1
|
Delghandi PS, Soleimani V, Fazly Bazzaz BS, Hosseinzadeh H. A review on oxidant and antioxidant effects of antibacterial agents: impacts on bacterial cell death and division and therapeutic effects or adverse reactions in humans. Naunyn Schmiedebergs Arch Pharmacol 2023; 396:2667-2686. [PMID: 37083711 DOI: 10.1007/s00210-023-02490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
Reactive oxygen species (ROS) are produced in the mitochondrial respiratory pathway and cellular metabolism. They are responsible for creating oxidative stress and lipid peroxidation. In living organisms, there is a balance between oxidative stress and the antioxidant system, but some factors such as medicines disturb the balance and cause many problems. These effects can impact bacterial death and division and also in humans can induce therapeutic or adverse reactions. Web of Science and Pubmed databases were used for searching. This review focuses on the oxidant and antioxidant effects of different classes of antibacterial agents and the mechanisms of oxidative stress. Some of these agents have beneficial effects on killing bacteria due to their antioxidant or oxidant effects. However, some of their side effects may be due to their oxidative effects. Based on the results of this review, minocycline is an antioxidant, but aminoglycosides, chloramphenicol, glycopeptides, antituberculosis drugs, fluoroquinolones, and sulfamethoxazole agents have oxidant effects. Furthermore, cephalosporins, penicillins, metronidazole, and macrolides have both oxidant and antioxidant effects in different studies. It is concluded that some antibacterial agents have oxidant and other antioxidant effects. These activities may affect their therapeutic effects or side effects. Some antioxidants can prevent the adverse effects of antibacterial agents. Clarifying the exact oxidant and antioxidant effects of some antimicrobial agents needs more research projects.
Collapse
Affiliation(s)
| | - Vahid Soleimani
- School of Pharmacy, Mashhad University of Medical Science, Mashhad, IR, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, IR, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, IR, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, IR, Iran.
| |
Collapse
|
2
|
Piranaghl H, Golmohammadzadeh S, Soheili V, Noghabi ZS, Memar B, Jalali SM, Taherzadeh Z, Fazly Bazzaz BS. The potential therapeutic impact of a topical bacteriophage preparation in treating Pseudomonas aeruginosa-infected burn wounds in mice. Heliyon 2023; 9:e18246. [PMID: 37539104 PMCID: PMC10393627 DOI: 10.1016/j.heliyon.2023.e18246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Aim This study compared a topical formulation containing lytic phages with a routine antibiotic in the murine model of burn/Pseudomonas aeruginosa infected wound healing. Methods & Materials Isolated and purified lytic bacteriophages from hospital sewage were added to the polyethylene glycol (PEG) based ointment. A second-degree burned wound on the back of twenty-four adult female mice was created. The wounds were infected subcutaneously with 100 μL of 1 × 102-3 CFU/mL P. aeruginosa. After 24 h, mice were randomly assigned to one of four groups: mice received a standard antibiotic (antibiotic-treated group), mice received an ointment without bacteriophage (PEG-based group), mice received a PEG-ointment with bacteriophage (bacteriophage-treated group), or mice received no treatment (untreated-control group). Every two days, the contraction of burned wounds, physical activity, and rectal body temperature were recorded. On day 10, mice were sacrificed, and the wounds were cut off and evaluated histopathologically. Results In ointments containing PEG, bacteriophages were active and stable. The mice receiving bacteriophage and PEG-based ointment had substantially different wound contraction in primary wound healing (P = 0.001). When compared to the control group, the bacteriophage-treated group showed significant variations in wound contraction (P = 0.001). The wound contraction changed significantly between the antibiotic and PEG-based groups (P = 0.002). In all groups, physical activity in mice improved over time, with significant differences (P = 0.001). When the 8th day was compared to the days 2, 4, and 6, significant changes were found (P = 0.001, P = 0.02, and P = 0.02, respectively). Both the positive control and bacteriophage-treated groups showed perfect wound healing histopathologically. However, no significant variations in microscopic histopathological criteria were found between the groups. Conclusion Formulated phage ointment could be a promising approach for treating infected burn wounds infected by P. aeruginosa in mice with no allergic reactions.
Collapse
Affiliation(s)
- Hanieh Piranaghl
- Pharmaceutical Control Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Golmohammadzadeh
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Pharmaceutical Control Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Sabeti Noghabi
- Pharmaceutical Control Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biopathology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Bahram Memar
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyede Melika Jalali
- Pharmaceutical Control Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zhila Taherzadeh
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Pharmaceutical Control Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Tajani AS, Amiri Tehranizadeh Z, Pourmohammad A, Pourmohammad A, Iranshahi M, Farhadi F, Soheili V, Fazly Bazzaz BS. Anti-quorum sensing and antibiofilm activity of coumarin derivatives against Pseudomonas aeruginosa PAO1: Insights from in vitro and in silico studies. Iran J Basic Med Sci 2023; 26:445-452. [PMID: 37009015 PMCID: PMC10008386 DOI: 10.22038/ijbms.2023.69016.15047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/05/2023] [Indexed: 04/04/2023]
Abstract
Objectives Biofilm-associated infections are challenging to manage or treat since the biofilm matrix is impenetrable to most antibiotics. Therefore, the best approach to deal with biofilm infections is to interrupt the construction during the initial levels. Biofilm formation has been regulated through the quorum sensing (QS) network, making it an attractive target for any antibacterial therapy. Materials and Methods Here, some coumarin members, including umbelliprenin, 4-farnesyloxycoumarin, gummosin, samarcandin, farnesifrol A, B, C, and auraptan, have been assessed as QS inhibitors in silico and in vitro. Their potential inhibitory effects on biofilm formation and virulence factor production of Pseudomonas aeruginosa PAO1 were evaluated. Results First, the interaction of these compounds was investigated against one of the major transcriptional regulator proteins, PqsR, using molecular docking and structural analysis methodology. After that, in vitro evaluations indicated that 4-farnesyloxycoumarin and farnesifrol B showed considerable reduction in biofilm formation (62% and 56%, respectively), virulence factor production, and synergistic effects with tobramycin. Moreover, 4-farnesyloxycoumarin significantly (99.5%) reduced PqsR gene expression. Conclusion The biofilm formation test, virulence factors production assays, gene expression analysis, and molecular dynamic simulations data demonstrated that coumarin derivatives are a potential anti-QS family through PqsR inhibition.
Collapse
Affiliation(s)
- Amineh Sadat Tajani
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeinab Amiri Tehranizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arianoosh Pourmohammad
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Armin Pourmohammad
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Iranshahi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faegheh Farhadi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Corresponding authors: Vahid Soheili. Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-31801132; Fax: +98-51-38823251; ; Bibi Sedigheh Fazly Bazzaz. Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98- 51-31801130; Fax: +98-51-38823251;
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Corresponding authors: Vahid Soheili. Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-31801132; Fax: +98-51-38823251; ; Bibi Sedigheh Fazly Bazzaz. Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98- 51-31801130; Fax: +98-51-38823251;
| |
Collapse
|
4
|
Karizi SR, Armanmehr F, Azadi HG, Zahroodi HS, Ghalibaf AM, Bazzaz BSF, Abbaspour M, Boskabadi J, Eslami S, Taherzadeh Z. A randomized, double-blind placebo-controlled add-on trial to assess the efficacy, safety, and anti-atherogenic effect of spirulina platensis in patients with inadequately controlled type 2 diabetes mellitus. Phytother Res 2023; 37:1435-1448. [PMID: 36598187 DOI: 10.1002/ptr.7674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 01/05/2023]
Abstract
The efficacy of spirulina platensis (S. platensis) as an add-on therapy to metformin and its effect on atherogenic keys in patients with uncontrolled Type 2 Diabetes Mellitus (T2DM) was evaluated. Sixty patients were randomly assigned to S. platensis (2 g/day) or placebo group for three months while continuing metformin as their usual treatment. The efficacy of S. platensis was determined using the pre- and post-intervention HbA1c levels (primary outcome) as well as tracking FBS and lipid profiles levels (TC, LDL-C, TG, and HDL-C) as secondary outcomes at the different treatment time points (0,30,60,90 days). During the three-month intervention period, supplementation with S. platensis resulted in a significant lowering of HbA1c (↓1.43, p < 0.001) and FBS (↓ 24.94 mg/dL, p < 001) levels. Mean TG in the intervention group was found to be significantly lower in the intervention group than in controls (p < 0.001). Total cholesterol (TC) and its fraction, LDL-C, exhibited a fall (↓41.36 mg/dL and ↓38.4 mg/dL, respectively; p < 0.001) coupled with a marginal increase in the level of HDL-C (↑3 mg/dL; p < 0.001). Add-on therapy with S. platensis was superior to metformin regarding long-term glucose regulation and controlling blood glucose levels of subjects with T2DM. Also, as a functional supplement, S. platensis has a beneficial effect on atherogenic keys (TG and HDL-C) with no adverse events.
