1
|
Zhao C, Zhou T, Li M, Liu J, Zhao X, Pang Y, Liu X, Zhang J, Ma L, Li W, Yao X, Feng S. Argatroban promotes recovery of spinal cord injury by inhibiting the PAR1/JAK2/STAT3 signaling pathway. Neural Regen Res 2024; 19:434-439. [PMID: 37488908 PMCID: PMC10503625 DOI: 10.4103/1673-5374.375345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/28/2022] [Accepted: 03/29/2023] [Indexed: 07/26/2023] Open
Abstract
Argatroban is a synthetic thrombin inhibitor approved by U.S. Food and Drug Administration for the treatment of thrombosis. However, whether it plays a role in the repair of spinal cord injury is unknown. In this study, we established a rat model of T10 moderate spinal cord injury using an NYU Impactor Moder III and performed intraperitoneal injection of argatroban for 3 consecutive days. Our results showed that argatroban effectively promoted neurological function recovery after spinal cord injury and decreased thrombin expression and activity in the local injured spinal cord. RNA sequencing transcriptomic analysis revealed that the differentially expressed genes in the argatroban-treated group were enriched in the JAK2/STAT3 pathway, which is involved in astrogliosis and glial scar formation. Western blotting and immunofluorescence results showed that argatroban downregulated the expression of the thrombin receptor PAR1 in the injured spinal cord and the JAK2/STAT3 signal pathway. Argatroban also inhibited the activation and proliferation of astrocytes and reduced glial scar formation in the spinal cord. Taken together, these findings suggest that argatroban may inhibit astrogliosis by inhibiting the thrombin-mediated PAR1/JAK2/STAT3 signal pathway, thereby promoting the recovery of neurological function after spinal cord injury.
Collapse
Affiliation(s)
- Chenxi Zhao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Tiangang Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqing Zhao
- Orthopedic Research Center of Shandong University, Cheeloo College of Medicine, Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yilin Pang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinjie Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiawei Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lei Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenxiang Li
- Orthopedic Research Center of Shandong University, Cheeloo College of Medicine, Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xue Yao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Orthopedic Research Center of Shandong University, Cheeloo College of Medicine, Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Orthopedic Research Center of Shandong University, Cheeloo College of Medicine, Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
2
|
Liu J, Yang T, Dai L, Shi K, Hao Y, Chu B, Hu D, Bei Z, Yuan L, Pan M, Qian Z. Intravesical chemotherapy synergize with an immune adjuvant by a thermo-sensitive hydrogel system for bladder cancer. Bioact Mater 2024; 31:315-332. [PMID: 37663619 PMCID: PMC10468327 DOI: 10.1016/j.bioactmat.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/12/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023] Open
Abstract
Surgical resection remains the prefer option for bladder cancer treatment. However, the effectiveness of surgery is usually limited for the high recurrence rate and poor prognosis. Consequently, intravesical chemotherapy synergize with immunotherapy in situ is an attractive way to improve therapeutic effect. Herein, a combined strategy based on thermo-sensitive PLEL hydrogel drug delivery system was developed. GEM loaded PLEL hydrogel was intravesical instilled to kill tumor cells directly, then PLEL hydrogel incorporated with CpG was injected into both groins subcutaneously to promote immune responses synergize with GEM. The results demonstrated that drug loaded PLEL hydrogel had a sol-gel phase transition behavior in response to physiological temperature and presented sustained drug release, and the PLEL-assisted combination therapy could have better tumor suppression effect and stronger immunostimulating effect in vivo. Hence, this combined treatment with PLEL hydrogel system has great potential and suggests a clinically-relevant and valuable option for bladder cancer.
