1
|
Yang L, Wang J, Li CY, Wang MM, Liu JM, Wang S. An in-situ blocking strategy for improved anti-interference inspection of AFB1 based on hollow covalent organic framework capsules with commodious and undisturbed microenvironment. Food Chem 2024; 432:137208. [PMID: 37633150 DOI: 10.1016/j.foodchem.2023.137208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
This work proposed an in-situ blocking strategy for improved anti-interference and signal-amplified inspection of hazards via constructing hollow covalent organic framework (HCOF) capsules. An aptamer-FRET nanoprobe integrated with carbon dots and CuS was introduced into the micro-capsule as signal indicator to demonstrate the proof-of-concept. The HCOF was successfully prepared by removing the metal-organic frameworks (MOF) core from the MOF@COF that had been preloaded with the nanoprobes under mild conditions. Meanwhile, the hydrophobic surface of HCOF enhanced the adsorption and penetration of aflatoxin B1 (AFB1) into the capsule to interact with the nanoprobes. This strategy was applied to detect AFB1 in food samples, achieving a linear response of 1-300 nM along with a detection limit of 0.3 nM. Selectivity test verified that the prepared sensing platform could specifically recognize AFB1 without complex sample pretreatment. This study provides new ideas for improved anti-interference inspection of hazards against complex sample matrix.
Collapse
Affiliation(s)
- Lu Yang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Chun-Yang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Man-Man Wang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Shehzad Q, Liu Z, Zuo M, Wang J. The role of polysaccharides in improving the functionality of zein coated nanocarriers: Implications for colloidal stability under environmental stresses. Food Chem 2024; 431:136967. [PMID: 37604006 DOI: 10.1016/j.foodchem.2023.136967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
Zein has gained popularity over the past few years as an incredible food and bio-based materials. The potential functions and health benefits of zein microcapsules or micro-/nanoparticles in bioactive components delivery, structured emulsion, etc., have received great attention. However, the development has been limited by colloidal destabilization, especially when thermal processing is involved. There is a recent trend in developing zein-polysaccharide complexes (ZPCs), which has tremendously improved the performance of zein-based colloidal carrier systems or emulsions. Increasing our understanding of zein interactions and their contribution to the structure of various macromolecules can help us to develop novel biomaterials that can be used in food, agriculture, biomedicine, and cosmetics. In addition, these nanocarriers are suitable for the encapsulation and delivery of bioactive compounds which have positive perspective in food industry. Therefore, this article aimed to review recent advances in the ZPCs that can be applied to functional or health-promoting foods, with a focus on the characteristics of different ZPCs, factors and mechanisms affecting the stability (especially thermal stability) of these complexes, and their application in food industry as a carrier for BCs. Further, the stability of ZPCs based emulsions under processing and physiological environments, as well some typical effective methods are introduced. Also, the principal challenges and prospects were enumerated and discussed.
Collapse
Affiliation(s)
- Qayyum Shehzad
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China; National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing, China
| | - Zelong Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China.
| | - Min Zuo
- National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing, China.
