidrez
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
9
|
Hulme KD, Tong ZWM, Rowntree LC, van de Sandt CE, Ronacher K, Grant EJ, Dorey ES, Gallo LA, Gras S, Kedzierska K, Barrett HL, Short KR. Increasing HbA1c is associated with reduced CD8 + T cell functionality in response to influenza virus in a TCR-dependent manner in individuals with diabetes mellitus. Cell Mol Life Sci 2024; 81:35. [PMID: 38214784 PMCID: PMC10786977 DOI: 10.1007/s00018-023-05010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 01/13/2024]
Abstract
Diabetes mellitus is on the rise globally and is a known susceptibility factor for severe influenza virus infections. However, the mechanisms by which diabetes increases the severity of an influenza virus infection are yet to be fully defined. Diabetes mellitus is hallmarked by high glucose concentrations in the blood. We hypothesized that these high glucose concentrations affect the functionality of CD8+ T cells, which play a key role eliminating virus-infected cells and have been shown to decrease influenza disease severity. To study the effect of hyperglycemia on CD8+ T cell function, we stimulated peripheral blood mononuclear cells (PBMCs) from donors with and without diabetes with influenza A virus, anti-CD3/anti-CD28-coated beads, PMA and ionomycin (PMA/I), or an influenza viral peptide pool. After stimulation, cells were assessed for functionality [as defined by expression of IFN-γ, TNF-α, macrophage inflammatory protein (MIP)-1β, and lysosomal-associated membrane protein-1 (CD107a)] using flow cytometry. Our results showed that increasing HbA1c correlated with a reduction in TNF-α production by CD8+ T cells in response to influenza stimulation in a TCR-specific manner. This was not associated with any changes to CD8+ T cell subsets. We conclude that hyperglycemia impairs CD8+ T cell function to influenza virus infection, which may be linked with the increased risk of severe influenza in patients with diabetes.
Collapse
Affiliation(s)
- Katina D Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Zhen Wei Marcus Tong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Katharina Ronacher
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Emma J Grant
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Emily S Dorey
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Linda A Gallo
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Moreton Bay, QLD, Australia
| | - Stephanie Gras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Helen L Barrett
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
- Obstetric Medicine, The Royal Hospital for Women, Randwick, NSW, Australia
- School of Medicine, UNSW, Randwick, NSW, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
10
|
Perakakis N, Harb H, Hale BG, Varga Z, Steenblock C, Kanczkowski W, Alexaki VI, Ludwig B, Mirtschink P, Solimena M, Toepfner N, Zeissig S, Gado M, Abela IA, Beuschlein F, Spinas GA, Cavelti-Weder C, Gerber PA, Huber M, Trkola A, Puhan MA, Wong WWL, Linkermann A, Mohan V, Lehnert H, Nawroth P, Chavakis T, Mingrone G, Wolfrum C, Zinkernagel AS, Bornstein SR. Mechanisms and clinical relevance of the bidirectional relationship of viral infections with metabolic diseases. Lancet Diabetes Endocrinol 2023; 11:675-693. [PMID: 37524103 DOI: 10.1016/s2213-8587(23)00154-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 08/02/2023]
Abstract
Viruses have been present during all evolutionary steps on earth and have had a major effect on human history. Viral infections are still among the leading causes of death. Another public health concern is the increase of non-communicable metabolic diseases in the last four decades. In this Review, we revisit the scientific evidence supporting the presence of a strong bidirectional feedback loop between several viral infections and metabolic diseases. We discuss how viruses might lead to the development or progression of metabolic diseases and conversely, how metabolic diseases might increase the severity of a viral infection. Furthermore, we discuss the clinical relevance of the current evidence on the relationship between viral infections and metabolic disease and the present and future challenges that should be addressed by the scientific community and health authorities.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany; Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany.