Collapse
Affiliation(s)
- J. Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - T.Y. Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - L.Q. Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - K. Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Y. Hao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - B.Y. Chu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - D.R. Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Z.W. Bei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - L.P. Yuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - M. Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Z.Y. Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Liu J, Zhang Z, Dong J, Chen A, Qiu J, Li C. Electrochemical immunosensor based on hollow Pt@Cu 2O as a signal label for dual-mode detection of procalcitonin. Talanta 2024; 266:125018. [PMID: 37572476 DOI: 10.1016/j.talanta.2023.125018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/14/2023]
Abstract
As a reliable biomarker to evaluate the severity of sepsis, sensitive and accurate detection of procalcitonin (PCT) is essential. In this study, a dual-mode electrochemical immunosensor based on Au/ZIF-8 as substrate and Pt@Cu2O as signal label was constructed for the detection of PCT. By loading Au nanoparticles onto rhombic dodecahedral ZIF-8, the substrate (Au/ZIF-8) has large specific surface area and can immobilize antibody (Ab1) by Au-N bonds. Meanwhile, hollow Pt@Cu2O nanocomposite with excellent peroxidase-like activity and electrocatalytic activity were synthesized as signal label. In the process of electrochemical testing, Pt@Cu2O catalyzed the reduction of hydrogen peroxide (H2O2) and further promotes the oxidation of hydroquinone (HQ) to achieve the synergistic amplification of electrochemical signals. The proposed immunosensor detected PCT by amperometric i-t and differential pulse voltammetry (DPV) tests with a good linear response and low limit of detection (i-t: 0.70 fg/mL and DPV: 0.40 fg/mL) in the range of 10 fg/mL∼100 ng/mL. The immunosensor exhibited excellent sensitivity and accuracy, indicating the potential application of this method for PCT detection.
Collapse
Affiliation(s)
- Jie Liu
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Zixuan Zhang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Dong
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Anyi Chen
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Jingfu Qiu
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Chaorui Li
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Zheng B, Zhang P, Lv Q, Wu T, Liu Y, Tang J, Ma Y, Cheng L, Xu L, Wang Y, Xue Y, Liu J, Ren J. Development and preclinical evaluation of multifunctional hydrogel for precise thermal protection during thermal ablation. Bioact Mater 2024; 31:119-135. [PMID: 37637083 PMCID: PMC10448243 DOI: 10.1016/j.bioactmat.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Image-guided thermal ablation (TA), which is less invasive, has been widely applied for treating various kinds of tumors. However, TA still poses the potential risk of thermal damage to sensitive tissue nearby. Therefore, an adjunctive thermoprotective hydrodissection technique with constant injection of 5% glucose (5% Glu) has currently been adopted for clinical application, but this may be hazardous to humans. In this study, a multifunctional hyaluronic acid-based hydrogel (HA-Dc) was developed for hydrodissection. Compared with 5% Glu (the most clinically used solution) and the previously reported F127 hydrogel, the HA-Dc hydrogel was studied in vitro in a porcine liver model and in vivo in a rabbit model and showed good injectability and better tissue retention, stability, and thermoprotective properties throughout the TA procedure. Furthermore, in the preclinical evaluation in a Macaca fascicularis (M. fascicularis) model, HA-Dc showed excellent performance in terms of stricter neuroprotection compared with 5% Glu. In addition, the HA-Dc hydrogel with good biocompatibility and controllable degradation behavior in vivo could be a promising platform for thermal protection during clinical TA procedures.
Collapse
Affiliation(s)
- Bowen Zheng
- Department of Medical Ultrasonics, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Multiple Disciplinary Team Center of Thyroid Diseases, No. 600, Tianhe Road, Guangzhou, Guangdong, 510630, PR China
| | - Peng Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, Guangdong, 518107, PR China
| | - Qijun Lv
- Department of Medical Ultrasonics, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Multiple Disciplinary Team Center of Thyroid Diseases, No. 600, Tianhe Road, Guangzhou, Guangdong, 510630, PR China
| | - Tao Wu
- Department of Medical Ultrasonics, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Multiple Disciplinary Team Center of Thyroid Diseases, No. 600, Tianhe Road, Guangzhou, Guangdong, 510630, PR China
| | - Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, Guangdong, 518107, PR China
| | - Junjie Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, Guangdong, 518107, PR China
| | - Yanping Ma
- Department of Medical Ultrasonics, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Multiple Disciplinary Team Center of Thyroid Diseases, No. 600, Tianhe Road, Guangzhou, Guangdong, 510630, PR China
| | - Lili Cheng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, Guangdong, 518107, PR China
| | - Langtao Xu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, Guangdong, 518107, PR China
| | - Yizhen Wang
- Department of Medical Ultrasonics, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Multiple Disciplinary Team Center of Thyroid Diseases, No. 600, Tianhe Road, Guangzhou, Guangdong, 510630, PR China
