1
|
Zhou YM, Dong XR, Xu D, Tang J, Cui YL. Therapeutic potential of traditional Chinese medicine for interstitial lung disease. J Ethnopharmacol 2024; 318:116952. [PMID: 37487964 DOI: 10.1016/j.jep.2023.116952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Interstitial lung disease (ILD) is a chronic lung dysfunction disease with a poor prognosis and poor recovery. The clinically used therapeutic drugs, such as glucocorticoids and immunosuppressants, have no significant therapeutic effect and are accompanied with severe side effects. In recent years, considerable progress has been made in exploring and applying natural herb components for treating ILD. Traditional Chinese Medicine (TCM) possesses innate, non-toxic characteristics and offers advantages in preventing and treating pulmonary ailments. However, a comprehensive study of TCM on ILD therapy has not yet been reviewed. AIM OF THE REVIEW This review aimed to provide a comprehensive summary of the monomer components, total extracts, and prescriptions of TCM for ILD therapy, elucidating their molecular mechanisms to serve as a reference in treating ILD. MATERIALS AND METHODS The literature information was searched in the PubMed, Web of Science databases. The search keywords included 'interstitial lung disease', 'lung fibrosis' or 'pulmonary fibrosis', and 'traditional Chinese medicine', 'traditional herbal medicine', or 'herb medicine'. RESULTS The active components of single herbs, such as alkaloids, flavonoids, terpenoids, phenols, and quinones, have potential therapeutic effects on ILD. The active extracts and prescriptions were also summarized and analyzed. The herbs, Glycyrrhiza uralensis Fisch. (Gancao), Astragalus membranaceus Fisch. Bunge. (Huangqi) and Angelicasinensis (Oliv.) Diels (Danggui), play significant roles in the treatment of ILD. The mechanisms involve the inhibition of inflammatory factor release, anti-oxidative injury, and interference with collagen production, etc. CONCLUSION: This review examines the therapeutic potential of TCM for ILD and elucidates its molecular mechanisms, demonstrating that mitigating inflammation and oxidative stress, modulating the immune system, and promoting tissue repair are efficacious strategies for ILD therapy. The depth research will yield both theoretical and practical implications.
Collapse
Affiliation(s)
- Yan-Ming Zhou
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China
| | - Xin-Ran Dong
- The Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Dong Xu
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China.
| | - Jie Tang
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China.
| |
Collapse
|
2
|
Kim WJ, Kim W, Kim Y, Cheong H, Kim SJ. Coordinated recruitment of conserved defense-signaling pathways in PVY O-Infected Nicotiana benthamiana. Plant Signal Behav 2023; 18:2252972. [PMID: 37655790 PMCID: PMC10478736 DOI: 10.1080/15592324.2023.2252972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Potato virus Y (PVY) is an aphid-transmitted potyvirus that affects economically important solanaceous species. In this study, the phenomena and mechanisms following infection with PVY were investigated in tobacco (Nicotiana benthamiana). In tobacco plants, infection with a mild strain of PVY (PVYO) induced stunted growth in the first two leaves at the shoot apex starting 7 days post-infection (dpi), and mosaic symptoms began to appear on newly developing young leaves at 14 dpi. Using enzyme-linked immunosorbent assay and ultrastructure analysis, we confirmed that viral particles accumulated only in the upper developing leaves of infected plants. We analyzed reactive oxygen species (ROS) generation in leaves from the bottom to the top of the plants to investigate whether delayed symptom development in leaves was associated with a defense response to the virus. In addition, the ultrastructural analysis confirmed the increase of ATG4 and ATG8, which are autophagy markers by endoplasmic reticulum (ER) stress, and the expression of genes involved in viral RNA suppression. Overall, our results suggested that viral RNA silencing and induced autophagy may play a role in the inhibition of viral symptom development in host plants in response to PVYO infection.