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Gong P, Long H, Guo Y, Wang Z, Yao W, Wang J, Yang W, Li N, Xie J, Chen F. Chinese herbal medicines: The modulator of nonalcoholic fatty liver disease targeting oxidative stress. J Ethnopharmacol 2024; 318:116927. [PMID: 37532073 DOI: 10.1016/j.jep.2023.116927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants are a natural treasure trove; their secondary metabolites participate in several pharmacological processes, making them a crucial component in the synthesis of novel pharmaceuticals and serving as a reserve resource foundation in this process. Nonalcoholic fatty liver disease (NAFLD) is associated with the risk of progression to hepatitis and liver cancer. The "Treatise on Febrile Diseases," "Compendium of Materia Medica," and "Thousand Golden Prescriptions" have listed herbal remedies to treat liver diseases. AIM OF THE REVIEW Chinese herbal medicines have been widely used for the prevention and treatment of NAFLD owing to their efficacy and low side effects. The production of reactive oxygen species (ROS) during NAFLD, and the impact and potential mechanism of ROS on the pathogenesis of NAFLD are discussed in this review. Furthermore, common foods and herbs that can be used to prevent NAFLD, as well as the structure-activity relationships and potential mechanisms, are discussed. METHODS Web of Science, PubMed, CNKI database, Google Scholar, and WanFang database were searched for natural products that have been used to treat or prevent NAFLD in the past five years. The primary search was performed using the following keywords in different combinations in full articles: NAFLD, herb, natural products, medicine, and ROS. More than 400 research papers and review articles were found and analyzed in this review. RESULTS By classifying and discussing the literature, we obtained 86 herbaceous plants, 28 of which were derived from food and 58 from Chinese herbal medicines. The mechanism of NAFLD was proposed through experimental studies on thirteen natural compounds (quercetin, hesperidin, rutin, curcumin, resveratrol, epigallocatechin-3-gallate, salvianolic acid B, paeoniflorin, ginsenoside Rg1, ursolic acid, berberine, honokiol, emodin). The occurrence and progression of NAFLD could be prevented by natural antioxidants through several pathways to prevent ROS accumulation and reduce hepatic cell injuries caused by excessive ROS. CONCLUSION This review summarizes the natural products and routinely used herbs (prescription) in the prevention and treatment of NAFLD. Firstly, the mechanisms by which natural products improve NAFLD through antioxidant pathways are elucidated. Secondly, the potential of traditional Chinese medicine theory in improving NAFLD is discussed, highlighting the safety of food-medicine homology and the broader clinical potential of multi-component formulations in improving NAFLD. Aiming to provide theoretical basis for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hui Long
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yuxi Guo
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zhineng Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenbo Yao
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jing Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenjuan Yang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Nan Li
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jianwu Xie
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China.
| |
Collapse
|
4
|
Zhang M, Xu F, Cao J, Dou Q, Wang J, Wang J, Yang L, Chen W. Research advances of nanomaterials for the acceleration of fracture healing. Bioact Mater 2024; 31:368-394. [PMID: 37663621 PMCID: PMC10474571 DOI: 10.1016/j.bioactmat.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
The bone fracture cases have been increasing yearly, accompanied by the increased number of patients experiencing non-union or delayed union after their bone fracture. Although clinical materials facilitate fracture healing (e.g., metallic and composite materials), they cannot fulfill the requirements due to the slow degradation rate, limited osteogenic activity, inadequate osseointegration ability, and suboptimal mechanical properties. Since early 2000, nanomaterials successfully mimic the nanoscale features of bones and offer unique properties, receiving extensive attention. This paper reviews the achievements of nanomaterials in treating bone fracture (e.g., the intrinsic properties of nanomaterials, nanomaterials for bone defect filling, and nanoscale drug delivery systems in treating fracture delayed union). Furthermore, we discuss the perspectives on the challenges and future directions of developing nanomaterials to accelerate fracture healing.
Collapse
Affiliation(s)
- Mo Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Fan Xu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Jingcheng Cao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Qingqing Dou
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Juan Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Lei Yang
- Center for Health Sciences and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, PR China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| |
Collapse
|
5
|
Wang T, Liao C, Jiang Z, Wang J, Ma Y, Lin H, Zhang Y, Lv H, Zhang X, Hu Y, Yang Y, Zhou G. Ratiometric fluorescent sensor with large pseudo-Stokes shifts for precise sensing and imaging of pH without interferential background fluorescence. Talanta 2024; 266:125041. [PMID: 37556950 DOI: 10.1016/j.talanta.2023.125041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Endowing fluorescent pH sensors with large Stokes shifts promises to resolve interferential background fluorescence in practice, and yet few such method has been reported, owing to lack of luminescent materials with large Stokes shifts used in fluorescent sensors. Herein, we elaborately designed NaGdF4:Ce@NaGdF4:Nd@NaYF4:Eu core-double shells (CDS) lanthanide-doped fluoride nanoparticles (LFNPs), employing Gd3+-mediated energy migration and interfacial energy transfer to realize intense red and NIR emissions under 254 nm irradiation, and pseudo-Stokes shifts of which reached up to striking 361 nm and 610 nm, respectively. The CDS LFNPs collaborated with absorption-based pH indicator bromocresol green to from a novel fluorescent sensor film, and employing low-cost dual chip RGB-NIR camera to precisely record luminescence signals. On the basis of inner-filter effects, this senor system enabled accurate ratiometric read-out of pH value ranging from 5 to 6 (pKa ± 0.5), according to intensity ratios of pH-sensitive red emissions and referenced NIR emissions, avoiding common errors (e.g., fluctuant light sources). Notably, the large pseudo-Stokes shifts allowed red and NIR emissions far from the interfering background fluorescence possessing relatively small Stokes shifts, ensuring elevated signal-to-noise ratio and accurate pH determination. Therefore, the devised pH sensor system based on the CDS LFNPs exhibited sufficient accuracy in autofluorescent real samples (e.g., algae, serum), revealing a novel way of employing large pseudo-Stokes shifts to realize the background-free pH measurement and 2D imaging.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Chuan Liao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Zike Jiang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China.