| | - Yifan Xue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, Guangdong, 518107, PR China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, Guangdong, 518107, PR China
| | - Jie Ren
- Department of Medical Ultrasonics, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Multiple Disciplinary Team Center of Thyroid Diseases, No. 600, Tianhe Road, Guangzhou, Guangdong, 510630, PR China
| |
Collapse
|
5
|
Zhang X, Xu L, Li M, Chen X, Tang J, Zhang P, Wang Y, Chen B, Ren J, Liu J. Intelligent Ti3C2–Pt heterojunction with oxygen self-supply for augmented chemo-sonodynamic/immune tumor therapy. Materials Today Nano 2023; 24:100386. [DOI: 10.1016/j.mtnano.2023.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
|
6
|
Tao Z, Liu J, Pu WF, Lan C, Ren NC, Lin FY, Hu D. Easier removal of a gastrointestinal stromal tumor using a new detachable snare-assisted traction technique. Endoscopy 2023; 55:E900-E901. [PMID: 37442175 DOI: 10.1055/a-2119-0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Affiliation(s)
- Zhang Tao
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Jie Liu
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Wen Feng Pu
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Chao Lan
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Ning Chuan Ren
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Feng Ying Lin
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Dan Hu
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| |
Collapse
|
7
|
Tao Z, Chen L, Liu J, Peng YM, Lin FY, Sun L, Chen J. Correction: A loop-assisted inversion technique for easy removal of a gastric stromal tumor in the fundus. Endoscopy 2023; 55:C6. [PMID: 37607683 PMCID: PMC10444516 DOI: 10.1055/a-2155-7468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Affiliation(s)
- Zhang Tao
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Long Chen
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Jie Liu
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Yi Ming Peng
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Feng Ying Lin
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Liang Sun
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Jian Chen
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| |
Collapse
|
8
|
Tao Z, Chen L, Liu J, Peng YM, Lin FY, Sun L, Chen J. A loop-assisted inversion technique for easy removal of a gastric fundal tumor. Endoscopy 2023; 55:E902-E903. [PMID: 37459889 PMCID: PMC10351988 DOI: 10.1055/a-2119-0999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Affiliation(s)
- Zhang Tao
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Long Chen
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Jie Liu
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Yi Ming Peng
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Feng Ying Lin
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Liang Sun
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Jian Chen
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| |
Collapse
|
9
|
Tao Z, Liu J, Hu D, Chen YL, Li F, Lin FY, Feng S. Successful treatment of a colonic cyst by endoscopic aspiration and sclerotherapy. Endoscopy 2023; 55:E676-E677. [PMID: 37100413 PMCID: PMC10132931 DOI: 10.1055/a-2068-8372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Affiliation(s)
- Zhang Tao
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Jie Liu
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Dan Hu
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Ya Lan Chen
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Feng Li
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Feng Ying Lin
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| | - Shenggang Feng
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan, China
| |
Collapse
|
10
|
Wu Y, Zheng H, Hu S, Chen X, Chen Y, Liu J, Xu Y, Chen X, Zhu L, Yan W. The impact of metabolic diseases and their comorbidities for stroke in a middle-income area of China: a case-control study. Int J Neurosci 2023; 133:1055-1063. [PMID: 35635805 DOI: 10.1080/00207454.2022.2042692] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/26/2021] [Accepted: 02/09/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND There are few studies on the comorbidity of hypertension (HTN), diabetes mellitus (DM) and dyslipidemia (DLP) associated with stroke. We aimed to explore the relationship between the number of metabolic diseases and stroke and its different subtypes, and to reveal whether metabolic diseases alone or coexist can significantly increase the risk of stroke. METHODS We completed a multi-center case-control study in Jiangxi Province, China. Neuroimaging examination was done in all cases. Controls were stroke-free adults recruited from the community in the case concentration area and matched with the cases in 1:1 ratio by age and sex. Odds ratios (OR) were calculated by conditional logistic regression. RESULTS We enrolled 11,729 case-control pairs. The estimated ORs among patients with 1, 2 and 3 metabolic diseases were 3.16 (2.78-3.60), 7.11 (6.16-8.20), 12.22 (9.73-15.36), respectively after adjusting age, body mass index, urban-rural areas, cardiac disease, smoking, alcohol intake, physically active, high intake of salt, meat-biased diet, high homocysteine. The coexistence of HTN and DM (OR: 7.67), the coexistence of HTN and DLP (OR:7.58), and the coexistence of DM and DLP (OR:3.64) can all significantly increase the risk of stroke. HTN alone or combined other metabolic diseases were significantly more strongly associated with intracerebral haemorrhage than ischemic stroke. CONCLUSIONS The risk of stroke increased with the number of chronic metabolic diseases. It is necessary to regularly monitor blood pressure, blood sugar and blood lipids and strengthen lifestyle management and take appropriate drug interventions to prevent exposure to multiple metabolic diseases based on existing conditions.