| | - Hani Harb
- Medical Microbiology and Virology, Technische Universität Dresden, Dresden 01307, Germany
| | - Benjamin G Hale
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University of Zürich, Zürich, Switzerland
| | - Charlotte Steenblock
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany
| | - Waldemar Kanczkowski
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany
| | - Vasileia Ismini Alexaki
- Institute for Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden 01307, Germany
| | - Barbara Ludwig
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany; Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Peter Mirtschink
- Institute for Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden 01307, Germany
| | - Michele Solimena
- Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; Department of Molecular Diabetology, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Nicole Toepfner
- Department of Pediatrics, Technische Universität Dresden, Dresden 01307, Germany
| | - Sebastian Zeissig
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden 01307, Germany; Department of Medicine I, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Manuel Gado
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany; Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Irene Alma Abela
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University of Zürich, Zürich, Switzerland
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich, University of Zürich, Zürich, Switzerland; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Giatgen A Spinas
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Claudia Cavelti-Weder
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Philipp A Gerber
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Milo A Puhan
- Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Zürich, Switzerland
| | - Wendy Wei-Lynn Wong
- and Department of Molecular Life Science, University of Zürich, Zürich, Switzerland
| | - Andreas Linkermann
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany; Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Viswanathan Mohan
- Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Chennai, Tamil Nadu, India
| | - Hendrik Lehnert
- Presidential Office, Paris Lodron Universität Salzburg, Salzburg, Austria
| | - Peter Nawroth
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany
| | - Triantafyllos Chavakis
- Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; Institute for Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Geltrude Mingrone
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy; Division of Diabetes and Nutritional Sciences, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University of Zürich, Zürich, Switzerland
| | - Stefan R Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany; Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany; Division of Diabetes and Nutritional Sciences, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
11
|
Zhang Y, Black KE, Phung TKN, Thundivalappil SR, Lin T, Wang W, Xu J, Zhang C, Hariri LP, Lapey A, Li H, Lerou PH, Ai X, Que J, Park JA, Hurley BP, Mou H. Human Airway Basal Cells Undergo Reversible Squamous Differentiation and Reshape Innate Immunity. Am J Respir Cell Mol Biol 2023; 68:664-678. [PMID: 36753317 PMCID: PMC10257070 DOI: 10.1165/rcmb.2022-0299oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/07/2023] [Indexed: 02/09/2023] Open
Abstract
Histological and lineage immunofluorescence examination revealed that healthy conducting airways of humans and animals harbor sporadic poorly differentiated epithelial patches mostly in the dorsal noncartilage regions that remarkably manifest squamous differentiation. In vitro analysis demonstrated that this squamous phenotype is not due to intrinsic functional change in underlying airway basal cells. Rather, it is a reversible physiological response to persistent Wnt signaling stimulation during de novo differentiation. Squamous epithelial cells have elevated gene signatures of glucose uptake and cellular glycolysis. Inhibition of glycolysis or a decrease in glucose availability suppresses Wnt-induced squamous epithelial differentiation. Compared with pseudostratified airway epithelial cells, a cascade of mucosal protective functions is impaired in squamous epithelial cells, featuring increased epithelial permeability, spontaneous epithelial unjamming, and enhanced inflammatory responses. Our study raises the possibility that the squamous differentiation naturally occurring in healthy airways identified herein may represent "vulnerable spots" within the airway mucosa that are sensitive to damage and inflammation when confronted by infection or injury. Squamous metaplasia and hyperplasia are hallmarks of many airway diseases, thereby expanding these areas of vulnerability with potential pathological consequences. Thus, investigation of physiological and reversible squamous differentiation from healthy airway basal cells may provide critical knowledge to understand pathogenic squamous remodeling, which is often nonreversible, progressive, and hyperinflammatory.