Collapse
Affiliation(s)
- Sahar Rajabzadeh Karizi
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Armanmehr
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Ghodrati Azadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hojjat Shadman Zahroodi
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - AmirAli Moodi Ghalibaf
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Abbaspour
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Boskabadi
- Department of Clinical Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Eslami
- Department of Medical Informatics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zhila Taherzadeh
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Movaffagh J, Nourollahian T, Khalatbari S, Amiri N, Bazzaz BSF, Kalalinia F. Fabrication of Zein-Chitosan-Zein Sandwich-Like Nanofibers Containing Teicoplanin as a Local Antibacterial Drug Delivery System. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Jahani M, Fazly Bazzaz BS, Akaberi M, Rajabi O, Hadizadeh F. Recent Progresses in Analytical Perspectives of Degradation Studies and Impurity Profiling in Pharmaceutical Developments: An Updated Review. Crit Rev Anal Chem 2022; 53:1094-1115. [PMID: 35108132 DOI: 10.1080/10408347.2021.2008226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Forced degradation studies have been used to simplify analytical methodology development and achieve a deeper knowledge about the inherent stability of active pharmaceutical ingredients (API) and drug products. This provides insight into degradation species and pathways. Identification of impurities in pharmaceutical products is closely related to the selection of the most appropriate analytical methods like HPLC-UV, LC-MS/MS, LC-NMR, GC-MS, and capillary electrophoresis. Herein, recent trends in analytical perspectives during 2018-April 14, 2021, are discussed based on forced and impurity degradation profiling of pharmaceuticals. Literature review showed that several methods have been used for experimental design and analysis conditions such as matrix type, column type, mobile phase, elution modes, detection wavelengths, and therapeutic category. Thus, since these factors influence the separation and identification of the impurities and degradation products, we attempted to perform a statistical analysis for the developed methods according to the abovementioned factors.
Collapse
Affiliation(s)
- Maryam Jahani
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Akaberi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Rajabi
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Tajani AS, Soheili V, Moosavi F, Ghodsi R, Alizadeh T, Fazly Bazzaz BS. Ultra selective and high-capacity dummy template molecular imprinted polymer to control quorum sensing and biofilm formation of Pseudomonas aeruginosa. Anal Chim Acta 2022; 1199:339574. [DOI: 10.1016/j.aca.2022.339574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/23/2022]
|
8
|
Abbaspour M, Hoseini H, Sobhani Z, Emami SA, Bazzaz BSF, Javadi B. Development and Evaluation of Vaginal Suppository Containing Althaea officinalis L. Polysaccharide Extract. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
9
|
Gerayelou G, Khameneh B, Malaekeh-Nikouei B, Mahmoudi A, Fazly Bazzaz BS. Dual Antibiotic and Diffusible Signal Factor Combination Nanoliposomes for Combating Staphylococcus epidermidis Biofilm. Adv Pharm Bull 2021; 11:684-692. [PMID: 34888215 PMCID: PMC8642808 DOI: 10.34172/apb.2021.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/18/2020] [Accepted: 10/14/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose: Microbial biofilms are one of the main causes of persistent human infections. Encapsulation of an antibiotic and a biofilm dispersal agent within a nano-carrier has been recognized as a novel approach to combat the problem of biofilm-related infections. Here, we develop the nanoliposomal formulation for delivery of vancomycin in combination with cis-2- decenoic acid (C2DA), to Staphylococcus epidermidis biofilm. The effects of the formulations were studied at two stages: biofilm growth inhabitation and biofilm eradication. Methods: Liposomal formulations were prepared by the solvent evaporation dehydration-rehydration method and were evaluated for size, zeta potential, and encapsulation efficacy. The ability of different agents in free and encapsulated forms were assessed to evaluate the anti-biofilm activities. Results: Vancomycin and C2DA were successfully co-encapsulated in the same nanoliposome (liposomal combination). The zeta potential values of the liposomal formulations of vancomycin, C2DA, and the liposomal combination were 37.2, 40.2, 51.5 mV, and the mean sizes of these liposomal formulations were 167.8±1.5, 215.5±8.8, 235.5±0.01, respectively. Encapsulation efficacy of C2DA was 65% and about 40% for vancomycin. The results indicated that liposomal combination exerted strong anti-biofilm activities, slightly exceeding those observed by the free form of a combination of vancomycin and C2DA, but higher than either agent used alone in their free forms. The anti-biofilm activity of formulations followed concentration and time-dependent manner. Conclusion: The combination of vancomycin and C2DA could inhibit biofilm formation. Employing the liposomal combination is a considerable method to remove bacterial biofilm.
Collapse
Affiliation(s)
- Golara Gerayelou
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Mahmoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Vadaye Kheiry E, Fazly Bazzaz BS, Kerachian MA. Implantation of stem cells on synthetic or biological scaffolds: an overview of bone regeneration. Biotechnol Genet Eng Rev 2021; 37:238-268. [PMID: 34789069 DOI: 10.1080/02648725.2021.2003590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Humans are exposed to a wide range of bone tissue injuries. In severe cases, bone damages could be only treated with transplantation of autologous or allogeneic grafting.In recent years, tissue engineering has become a promising strategy for repairing damaged organs and tissues, providing a great opportunity to cure several diseases. Bone tissue engineering consists of three components: scaffold, cells, and growth factors. Current bone tissue engineering strategies combine the use of stem cells with biologically active materials and gene therapy to mimic the natural microenvironment of bone. The combination of the scaffold with growth factors and extracellular matrix protein molecules can promote cell attachment, proliferation, and induce osteogenesis, which could provide signals for cell migration to begin the healing process during repair and bone formation.This article reviews the principles of bone regeneration and the most current developments of bone tissue engineering related to bone growth factors, the biologically active materials, such as bacterial cellulose, and stem cells.
Collapse
Affiliation(s)
- Elahe Vadaye Kheiry
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Tajani AS, Jangi E, Davodi M, Golmakaniyoon S, Ghodsi R, Soheili V, Fazly Bazzaz BS. Anti-quorum sensing potential of ketoprofen and its derivatives against Pseudomonas aeruginosa: insights to in silico and in vitro studies. Arch Microbiol 2021; 203:5123-5132. [PMID: 34319419 DOI: 10.1007/s00203-021-02499-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/04/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022]
Abstract
Antibiotics are usually used for the treatment of bacterial infections, but multidrug-resistant strains are a phenomenon that has been growing at an increasing rate worldwide. Thus, there is an increasing need for novel strategies for combatting infectious diseases. Many pathogenic bacteria apply quorum sensing (QS) to regulate their pathogenicity and virulence factors production. This circuit makes the QS system an attractive target for antibacterial therapy. In the present study, an important member of non-steroidal anti-inflammatory drugs (NSAIDs), by reducing the biofilm and producing QS-regulated virulence factors, ketoprofen and its synthetic derivatives were screened against the Pseudomonas aeruginosa PAO1. All compounds showed anti-biofilm activity (16-79%) and most of them presented anti-virulence activity. In the co-treatment of ketoprofen, G20, G21, or G77 with tobramycin, biofilm is significantly reduced (potentiated to > 50%) in the number of cells protected inside the impermeable matrix. The in silico studies in addition to the similarities between the chemical structures of PqsR natural ligands and ketoprofen derivatives reinforce the possibility that the mechanism of action is through PqsR inhibition. Based on the results, the anti-pathogenic effect was more appreciable in ketoprofen, G77, and G20.