Collapse
Affiliation(s)
- Yuhang Wu
- Jiangxi Center for Disease Control and Prevention Institute of Chronic Non-communicable Diseases, Jiangxi, China
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Huilie Zheng
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Songbo Hu
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyun Chen
- Jiangxi Center for Disease Control and Prevention Institute of Chronic Non-communicable Diseases, Jiangxi, China
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Yiying Chen
- Jiangxi Center for Disease Control and Prevention Institute of Chronic Non-communicable Diseases, Jiangxi, China
| | - Jie Liu
- Jiangxi Center for Disease Control and Prevention Institute of Chronic Non-communicable Diseases, Jiangxi, China
| | - Yan Xu
- Jiangxi Center for Disease Control and Prevention Institute of Chronic Non-communicable Diseases, Jiangxi, China
| | - Xiaona Chen
- Jiangxi Center for Disease Control and Prevention Institute of Chronic Non-communicable Diseases, Jiangxi, China
| | - Liping Zhu
- Jiangxi Center for Disease Control and Prevention Institute of Chronic Non-communicable Diseases, Jiangxi, China
| | - Wei Yan
- Jiangxi Center for Disease Control and Prevention Institute of Chronic Non-communicable Diseases, Jiangxi, China
| |
Collapse
|
11
|
Liu J, Chen J, Zhang Y, Liu L, Guo Y, Yuan R, Chai Y. Selenium and nitrogen co-doped carbon dots with highly efficient electrochemiluminescence for ultrasensitive detection of microRNA. Biosens Bioelectron 2023; 240:115607. [PMID: 37660459 DOI: 10.1016/j.bios.2023.115607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
In this work, selenium and nitrogen co-doped carbon dots (SeN-CDs) possessing highly efficient electrochemiluminescence (ECL) and excellent biocompatibility were synthesized as a new emitter with S2O82- as a coreactant for constructing a biosensor to detect microRNA-221 (miRNA-221) sensitively. Notably, the SeN-CDs exhibited superior ECL performance compared with the N-doped CDs, in which selenium with excellent redox activity served as a coreaction accelerator for facilitating the electroreduction of S2O82- to significantly improve ECL efficiency. Furthermore, target-induced T7 exonuclease (T7 Exo)-assisted double cycle amplification strategy could convert traces of target miRNA-221 into large amounts of output DNA to capture three-dimensional (3D) nanostructures (DTN-Au NPs-DOX-Fc) loaded with large amounts of ECL signal quencher. The constructed biosensor could realize ultrasensitive detection of miRNA-221 and has a low detection limit reaching 2.3 aM, with a successful application to detect miRNA-221 in lysate of Hela and MHCC97-L cancer cell. This work explored a novel method to strengthen the ECL performance of CDs to construct an ECL biosensing platform with sensitive detecting of biomarkers and disease diagnosis.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Jie Chen
- Department of Endocrinology, 9 th People's Hospital of Chongqing, Chongqing, 400700, PR China
| | - Yue Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Linlei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - YuZhuo Guo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
12
|
Meng Z, Mo X, Meng W, Hu B, Li H, Liu J, Lu X, Sparks JP, Wang Y, Wang Z, He M. Biochar may alter plant communities when remediating the cadmium-contaminated soil in the saline-alkaline wetland. Sci Total Environ 2023; 899:165677. [PMID: 37478952 DOI: 10.1016/j.scitotenv.2023.165677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
It is thought remediating cadmium pollution with biochar can affect plant traits. However, the potential impact of this practice on plant communities is poorly understood. Here, we established natural-germinated plant communities using soil seed bank from a saline-alkaline wetland and applied a biochar treatment in Cd-polluted wetland soil. The outcomes illustrated that Juglans regia biochar (JBC), Spartina alterniflora biochar (SBC), and Flaveria bidentis biochar (FBC) promoted exchangeable Cd transform into FeMn oxide bound Cd. Additionally, most biochar addition reduced species abundance, root-shoot ratio, biomass, diversity, and community stability, yet enhanced community height. Among all treatments, the 5 % SBC demonstrated the most significant reduction in species abundance, biomass, species richness and functional richness. Specifically, it resulted in a reduction of 92.80 % in species abundance, 73.80 % in biomass, 66.67 % in species richness, and 95.14 % in functional richness compared to the CK. We also observed changes in root morphological traits and community structure after biochar addition. Soil pH, salinity, and nutrients played a dominant role in shaping plant community. These findings have implications for biodiversity conservation, and the use of biochar for the remediation of heavy metals like cadmium should be approached with caution due to its potential negative impacts on plant communities.