Collapse
Affiliation(s)
- Yihan Zhang
- The Mucosal Immunology & Biology Research Center
- Department of Pediatrics, Harvard Medical School, and
| | | | - Thien-Khoi N. Phung
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | | | - Tian Lin
- The Mucosal Immunology & Biology Research Center
- Department of Pediatrics, Harvard Medical School, and
| | - Wei Wang
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Cheng Zhang
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Lida P. Hariri
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Allen Lapey
- Division of Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, Massachusetts
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Paul Hubert Lerou
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Xingbin Ai
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Jianwen Que
- Columbia Center for Human Development
- Division of Digestive and Liver Disease, Department of Medicine, and
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Jin-Ah Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Bryan P. Hurley
- The Mucosal Immunology & Biology Research Center
- Department of Pediatrics, Harvard Medical School, and
| | - Hongmei Mou
- The Mucosal Immunology & Biology Research Center
- Department of Pediatrics, Harvard Medical School, and
| |
Collapse
|
12
|
High Glucose Promotes Inflammation and Weakens Placental Defenses against E. coli and S. agalactiae Infection: Protective Role of Insulin and Metformin. Int J Mol Sci 2023; 24:ijms24065243. [PMID: 36982317 PMCID: PMC10048930 DOI: 10.3390/ijms24065243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Placentas from gestational diabetes mellitus (GDM) patients undergo significant metabolic and immunologic adaptations due to hyperglycemia, which results in an exacerbated synthesis of proinflammatory cytokines and an increased risk for infections. Insulin or metformin are clinically indicated for the treatment of GDM; however, there is limited information about the immunomodulatory activity of these drugs in the human placenta, especially in the context of maternal infections. Our objective was to study the role of insulin and metformin in the placental inflammatory response and innate defense against common etiopathological agents of pregnancy bacterial infections, such as E. coli and S. agalactiae, in a hyperglycemic environment. Term placental explants were cultivated with glucose (10 and 50 mM), insulin (50–500 nM) or metformin (125–500 µM) for 48 h, and then they were challenged with live bacteria (1 × 105 CFU/mL). We evaluated the inflammatory cytokine secretion, beta defensins production, bacterial count and bacterial tissue invasiveness after 4–8 h of infection. Our results showed that a GDM-associated hyperglycemic environment induced an inflammatory response and a decreased beta defensins synthesis unable to restrain bacterial infection. Notably, both insulin and metformin exerted anti-inflammatory effects under hyperglycemic infectious and non-infectious scenarios. Moreover, both drugs fortified placental barrier defenses, resulting in reduced E. coli counts, as well as decreased S. agalactiae and E. coli invasiveness of placental villous trees. Remarkably, the double challenge of high glucose and infection provoked a pathogen-specific attenuated placental inflammatory response in the hyperglycemic condition, mainly denoted by reduced TNF-α and IL-6 secretion after S. agalactiae infection and by IL-1β after E. coli infection. Altogether, these results suggest that metabolically uncontrolled GDM mothers develop diverse immune placental alterations, which may help to explain their increased vulnerability to bacterial pathogens.
Collapse
|
13
|
Geerling E, Hameed M, Weger-Lucarelli J, Pinto AK. Metabolic syndrome and aberrant immune responses to viral infection and vaccination: Insights from small animal models. Front Immunol 2022; 13:1015563. [PMID: 36532060 PMCID: PMC9747772 DOI: 10.3389/fimmu.2022.1015563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
This review outlines the propensity for metabolic syndrome (MetS) to induce elevated disease severity, higher mortality rates post-infection, and poor vaccination outcomes for viral pathogens. MetS is a cluster of conditions including high blood glucose, an increase in circulating low-density lipoproteins and triglycerides, abdominal obesity, and elevated blood pressure which often overlap in their occurrence. MetS diagnoses are on the rise, as reported cases have increased by greater than 35% since 1988, resulting in one-third of United States adults currently diagnosed as MetS patients. In the aftermath of the 2009 H1N1 pandemic, a link between MetS and disease severity was established. Since then, numerous studies have been conducted to illuminate the impact of MetS on enhancing virally induced morbidity and dysregulation of the host immune response. These correlative studies have emphasized the need for elucidating the mechanisms by which these alterations occur, and animal studies conducted as early as the 1940s have linked the conditions associated with MetS with enhanced viral disease severity and poor vaccine outcomes. In this review, we provide an overview of the importance of considering overall metabolic health in terms of cholesterolemia, glycemia, triglyceridemia, insulin and other metabolic molecules, along with blood pressure levels and obesity when studying the impact of metabolism-related malignancies on immune function. We highlight the novel insights that small animal models have provided for MetS-associated immune dysfunction following viral infection. Such animal models of aberrant metabolism have paved the way for our current understanding of MetS and its impact on viral disease severity, dysregulated immune responses to viral pathogens, poor vaccination outcomes, and contributions to the emergence of viral variants.