Collapse
Affiliation(s)
- Won-Jin Kim
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Woong Kim
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
| | - Youngsoon Kim
- Plant Cell Research Institute of BIO-FD&C, Co., Ltd., Incheon, Republic of Korea
| | - Hyeonsook Cheong
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
| | - Seok-Jun Kim
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
- Institute of Well-Aging Medicare, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Ormanli E, Amca Uluturk B, Bozdogan N, Bayraktar O, Tavman S, Kumcuoglu S. Development of a novel, sustainable, cellulose-based food packaging material and its application for pears. Food Chem 2023; 429:136719. [PMID: 37454622 DOI: 10.1016/j.foodchem.2023.136719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/17/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
This study aimed to develop a cellulose-based active food packaging material using paper, a biodegradable, sustainable, recyclable, renewable, and relatively low-cost material. For electrospray coating, fulvic acid (FA), which has antioxidant and antimicrobial properties, and sericin (S) were used as an active agent and a carrier medium, respectively. Solutions prepared at various concentrations and ratios of FA and S were analyzed, the properties of the active packaging material were examined, and the effect on the quality of pears was studied. The optimum conditions of electrospraying for minimum droplet size and maximum antibacterial effect were 0.8 g/mL concentration of solutions, 1:1 FA:S ratio, 20 kV voltage, 0.75 mL/h flow rate, and 23 cm collector-needle tip distance. FA had static, lethal, and inhibitory effects on Pseudomonas syringae and P. digitatum, the common pathogenic microorganisms on pears. The antioxidant activity of FA was higher than that of S (872.96 mM vs. 239.36 mM). At the end of the 90-day storage period, pears stored in the active packaging material at 7 °C and 90% RH showed better preserved color and texture, matured later, had a lower antimicrobial load, and were more appreciated in sensory evaluation than other samples.
Collapse
Affiliation(s)
- Ebru Ormanli
- Department of Food Engineering, Graduate School of Natural and Applied Sciences, Ege University, 35100 İzmir, Türkiye
| | - Buket Amca Uluturk
- Department of Food Engineering, Graduate School of Natural and Applied Sciences, Ege University, 35100 İzmir, Türkiye
| | - Neslihan Bozdogan
- Department of Food Engineering, Graduate School of Natural and Applied Sciences, Ege University, 35100 İzmir, Türkiye
| | - Oguz Bayraktar
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 İzmir, Türkiye
| | - Sebnem Tavman
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100 İzmir, Türkiye
| | - Seher Kumcuoglu
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100 İzmir, Türkiye.
| |
Collapse
|
4
|
Taha M, Elazab ST, Abdelbagi O, Saati AA, Babateen O, Baokbah TAS, Qusty NF, Mahmoud ME, Ibrahim MM, Badawy AM. Phytochemical analysis of Origanum majorana L. extract and investigation of its antioxidant, anti-inflammatory and immunomodulatory effects against experimentally induced colitis downregulating Th17 cells. J Ethnopharmacol 2023; 317:116826. [PMID: 37348796 DOI: 10.1016/j.jep.2023.116826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Origanum majorana L. is a member of the Lamiaceae family and is commonly used in Egyptian cuisine as a seasoning and flavor enhancer. It is also recognized as a well-known traditional medicine in Egypt and is widely used for treating abdominal colic due to its antispasmodic properties. However, the protective effects of Origanum majorana L. against ulcerative colitis and its underlying mechanisms remain unclear. AIM OF THE STUDY This study aimed to identify the biologically active components present in methanol extracts of Origanum majorana L. using gas chromatography/mass spectrometry (GC/MS). Additionally, it aimed to investigate the therapeutic effects of these extracts on acetic acid-induced ulcerative colitis and elucidate the potential mechanisms involved. MATERIALS AND METHODS We conducted a GC-MS analysis of the methanolic extract obtained from Origanum majorana L. Thirty-two male rats were included in the study and divided into four experimental groups, with eight rats in each group: sham, UC, UC + O. majorana, and UC sulfasalazine. After euthanizing the rats, colon tissue samples were collected for gross and microscopic examinations, assessment of oxidative stress, and molecular evaluation. GC-MS analysis identified 15 components in the extracts. Pretreatment with O. majorana L. extract and sulfasalazine significantly improved the disease activity index (DAI) and resulted in notable improvements in macroscopic and microscopic colon findings. Additionally, both treatments demonstrated preventive effects against colonic oxidative damage by reducing the levels of malondialdehyde (MDA) and increasing the levels of the antioxidant systems superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), which operate through the Nrf2/HO-1 signaling pathway. Moreover, these treatments downregulated the colonic inflammatory cascade by inhibiting NFκB, TNFα, IL-1β, IL6, IL23, IL17, COX-2, and iNOS, subsequently leading to downregulation of the JAK2/STAT3 signaling pathway and a decrease in the Th17 cell response. Furthermore, a reduction in the number of apoptotic epithelial cells that expressed caspase-3 was observed. CONCLUSION pretreatment with O. majorana L. extract significantly ameliorated acetic acid-induced ulcerative colitis. This effect could be attributed to the protective, antioxidant, anti-inflammatory, and anti-apoptotic properties of the extract.