Collapse
Affiliation(s)
- Amineh Sadat Tajani
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Jangi
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Davodi
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Golmakaniyoon
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Salarbashi D, Tafaghodi M, Bazzaz BSF, Mohammad Aboutorabzade S, Fathi M. pH-sensitive soluble soybean polysaccharide/SiO 2 incorporated with curcumin for intelligent packaging applications. Food Sci Nutr 2021; 9:2169-2179. [PMID: 33841833 PMCID: PMC8020962 DOI: 10.1002/fsn3.2187] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
In the present work, the effect of various concentrations of SiO2 nanoparticles (5, 10, and 15%) on physicochemical and antimicrobial properties of soluble soybean polysaccharide (SSPS)‐based film was investigated. Then, the migration of SiO2 nanoparticles to ethanol as a food simulant was evaluated. Subsequently, curcumin was added to the nanocomposite formulation to sense the pH changes. Finally, the cytotoxicity of the developed packaging system was investigated. With increasing nanoparticle concentration, the film thickness, water solubility, and water vapor permeability decreased and mechanical performance of the films improved. SSPS/SiO2 nanocomposite did not show antibacterial activity. SEM analysis showed that SiO2 nanoparticles are uniformly distributed in the SSPS matrix; however, some outstanding spots can be observed in the matrix. A very homogeneous surface was observed for neat SSPS film with Ra and Rq values of 3.48 and 4.26, respectively. With the incorporation of SiO2 (15%) into SSPS film, Ra and Rq values increased to 5.67 and 5.98, respectively. Small amount of SiO2 nanoparticles was released in food simulant. The nanocomposite incorporated with curcumin showed good physical properties and antibacterial activity. A strong positive correlation was observed between TVBN content of shrimp and a* values of the films during storage time (Pearson's correlation = 0.985).
Collapse
Affiliation(s)
- Davoud Salarbashi
- Nanomedicine Research Center School of Medicine Gonabad University of Medical Sciences Gonabad Iran.,Department of Food Science and Nutrition School of Medicine Gonabad University of Medical Sciences Gonabad Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran.,Pharmaceutics Department School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran.,Pharmaceutical Control Department School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | | | - Morteza Fathi
- Health Research Center Life Style Institute Baqiyatallah University of Medical Sciences Tehran Iran
| |
Collapse
|
13
|
Kalalinia F, Taherzadeh Z, Jirofti N, Amiri N, Foroghinia N, Beheshti M, Bazzaz BSF, Hashemi M, Shahroodi A, Pishavar E, Tabassi SAS, Movaffagh J. Evaluation of wound healing efficiency of vancomycin-loaded electrospun chitosan/poly ethylene oxide nanofibers in full thickness wound model of rat. Int J Biol Macromol 2021; 177:100-110. [PMID: 33539956 DOI: 10.1016/j.ijbiomac.2021.01.209] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 01/22/2023]
Abstract
Electrospun hybrid nanofibers have been extensively regarded as drug carriers. This study tries to introduce a nano fibrous wound dressing as a new strategy for a topical drug-delivery system. The vancomycin (VCM)-loaded hybrid chitosan/poly ethylene oxide (CH/PEO) nanofibers were fabricated by the blend-electrospinning process. Morphological, mechanical, chemical, and biological properties of nanofibers were examined by SEM, FTIR, release profile study, tensile assay, Alamar Blue cytotoxicity evaluation, and antibacterial activity assay. In vivo wound healing activity of hybrid CH/PEO/VCM nanofibers was evaluated in full-thickness skin wounds of rats. The hybrid CH/PEO/VCM nanofibers were successfully fabricated in a nanometer. The CH/PEO/VCM 2.5% had higher Young's Modulus, better tensile strength, smaller fiber diameter with sustained-release profiles compared to CH/PEO/VCM 5%. All nanofibers did not show any significant cytotoxicity (P < 0.05) on the normal fibroblast cells. Also, VCM-load hybrid CH/PEO nanofibers successfully inhibited bacterial growth. The wound area in the rats treated with CH/PEO/VCM 2.5% was less than CH/PEO/VCM 5% treated group. According to histological evaluation, the CH/PEO/VCM 2.5% group showed the fastest wound healing than other treatment groups. Results of this study proposed that CH/PEO/VCM nanofibers could promote the wound healing process by reducing the side effects of VCM as a topical antimicrobial agent.
Collapse
Affiliation(s)
- Fatemeh Kalalinia
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zhila Taherzadeh
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Jirofti
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Chemical and Biomedical Engineering Department, University of Sistan and Baluchestan, Zahedan, Iran
| | - Nafise Amiri
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Foroghinia
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Beheshti
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Control Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Shahroodi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Pishavar
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abolghasem Sajadi Tabassi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jebrail Movaffagh
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Abstract
Abstract
Background
Urinary tract infection (UTI) is a common occurrence in females, during pregnancy, and in peri- and postmenopausal women.
UTIs are associated with significant morbidity and mortality, and they affect the quality of life of the affected patients. Antibiotic therapy is an effective approach and reduces the duration of symptoms. Development of resistance, adverse effects of antibiotics, and other associated problems lead to establishing the research framework to find out the alternative approaches in controlling UTIs. Natural approaches have been extensively used for the management of various diseases to improve symptoms and also improve general health.
Main body
Different databases were employed to identify studies reporting on natural options including herbal medicines, vitamins, trace elementals, sugars, and probiotics without time limitations.
Conclusion
Herbal medicines can be effective at the first sign of the infection and also for short-term prophylaxis. Using vitamins, trace elementals, and/or sugars is an effective approach in preventing UTIs, and a combination of them with other antibacterial agents shows positive results. Probiotics have great potential for the threat of antibiotic over-usage and the prevalence of antibiotic-resistant microorganisms. This study may be of use in developing the efficient formulation of treatment of UTI.
Collapse
|
15
|
Rajaei A, Salarbashi D, Asrari N, Fazly Bazzaz BS, Aboutorabzade SM, Shaddel R. Antioxidant, antimicrobial, and cytotoxic activities of extracts from the seed and pulp of Jujube ( Ziziphus jujuba) grown in Iran. Food Sci Nutr 2020; 9:682-691. [PMID: 33598153 PMCID: PMC7866595 DOI: 10.1002/fsn3.2031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to investigate the biological activities of the ultrasound‐assisted extracts obtained from pulp and seed of jujube (Ziziphus jujuba) fruits. To reach this purpose, total phenolic content (TPC), total flavonoid content (TFC), total pro‐anthocyanin, DPPH radical scavenging activity, rancimat test, as well as antimicrobial activity and cytotoxicity test of both jujube pulp and seed extracts were evaluated. Total phenolic content (TPC), total flavonoid content (TFC), and total pro‐anthocyanin in pulp extract were higher than those obtained from seed extract. In addition, DPPH radical scavenging activity of pulp extract (IC50 = 53.97 µg/ml) was higher than that of seed extract (IC50 = 88.68 µg/ml). Furthermore, the highest antimicrobial activity was observed against Escherichia coli and Staphylococcus aureus (MIC = 20 mg/ml) for both seed and pulp extracts. In vitro cytotoxicity evaluation on seven cell lines revealed that pulp and seed extracts of jujube had no cytotoxic activity. The present results suggested the promising antioxidant properties of jujube, which can be used in the fabrication of functional bioactive ingredients for different purposes.
Collapse
Affiliation(s)
- Ahmad Rajaei
- Department of Food Science and Technology Faculty of Agriculture Shahrood University of Technology Shahrood Iran
| | - Davoud Salarbashi
- Department of Food Science and Nutrition School of Medicine Gonabad University of Medical Sciences Gonabad Iran
| | - Najmeh Asrari
- School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran.,Pharmaceutical Control Department School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | | | - Rezvan Shaddel
- Department of Food Science and Technology Faculty of Agriculture and Natural Resources University of Mohaghegh Ardabili Ardabil Iran
| |
Collapse
|
16
|
Malaekeh-Nikouei B, Fazly Bazzaz BS, Mirhadi E, Tajani AS, Khameneh B. The role of nanotechnology in combating biofilm-based antibiotic resistance. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Amiri N, Ajami S, Shahroodi A, Jannatabadi N, Amiri Darban S, Fazly Bazzaz BS, Pishavar E, Kalalinia F, Movaffagh J. Teicoplanin-loaded chitosan-PEO nanofibers for local antibiotic delivery and wound healing. Int J Biol Macromol 2020; 162:645-656. [DOI: 10.1016/j.ijbiomac.2020.06.195] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/01/2023]
|
18
|
Kalalinia F, Amiri N, Mehrvarzian N, Fazly Bazzaz BS, Iranshahi M, Shahroodi A, Arabzadeh S, Abbaspour M, Badiee Aaval S, Movaffagh J. Topical green tea formulation with anti-hemorrhagic and antibacterial effects. Iran J Basic Med Sci 2020; 23:1085-1090. [PMID: 32952956 PMCID: PMC7478251 DOI: 10.22038/ijbms.2020.41397.9782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objective(s): Potentially preventable death from uncontrolled hemorrhage clearly indicates the importance of simple, fast and efficient ways to achieving hemostasis. The aim of this study was to develop a topical formulation of green tea extract for reducing bleeding that can be helpful in hemorrhage control. Materials and Methods: Hydroalcoholic extract of green tea was isolated from Camellia sinensis and formulated in polyvinyl alcohol (PVA) to achieve two concentrations of 2% and 4% v/v. Folin-Ciocalteau assay was used to determine the total amount of tannins in extract. Rheological behavior of solutions was investigated by measuring viscosity at shear rates of 0–200 sec−1. Quantitative and qualitative microbial limit tests and minimum inhibitory concentration (MIC) assay were done. The effect of formulations on bleeding time was evaluated in an animal model. Results: The total amount of tannin in green tea extract was 3.8% w/w and addition of green tea significantly increased the viscosity of PVA. The results of MIC assay showed that PVA could not inhibit the growth of bacteria, while, 716 µg/ml of green tea and 2860 µg/ml of green tea/PVA 4% inhibited the growth of Staphylococcus aureus and Pseudomonas aeruginosa. In an animal study both 2% and 4% formulations were able to stop hemorrhage approximately at an equal time compared with tranexamic acid (TXA) 50 mg/ml as a control and the lowest bleeding time was 6.4±0.51 sec for green tea/PVA 4%. Conclusion: Based on our results, the topical formulation of green tea extract in PVA has a great potential for anti-hemorrhage applications.