Collapse
Affiliation(s)
- Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Muddassar Hameed
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - James Weger-Lucarelli
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
14
|
Stafie CS, Solomon SM, Sufaru IG, Manaila M, Stafie II, Melinte G, Simionescu B, Leustean L. Pathogenic Connections in Post-COVID Conditions: What Do We Know in the Large Unknown? A Narrative Review. Viruses 2022; 14:1686. [PMID: 36016309 PMCID: PMC9413998 DOI: 10.3390/v14081686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
The coronavirus 2019 (COVID-19) disease has long-term effects, known as post-COVID conditions (PCC) or long-COVID. Post-COVID-19 syndrome is defined by signs and symptoms that occur during or after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection which persist for more than 12 weeks and cannot be supported by an alternative diagnosis. The cardiovascular damage caused by COVID-19 in the severe forms of the disease is induced by severe systemic inflammation, considered to be one of the causes of myocardial lesions, with increased levels of circulating cytokines and toxic response mediators. We have focused on conditions that can induce long-COVID-19, or multisystem inflammatory syndrome in adults or children (MIS-C/MIS-A), with an emphasis on endocrinological and metabolic disorders. Although described less frequently in children than in adults, long-COVID syndrome should not be confused with MIS-C, which is an acute condition characterized by multisystem involvement and paraclinical evidence of inflammation in a pediatric patient who tested positive for SARS-CoV-2. At the same time, we mention that the MIS-A symptoms remit within a few weeks, while the duration of long-COVID is measured in months. Long-COVID syndrome, along with its complications, MIS-A and MIS-C, represents an important challenge in the medical community. Underlying comorbidities can expose both COVID-19 adult and pediatric patients to a higher risk of negative outcomes not only during, but in the aftermath of the SARS-CoV-2 infection as well.
Collapse
Affiliation(s)
- Celina Silvia Stafie
- Department of Preventive Medicine and Interdisciplinarity—Family Medicine Discipline, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Sorina Mihaela Solomon
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700111 Iasi, Romania
| | - Irina-Georgeta Sufaru
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700111 Iasi, Romania
| | - Maria Manaila
- Endocrinology Residency Program, Sf. Spiridon Clinical Emergency Hospital, Independentei, 1, 700111 Iasi, Romania; (M.M.); (I.I.S.); (G.M.)
| | - Ingrid Ioana Stafie
- Endocrinology Residency Program, Sf. Spiridon Clinical Emergency Hospital, Independentei, 1, 700111 Iasi, Romania; (M.M.); (I.I.S.); (G.M.)
| | - Gabriela Melinte
- Endocrinology Residency Program, Sf. Spiridon Clinical Emergency Hospital, Independentei, 1, 700111 Iasi, Romania; (M.M.); (I.I.S.); (G.M.)
| | - Bianca Simionescu
- Pediatric Clinic No. 2, Mother and Child Department, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400347 Cluj-Napoca, Romania;
| | - Letitia Leustean
- Department of Endocrinology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
15
|
Pandemics of the 21st Century: The Risk Factor for Obese People. Viruses 2021; 14:v14010025. [PMID: 35062229 PMCID: PMC8779521 DOI: 10.3390/v14010025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
The number of obese adults and children is increasing worldwide, with obesity now being a global epidemic. Around 2.8 million people die annually from clinical overweight or obesity. Obesity is associated with numerous comorbid conditions including hypertension, cardiovascular disease, type 2 diabetes, hypercholesterolemia, hypertriglyceridemia, nonalcoholic fatty liver disease, and cancer, and even the development of severe disease after infection with viruses. Over the past twenty years, a number of new viruses has emerged and entered the human population. Moreover, influenza (H1N1)pdm09 virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused pandemics. During pandemics, the number of obese patients presents challenging and complex issues in medical and surgical intensive care units. Morbidity amongst obese individuals is directly proportional to body mass index. In this review, we describe the impact of obesity on the immune system, adult mortality, and immune response after infection with pandemic influenza virus and SARS-CoV-2. Finally, we address the effect of obesity on vaccination.
Collapse
|
16
|
van Liempd S, Cabrera D, Pilzner C, Kollmus H, Schughart K, Falcón-Pérez JM. Impaired beta-oxidation increases vulnerability to influenza A infection. J Biol Chem 2021; 297:101298. [PMID: 34637789 PMCID: PMC8564733 DOI: 10.1016/j.jbc.2021.101298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022] Open
Abstract
Influenza A virus (IAV) infection casts a significant burden on society. It has particularly high morbidity and mortality rates in patients suffering from metabolic disorders. The aim of this study was to relate metabolic changes with IAV susceptibility using well-characterized inbred mouse models. We compared the highly susceptible DBA/2J (D2) mouse strain for which IAV infection is lethal with the C57BL/6J (B6) strain, which exhibits a moderate course of disease and survives IAV infection. Previous studies showed that D2 has higher insulin and glucose levels and is predisposed to develop diet-induced type 2 diabetes. Using high-resolution liquid chromatography–coupled MS, the plasma metabolomes of individual animals were repeatedly measured up to 30 days postinfection. The biggest metabolic difference between these strains in healthy and infected states was in the levels of malonylcarnitine, which was consistently increased 5-fold in D2. Other interstrain and intrastrain differences in healthy and infected animals were observed for acylcarnitines, glucose, branched-chain amino acids, and oxidized fatty acids. By mapping metabolic changes to canonical pathways, we found that mitochondrial beta-oxidation is likely disturbed in D2 animals. In noninfected D2 mice, this leads to increased glycerolipid production and reduced acylcarnitine production, whereas in infected D2 animals, peroxisomal beta-oxidation becomes strongly increased. From these studies, we conclude that metabolic changes caused by a distortion of mitochondrial and peroxisomal metabolism might impact the innate immune response in D2, leading to high viral titers and mortality.