Collapse
Affiliation(s)
- Medhat Taha
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt; Department of Anatomy, Al- Qunfudah Medical College, Umm Al-Qura University, Al-Qunfudhah, 28814, Saudi Arabia.
| | - Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Omer Abdelbagi
- Department of Pathology, Qunfudah Faculty of Medicine, Umm-Al-Qura University, Kingdom of Saudi Arabia, Makka, 24382, Saudi Arabia
| | - Abdullah A Saati
- Department of Community Medicine and Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Makkah, 24382, Saudi Arabia
| | - Omar Babateen
- Department of Physiology, Faculty of Medicine, Umm Al-Qura University, Makkah, 24382, Saudi Arabia
| | - Tourki A S Baokbah
- Department of Medical Emergency Services, College of Health Sciences-AlQunfudah, Umm Al-Qura University, Al-Qunfudah, 28814, Saudi Arabia
| | - Naeem F Qusty
- Medical Laboratories Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 24382, Saudi Arabia
| | - Mohamed Ezzat Mahmoud
- Histology Department, Damietta Faculty of Medicine, Al-Azhar University, Damietta, 34711, Egypt
| | - Mohie Mahmoud Ibrahim
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Alaa M Badawy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
5
|
Nataraj G, Jagadeesan G, Manoharan AL, Muniyandi K, Sathyanarayanan S, Thangaraj P. Ipomoea pes-tigridis L. extract accelerates wound healing in Wistar albino rats in excision and incision models. J Ethnopharmacol 2023; 317:116808. [PMID: 37343652 DOI: 10.1016/j.jep.2023.116808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE An annual herb, Ipomoea pes-tigridis L. (Convolvulaceae) is widely used for its anti-inflammatory and anti-spasmodic properties in traditional medicine. As well as treating wounds, fever, skin disorders, and other ailments, it is also used for other purposes. AIM OF THE STUDY This study investigated polyphenolic content, antioxidant activity, RP-HPLC, wound healing, and antioxidant enzyme activity. In terms of I. pes-tigridis potential for healing wounds, there is no scientific data available. Hence this study is designed to use animal models to investigate the ethnopharmacological report. MATERIALS METHODS The crude extracts of stem and leaf were subjected to phytochemicals, TPC, TTC, TFC, and free radical scavenging assays (DPPH, ABTS, etc). Excision and incision models were used to assess wound healing using the screened extracts (IPLEA, IPLM, IPSEA, and IPSM). Various tissue parameters (hydroxyproline, hexosamine, hexuronic acid content), as well as antioxidant enzyme activity (SOD, Catalase, GPX, LPO), were also examined. RESULTS The maximum amount of polyphenolic content was found in IPLM (TPC- 118.86 ± 5.94 mg GAE/g, TTC - 75.25 ± 2.64 mg TAE/g, and TFC-25.73 ± 0.99 mg GAE/g) with significant IC50 value of 1.65 ± 0.87 μg/mL among all the extracts. Coumaric acid was reported high (92.86 mg/g) in RP-HPLC analysis of crude extract in IPLEA. The in vivo excision wound healing model revealed that 1% IPLM had better healing property with the maximum wound healing area (0.098 ± 0.03 cm) and wound concentration (95.56 ± 1.95%) was reported with the significance level of ***P < 0.001, **P < 0.01, *P < 0.05. In the incision model, IPLM represented maximum tensile strength (27500 gf). A significant functional effect of the granulation tissue parameters and enzyme antioxidants on the wound-healed area of dry tissue was also observed. Finally, the histopathological analysis showed enhanced re-epithelialization, fibroblast proliferation, and collagen synthesis in wound-treated animal tissue in both models. CONCLUSION According to the present study, antioxidant-rich I. pes-tigridis promotes healthy cell regeneration while reducing inflammation and oxidative stress for wound healing. Additionally, it also enhances circulation and promotes healing.