| | - Jing Wang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Yanyan Ma
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China.
| | - Haitao Lin
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Yimeng Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Hongmin Lv
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Xiaonan Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Yimeng Hu
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Yingdong Yang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, PR China
| | - Guangjun Zhou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
6
|
Qin X, Liu X, Wang J, Chen H, Shen XC. A NIR ratiometric fluorescent probe for the rapid detection of hydrogen sulfide in living cells and zebrafish. Talanta 2024; 266:125043. [PMID: 37556949 DOI: 10.1016/j.talanta.2023.125043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Hydrogen sulfide (H2S) acts as a gas transporter and cell protector and plays a role in a number of disorders and signaling processes. Given that the half-life of H2S in biological systems is between seconds and minutes, the development of rapid and accurate technologies for reliable monitoring H2S levels and dynamics in organisms is critical. However, it is still difficult to design innovative near-infrared fluorescent probes that can quickly and accurately detect H2S. Here, we constructed a novel NIR ratiometric fluorescent probe based on the "aldehyde group auxiliary strategy", Cy-H2S, for the quantitative detection and precise imaging of H2S in living cells and zebrafish. Cy-H2S responded quickly (150 s) and was highly sensitive (0.179 μM) to H2S donor. Cy-H2S was further successfully employed to track endogenous H2S fluctuation in HCT116 cells and zebrafish and evaluated the release efficiency of the H2S prodrug in a NIR ratiometric imaging way. Cy-H2S has the potential to be used as a reliable indication of H2S levels in living cells and zebrafish, as well as an innovative and practical instrument for furthering the physiological research of H2S, which will encourage the creation of advanced NIR ratiometric probes for a variety of biological applications.
Collapse
Affiliation(s)
- Xue Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Xingyue Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Jing Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China.
| |
Collapse
|
7
|
Li H, Li H, Li X, Wang J, Wang P, Zhao M. Effects of preventive nursing based on quantitative evaluation on psychological state and maternal–infant outcome in patients with gestational diabetes mellitus. J Matern Fetal Neonatal Med 2023; 36:2183473. [PMID: 36987871 DOI: 10.1080/14767058.2023.2183473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
OBJECTIVE To explore the effects of preventive nursing based on quantitative evaluation on psychological state and maternal-infant outcome in patients with gestational diabetes mellitus (GDM), further, to provide a theoretical basis for the effective management of GDM patients in clinical work. METHODS From 1 February 2020 to 1 January 2021, 118 patients with GDM presenting to our hospital were included in this retrospective cohort study. According to the type of nursing care, patients were divided into study group and control groups. The study group consisted of 59 GDM patients who were given quantitative evaluation-based preventive nursing care. The control group included 59 GDM patients who were given routine nursing care. Outcome indicators included blood glucose level, degree of social support, resilience, coping style, and maternal-infant outcomes. RESULTS There was no significant difference between two groups in other baseline clinical characteristics (p > .05). After the intervention, fasting blood glucose (FBG), glycosylated hemoglobin (HbA1c), and 2 h postprandial blood glucose (2hPBG) levels were significantly lower in the study group than that in the control group (p < .05). The scores of objective support, subjective support, and social support utilization in the study group were significantly higher than those in the control group after intervention (p < .05). The scores of optimisms, self-strengthening and tenacity in the study group were significantly less than those in the control group (p < .05). The study group confrontation score was significantly higher, and the avoidance and acceptance scores were significantly lower, compared with the control group (p < .05). The maternal-infant outcome showed that the proportions of cesarean delivery, pregnancy-induced hypertension, polyhydramnios, premature delivery, hyperbilirubinemia, and neonatal hypoglycemia in the study group were significantly lower than those in the control group (p < .05). There was no significant difference in the incidence of postpartum hemorrhage and neonatal 5-min Apgar score between the two groups (p > .05). CONCLUSIONS In conclusion, preventive nursing based on quantitative assessment can effectively control the blood glucose level of GDM patients, improve their degree of social support, resilience, coping style, and maternal-infant outcomes, which is worthy of clinical application.