Collapse
Affiliation(s)
| | - Diana Cabrera
- Metabolomics Platform CIC bioGUNE-BRTA, Derio, Spain
| | - Carolin Pilzner
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany; University of Veterinary Medicine Hannover, Hannover, Germany; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Juan M Falcón-Pérez
- Metabolomics Platform CIC bioGUNE-BRTA, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
17
|
Tong ZWM, Grant E, Gras S, Wu M, Smith C, Barrett HL, Gallo LA, Short KR. The role of T-cell immunity in COVID-19 severity amongst people living with type II diabetes. FEBS J 2021; 288:5042-5054. [PMID: 34216102 PMCID: PMC8420365 DOI: 10.1111/febs.16105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/05/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic has highlighted the vulnerability of people with diabetes mellitus (DM) to respiratory viral infections. Despite the short history of COVID-19, various studies have shown that patients with DM are more likely to have increased hospitalisation and mortality rates as compared to patients without. At present, the mechanisms underlying this susceptibility are unclear. However, prior studies show that the course of COVID-19 disease is linked to the efficacy of the host's T-cell responses. Healthy individuals who can elicit a robust T-cell response are more likely to limit the severity of COVID-19. Here, we investigate the hypothesis that an impaired T-cell response in patients with type 2 diabetes mellitus (T2DM) drives the severity of COVID-19 in this patient population. While there is currently a limited amount of information that specifically addresses T-cell responses in COVID-19 patients with T2DM, there is a wealth of evidence from other infectious diseases that T-cell immunity is impaired in patients with T2DM. The reasons for this are likely multifactorial, including the presence of hyperglycaemia, glycaemic variability and metformin use. This review emphasises the need for further research into T-cell responses of COVID-19 patients with T2DM in order to better inform our response to COVID-19 and future disease outbreaks.
Collapse
Affiliation(s)
- Zhen Wei Marcus Tong
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneAustralia
| | - Emma Grant
- La Trobe University ‐ La Trobe Institute for Molecular Science (LIMS)MelbourneAustralia
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash UniversityClaytonAustralia
| | - Stephanie Gras
- La Trobe University ‐ La Trobe Institute for Molecular Science (LIMS)MelbourneAustralia
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash UniversityClaytonAustralia
| | - Melanie Wu
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneAustralia
| | - Corey Smith
- QIMR Berghofer Medical Research Institute ‐ QIMR Berghofer Centre for Immunotherapy and Vaccine Development BrisbaneAustralia
| | - Helen L. Barrett
- Department of EndocrinologyMater HealthBrisbaneAustralia
- Mater Research InstituteThe University of QueenslandBrisbaneAustralia
| | - Linda A. Gallo
- School of Biomedical SciencesThe University of QueenslandSt LuciaAustralia
| | - Kirsty R. Short
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneAustralia
| |
Collapse
|
18
|
Viola H, Washington K, Selva C, Grunwell J, Tirouvanziam R, Takayama S. A High-Throughput Distal Lung Air-Blood Barrier Model Enabled By Density-Driven Underside Epithelium Seeding. Adv Healthc Mater 2021; 10:e2100879. [PMID: 34174173 DOI: 10.1002/adhm.202100879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 12/18/2022]
Abstract
High-throughput tissue barrier models can yield critical insights on how barrier function responds to therapeutics, pathogens, and toxins. However, such models often emphasize multiplexing capability at the expense of physiologic relevance. Particularly, the distal lung's air-blood barrier is typically modeled with epithelial cell monoculture, neglecting the substantial contribution of endothelial cell feedback in the coordination of barrier function. An obstacle to establishing high-throughput coculture models relevant to the epithelium/endothelium interface is the requirement for underside cell seeding, which is difficult to miniaturize and automate. Therefore, this paper describes a scalable, low-cost seeding method that eliminates inversion by optimizing medium density to float cells so they attach under the membrane. This method generates a 96-well model of the distal lung epithelium-endothelium barrier with serum-free, glucocorticoid-free air-liquid differentiation. The polarized epithelial-endothelial coculture exhibits mature barrier function, appropriate intercellular junction staining, and epithelial-to-endothelial transmission of inflammatory stimuli such as polyinosine:polycytidylic acid (poly(I:C)). Further, exposure to influenza A virus PR8 and human beta-coronavirus OC43 initiates a dose-dependent inflammatory response that propagates from the epithelium to endothelium. While this model focuses on the air-blood barrier, the underside seeding method is generalizable to various coculture tissue models for scalable, physiologic screening.