Collapse
Affiliation(s)
- Fatemeh Kalalinia
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafise Amiri
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Mehrvarzian
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Shahroodi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Arabzadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Abbaspour
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shapour Badiee Aaval
- Complementary Medicine Research Center, Faculty of Traditional Medicine, Mashhad University of Medical Sciences, Mashhad, lran
| | - Jebrail Movaffagh
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Akhtari H, Fazly Bazzaz BS, Golmohammadzadeh S, Movaffagh J, Soheili V, Khameneh B. Rifampin and Cis-2-Decenoic Acid Co-entrapment in Solid Lipid Nanoparticles as an Efficient Nano-system with Potent Anti-biofilm Activities. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09446-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Shayani Rad M, Sabeti Z, Mohajeri SA, Fazly Bazzaz BS. Preparation, Characterization, and Evaluation of Zinc Oxide Nanoparticles Suspension as an Antimicrobial Media for Daily Use Soft Contact Lenses. Curr Eye Res 2020; 45:931-939. [DOI: 10.1080/02713683.2019.1705492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Maryam Shayani Rad
- Student Research Committee (SRC), Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Sabeti
- Biotechnology Research Center, Pharmaceutical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Mollazadeh S, Fazly Bazzaz BS, Neshati V, de Vries AAF, Naderi-Meshkin H, Mojarad M, Neshati Z, Kerachian MA. T- Box20 inhibits osteogenic differentiation in adipose-derived human mesenchymal stem cells: the role of T- Box20 on osteogenesis. ACTA ACUST UNITED AC 2019; 26:8. [PMID: 31548928 PMCID: PMC6751895 DOI: 10.1186/s40709-019-0099-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 08/29/2019] [Indexed: 12/12/2022]
Abstract
Background Skeletal development and its cellular function are regulated by various transcription factors. The T-box (Tbx) family of transcription factors have critical roles in cellular differentiation as well as heart and limbs organogenesis. These factors possess activator and/or repressor domains to modify the expression of target genes. Despite the obvious effects of Tbx20 on heart development, its impact on bone development is still unknown. Methods To investigate the consequence by forced Tbx20 expression in the osteogenic differentiation of human mesenchymal stem cells derived from adipose tissue (Ad-MSCs), these cells were transduced with a bicistronic lentiviral vector encoding Tbx20 and an enhanced green fluorescent protein. Results Tbx20 gene delivery system suppressed the osteogenic differentiation of Ad-MSCs, as indicated by reduction in alkaline phosphatase activity and Alizarin Red S staining. Consistently, reverse transcription-polymerase chain reaction analyses showed that Tbx20 gain-of-function reduced the expression levels of osteoblast marker genes in osteo-inductive Ad-MSCs cultures. Accordingly, Tbx20 negatively affected osteogenesis through modulating expression of key factors involved in this process. Conclusion The present study suggests that Tbx20 could inhibit osteogenic differentiation in adipose-derived human mesenchymal stem cells.
Collapse
Affiliation(s)
- Samaneh Mollazadeh
- 1Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.,2Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- 2Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,3Department of Food and Drug Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,4School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vajiheh Neshati
- 2Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Antoine A F de Vries
- 5Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hojjat Naderi-Meshkin
- 6Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Majid Mojarad
- 7Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,8Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeinab Neshati
- 9Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Amin Kerachian
- 7Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,8Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Amiri Tehranizadeh Z, Sankian M, Fazly Bazzaz BS, Chamani J, Mehri S, Baratian A, Saberi MR. The immunotoxin activity of exotoxin A is sensitive to domain modifications. Int J Biol Macromol 2019; 134:1120-1131. [DOI: 10.1016/j.ijbiomac.2019.05.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 11/29/2022]
|
23
|
Khameneh B, Iranshahy M, Soheili V, Fazly Bazzaz BS. Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob Resist Infect Control 2019; 8:118. [PMID: 31346459 PMCID: PMC6636059 DOI: 10.1186/s13756-019-0559-6] [Citation(s) in RCA: 267] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 06/10/2019] [Indexed: 11/16/2022] Open
Abstract
Microbial resistance to classical antibiotics and its rapid progression have raised serious concern in the treatment of infectious diseases. Recently, many studies have been directed towards finding promising solutions to overcome these problems. Phytochemicals have exerted potential antibacterial activities against sensitive and resistant pathogens via different mechanisms of action. In this review, we have summarized the main antibiotic resistance mechanisms of bacteria and also discussed how phytochemicals belonging to different chemical classes could reverse the antibiotic resistance. Next to containing direct antimicrobial activities, some of them have exerted in vitro synergistic effects when being combined with conventional antibiotics. Considering these facts, it could be stated that phytochemicals represent a valuable source of bioactive compounds with potent antimicrobial activities.
Collapse
Affiliation(s)
- Bahman Khameneh
- 1Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Iranshahy
- 2Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,3Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- 1Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- 3Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Mollazadeh S, Fazly Bazzaz BS, Neshati V, de Vries AAF, Naderi-Meshkin H, Mojarad M, Mirahmadi M, Neshati Z, Kerachian MA. Overexpression of MicroRNA-148b-3p stimulates osteogenesis of human bone marrow-derived mesenchymal stem cells: the role of MicroRNA-148b-3p in osteogenesis. BMC Med Genet 2019; 20:117. [PMID: 31262253 PMCID: PMC6604430 DOI: 10.1186/s12881-019-0854-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/24/2019] [Indexed: 12/23/2022]
Abstract
Background Mesenchymal stem cells (MSCs) are attractive choices in regenerative medicine and can be genetically modified to obtain better results in therapeutics. Bone development and metabolism are controlled by various factors including microRNAs (miRs) interference, which are small non-coding endogenous RNAs. Methods In the current study, the effects of forced miR-148b expression was evaluated on osteogenic activity. Human bone marrow-derived mesenchymal stem cells (BM-MSCs) were transduced with bicistronic lentiviral vector encoding hsa-miR-148b-3p or -5p and the enhanced green fluorescent protein. Fourteen days post-transduction, immunostaining as well as Western blotting were used to analyze osteogenesis. Results Overexpression of miR-148b-3p increased the osteogenic differentiation of human BM-MSCs as demonstrated by anenhancement of mineralized nodular formation and an increase in the levels of osteoblastic differentiation biomarkers, alkaline phosphatase and collagen type I. Conclusions Since lentivirally overexpressed miR-148b-3p increased osteogenic differentiation capability of BM-MSCs, this miR could be applied as a therapeutic modulator to optimize bone function. Electronic supplementary material The online version of this article (10.1186/s12881-019-0854-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Food and Drug Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vajiheh Neshati
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Antoine A F de Vries
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hojjat Naderi-Meshkin
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Majid Mojarad
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Zeinab Neshati
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Shiehzadeh F, Tafaghodi M, Dehghani ML, Mashhoori F, Fazly Bazzaz BS, Imenshahidi M. Preparation and Characterization of a Dry Powder Inhaler Composed of PLGA Large Porous Particles Encapsulating Gentamicin Sulfate. Adv Pharm Bull 2019; 9:255-261. [PMID: 31380251 PMCID: PMC6664120 DOI: 10.15171/apb.2019.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/27/2019] [Accepted: 05/04/2019] [Indexed: 01/13/2023] Open
Abstract
Purpose: Direct delivery of aminoglycosides to the lungs was under extensive evaluations during the last decades. Because of large particle size, low density and porous structure, large porous particles (LPPs) are versatile carriers for this purpose. In this study, poly (lactic-co-glycolic acid) (PLGA) LPPs encapsulating gentamicin sulfate were prepared and in vitro characteristics of their freeze-dried powder as a dry powder inhaler (DPI) were evaluated.