Collapse
Affiliation(s)
- Gayathri Nataraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Gayathri Jagadeesan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India; BRAINS Research Group, Department of Neurology, McGovern Medical School, The University of Texas Health Science at Houston 6431 Fannin St., Houston, TX, 77030, USA
| | - Ashwini Lydia Manoharan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Kasipandi Muniyandi
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India; Department of Postharvest Science, Agricultural Research Organisation, The Volcani Center, HaMaccabim Rd 68, POB 15159, Rishon LeZion, 7528809, Israel
| | | | - Parimelazhagan Thangaraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
6
|
Yernale NG, Suliphuldevara Mathada B, Shivprasad S, Hiremath S, Karunakar P, Venkatesulu A. Spectroscopic, theoretical and computational investigations of novel benzo[b]thiophene based ligand and its M(II) complexes: As high portentous antimicrobial and antioxidant agents. Spectrochim Acta A Mol Biomol Spectrosc 2023; 302:123114. [PMID: 37454435 DOI: 10.1016/j.saa.2023.123114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
The reaction of 3-chlorobenzo[b]thiophene-2-carbohydrazide with 4-(diethylamino) salicylaldehyde gave the new ligand; 3-chloro-N'-(4-(diethylamino)-2-hydroxybenzylidene)-benzo[b]thiophene-2-carbohydrazide. The Cu(II), Co(II), Ni(II), and Zn(II) complexes have been successfully prepared. The ligand and the complexes were characterized by analytical, FT-IR, 1H NMR, mass, UV-visible spectroscopy, molar conductivity, and magnetic susceptibility measurements. The FT-IR spectral data showed that the ligand adopted a tridentate fashion when binding with the metal ions via the nitrogen atoms of the imine (C = N), carboxyl (C = O), and phenolic oxygen (O-H) donor atoms. Density Functional Theory (DFT) estimations for the ligand at the DFT/B3LYP level via 6-31G++ (d, p) replicate the structure and geometry. Finally, HOMO and LUMO analyses were used for the charge transfer interface of the structure. Furthermore, molecular docking and ADME calculations were also performed to correlate and interpret the experimental results. The antimicrobial activity study illustrated enhancement in the activity of the free ligand upon complex formation, and the Cu(II) complex (MIC 25 µg mL-1) may be considered a promising antibacterial agent, and the Ni(II) and Zn(II) complexes (MIC 25 µg mL-1) as promising antifungal agents. Also, synthesized Cu(II) and Zn(II) metal complexes (MIC 3.125 µg mL-1) showed promising anti-TB activity against M. tuberculosis. Further, benzo[b]thiophene-based ligand and its metal complexes were evaluated for in vitro antioxidant activity, and in silico docking studies were carried out against Cytochrome c Peroxidase (PDB ID: 2X08).