Collapse
Affiliation(s)
- Hannah Viola
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology 311 Ferst Dr. NW Atlanta GA 30308 USA
- Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 315 Ferst Dr. NW Atlanta GA 30332 USA
| | - Kendra Washington
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology 315 Ferst Dr. NW Atlanta GA 30308 USA
| | - Cauviya Selva
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology 315 Ferst Dr. NW Atlanta GA 30308 USA
| | - Jocelyn Grunwell
- Division of Critical Care Medicine Children's Healthcare of Atlanta at Egleston 1405 Clifton Road NE Atlanta GA 30322 USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics Emory University School of Medicine and Center for CF & Airways Disease Research 2015 Uppergate Dr NE, Rm 344 Atlanta GA 30322 USA
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology 315 Ferst Dr. NW Atlanta GA 30308 USA
- Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 315 Ferst Dr. NW Atlanta GA 30332 USA
| |
Collapse
|
19
|
Logette E, Lorin C, Favreau C, Oshurko E, Coggan JS, Casalegno F, Sy MF, Monney C, Bertschy M, Delattre E, Fonta PA, Krepl J, Schmidt S, Keller D, Kerrien S, Scantamburlo E, Kaufmann AK, Markram H. A Machine-Generated View of the Role of Blood Glucose Levels in the Severity of COVID-19. Front Public Health 2021; 9:695139. [PMID: 34395368 PMCID: PMC8356061 DOI: 10.3389/fpubh.2021.695139] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 started spreading toward the end of 2019 causing COVID-19, a disease that reached pandemic proportions among the human population within months. The reasons for the spectrum of differences in the severity of the disease across the population, and in particular why the disease affects more severely the aging population and those with specific preconditions are unclear. We developed machine learning models to mine 240,000 scientific articles openly accessible in the CORD-19 database, and constructed knowledge graphs to synthesize the extracted information and navigate the collective knowledge in an attempt to search for a potential common underlying reason for disease severity. The machine-driven framework we developed repeatedly pointed to elevated blood glucose as a key facilitator in the progression of COVID-19. Indeed, when we systematically retraced the steps of the SARS-CoV-2 infection, we found evidence linking elevated glucose to each major step of the life-cycle of the virus, progression of the disease, and presentation of symptoms. Specifically, elevations of glucose provide ideal conditions for the virus to evade and weaken the first level of the immune defense system in the lungs, gain access to deep alveolar cells, bind to the ACE2 receptor and enter the pulmonary cells, accelerate replication of the virus within cells increasing cell death and inducing an pulmonary inflammatory response, which overwhelms an already weakened innate immune system to trigger an avalanche of systemic infections, inflammation and cell damage, a cytokine storm and thrombotic events. We tested the feasibility of the hypothesis by manually reviewing the literature referenced by the machine-generated synthesis, reconstructing atomistically the virus at the surface of the pulmonary airways, and performing quantitative computational modeling of the effects of glucose levels on the infection process. We conclude that elevation in glucose levels can facilitate the progression of the disease through multiple mechanisms and can explain much of the differences in disease severity seen across the population. The study provides diagnostic considerations, new areas of research and potential treatments, and cautions on treatment strategies and critical care conditions that induce elevations in blood glucose levels.