Methods: To prepare PLGA LPPs, a double emulsification-solvent evaporation method was optimized and gentamicin sulfate was post-loaded in the LPPs. in vitro characteristics including morphological features, thermal behavior, aerodynamic profile and cumulative drug release were evaluated by the scanning electron microscope (SEM), differential scanning calorimetry (DSC), next-generation cascade impactor (NGI) and Franz diffusion cell respectively.
Results: The obtained results revealed that the preparation method was capable to produce spherical large homogenous highly porous particles. 94% of gentamicin sulfate released from LPPs up to 30 minutes. Mass median aerodynamic diameter (MMAD) and fine particle fraction (FPF) were 4.9 µm and 39% respectively.
Conclusion: In this study, dry powder formulation composed of PLGA LPPs encapsulating gentamicin sulfate showed a promising in vitro behavior as a pulmonary delivery carrier. Improvements on the aerodynamic behavior and in vivo evaluations recommended for further developments.
Collapse
Affiliation(s)
- Farideh Shiehzadeh
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid-Laal Dehghani
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Mashhoori
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Bazzaz BSF, Fakori M, Khameneh B, Hosseinzadeh H. Effects of Omeprazole and Caffeine Alone and in Combination with Gentamicin and Ciprofloxacin Against Antibiotic Resistant Staphylococcus Aureus and Escherichia Coli Strains. J Pharmacopuncture 2019; 22:49-54. [PMID: 30989001 PMCID: PMC6461300 DOI: 10.3831/kpi.2019.22.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 01/12/2023] Open
Abstract
Objective Antibiotic resistance is a global health problem and threatens health of societies. These problems have led to a search for alternative approaches such as combination therapy. The aim of the present study was to investigate the effect of caffeine and omeprazole in combination with gentamicin or ciprofloxacin against standard and clinically resistant isolates of Staphylococcus aureus and Escherichia coli. Methods The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of different agents against bacterial strains were determined. The interaction of non- antibiotic drugs with gentamicin and ciprofloxacin was studied in vitro using a checkerboard method and calculating fraction inhibitory concentration index (FICI). Verapamil as efflux pump inhibitor was used to evaluate the possible mechanism of bacterial resistance to antibiotics. Results The MIC and MBC values of gentamicin against bacterial strains were in the range of 20- 80 μg/ml and 40-200 μg/ml, respectively. Caffeine and omeprazole had no intrinsic inhibitory activity against tested microorganisms. However, upon combination of caffeine with antibiotics, the synergistic effects were observed. Verapamil was able to reduce the MIC values of gentamicin (4 folds) only in some bacterial strains. Conclusion These findings indicated that caffeine was effective in removing bacterial infection caused by S. aureus and E. coli. The relevant mechanisms of antibiotic resistance were not related to the drug efflux.
Collapse
Affiliation(s)
- Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Fakori
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Razavi BM, Fazly Bazzaz BS. A review and new insights to antimicrobial action of local anesthetics. Eur J Clin Microbiol Infect Dis 2019; 38:991-1002. [PMID: 30680564 DOI: 10.1007/s10096-018-03460-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 12/17/2018] [Indexed: 11/25/2022]
Abstract
Local anesthetics (LAs) are medications which can provide analgesia in distinct body regions through the blockade of voltage-gated sodium channels. Besides pain management, the supplemental role of LAs as antimicrobial agents has been documented in several studies. Different databases including PubMed, Scopus, and Web of Science with the name of different local anesthetics and related names for antimicrobial keywords were searched without time limitation. This review summarized different in vitro and in vivo studies regarding antimicrobial effects of different LAs with focuses on antimicrobial applications of most studied LAs, interaction with different agents which combined with LAs, and mechanisms of action and structural dependence of LAs antibacterial effects. Among different LAs, lidocaine is the most studied preparation. Reduction of the incidence of endophthalmitis after intravitreal injection, prophylaxis for surgical wound infections, prevention of the incidence of catheter-associated infections, oral biofilm reduction on the buccal mucosa, and prevention against bacteria that produced nosocomial infection are some examples of lidocaine antimicrobial application. Studies showed that different factors including structure, concentration, duration of exposure, type of microorganism tested, and temperature affect the degree of LA antimicrobial activity. In addition, various agents such as antibiotics, preservatives, opioids, epinephrine, and propofol can combine with LAs and affect their antimicrobial properties through synergistic or antagonistic action. Due to antibacterial activities, LAs could be applied in a clinic for prophylaxis of surgical site infection. In the application of LAs prior to diagnostic procedures caution should be needed; otherwise, when culturing the specimen, they could lead to false negative results.
Collapse
Affiliation(s)
- Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Control Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
28
|
Rezvani Amin Z, Khashyarmanesh Z, Fazly Bazzaz BS, Sabeti Noghabi Z. Does Biosynthetic Silver Nanoparticles Are More Stable With Lower Toxicity than Their Synthetic Counterparts? Iran J Pharm Res 2019; 18:210-221. [PMID: 31089356 PMCID: PMC6487435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Control of size and shape is a challenge in nanoparticle synthesis. Synthetic and biosynthetic (both extracellular and intracellular) methods are used to prepare silver nanoparticle (SNP). In this study, the behavior of three strains of Staphylococcus aureus (S. aureus) was investigated in the presence of silver nitrate intra- and extracellularly. S. aureus strains biosynthesized SNPs intracellularly, while in the method of the extracellular biosynthesis, none of the strains could produce the SNP under different conditions (dark, bright light, and the presence of nitrate ion). Intracellular SNPs were purified. The results of this study and previous results were used to compare different properties of the biosynthetic (intra- and extracellular) and synthetic SNPs in terms of shape, size, zeta potential, stability, and toxicity. The results confirmed lower toxicity of biosynthetic SNPs in-vitro assays, and their more stability with less aggregation compared to the synthetic ones. Also, the biosynthetic nanoparticles were found uniform and small. These nanoparticles may be useful for being employed as biosensors.
Collapse
Affiliation(s)
- Zohreh Rezvani Amin
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. ,Department of Chemistry, Farhangian University, Tehran, Iran.
| | - Zahra Khashyarmanesh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. ,Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Corresponding author: E-mail:
| | - Zahra Sabeti Noghabi
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Vadaye Kheiry E, Parivar K, Baharara J, Fazly Bazzaz BS, Iranbakhsh A. The osteogenesis of bacterial cellulose scaffold loaded with fisetin. Iran J Basic Med Sci 2018; 21:965-971. [PMID: 30524698 PMCID: PMC6272066 DOI: 10.22038/ijbms.2018.25465.6296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objectives Bacterial cellulose (BC) has applications in medical science, it is easily synthesized, economic and purer compared to plant cellulose. The present study aimed to evaluate BC, a biocompatible natural polymer, as a scaffold for the bone marrow mesenchymal stem cells (BMSCs) loaded with fisetin, a phytoestrogen. Materials and Methods BC hydrogel scaffold was prepared from Gluconaceter xylinus and characterized through scanning electron microscopy (SEM). Biocompatibility of BC was measured by MTT assay, BMSCs were obtained from femur of rat and the osteogenic potential of the BC scaffold cultured with BMSCs and loaded with fisetin, was investigated by measuring the alkaline phosphatase (ALP) activity, alizarin red staining (ARS) and real-time PCR in terms of osteoblast-specific marker, osteocalcin (OCN) and osteopontin (OPN). Results Biocompatibility results did not show any toxic effects of BC scaffold on BMSCs, while it increased cell viability. The data showed that BC loaded fisetin differentiated BMSCs into osteoblasts as demonstrated by ALP activity assays and ARS in vitro. Moreover, results from gene expression assay showed the expression of OCN and OPN genes was increased in cells that were seeded on the BC scaffold loaded with fisetin. Conclusion According to the results of the present study, BC loaded with fisetin is an effective strategy to promote osteogenic differentiation and a proper localized delivery system, which could be a potential candidate in bone tissue engineering.