Collapse
Affiliation(s)
| | | | - Swami Shivprasad
- Department of Chemistry, Guru Nanak First Grade College, Bidar, Karnataka, India
| | - Sunilkumar Hiremath
- Department of Chemistry, Guru Nanak First Grade College, Bidar, Karnataka, India
| | - Prashantha Karunakar
- Department of Biotechnology, Dayananda Sagar College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi), Kumaraswamy Layout, Bangalore 560111, Karnataka, India
| | - Adavala Venkatesulu
- Department of PG Studies and Research Centre in Physics, Govt. First Grade College, Hosakote, Bangalore Rural, Karnataka, India
| |
Collapse
|
7
|
Zhang S, Li Q, Zhang S. Neural regeneration ability of Polypyrrole-Collagen-Quercetin composite in the spinal cord injury. Regen Ther 2023; 24:85-93. [PMID: 37334243 PMCID: PMC10275702 DOI: 10.1016/j.reth.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 06/20/2023] Open
Abstract
Spinal cord injury (SCI) is a major clinical problem in young patients. The major hurdle in SCI regeneration is the replacement of lost nerve communication signals due to injury. Here we have prepared a biocompatible electrical conductive composite such as Collagen-Polypyrrole combined with Quercetin (Col-PPy-Qur) composite. The prepared composites are characterized for their chemical functionality and morphology by the FTIR and SEM & TEM analysis, respectively. The Col-PPy-Qur composite observed electrical conductivity at 0.0653 s/cm due to the conductive Polypyrrole polymer present in the composite. The Col-PPy-Qur composite exhibits a mechanical strength of 0.1281 mPa, similar to the native human spinal cord's mechanical strength. In order to explore the regeneration potential, the viability of the composite has been tested with human astrocyte cells (HACs). The Tuj1 and GFAF marker expression was quantized by RT-PCR analysis. Increased Tuj1 and decreased GFAF expression by the Col-PPy-Qur composite indicated the potential differentiation ability of the HACs into neuron cells. The results indicated that the Col-PPy-Qur composite could have good regeneration and differentiation ability, better biocompatibility, and suitable mechanical and conductivity properties. It can act as an excellent strategy for spinal cord regeneration in the nearer future.
Collapse
Affiliation(s)
- Song Zhang
- Department of Neurosurgery, Hangzhou Children's Hospital, Hangzhou Normal University, Hangzhou City, Zhejiang Province, China
| | - Qifeng Li
- Department of Neurosurgery, Hangzhou Children's Hospital, Hangzhou Normal University, Hangzhou City, Zhejiang Province, China
| | - Song Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| |
Collapse
|
8
|
Xu Y, Zhao Z, Geng Z, Zhou H, Yang C, Wang Y, Kuerban B, Xiao Y, Luo G. Enhancement of recombinant human interleukin-22 production by fusing with human serum albumin and supplementing N-acetylcysteine in Pichia Pastoris. Protein Expr Purif 2023; 212:106360. [PMID: 37652392 DOI: 10.1016/j.pep.2023.106360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Interleukin-22 (IL-22) plays an important role in the treatment of organ failure, which can induce anti-apoptotic and proliferative signaling pathways; Nevertheless, the practical utilization of IL-22 is hindered by the restricted efficacy of its production. Pichia pastoris presents a viable platform for both industrial and pharmaceutical applications. In this study, we successfully generated a fusion protein consisting of truncated human serum albumin and human IL-22 (HSA-hIL-22) using P. pastoris, and examined the impact of antioxidants on HSA-hIL-22 production. We have achieved the production of HSA-hIL-22 in the culture medium at a yield of approximately 2.25 mg/ml. Moreover, 0-40 mM ascorbic acid supplementation did not significantly affect HSA-hIL-22 production or the growth rate of the recombinant strain. However, 80 mM ascorbic acid treatment had a detrimental effect on the expression of HSA-hIL-22. In addition, 5-10 mM N-acetyl-l-cysteine (NAC) resulted in an increase of HSA-hIL-22 production, accompanied by a reduction in the growth rate of the recombinant strain. Conversely, 20-80 mM NAC supplementation inhibited the growth of the recombinant strains and reduced intact HSA-hIL-22 production. However, neither NAC nor ascorbic acid exhibited any effect on superoxide dismutase (SOD) and malondialdehyde (MDA) levels, except that NAC increased GSH content. Furthermore, our findings indicate that recombinant HSA-hIL-22, which demonstrated the ability to stimulate the proliferation of HepG2 cells, possesses bioactivity. In addition, NAC did not affect HSA-hIL-22 bioactivity. In conclusion, our study demonstrates that NAC supplementation can enhance the secretion of functional HSA-hIL-22 proteins produced in P. pastoris without compromising their activity.