Collapse
|
8
|
Wang J, Qiao L, Liu B, Wang J, Wang R, Zhang N, Sun B, Chen H, Yu Y. Characteristic aroma-active components of fried green onion (Allium fistulosum L.) through flavoromics analysis. Food Chem 2023; 429:136909. [PMID: 37516048 DOI: 10.1016/j.foodchem.2023.136909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 07/31/2023]
Abstract
Green onion (Allium fistulosum L.) is a perennial herb with a characteristic allium aroma. Meanwhile, fried green onion oil has a rich flavor that is popular in traditional Chinese cuisine. In this work, the key aroma components of fried green onion oil were focused via flavoromics analysis. The oil samples had a low score of a green aroma but a high score of salty, greasy aromas. Whereafter, a total of 36 aroma-active substances with flavor dilution (FD) factors ranging from 1 to 6561 were identified in fried green onion oil, while 42 were detected in fried green onion residue with FD factors ranging from 1 to 19683. Additionally, the recombination and omission tests revealed that furaneol, dimethyl trisulfide, allyl methyl trisulfide, (E,E)-2,4-decadienal, etc., were the key aroma compounds in fried green onion oil. Furthermore, the observation of the reaction of thioethers at high temperatures revealed that dimethyl disulfide undergoes polymerization to form dimethyl trisulfide. The research results can provide a theoretical basis for the standardization and industrial production of Chinese cuisine.
Collapse
Affiliation(s)
- Jing Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Lina Qiao
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Bing Liu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Junyi Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Ruifang Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Ning Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology & Business University, Beijing 100048, China.
| | - Baoguo Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology & Business University, Beijing 100048, China.
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Yang Yu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| |
Collapse
|
9
|
Zhao Q, Wang J, Liu HB, Duan LH. Rhodamine derivative-functionalized mesoporous silica-Al 3+ hybrid material for fluorescence "turn-on" detection of tetracycline antibiotics in aqueous media. Spectrochim Acta A Mol Biomol Spectrosc 2023; 302:123068. [PMID: 37393676 DOI: 10.1016/j.saa.2023.123068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
The organic-inorganic hybrid material was prepared by embedding 2-amino-3',6'-bis(diethylamino)spiro[isoindoline-1,9'-xanthen]-3-one (RBH) onto mesoporous SBA-15 silica and coordinating it with Al3+ (RBH-SBA-15-Al3+). RBH-SBA-15-Al3+ was used for the selective and sensitive detection of tetracycline antibiotics (TAs) in aqueous media based on the binding site-signaling unit mechanism, in which Al3+ acted as the binding site and the fluorescence intensity at 586 nm as the response signal. The addition of TAs to RBH-SBA-15-Al3+ suspensions resulted in the formation of RBH-SBA-15-Al3+-TAs conjugates, which realized the electron transfer process and turned-on fluorescence signal at 586 nm. The detection limits for tetracycline (TC), oxytetracycline, and chlortetracycline were 0.06, 0.06, and 0.03 µM, respectively. Meanwhile, the detection of TC was feasible in real samples, such as tap water and honey. In addition, RBH-SBA-15 can operate as a TRANSFER logic gate by using Al3+ and TAs as input signals and the fluorescence intensity at 586 nm as output signal. This study proposes an efficient strategy for the selective detection of target analytes by introducing interaction sites (e.g. Al3+) with target analytes in the system.