Collapse
Affiliation(s)
- Elahe Vadaye Kheiry
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Javad Baharara
- Research Center for Animal Development and Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
30
|
Neshati V, Mollazadeh S, Fazly Bazzaz BS, Iranshahi M, Mojarrad M, Naderi-Meshkin H, Kerachian MA. Cardiogenic effects of characterized Geum urbanum extracts on adipose-derived human mesenchymal stem cells. Biochem Cell Biol 2018; 96:610-618. [DOI: 10.1139/bcb-2017-0313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Stem cell therapy is considered as a promising treatment for cardiovascular diseases. Adipose-derived mesenchymal stem cells (ADMSCs) have the ability to undergo cardiomyogenesis. Medicinal plants are effective and safe candidates for cell differentiation. Therefore, the aim of our study was to investigate cardiogenic effects of characterized (HPLC–UV) extracts of Geum urbanum on ADMSCs of adipose tissue. The methanolic extracts of the root and aerial parts of G. urbanum were obtained and MTT assay was used for studying their cytotoxic effects. Then, cells were treated with 50 or 100 μg/mL of the extracts from root and aerial parts of G. urbanum. MTT assay showed that the extracts of G. urbanum did not have any toxic effects on ADMSCs. Immunostaining results showed increase in the expression of α-actinin and cardiac troponin I (cTnI), and quantitative real-time reverse-transcription PCR data confirmed the upregulation of ACTN, ACTC1, and TNNI3 genes in ADMSCs after treatment. According to HPLC fingerprinting, some cardiogenic effects of G. urbanum extracts are probably due to ellagic and gallic acid derivatives. Our findings indicated that G. urbanum extracts effectively upregulated some essential cardiogenic markers, which confirmed the therapeutic role of this plant as a traditional cardiac medicine.
Collapse
Affiliation(s)
- Vajiheh Neshati
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hojjat Naderi-Meshkin
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture, Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Salarbashi D, Tafaghodi M, Bazzaz BSF, Mohammad Aboutorabzade Birjand S, Bazeli J. Characterization of a green nanocomposite prepared from soluble soy bean polysaccharide/Cloisite 30B and evaluation of its toxicity. Int J Biol Macromol 2018; 120:109-118. [PMID: 30071228 DOI: 10.1016/j.ijbiomac.2018.07.183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/22/2018] [Accepted: 07/29/2018] [Indexed: 11/20/2022]
Abstract
The present paper aims to elucidate the structural, thermal and mechanical properties of soybean polysaccharide (SSPS)/Cloisite 30B. Tensile strength of the nanocomposite films improved with incorporation of nanoparticles, whereas elongation at break decreased. Surface roughness of the samples increased with the addition of nanoclay. Neat SSPS film and SSPS-1% Cloisite 30B had a relatively smooth surface with no irregularities, while for the samples containing 3 and 7% Cloisite 30B, the surface was rough. DSC analysis demonstrated that following an increase in nanoparticles content, the melting temperature of the nanocomposite elevated, whereas, glass transition temperature decreased. The results of antibacterial activity indicated that Cloisite 30B could inhibit the growth of Salmonella typhi PTCC 1609, Staphylococcus epidermis PTCC 1114 (ATCC 12228) and Listeria monocytogenes PTCC 1165. SSPS-Cloisite 30B nanocomposite could not inhibit the growth of Aspergillus niger. The results demonstrated that the migration of nanoparticles might happen into deionized water as a food simulant, but they could not migrate into bread as a food model. Furthermore, it was found that Cloisite 30B nanoparticles had cytotoxicity effect, and thus, it is recommended that Cloisite 30B/SSPS nanocomposites be used only for the packaging of solids foods such as bread.
Collapse
Affiliation(s)
- Davoud Salarbashi
- Social Development & Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran; School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutics Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Control Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Javad Bazeli
- Department of Emergency Medicine, School of Nursing and Midwifery, Gonabad University of Medical Science, Gonabad, Iran
| |
Collapse
|
32
|
Salarbashi D, Tafaghodi M, Bazzaz BSF, Jafari B. Characterization of soluble soybean (SSPS) polysaccharide and development of eco-friendly SSPS/TiO2 nanoparticle bionanocomposites. Int J Biol Macromol 2018; 112:852-861. [DOI: 10.1016/j.ijbiomac.2018.01.182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/15/2018] [Accepted: 01/28/2018] [Indexed: 11/30/2022]
|
33
|
Shakeri A, Sharifi MJ, Fazly Bazzaz BS, Emami A, Soheili V, Sahebkar A, Asili J. Bioautography Detection of Antimicrobial Compounds from the Essential Oil of Salvia Pachystachys. ACTA ACUST UNITED AC 2018. [DOI: 10.2174/1573407212666161014132503] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Abolfazl Shakeri
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad J. Sharifi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ahmad Emami
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Neshati V, Mollazadeh S, Fazly Bazzaz BS, de Vries AA, Mojarrad M, Naderi-Meshkin H, Neshati Z, Kerachian MA. Cardiomyogenic differentiation of human adipose-derived mesenchymal stem cells transduced with Tbx20-encoding lentiviral vectors. J Cell Biochem 2018; 119:6146-6153. [PMID: 29637615 DOI: 10.1002/jcb.26818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 02/28/2018] [Indexed: 12/29/2022]
Abstract
Ischemic heart disease often results in myocardial infarction and is the leading cause of mortality and morbidity worldwide. Improvement in the function of infarcted myocardium is a main purpose of cardiac regenerative medicine. One possible way to reach this goal is via stem cell therapy. Mesenchymal stem cells (MSCs) are multipotent stromal cells that can differentiate into a variety of cell types but display limited cardiomyogenic differentiation potential. Members of the T-box family of transcription factors including Tbx20 play important roles in heart development and cardiomyocyte homeostasis. Therefore, in the current study, we investigated the potential of Tbx20 to enhance the cardiomyogenic differentiation of human adipose-derived MSCs (ADMSCs). Human ADMSCs were transduced with a bicistronic lentiviral vector encoding Tbx20 (murine) and the enhanced green fluorescent protein (eGFP) and analyzed 7 and 14 days post transduction. Transduction of human ADMSCs with this lentiviral vector increased the expression of the cardiomyogenic differentiation markers ACTN1, TNNI3, ACTC1, NKX2.5, TBX20 (human), and GATA4 as revealed by RT-qPCR. Consistently, immunocytological results showed elevated expression of α-actinin and cardiac troponin I in these cells in comparison to the cells transduced with control lentiviral particles coding for eGFP alone. Accordingly, forced expression of Tbx20 exerts cardiomyogenic effects on human ADMSCs by increasing the expression of cardiomyogenic differentiation markers at the RNA and protein level.
Collapse
Affiliation(s)
- Vajiheh Neshati
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Antoine Af de Vries
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Majid Mojarrad
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hojjat Naderi-Meshkin
- Stem Cell and Regenerative Medicine Research Department, Iranian Academic Center for Education, Culture Research (ACECR), Mashhad Branch, Mashhad, Iran
| | - Zeinab Neshati
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Neshati V, Fazly Bazzaz BS, Mojarrad M, Neshati Z, Amin Kerachian M. Transduced Mesenchymal Stem Cells and Cardiomyogenic Differentiation. ACTA ACUST UNITED AC 2018. [DOI: 10.4172/2576-1471.1000188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Fazly Bazzaz BS, Khameneh B, Zahedian Ostad MR, Hosseinzadeh H. In vitro evaluation of antibacterial activity of verbascoside, lemon verbena extract and caffeine in combination with gentamicin against drug-resistant Staphylococcus aureus and Escherichia coli clinical isolates. Avicenna J Phytomed 2018; 8:246-253. [PMID: 29881710 PMCID: PMC5987439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/30/2022]
Abstract
OBJECTIVE In recent years, there has been an increasing interest in using herbal products to overcome bacterial resistance. The aim of this study was to investigate the effect of lemon verbena aqueous extract, verbascoside and caffeine in combination with gentamicin against standard and clinical isolates of Staphylococcus aureus and Escherichia coli strains. MATERIALS AND METHODS The MIC and MBC values of different antibacterial agents against bacterial strains were determined. The effect of co-administration lemon verbena extract, verbascoside, and caffeine and gentamicin was studied in vitro using a checkerboard method and calculating fraction inhibitory concentration index (FICI). RESULTS Herbal extract, verbascoside and caffeine alone showed no inhibitory effects on any of the bacterial strains (at doses up to 200 g/ml). Herbal extract, verbascoside and caffeine were able to decrease the MIC of gentamicin against the standard resistant strains and two clinical isolates. Among these combinations, the co-administration of verbascoside and gentamicin was more effective and synergistic activities (FICI<1) against clinical isolates were observed.. CONCLUSION The results of the present study revealed that herbal extract, verbascoside and caffeine potentiated the antimicrobial action of gentamicin against some clinical isolates of S. aureus and E. coli.