Collapse
Affiliation(s)
- Zirui Meng
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300382, China; Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300382, China
| | - Xunqiang Mo
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300382, China
| | - Weiqing Meng
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300382, China
| | - Beibei Hu
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300382, China
| | - Hongyuan Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jie Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xueqiang Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jed P Sparks
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yidong Wang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300382, China
| | - Ziyi Wang
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300382, China
| | - Mengxuan He
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300382, China; Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300382, China.
| |
Collapse
|
13
|
Zhang W, Zhou R, Liu X, You L, Chen C, Ye X, Liu J, Liang Y. Key role of exosomes derived from M2 macrophages in maintaining cancer cell stemness (Review). Int J Oncol 2023; 63:126. [PMID: 37711063 DOI: 10.3892/ijo.2023.5574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
Cancer stem cells (CSCs) constitute a specific subset of cells found within tumors that are responsible for initiating, advancing and resisting traditional cancer treatments. M2 macrophages, also known as alternatively activated macrophages, contribute to the development and progression of cancer through their involvement in promoting angiogenesis, suppressing the immune system, supporting tumor growth and facilitating metastasis. Exosomes, tiny vesicles released by cells, play a crucial role in intercellular communications and have been shown to be associated with cancer development and progression by influencing the immune response; thus, they may serve as markers for diagnosis and prognosis. Currently, investigating the impact of exosomes derived from M2 macrophages on the maintenance of CSCs is a crucial area of research with the aim of developing novel therapeutic strategies to target this process and improve outcomes for individuals with cancer. Understanding the biological functions of exosomes derived from M2 macrophages and their involvement in cancer may lead to the formulation of novel diagnostic tools and treatments for this disease. By targeting M2 macrophages and the exosomes they secrete, promising prospects emerge for cancer treatment, given their substantial contribution to cancer development and progression. Further research is required to fully grasp the intricate interactions between CSCs, M2 macrophages and exosomes in cancer, and to identify fresh targets for cancer therapy. The present review explores the pivotal roles played by exosomes derived from M2 cells in maintaining the stem‑like properties of cancer cells.
Collapse
Affiliation(s)
- Weiqiong Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Ruiping Zhou
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Xin Liu
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Lin You
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Chang Chen
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Xiaoling Ye
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Jie Liu
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Youde Liang
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| |
Collapse
|
14
|
Liu J, Ou Y, Xu JZ, Rao ZM, Zhang WG. L-lysine production by systems metabolic engineering of an NADPH auto-regulated Corynebacterium glutamicum. Bioresour Technol 2023; 387:129701. [PMID: 37604260 DOI: 10.1016/j.biortech.2023.129701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Here, the systems metabolic engineering of L-lysine-overproducing Corynebacterium glutamicum is described to create a highly efficient microorganism producer. The key chromosomal mutations associated with L-lysine synthesis were identified based on whole-genome sequencing. The carbon flux was subsequently redirected into the L-lysine synthesis pathway and increased the availability of energy and product transport systems required for L-lysine synthesis. In addition, a promoter library sensitive to intracellular L-lysine concentration was constructed and applied to regulate the NADPH pool dynamically. In the fed-batch fermentation experiment, the L-lysine titer of the final engineered strain was 223.4 ± 6.5 g/L. This study is the first to improve L-lysine production by enhancing ATP supply and NADPH self-regulation to improve the intracellular environment.
Collapse
Affiliation(s)
- Jie Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800(#) Lihu Road, WuXi 214122, People's Republic of China
| | - Ying Ou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800(#) Lihu Road, WuXi 214122, People's Republic of China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800(#) Lihu Road, WuXi 214122, People's Republic of China
| | - Zhi-Ming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800(#) Lihu Road, WuXi 214122, People's Republic of China; National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, 1800(#) Lihu Road, WuXi 214122, People's Republic of China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800(#) Lihu Road, WuXi 214122, People's Republic of China.