Collapse
Affiliation(s)
- Qian Zhao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Jing Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| | - Hai-Bo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Long-Hui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
10
|
Xue X, Chen L, Zhao C, Lu M, Qiao Y, Wang J, Shi J, Chang L. Controllable preparation of Ti 3C 2T x/Ag composite as SERS substrate for ultrasensitive detection of 4-nitrobenzenethiol. Spectrochim Acta A Mol Biomol Spectrosc 2023; 302:123019. [PMID: 37385204 DOI: 10.1016/j.saa.2023.123019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Currently, metal carbonitride (MXene) has been identified as a hot research topic in the research area of surface-enhanced Raman scattering (SERS). In this study, Ti3C2Tx/Ag composite was fabricated as SERS substrate with different Ag contents. The fabricated Ti3C2Tx/Ag composites show good SERS behavior by detecting 4-Nitrobenzenethiol (4-NBT) probe molecules. Through calculation, the SERS enhancement factor (EF) of the Ti3C2Tx/Ag substrate was as high as 4.15 × 106. It is worth noting that the detection limit of 4-NBT probe molecules can be achieved ultralow concentration of 10-11 M. In this system, electromagnetic enhancement mechanism and chemical enhancement mechanism have synergistic effects on SERS phenomenon. Meanwhile, the Ti3C2Tx/Ag composite substrate exhibited good SERS reproducibility. In addition, the SERS detection signal hardly changed after 6 months of natural standing, and the substrate showed good stability. This work suggests that the Ti3C2Tx/Ag substrate could be used as a sensitivity SERS sensor for practical application, and could be applied in the field of environmental monitoring.
Collapse
Affiliation(s)
- Xiangxin Xue
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China.
| | - Lei Chen
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Cuimei Zhao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Ming Lu
- Key Laboratory of Functional Materials Physics and Chemistry (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Yu Qiao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Jing Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Jinghui Shi
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Limin Chang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China.
| |
Collapse
|
11
|
Wu L, Zhang Y, Jiang Q, Zhang Y, Ma L, Ma S, Wang J, Ma Y, Du M, Li J, Gao Y. Study on CAT activity of tomato leaf cells under salt stress based on microhyperspectral imaging and transfer learning algorithm. Spectrochim Acta A Mol Biomol Spectrosc 2023; 302:123047. [PMID: 37392532 DOI: 10.1016/j.saa.2023.123047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/15/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
Salt stress easily leads to oxidative stress and promotes the catalase (CAT) response in tomato leaves. For the changes in catalase activity in leaf subcells, there is a need for a visual in situ detection method and mechanism analysis. This paper, taking catalase in leaf subcells under salt stress as the starting point, describes the use of microscopic hyperspectral imaging technology to dynamically detect and study catalase activity from a microscopic perspective, and lay the theoretical foundation for exploring the detection limit of catalase activity under salt stress. In this study, a total of 298 microscopic images were obtained under different concentrations of salt stress (0 g/L, 1 g/L, 2 g/L, 3 g/L) in the spectral range of 400-1000 nm. With the increase in salt solution concentration and the advancement of the growth period, the CAT activity value increased. Regions of interest were extracted according to the reflectance of the samples, and the model was established by combining CAT activity. The characteristic wavelength was extracted by five methods (SPA, IVISSA, IRFJ, GAPLSR and CARS), and four models (PLSR, PCR, CNN and LSSVM) were established according to the characteristic wavelengths. The results show that the random sampling (RS) method was better for the selection samples of the correction set and prediction set. Raw wavelengths are optimized as the pretreatment method. The partial least-squares regression model based on the IRFJ method is the best, and the coefficient of correlation (Rp) and root mean square error of the prediction set (RMSEP) are 0.81 and 58.03 U/g, respectively. According to the ratio of microarea area to the area of the macroscopic tomato leaf slice, the Rp and RMSEP of the prediction model for the detection of microarea cells are 0.71 and 23.00 U/g, respectively. Finally, the optimal model was used for quantitative visualization analysis of CAT activity in tomato leaves, and the distribution of CAT activity was consistent with its color trend. The results show that it is feasible to detect the CAT activity in tomato leaves by microhyperspectral imaging combined with stoichiometry.