Collapse
Affiliation(s)
- Emmanuelle Logette
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Henry Markram
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
20
|
Longmore DK, Miller JE, Bekkering S, Saner C, Mifsud E, Zhu Y, Saffery R, Nichol A, Colditz G, Short KR, Burgner DP. Diabetes and Overweight/Obesity Are Independent, Nonadditive Risk Factors for In-Hospital Severity of COVID-19: An International, Multicenter Retrospective Meta-analysis. Diabetes Care 2021; 44:1281-1290. [PMID: 33858854 PMCID: PMC8247499 DOI: 10.2337/dc20-2676] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/14/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Obesity is an established risk factor for severe coronavirus disease 2019 (COVID-19), but the contribution of overweight and/or diabetes remains unclear. In a multicenter, international study, we investigated if overweight, obesity, and diabetes were independently associated with COVID-19 severity and whether the BMI-associated risk was increased among those with diabetes. RESEARCH DESIGN AND METHODS We retrospectively extracted data from health care records and regional databases of hospitalized adult patients with COVID-19 from 18 sites in 11 countries. We used standardized definitions and analyses to generate site-specific estimates, modeling the odds of each outcome (supplemental oxygen/noninvasive ventilatory support, invasive mechanical ventilatory support, and in-hospital mortality) by BMI category (reference, overweight, obese), adjusting for age, sex, and prespecified comorbidities. Subgroup analysis was performed on patients with preexisting diabetes. Site-specific estimates were combined in a meta-analysis. RESULTS Among 7,244 patients (65.6% overweight/obese), those with overweight were more likely to require oxygen/noninvasive ventilatory support (random effects adjusted odds ratio [aOR], 1.44; 95% CI 1.15-1.80) and invasive mechanical ventilatory support (aOR, 1.22; 95% CI 1.03-1.46). There was no association between overweight and in-hospital mortality (aOR, 0.88; 95% CI 0.74-1.04). Similar effects were observed in patients with obesity or diabetes. In the subgroup analysis, the aOR for any outcome was not additionally increased in those with diabetes and overweight or obesity. CONCLUSIONS In adults hospitalized with COVID-19, overweight, obesity, and diabetes were associated with increased odds of requiring respiratory support but were not associated with death. In patients with diabetes, the odds of severe COVID-19 were not increased above the BMI-associated risk.
Collapse
Affiliation(s)
- Danielle K Longmore
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia .,Menzies School of Health Research, Charles Darwin University, Darwin, Australia.,Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Jessica E Miller
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, Melbourne University, Parkville, Victoria, Australia
| | - Siroon Bekkering
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christoph Saner
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.,Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Hospital Inselspital, University of Bern, Bern, Switzerland
| | - Edin Mifsud
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.,World Health Organization Collaborating Centre for Reference and Research on Influenza, Doherty Institute, Melbourne, Australia
| | - Yanshan Zhu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, Melbourne University, Parkville, Victoria, Australia
| | - Alistair Nichol
- Department of Intensive Care, Alfred Health, Melbourne, Australia.,Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia.,University College Dublin Clinical Research Centre, St Vincent's Hospital, Dublin, Ireland
| | | | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|
21
|
Hulme KD, Karawita AC, Pegg C, Bunte MJ, Bielefeldt-Ohmann H, Bloxham CJ, Van den Hoecke S, Setoh YX, Vrancken B, Spronken M, Steele LE, Verzele NA, Upton KR, Khromykh AA, Chew KY, Sukkar M, Phipps S, Short KR. A paucigranulocytic asthma host environment promotes the emergence of virulent influenza viral variants. eLife 2021; 10:61803. [PMID: 33588989 PMCID: PMC7886327 DOI: 10.7554/elife.61803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/23/2021] [Indexed: 12/12/2022] Open
Abstract
Influenza virus has a high mutation rate, such that within one host different viral variants can emerge. Evidence suggests that influenza virus variants are more prevalent in pregnant and/or obese individuals due to their impaired interferon response. We have recently shown that the non-allergic, paucigranulocytic subtype of asthma is associated with impaired type I interferon production. Here, we seek to address if this is associated with an increased emergence of influenza virus variants. Compared to controls, mice with paucigranulocytic asthma had increased disease severity and an increased emergence of influenza virus variants. Specifically, PB1 mutations exclusively detected in asthmatic mice were associated with increased polymerase activity. Furthermore, asthmatic host-derived virus led to increased disease severity in wild-type mice. Taken together, these data suggest that at least a subset of patients with asthma may be more susceptible to severe influenza and may be a possible source of new influenza virus variants.