| |
Collapse
|
15
|
Hu H, Lin G, He F, Liu J, Jia R, Li K, Hong W, Fang M, Zeng JZ. Design, synthesis, and biological evaluation of carbonyl-hydrazine-1-carboxamide derivatives as anti-hepatic fibrosis agents targeting Nur77. Bioorg Chem 2023; 140:106795. [PMID: 37657195 DOI: 10.1016/j.bioorg.2023.106795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
Hepatic fibrosis remains a great challenge clinically. The orphan nuclear receptor Nur77 is recently suggested as the critical regulator of transforming growth factor-β (TGF-β) signaling, which plays a central role in multi-organic fibrosis. Herein, we optimized our previously reported Nur77-targeted compound 9 h for attempting to develop effective and safe anti-hepatic fibrosis agents. The critical pharmacophore scaffold of pyridine-carbonyl-hydrazine-1-carboxamide was retained, while the naphthalene ring was replaced with an aromatic ring containing pyridyl or indole groups. Four series of derivatives were thus generated, among which the compound 16f had excellent binding activity toward Nur77-LBD (KD = 470 nM) with the best inhibitory activity against the TGF- β 1 activation of hepatic stellate cells (HSCs) and low cytotoxicity to normal mice liver AML-12 cells (IC50 > 80 μM). In mice, 16f displayed potent activity against CCl4-induced liver fibrosis with improved liver function. Mechanistically, 16f-mediated inactivation of HSC and suppression of liver fibrosis were associated with its enhancement of autophagic flux in a Nur77-dependent manner. Together, 16f was identified as a potential anti-liver fibrosis agent. Our study suggests that Nur77 may serve as a critical anti-hepatic fibrosis target.
Collapse
Affiliation(s)
- Hongyu Hu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; Xingzhi College, Zhejiang Normal University, Lanxi 321004, China
| | - Gang Lin
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Fengming He
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jie Liu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Rong Jia
- Xingzhi College, Zhejiang Normal University, Lanxi 321004, China
| | - Kun Li
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wenbin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Meijuan Fang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Jin-Zhang Zeng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
16
|
Wang L, Yan F, Zhang J, Xiao Y, Wang C, Zhu Y, Li C, Liu Z, Li W, Wang C, Liu J, Zhang H, Xiong H, Shi D. Cornuside improves murine autoimmune hepatitis through inhibition of inflammatory responses. Phytomedicine 2023; 120:155077. [PMID: 37716032 DOI: 10.1016/j.phymed.2023.155077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/08/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Autoimmune hepatitis (AIH) poses an important public health concern worldwide, with few therapeutic options available. Cornuside, a primary cornel iridoid glycoside present in Cornus officinalis Sieb. et Zucc., is a well-known traditional Chinese medicine that possesses anti-inflammatory, antioxidant and anti-apoptotic properties. However, the effects of cornuside on autoimmune diseases including AIH is still not defined, neither is clear on the mechanisms of cornuside in the suppression of inflammatory responses. PURPOSE The study was aimed to investigate the therapeutic effects of cornuside on AIH using murine models. STUDY DESIGN A murine model of AIH induced by concanavalin A (Con A) was used to examine the pharmacological activity of cornuside in suppressing the inflammatory responses in vivo. METHODS C57BL/6J mice were intravenously with different doses of cornuside and challenged with 18 mg/kg Con A 3 h later. Network pharmacological analysis was performed to identify the potential target genes and signaling pathways by cornuside in AIH. Next serum and liver tissues were collected 12 h after Con A injection to analyze the levels of markers for hepatic injury, apoptosis, oxidative stress, immune responses, and inflammation. RESULTS Network pharmacological analysis revealed that cornuside may modulate oxidative stress and apoptosis in AIH. Compared with the Con A group, cornuside pretreatment significantly reduced the serum levels of alanine aminotransferase and aspartate aminotransferase, improving histopathological damage and apoptosis in the livers. In addition, cornuside decreased the levels of malondialdehyde, myeloperoxidase, but increased superoxide dismutase levels, suggesting the relieving of oxidative stress. Furthermore, cornuside suppressed the activation of T and natural killer T cells, whereas the proportion of myeloid-derived suppressor cells was significantly increased. The production of proinflammatory cytokines, including interleukin (IL)-6, IL-12, IL-1β, and tumor necrosis factor-alpha (TNF-α), was also clearly decreased. Finally, western blot analysis displayed that cornuside inhibited the phosphorylation of extracellular receptor kinase (ERK) and c-Jun N-terminal kinase (JNK). CONCLUSIONS We demonstrated that cornuside has protective effects for Con A-induced immune-mediated hepatitis by suppressing the oxidative stress, apoptosis, and the inflammatory responses through the ERK and JNK signaling pathways, as well as by modulating the activation and recruitment of immune cells.