Collapse
Affiliation(s)
- Longguo Wu
- School of Wine & Horticulture, Ningxia University, Yinchuan 750021, China; Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan 750021, China.
| | - Yao Zhang
- Key Laboratory of Quality and Safety of Wolfberry and Wine for State Administration for Market Regulation, Ningxia Food Testing and Research Institute, Yinchuan 750004, China
| | - Qiufei Jiang
- Ningxia Hui Autonomous Region Animal Husbandry Workstation, Yinchuan 750021, China
| | - Yiyang Zhang
- School of Wine & Horticulture, Ningxia University, Yinchuan 750021, China
| | - Ling Ma
- School of Wine & Horticulture, Ningxia University, Yinchuan 750021, China
| | - Siyan Ma
- School of Wine & Horticulture, Ningxia University, Yinchuan 750021, China
| | - Jing Wang
- School of Wine & Horticulture, Ningxia University, Yinchuan 750021, China
| | - Yan Ma
- School of Wine & Horticulture, Ningxia University, Yinchuan 750021, China
| | - Minghua Du
- School of Wine & Horticulture, Ningxia University, Yinchuan 750021, China
| | - Jianshe Li
- School of Wine & Horticulture, Ningxia University, Yinchuan 750021, China; Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan 750021, China.
| | - Yanming Gao
- School of Wine & Horticulture, Ningxia University, Yinchuan 750021, China; Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan 750021, China
| |
Collapse
|
12
|
Bian A, Ye X, Wang J, Zeng M, Liu J, Liu K, Ning S, Cui Y, Tang S, Xu X, Yuan Y, Su Z, Lu Y, Zhou J, Ma X, Yang G, Huang Y, Chen F, Yu Y, Gu M, Lv X, Wang L, Zhao J, Wang X, Liang N, Xing C, Qin L, Wang N. Therapeutic effects and mechanism of human amnion-derived mesenchymal stem cells on hypercoagulability in a uremic calciphylaxis patient. Ren Fail 2023; 45:2218483. [PMID: 37293809 DOI: 10.1080/0886022x.2023.2218483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Calciphylaxis is a rare cutaneous vascular disease that manifests with intolerable pains, non-healing skin wounds, histologically characterized by calcification, fibrointimal hyperplasia, and microvessel thrombosis. Currently, there are no standardized guidelines for this disease. Recent studies have recognized a high prevalence of thrombophilias and hypercoagulable conditions in calciphylaxis patients. Here, we report a case of uremic calciphylaxis patient whom was refractory to conventional treatments and then received a salvage strategy with intravenous and local hAMSC application. In order to investigate the therapeutic mechanism of hAMSCs from the novel perspective of hypercoagulability, coagulation-related indicators, wound status, quality of life and skin biopsy were followed up. Polymerase chain reaction (PCR) was performed to determine the distribution of hAMSCs in multiple tissues including lung, kidney and muscle after infusion of hAMSCs for 24 h, 1 week and 1 month in mice aiming to investigate whether hAMSCs retain locally active roles after intravenous administration. Improvement of hypercoagulable condition involving correction of platelet, D-dimer and plasminogen levels, skin regeneration and pain alleviation were revealed after hAMSC administration over one-year period. Skin biopsy pathology suggested regenerative tissues after 1 month hAMSC application and full epidermal regeneration after 20 months hAMSC treatment. PCR analysis indicated that hAMSCs were homing in lung, kidney and muscle tissues of mice even until tail vein injection of hAMSCs for 1 month. We propose that hypercoagulability is a promising therapeutic target of calciphylaxis patients, which can be effectively improved by hAMSC treatment.