Collapse
Affiliation(s)
- Yingqing Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Ziming Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Zijian Geng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Hongwei Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Chengxi Yang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Yixing Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Buayisham Kuerban
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Yimeng Xiao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Gang Luo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| |
Collapse
|
9
|
Zhang W, Zha K, Xiong Y, Hu W, Chen L, Lin Z, Yu C, Zhou W, Cao F, Hu H, Mi B, Liu G. Glucose-responsive, antioxidative HA-PBA-FA/EN106 hydrogel enhanced diabetic wound healing through modulation of FEM1b-FNIP1 axis and promoting angiogenesis. Bioact Mater 2023; 30:29-45. [PMID: 37521275 PMCID: PMC10382778 DOI: 10.1016/j.bioactmat.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
The diabetic wounds remain to be unsettled clinically, with chronic wounds characterized by drug-resistant bacterial infections, compromised angiogenesis and oxidative damage to the microenvironment. To ameliorate oxidative stress and applying antioxidant treatment in the wound site, we explore the function of folliculin-interacting protein 1 (FNIP1), a mitochondrial gatekeeper protein works to alter mitochondrial morphology, reduce oxidative phosphorylation and protect cells from unwarranted ROS accumulation. And our in vitro experiments showed the effects of FNIP1 in ameliorating oxidative stress and rescued impaired angiogenesis of HUVECs in high glucose environment. To realize the drug delivery and local regulation of FNIP1 in diabetic wound sites, a novel designed glucose-responsive HA-PBA-FA/EN106 hydrogel is introduced for improving diabetic wound healing. Due to the dynamic phenylboronate ester structure with a phenylboronic acid group between hyaluronic acid (HA) and phenylboronic acid (PBA), the hydrogel is able to realize a glucose-responsive release of drugs. Fulvic acid (FA) is added in the hydrogel, which not only severs as crosslinking agent but also provides antibacterial and anti-inflammatory abilities. Moreover, the release of FEM1b-FNIP1 axis inhibitor EN106 ameliorated oxidative stress and stimulated angiogenesis through FEM1b-FNIP1 axis regulation. These in vivo and in vitro results demonstrated that accelerated diabetic wounds repair with the use of the HA-PBA-FA/EN106 hydrogel, which may provide a promising strategy for chronic diabetic wound repair.
Collapse
Affiliation(s)
- Wenqian Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Kangkang Zha
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Weixian Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Lang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ze Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Chenyan Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Hankun Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Micro-explore Innovative Pharmaceutical Research Co, Ltd, Wuhan, Hubei, 430071, PR China
- Suzhou Organ-on-a-Chip System Science and Technology Co, Ltd, Suzhou, Jiangsu, 215000, PR China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
10
|
da Silva LE, Calado OLDL, de Oliveira Silva SF, da Silva KRM, Henrique Almeida J, de Oliveira Silva M, Viana RDS, de Souza Ferro JN, de Almeida Xavier J, Barbosa CDAES. Lemon-derived carbon dots as antioxidant and light emitter in fluorescent films applied to nanothermometry. J Colloid Interface Sci 2023; 651:678-685. [PMID: 37562309 DOI: 10.1016/j.jcis.2023.07.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
The design of luminescent nanomaterials for the development of nanothermometers with high sensitivity and free of potentially toxic metals has developed in several fields, such as optoelectronics, sensors, and bioimaging. In addition, luminescent nanothermometers have advantages related to non-invasive measurement, with their wide detection range and high spatial resolution at the nano/microscale. Our study is the first, to our knowledge, to demonstrate a detailed study of a fluorescent film (Film-L) thermal sensor based on carbon dots derived from lemon bagasse extract (CD-L). The CD-L properties were explored as an antioxidant agent; their cytotoxicity was evaluated by using a human non-tumoral skin fibroblast (HFF-1) cell line from an MTT assay. The CD-L were characterized by HRTEM, DLS, FTIR, UV-VIS, and fluorescence spectroscopy. These confirmed their particle size distribution below 10 nm, graphitic structure in the core and surface organic groups, and strong blue emission. The CD-L showed cytocompatibility behavior and scavenging potential reactive species of biological importance: O2•- and HOCl, with IC50 of 276.8 ± 4.0 and 21.6 ± 0.7, respectively. The Film-L emission intensities (I425 nm) are temperature-dependent in the 298 to 333 K range. The Film-L luminescent thermometer shows a maximum relative thermal sensitivity of 2.69 % K-1 at 333 K.