Collapse
Affiliation(s)
- Lin Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China; Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Yucai Xiao
- Cheeloo College of Medicine, Shandong University, Jinan, China; Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Changying Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Yuanbo Zhu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Zhihong Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Wenbo Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Chengduo Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Jie Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China.
| | - Dongmei Shi
- Cheeloo College of Medicine, Shandong University, Jinan, China; Laboratory of Medical Mycology, Department of Dermatology, Jining No.1 People's Hospital, Jining, China.
| |
Collapse
|
17
|
Ouyang F, Wang B, Wu Q, Yu N, Liu J, Li L, Xu Z, Lv L, Zeng X. Association of intravascular enhancement sign on 3D-T1W TSE with collateral status in middle cerebral artery occlusion stroke. Magn Reson Imaging 2023; 103:139-144. [PMID: 37507028 DOI: 10.1016/j.mri.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
OBJECTIVE The significance of the intravascular enhancement sign (IVES) on high-resolution magnetic resonance vascular wall imaging (HR-VWI) remains unclear. This study aimed to investigate the correlation between the IVES and collateral assessment derived from digital subtraction angiography (DSA). METHOD A total of 75 patients with occlusion of the first segment of the middle cerebral artery (MCA) who underwent HR-VWI and DSA examinations at our research institution between November 2016 and February 2023 were included. The number of vessels with IVES, IVES-Alberta Stroke Program Early Computed Tomography Score (ASPECTS), American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology (ASITN/SIR) collateral grade, and DSA collateral blood flow grade were retrospectively evaluated. Correlations between these indicators were assessed using Spearman's correlation. RESULTS Interrater agreement was good for the assessment of HR-VWI and DSA indicators. After adjustments for age, degree of wall enhancement, and hypertension, a multivariable ordinal logistic regression model identified both the number of IVES vessels (OR = 1.37; 95%CI [1.06-1.78]; P = 0.017) and IVES-ASPECTS (OR = 2.00; 95%CI [1.03-3.87]; P = 0.041) as independent predictors of ischemic stroke. In the patient group with acute ischemic stroke, we found weak correlations between the number of IVES vessels and the ASITN/SIR collateral grade (rho = -0.35; P = 0.002) and between the IVES-ASPECTS and ASITN/SIR collateral grade (rho = -0.27; P = 0.02). Moreover, there were strong correlations between the number of IVES vessels and the DSA collateral blood flow grade (rho = -0.74; P < 0.001) and between the IVES-ASPECTS and the DSA collateral blood flow grade (rho = -0.65; P < 0.001). The number of IVES vessels correlated strongly with the IVES-ASPECTS (rho = 0.92, P < 0.001). CONCLUSION We find that the IVES is closely associated with sluggish collateral blood flow, which further confirms the hemodynamic mechanism underlying the IVES in MCA occlusion.
Collapse
Affiliation(s)
- Feng Ouyang
- Department of Radiology, First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Bo Wang
- Department of Radiology, First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Qin Wu
- Department of Radiology, First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Nianzu Yu
- Department of Neurosurgery, First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Jie Liu
- Department of Radiology, First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Lin Li
- Department of Neurosurgery, First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Zihe Xu
- Department of Radiology, First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Lianjiang Lv
- Department of Radiology, First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Xianjun Zeng
- Department of Radiology, First Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China.
| |
Collapse
|
18
|
Jiang X, Zhang X, Cheng G, Liu J. Assessing the potential of red mud and dehydrated mineral mud mixtures as soil matrix for revegetation. J Environ Manage 2023; 344:118393. [PMID: 37384988 DOI: 10.1016/j.jenvman.2023.118393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/18/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023]
Abstract
The disposal of red mud (RM) and dehydrated mineral mud (DM) presents a significant challenge for the global alumina industry. This study proposes a novel disposal method for RM and DM, which uses mixtures of RM and DM as a soil matrix for revegetation in the mining area. RM mixed with DM effectively alleviated its salinity and alkalinity. X-ray diffraction analysis indicated that reduction of salinity and alkalinity may be due to the release of chemical alkali from sodalite and cancrinite. Applications of ferric chloride (FeCl3), gypsum, and organic fertilizer (OF) improved the physicochemical properties of the RM-DM mixtures. FeCl3 significantly reduced available Cd, As, Cr, and Pb content in the RM-DM, while OF significantly increased the cation exchange capacity, microbial carbon and nitrogen, and aggregate stability (p < 0.05). Micro-computed tomography and nuclear magnetic resonance analysis showed that amendment with OF and FeCl3 increased the porosity, pore diameter, and hydraulic conductivity in the RM-DM mixture. The RM-DM mixtures had low leaching of toxic elements, indicating low environmental risk. Ryegrass grew well in the RM-DM mixture at a ratio of 1:3. OF and FeCl3 significantly increased the ryegrass biomass (p < 0.05). These results suggested that RM-DM amended with OF and FeCl3 has a potential application in the revegetation of areas after bauxite mining.