Collapse
Affiliation(s)
- Anning Bian
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Xiaoxue Ye
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Jing Wang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Ming Zeng
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, Center of Stem Cell Research and Clinical Practice, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Kang Liu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Song Ning
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, Center of Stem Cell Research and Clinical Practice, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, Center of Stem Cell Research and Clinical Practice, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Shaowen Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Jiangning District, Nanjing, People's Republic of China
| | - Xueqiang Xu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Yanggang Yuan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Zhonglan Su
- Department of Dermatology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yan Lu
- Department of Dermatology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jing Zhou
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, Center of Stem Cell Research and Clinical Practice, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Xiang Ma
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, Center of Stem Cell Research and Clinical Practice, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Guang Yang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Yaoyu Huang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Feng Chen
- Department of Forensic Medicine, School of Basic Medical Sciences, Nanjing Medical University, Jiangning District, Nanjing, People's Republic of China
| | - Youjia Yu
- Department of Forensic Medicine, School of Basic Medical Sciences, Nanjing Medical University, Jiangning District, Nanjing, People's Republic of China
| | - Mufeng Gu
- Department of Human Anatomy, School of Basic Medical Sciences, Nanjing Medical University, Jiangning District, Nanjing, People's Republic of China
| | - Xiaolin Lv
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Ling Wang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Jing Zhao
- Department of Outpatient Treatment Clinic, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Xiuqin Wang
- Department of International Cooperation, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Ningxia Liang
- Academy of Clinical and Translational Research, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Changying Xing
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, Center of Stem Cell Research and Clinical Practice, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Ningning Wang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| |
Collapse
|
13
|
Liu XY, Wang YH, Wang J, Quan JK, Li XD, Guan KP. The role of CSE1L silencing in the regulation of proliferation and apoptosis via the AMPK/mTOR signaling pathway in chronic myeloid leukemia. Hematology 2023; 28:1-9. [PMID: 36652402 DOI: 10.1080/16078454.2022.2161201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Chromosome segregation 1-like (CSE1L) is abundant and strongly expressed in solid tumors. However, the expression and role of CSE1L in chronic myeloid leukemia(CML) remain largely unknown. MATERIALS AND METHODS The relative expression levels of CSE1L in bone marrow granulocytes from patients with primary CML and non-hematologic controls were measured by flow cytometry. Cell counting kit-8 analysis, DNA Content Quantitation Assay, and Annexin V-PE/7-AAD staining were applied to assess the effects of CSE1L knockdown on cell proliferation, cell cycle progression, and apoptosis. RESULTS Elevated expression of CSE1L was detected in bone marrow granulocytes of patients with primary CML. In the CML cell line K562 cells, CSE1L knockdown impaired cell proliferation blocked the cell cycle shift from G0/G1 phase to the S phase, and promoted apoptosis. Knockdown of CSE1L reduced Bcl-2 protein expression and increased Bax protein expression. Meanwhile, knockdown of CSE1L enhanced the expression of phospho-AMPK protein and decreased the expression of phospho-mTOR protein. The expression of total AMPK and mTOR proteins was not affected. In addition, CSE1L expression levels were decreased in imatinib-treated K562 cells. CONCLUSIONS CSE1L plays a pivotal role in K562 cell survival and growth. These functions may be partially dependent on the AMPK/mTOR signaling pathway to achieve. In addition, CSE1L may have had a future impact on the treatment of CML patients.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yong-Hong Wang
- Laboratory Department, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jing Wang
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Ji-Kun Quan
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xu-Dong Li
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Kun-Ping Guan
- Laboratory Department, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
14
|
Yan C, He X, Qi R, Cao L, Zheng S, Huang C, Yang P, Wang J, Zhu M, Li S, Dong G, Jing H, Zhang W, Liu X. Prediction and prognostic potential of NR3C1 gene expression level in DLBCL patients. Hematology 2023; 28:2251199. [PMID: 37650932 DOI: 10.1080/16078454.2023.2251199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Objective: Diffuse Large B-Cell Lymphoma (DLBCL) is a common and frequently occurring subtype of Non-Hodgkin Lymphoma (NHL). The effective treatment and prognosis of DLBCL are still urgently needed to be explored. This article aims to shed light on the connection between DLBCL survival and NR3C1 expression levels. Methods: First, we divided the 952 DLBCL patients into an NR3C1 high-expression group and an NR3C1 low-expression group and compared the baseline characteristics of the two groups. Second, we used multivariate analysis to predict the dependent variable for age, pathology, ECOG score, lactate dehydrogenase (LDH) ratio, and NR3C1 expression level. Finally, we analyzed the progression-free survival (PFS) and overall survival rate (OS) of DLBCL patients with high or low NR3C1 expression. Results: DLBCL patients with high NR3C1 expression had a better prognosis than those with low NR3C1 expression (OS, P < 0.0001). In DLBCL patients of CHOP therapy, high NR3C1 expression was associated with a good survival prognosis in OS (OS, P = 0.028). Conclusion: In multivariate analysis, NR3C1 high expression was an independent prognostic factor that predicted a longer OS of DLBCL (OS, P = 0.0003). NR3C1 is considered an independent predictor of DLBCL patients and can be used as a biomarker for the prognosis of DLBCL.