Collapse
Affiliation(s)
- Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran ,Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Research Center,Pharmaceutical Technology Institute,Mashhad University of Medical Sciences,Mashhad, Iran, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding Author: Tel: +985138819042, Fax: +985138823251,
| |
Collapse
|
37
|
Shakeri A, Soheili V, Karimi M, Hosseininia SA, Fazly Bazzaz BS. Biological activities of three natural plant pigments and their health benefits. Food Measure 2017. [DOI: 10.1007/s11694-017-9647-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Salarbashi D, Noghabi MS, Bazzaz BSF, Shahabi-Ghahfarrokhi I, Jafari B, Ahmadi R. Eco-friendly soluble soybean polysaccharide/nanoclay Na+ bionanocomposite: Properties and characterization. Carbohydr Polym 2017; 169:524-532. [DOI: 10.1016/j.carbpol.2017.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 04/01/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
|
39
|
Mollazadeh S, Neshati V, Fazly Bazzaz BS, Iranshahi M, Mojarrad M, Naderi-Meshkin H, Kerachian MA. StandardizedSophora pachycarpaRoot Extract Enhances Osteogenic Differentiation in Adipose-derived Human Mesenchymal Stem Cells. Phytother Res 2017; 31:792-800. [DOI: 10.1002/ptr.5803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/20/2017] [Accepted: 02/24/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Samaneh Mollazadeh
- Biotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Vajiheh Neshati
- Biotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| | - Majid Mojarrad
- Medical Genetics Research Center, Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
- Department of Medical Genetics, Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Research Group; Academic Center for Education, Culture and Research (ACECR), Khorasan-Razavi Branch; Mashhad Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
- Department of Medical Genetics, Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
40
|
Fazly Bazzaz BS, Sarabandi S, Khameneh B, Hosseinzadeh H. Effect of Catechins, Green tea Extract and Methylxanthines in Combination with Gentamicin Against Staphylococcus aureus and Pseudomonas aeruginosa: - Combination therapy against resistant bacteria. J Pharmacopuncture 2016; 19:312-318. [PMID: 28097041 PMCID: PMC5234351 DOI: 10.3831/kpi.2016.19.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objectives: Bacterial resistant infections have become a global health challenge and threaten the society’s health. Thus, an urgent need exists to find ways to combat resistant pathogens. One promising approach to overcoming bacterial resistance is the use of herbal products. Green tea catechins, the major green tea polyphenols, show antimicrobial activity against resistant pathogens. The present study aimed to investigate the effect of catechins, green tea extract, and methylxanthines in combination with gentamicin against standard and clinical isolates of Staphylococcus aureus (S. aureus) and the standard strain of Pseudomonas aeruginosa (P. aeruginosa). Methods: The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values of different agents against bacterial strains were determined. The interactions of green tea extract, epigallate catechin, epigallocatechin gallate, two types of methylxanthine, caffeine, and theophylline with gentamicin were studied in vitro by using a checkerboard method and calculating the fraction inhibitory concentration index (FICI). Results: The MICs of gentamicin against bacterial strains were in the range of 0.312 - 320 μg/mL. The MIC values of both types of catechins were 62.5 - 250 μg/ mL. Green tea extract showed insufficient antibacterial activity when used alone. Methylxanthines had no intrinsic inhibitory activity against any of the bacterial strains tested. When green tea extract and catechins were combined with gentamicin, the MIC values of gentamicin against the standard strains and a clinical isolate were reduced, and synergistic activities were observed (FICI < 1). A combination of caffeine with gentamicin did not alter the MIC values of gentamicin. Conclusion: The results of the present study revealed that green tea extract and catechins potentiated the antimicrobial action of gentamicin against some clinical isolates of S. aureus and standard P. aeruginosa strains. Therefore, combinations of gentamicin with these natural compounds might be a promising approach to combat microbial resistance.
Collapse
Affiliation(s)
- Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Sarabandi
- Students' Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Rezvani Amin Z, Khashyarmanesh Z, Fazly Bazzaz BS. Different behavior of Staphylococcus epidermidis in intracellular biosynthesis of silver and cadmium sulfide nanoparticles: more stability and lower toxicity of extracted nanoparticles. World J Microbiol Biotechnol 2016; 32:140. [PMID: 27430507 DOI: 10.1007/s11274-016-2110-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/05/2016] [Indexed: 11/24/2022]
Abstract
Chemical reagents that are used for synthesis of nanoparticles are often toxic, while biological reagents are safer and cost-effective. Here, the behavior of Staphylococcus epidermidis (ATCC 12228) was evaluated for biosynthesis of silver nanoparticles (Ag-NPs) and cadmium sulfide nanoparticles (CdS-NPs) using TEM images intra- and extracellularly. The bacteria only biosynthesized the nanoparticles intracellularly and distributed Ag-NPs throughout the cytoplasm and on outside surface of cell walls, while CdS-NPs only formed in cytoplasm near the cell wall. A new method for purification of the nanoparticles was used. TEM images of pure CdS-NPs confirmed biosynthesis of agglomerated nanoparticles. Biosynthetic Ag-NPs were more stable against bright light and aggregation reaction than synthetic Ag-NPs (prepared chemically) also biosynthetic Ag-NPs displayed lower toxicity in in vitro assays. CdS-NPs indicated no toxicity in in vitro assays. Biosynthetic nanoparticles as product of the detoxification pathway may be safer and more stable for biosensors.
Collapse
Affiliation(s)
- Zohreh Rezvani Amin
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khashyarmanesh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 91775-1365, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 91775-1365, Mashhad, Iran.
| |
Collapse
|
42
|
Khameneh B, Diab R, Ghazvini K, Fazly Bazzaz BS. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb Pathog 2016; 95:32-42. [DOI: 10.1016/j.micpath.2016.02.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/07/2016] [Accepted: 02/17/2016] [Indexed: 12/17/2022]
|
43
|
Shayani Rad M, Khameneh B, Sabeti Z, Mohajeri SA, Fazly Bazzaz BS. Antibacterial Activity of Silver Nanoparticle-Loaded Soft Contact Lens Materials: The Effect of Monomer Composition. Curr Eye Res 2016; 41:1286-1293. [DOI: 10.3109/02713683.2015.1123726] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Maryam Shayani Rad
- Student Research Committee (SRC), Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Department of Pharmaceutical Control, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Sabeti
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Bashi DS, Dowom SA, Bazzaz BSF, Khanzadeh F, Soheili V, Mohammadpour A. Evaluation, prediction and optimization the ultrasound-assisted extraction method using response surface methodology: antioxidant and biological properties of Stachys parviflora L. Iran J Basic Med Sci 2016; 19:529-41. [PMID: 27403260 PMCID: PMC4923474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To optimize the extraction method using response surface methodology, extract the phenolic compounds, and identify the antioxidant and biological properties of Stachys parviflora L. extracts. MATERIALS AND METHODS Maceration and ultrasound-assisted extraction (UAE) (4, 7, 10 min treatment time, 40, 70, 100 % high-intensity and 60, 80, 100 % (v v-1) methanol purity) were applied to obtain the extracts. SEM was conducted to provide the microstructure of the extracted plant. MICs (colorimetric assay), MFCs (colony diameter), total phenolic content, total flavonoid content, radical scavenging capacity and extraction efficiency were determined. HPLC analysis was applied to measure the existent phenolic compounds. RESULTS A quadratic model (4 min treatment time, 74.5 % high-intensity and 74.2 % solvent purity) was suggested as the best (TPC: 20.89 mg GAE g-1 d.m., TFC: 6.22 mg QEs g-1 d.m., DPPH IC50: 21.86 µg ml-1 and EE: 113.65 mg g-1 d.m.) UAE extraction model. The optimized UAE extract was generally more effective against Gram-positive microorganisms (MIC: 10-20; MBC: 10-40 (mg ml-1)) than Gram-negative ones (MIC: 40; MBC: >40 (mg ml-1)). Moreover, it (MGI: 2.32-100 %) revealed more anti-mold activity than maceration (MGI: <28.77 %). Explosive disruption of the cell walls, therefore, enhanced extraction yield by acoustic cavitation, was elucidated using SEM. Caffeic acid, tannic acid, quercetin, trans ferulic acid and rosmarinic acid were determined as the phenolic compounds in the optimized extract. CONCLUSION RSM optimization was successfully applied for UAE from S. parviflora. The considerable antioxidant and biological properties were attributed to the phenolic compounds.