Collapse
Affiliation(s)
- Xusheng Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Xuehong Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Guanwen Cheng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Jie Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin, 541004, China.
| |
Collapse
|
19
|
Zhang F, Xin J, Wu X, Liu J, Niu L, Wang D, Li X, Shao C, Li X, Liu Y. Floating metal phthalocyanine@polyacrylonitrile nanofibers for peroxymonosulfate activation: Synergistic photothermal effects and highly efficient flowing wastewater treatment. J Hazard Mater 2023; 459:132228. [PMID: 37557048 DOI: 10.1016/j.jhazmat.2023.132228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Highly efficient floating photocatalysis has potential applications in organic pollutant treatment but remains limited by low degradation efficiency in practical applications. By introducing the photothermal effect into a peroxymonosulfate (PMS) coupled photocatalysis system, tetracycline hydrochloride (TCH) degradation could be significantly enhanced using floating metal phthalocyanine@polyacrylonitrile (MPc@PAN) nanofiber mats. MPc@PAN nanofibers with different metal centers showed similar photothermal conversion performance but different activation energies for PMS activation, resulting in metal-center-dependent synergistic photothermal effects, i.e., light-enhanced dominated, thermal-enhanced dominated, and conjointly light-thermal dominated mechanisms. The porous structures and floating ability of the FePc@PAN nanofibers provided a fast mass transfer process, with higher solar energy utilization and superior photothermal conversion performance than the FePc nanopowders. Meanwhile, the FePc@PAN nanofibers showed excellent TCH removal stability within 10 cycles (>92%) and extremely low Fe ion leaching (<0.055 mg/L) in a dual-channel flowing wastewater treatment system. This work provides new insight into PMS activation via photothermal effects for environmental remediation.
Collapse
Affiliation(s)
- Fang Zhang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Jiayu Xin
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Xi Wu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Jie Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Luyao Niu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Dan Wang
- College of information technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, People's Republic of China
| | - Xinghua Li
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China.
| | - Changlu Shao
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China.
| | - Xiaowei Li
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| |
Collapse
|
20
|
Zhang Y, Liu J, Wang Y. Gray matter density changes in children with congenital severe sensorineural deafness: a voxel-based morphometric study. Neuroreport 2023; 34:728-733. [PMID: 37556586 DOI: 10.1097/wnr.0000000000001948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Early hearing loss could cause abnormal brain development, which has been linked to the complex process known as cross-modal neuroplasticity. However, previous studies investigating the brain structure of infants with congenital severe sensorineural hearing loss (CSSHL) are scarce and have yielded inconsistent results. This study aimed to further explore the gray matter (GM) density changes in children with CSSHL. Fifteen children aged 0-5 years with CSSHL and 11 healthy children as controls (aged 0-5 years) were recruited. Each participant underwent a structural MRI scan. The voxel-based morphometry method was performed to evaluate GM density for each participant and analyze their characteristics. It was discovered that: (1) GM density of the right superior temporal gyrus and caudate in the CSSHL group was smaller than that of healthy controls (HC). However, GM density was larger in the left posterior central gyrus, superior frontal gyrus, inferior parietal lobule and right cerebellum in the CSSHL group compared with HC. (2) The GM density value of the left superior frontal gyrus and inferior parietal lobule was negatively correlated with age. However, the GM density value of the right superior temporal gyrus in the CSSHL group was positively correlated with age. Compared with HC, the GM density of CSSHL children was larger in somatosensory areas (including left superior frontal gyrus, posterior central gyrus, inferior parietal lobule and right cerebellum), whereas GM density was smaller in auditory-related areas (such as the right superior temporal gyrus and caudate). Moreover, GM density change was influenced by the duration of hearing deprivation.
Collapse
|