Collapse
Affiliation(s)
- Changjian Yan
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, People's Republic of China
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Xue He
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ruiying Qi
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Ling Cao
- Nanyang Second General Hospital, Nanyang, People's Republic of China
| | - Siping Zheng
- Gannan Medical University, Ganzhou, People's Republic of China
| | - Chunyuan Huang
- Gannan Medical University, Ganzhou, People's Republic of China
| | - Ping Yang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Jing Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Mingxia Zhu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Shaoxiang Li
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hongmei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Xiaoni Liu
- Department of Respiratory Medicine, First Affiliated Hospital Gannan Medical University, Ganzhou, People's Republic of China
| |
Collapse
|
15
|
Zhou Y, Deng Y, Wang J, Yan Z, Wei Q, Ye J, Zhang J, He TC, Qiao M. Effect of antibiotic monensin on cell proliferation and IGF1R signaling pathway in human colorectal cancer cells. Ann Med 2023; 55:954-964. [PMID: 36896461 DOI: 10.1080/07853890.2023.2166980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND/AIMS Colorectal cancer is the third leading cause of death in patients with cancers in America. Monensin has represented anti-cancer effect on various human cancer cells. We seek to investigate the effect of monensin on proliferation of human colorectal cancer cells and explore whether IGF1R signaling pathway is involved in anti-cancer mechanism of monensin. METHODS Cell proliferation and migration were assessed by crystal violet staining and cell wounding assay respectively. Cell apoptosis was analyzed by Hoechst 33258 staining and flow cytometry. Cell cycle progression was detected with the use of flow cytometry. Cancer-associated pathways were assessed with the use of pathway-specific reporters. Gene expression was detected by touchdown-quantitative real-time PCR. Inhibition of IGF1R was tested by immunofluorescence staining. Inhibition of IGF1R signaling was accomplished by adenovirus-mediated expression of IGF1. RESULTS We found that monensin not only effectively inhibited cell proliferation, cell migration as well as cell cycle progression, but also induced apoptosis and G1 arrest in human colorectal cancer cells. Monensin was shown to target multiple cancer-related signaling pathways such as Elk1, AP1, as well as Myc/max, and suppressed IGF1R expression via increasing IGF1 in colorectal cancer cells. CONCLUSION Monensin could suppressed IGF1R expression via increasing IGF1 in colorectal cancer cells. It has the potential to be repurposed as an anti-colorectal cancer agent, but further studies are still required to investigate the detailed mechanisms of monensin underlying its anti-cancer motion.Key MessagesMonensin inhibits the cell proliferation and the migration, induces apoptosis and inhibits cell cycle progression in human colorectal cancer cells.Monensin may exert anti-cancer activity by targeting multiple signaling pathways, including the IGF1R signaling pathway.Monensin has the potential to be repurposed as an anti-colorectal cancer agent.
Collapse
Affiliation(s)
- Youping Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Youlin Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jing Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Zhengjian Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Qiang Wei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Junhui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Min Qiao
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
16
|
Li F, Ye X, Yang G, Huang H, Bian A, Xing C, Tang S, Zhang J, Jiang Y, Chen H, Yin C, Zhang L, Wang J, Huang Y, Zhou W, Wan H, Zha X, Zeng M, Wang N. Relationships between blood bone metabolic biomarkers and anemia in patients with chronic kidney disease. Ren Fail 2023; 45:2210227. [PMID: 37170583 PMCID: PMC10184590 DOI: 10.1080/0886022x.2023.2210227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] |