Collapse
Affiliation(s)
- Katina D Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Anjana C Karawita
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Cassandra Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Myrna Jm Bunte
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia.,School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Conor J Bloxham
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Silvie Van den Hoecke
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yin Xiang Setoh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia.,Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Bram Vrancken
- KU Leuven, Department of Microbiology and Immunology, Rega Institute, Laboratory of Evolutionary and Computational Virology, Leuven, Belgium
| | | | - Lauren E Steele
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Nathalie Aj Verzele
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Kyle R Upton
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Maria Sukkar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia; Woolcock Institute of Medical Research, Sydney Medical School, University of Sydney, NSW, Australia
| | - Simon Phipps
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
22
|
Chávez-Reyes J, Escárcega-González CE, Chavira-Suárez E, León-Buitimea A, Vázquez-León P, Morones-Ramírez JR, Villalón CM, Quintanar-Stephano A, Marichal-Cancino BA. Susceptibility for Some Infectious Diseases in Patients With Diabetes: The Key Role of Glycemia. Front Public Health 2021; 9:559595. [PMID: 33665182 PMCID: PMC7921169 DOI: 10.3389/fpubh.2021.559595] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
Uncontrolled diabetes results in several metabolic alterations including hyperglycemia. Indeed, several preclinical and clinical studies have suggested that this condition may induce susceptibility and the development of more aggressive infectious diseases, especially those caused by some bacteria (including Chlamydophila pneumoniae, Haemophilus influenzae, and Streptococcus pneumoniae, among others) and viruses [such as coronavirus 2 (CoV2), Influenza A virus, Hepatitis B, etc.]. Although the precise mechanisms that link glycemia to the exacerbated infections remain elusive, hyperglycemia is known to induce a wide array of changes in the immune system activity, including alterations in: (i) the microenvironment of immune cells (e.g., pH, blood viscosity and other biochemical parameters); (ii) the supply of energy to infectious bacteria; (iii) the inflammatory response; and (iv) oxidative stress as a result of bacterial proliferative metabolism. Consistent with this evidence, some bacterial infections are typical (and/or have a worse prognosis) in patients with hypercaloric diets and a stressful lifestyle (conditions that promote hyperglycemic episodes). On this basis, the present review is particularly focused on: (i) the role of diabetes in the development of some bacterial and viral infections by analyzing preclinical and clinical findings; (ii) discussing the possible mechanisms by which hyperglycemia may increase the susceptibility for developing infections; and (iii) further understanding the impact of hyperglycemia on the immune system.
Collapse
Affiliation(s)
- Jesús Chávez-Reyes
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Carlos E Escárcega-González
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | - Erika Chavira-Suárez
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | - Priscila Vázquez-León
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - José R Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | - Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Mexico City, Mexico
| | - Andrés Quintanar-Stephano
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
23
|
Hulme KD, Yan L, Marshall RJ, Bloxham CJ, Upton KR, Hasnain SZ, Bielefeldt-Ohmann H, Loh Z, Ronacher K, Chew KY, Gallo LA, Short KR. High glucose levels increase influenza-associated damage to the pulmonary epithelial-endothelial barrier. eLife 2020; 9:56907. [PMID: 32697191 PMCID: PMC7392605 DOI: 10.7554/elife.56907] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is a known susceptibility factor for severe influenza virus infections. However, the mechanisms that underlie this susceptibility remain incompletely understood. Here, the effects of high glucose levels on influenza severity were investigated using an in vitro model of the pulmonary epithelial-endothelial barrier as well as an in vivo murine model of type II diabetes. In vitro we show that high glucose conditions prior to IAV infection increased virus-induced barrier damage. This was associated with an increased pro-inflammatory response in endothelial cells and the subsequent damage of the epithelial junctional complex. These results were subsequently validated in vivo. This study provides the first evidence that hyperglycaemia may increase influenza severity by damaging the pulmonary epithelial-endothelial barrier and increasing pulmonary oedema. These data suggest that maintaining long-term glucose control in individuals with diabetes is paramount in reducing the morbidity and mortality associated with influenza virus infections.
Collapse
Affiliation(s)
- Katina D Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Limin Yan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Rebecca J Marshall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Conor J Bloxham
- School of Biomedical Sciences, The University of Queensland, Woolloongabba, Australia
| | - Kyle R Upton
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Sumaira Z Hasnain
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Australia
| | - Zhixuan Loh
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Katharina Ronacher
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Linda A Gallo
- School of Biomedical Sciences, The University of Queensland, Woolloongabba, Australia.,Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Australia
| |
Collapse
|