Collapse
Affiliation(s)
- Davoud Salar Bashi
- School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran,Ferdowsi University of Mashhad, International campus, Department of Food Science and Technology, Mashhad, Iran
| | - Samaneh Attaran Dowom
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- School of Pharmacy; Biotechnology Research Center; Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Khanzadeh
- Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran,Corresponding author: Farhad Khanzadeh. Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran. Tel: +98-912-2877780;
| | - Vahid Soheili
- Department of Food and Drug Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mohammadpour
- Medical Surgical Nursing, Social Determinant of Health Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
45
|
Fazly Bazzaz BS, Khameneh B, Zarei H, Golmohammadzadeh S. Antibacterial efficacy of rifampin loaded solid lipid nanoparticles against Staphylococcus epidermidis biofilm. Microb Pathog 2016; 93:137-44. [DOI: 10.1016/j.micpath.2015.11.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 11/15/2022]
|
46
|
Soheili V, Khedmatgozar Oghaz N, Sabeti Noughabi Z, Fazly Bazzaz BS. The novel effect of cis-2-decenoic acid on biofilm producing Pseudomonas aeruginosa. Microbiol Res (Pavia) 2016. [DOI: 10.4081/mr.2015.6158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microbial biofilms are a main cause of many chronic infections and mortalities, such as dental caries, cystic fibrosis, osteoradionecrosis, urinary tract infections and native valve endocarditis. These polymeric matrices are sessile communities with different rules from those forms via known planktonic bacteria. One of the important biofilm-producing human pathogens is <em>Pseudomonas aeruginosa</em>, which causes death in the majority of people who suffer from cystic fibrosis, AIDS, burns and neutropenic cancer. To find a method for controlling the growth and resistance of <em>P. aeruginosa</em> biofilm, this study investigated the dispersion induction of this microorganism with a diffusible signal factor (DSF), <em>cis</em>-2-decenoic acid (CDA), in combination with Tobramycin as a useful antibiotic. Our findings confirmed that although CDA did not act as a dispersion inducer in this experiment, it did show an antimicrobial effect and decreased the MIC of Tobramycin. These results suggested that research on the probable new effects of DSF molecules will result in advances in the control of biofilm infections.
Collapse
|
47
|
Khameneh B, Fazly Bazzaz BS, Amani A, Rostami J, Vahdati-Mashhadian N. Combination of anti-tuberculosis drugs with vitamin C or NAC against different Staphylococcus aureus and Mycobacterium tuberculosis strains. Microb Pathog 2015; 93:83-7. [PMID: 26602814 DOI: 10.1016/j.micpath.2015.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 10/27/2015] [Accepted: 11/09/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUNDS Hepatotoxicity due to anti tuberculosis drugs, rifampin and isoniazid, is a major problem in tuberculosis patients. Vitamin C, an antioxidant, and N-acetyl cysteine (NAC), a scavenger of active metabolites, reduce the hepatotoxicity. The aim of present study was to investigate the effect of vitamin C and NAC individually on the antibacterial activity of anti tuberculosis drugs against Mycobacterium tuberculosis and Staphylococcus aureus strains. METHODS The MICs of each compound against all strains were determined in 96 wells plate. Rifampin was tested at serial two fold concentrations alone or in combination with NAC or vitamin C. RESULTS The MIC of rifampin against different strains of S. aureus was 0.008-0.032 μg/ml. The MIC of rifampin and isoniazid against M. tuberculosis strains were 40 and 0.2 μg/ml, respectively. Vitamin C and NAC had no antibacterial activity against all strains. MIC of rifampin was reduced two fold by combination with vitamin C for all S. aureus strains, while NAC did not affect the antibacterial activity of rifampin. Vitamin C and NAC had remarkable effects on the antibacterial activity of anti-tuberculosis drugs against M. tuberculosis. CONCLUSIONS Synergistic effects were observed between rifampin or isoniazid and vitamin C against all tested strains. However, combination therapy of rifampin and isoniazid with NAC was not being effective. This study highlighted the advantages of combination of anti-tuberculosis drugs and vitamin C to eradicate the microbial infections.
Collapse
Affiliation(s)
- Bahman Khameneh
- Department of Pharmaceutical Control, Students Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Amani
- Students Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Rostami
- Students Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nasser Vahdati-Mashhadian
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
48
|
Mollazadeh S, Fazly Bazzaz BS, Kerachian MA. Role of apoptosis in pathogenesis and treatment of bone-related diseases. J Orthop Surg Res 2015; 10:15. [PMID: 25627748 PMCID: PMC4327805 DOI: 10.1186/s13018-015-0152-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/02/2015] [Indexed: 12/14/2022] Open
Abstract
In this article, bone cells and their intercellular communications have been reviewed. Gap junctions and hemichannels are the main routes of interactions in bone tissue. They play a substantial role in survival and cell death, since pro-apoptotic signals can propagate through them. Different adhesion molecules are required for apoptosis, particularly caspase family as well as noncaspase proteases. The disruption outcome of apoptosis could result in bone-related diseases such as osteonecrosis. Anti-apoptotic strategies include inhibition of caspase, poly [ADP-ribose] polymerase (PARP), and Bcl-2 proteins as well as induction of the PKB/Akt pathway and inhibitors of apoptosis (IAP) family of proteins. Thus, understanding the mechanism of apoptosis gives detailed insights of anti-apoptotic molecular targets. Based on these targets, different treatments were designed and produced such as estrogen replacement therapy, administration of different bisphosphonates, raloxifene, calcitonin, sodium fluoride, calcium, and vitamin D. As a result, new applicable drugs for treatment of related bone problems can be proposed for clinical approach especially in the early stage of diseases.
Collapse
|
49
|
Khoshneviszadeh R, Fazly Bazzaz BS, Housaindokht MR, Ebrahim-Habibi A, Rajabi O. UV Spectrophotometric Determination and Validation of Hydroquinone in Liposome. Iran J Pharm Res 2015; 14:473-8. [PMID: 25901154 PMCID: PMC4403063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The method has been developed and validated for the determination of hydroquinone in liposomal formulation. The samples were dissolved in methanol and evaluated in 293 nm. The validation parameters such as linearity, accuracy, precision, specificity, limit of detection (LOD) and limit of quantitation (LOQ) were determined. The calibration curve was linear in 1-50 µg/mL range of hydroquinone analyte with a regression coefficient of 0.9998. This study showed that the liposomal hydroquinone composed of phospholipid (7.8 %), cholesterol (1.5 %), alpha ketopherol (0.17 %) and hydroquinone (0.5 %) did not absorb wavelength of 293 nm if it diluted 500 times by methanol. The concentration of hydroquinone reached 10 µg/mL after 500 times of dilution. Furthermore, various validation parameters as per ICH Q2B guideline were tested and found accordingly. The recovery percentages of liposomal hydroquinone were found 102 ± 0.8, 99 ± 0.2 and 98 ± 0.4 for 80%, 100% and 120% respectively. The relative standard deviation values of inter and intra-day precisions were <%2. LOD and LOQ were 0.24 and 0.72 µg/mL respectively.
Collapse
Affiliation(s)
- Rabea Khoshneviszadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Drug and Food Control Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Azadeh Ebrahim-Habibi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran. ,Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Rajabi
- Drug and Food Control Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,
| |
Collapse
|
50
|
Forouzanfar F, Bazzaz BSF, Hosseinzadeh H. Black cumin (Nigella sativa) and its constituent (thymoquinone): a review on antimicrobial effects. Iran J Basic Med Sci 2014; 17:929-38. [PMID: 25859296 PMCID: PMC4387228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/30/2014] [Indexed: 11/04/2022]
Abstract
Nigella sativa seeds have wide therapeutic effects and have been reported to have significant effects against many ailments such as skin diseases, jaundice, gastrointestinal problems, anorexia, conjunctivitis, dyspepsia, rheumatism, diabetes, hypertension, intrinsic hemorrhage, paralysis, amenorrhea, anorexia, asthma, cough, bronchitis, headache, fever, influenza and eczema. Thymoquinone (TQ) is one of the most active constituent and has different beneficial properties. Focus on antimicrobial effects, different extracts of N. sativa as well as TQ, have a broad antimicrobial spectrum including Gram-negative, Gram-positive bacteria, viruses, parasites, schistosoma and fungi. The effectiveness of N. sativa seeds and TQ is variable and depends on species of target microorganisms. The present review paper tries to describe all antimicrobial activities that have been carried out by various researchers.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmacodynamy and Toxicology Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran,*Corresponding author: Hossein Hosseinzadeh. Pharmaceutical Research Center, Pharmacodynamy and Toxicology Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Fax: +98-51-38823251;
| |
Collapse
|