Collapse
Affiliation(s)
- Livia E da Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, Maceió, Alagoas 57072-970, Brazil
| | - Orlando Lucas de L Calado
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, Maceió, Alagoas 57072-970, Brazil
| | - Steffano Felix de Oliveira Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, Maceió, Alagoas 57072-970, Brazil
| | - Kleyton Ritomar Monteiro da Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, Maceió, Alagoas 57072-970, Brazil
| | - James Henrique Almeida
- Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, Maceió, Alagoas 57072-970, Brazil
| | - Messias de Oliveira Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, Maceió, Alagoas 57072-970, Brazil
| | - Rodrigo da Silva Viana
- Technology Center, Federal University of Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, Maceió, Alagoas 57072-900, Brazil
| | - Jamylle Nunes de Souza Ferro
- Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, Maceió, Alagoas 57072-970, Brazil
| | - Jadriane de Almeida Xavier
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, Maceió, Alagoas 57072-970, Brazil
| | - Cintya D A E S Barbosa
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, Maceió, Alagoas 57072-970, Brazil.
| |
Collapse
|
11
|
Shiry N, Alavinia SJ, Impellitteri F, Alavinia SJ, Faggio C. Beyond the surface: Consequences of methyl tert-butyl ether (MTBE) exposure on oxidative stress, haematology, genotoxicity, and histopathology in rainbow trout. Sci Total Environ 2023; 900:165784. [PMID: 37499819 DOI: 10.1016/j.scitotenv.2023.165784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Concerns have been raised about the possible environmental effects of methyl tert-butyl ether (MTBE), which is widely used as a gasoline additive. This research aimed to look at the consequences of MTBE contamination on rainbow trout (Oncorhynchus mykiss), emphasizing oxidative stress, genotoxicity, and histopathological damage. After determining the LC50-96 h value, the effects of sub-lethal doses of MTBE (0 (control), 90, 180, and 450 ppm) on rainbow trout were investigated. In fish tissues, the levels of oxidative stress indicators such as malondialdehyde (MDA) and superoxide dismutase (SOD) were measured. The comet assay, which measures DNA damage in erythrocytes, was used to determine genotoxicity. Histopathological examinations were done on liver and gill tissues to examine potential structural anomalies. The results of this study show that MTBE exposure caused considerable alterations in rainbow trout. Increased oxidative stress was demonstrated by elevated MDA levels and decreased SOD activity, while the comet assay revealed dose-dependent DNA damage, implying genotoxic effects. Histopathological study revealed liver and gill tissue abnormalities, including cell degeneration, necrosis, and inflammation. Overall, this research highlights the possible sub-lethal effects of MTBE contamination on rainbow trout, stressing the need of resolving this issue. Future research should look at the impacts of chronic MTBE exposure and the possibility of bioaccumulation in fish populations.
Collapse
Affiliation(s)
- Nima Shiry
- Iran Fisheries Organization, Administration of Khuzestan Province, Abadan, Iran; Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Seyed Jalil Alavinia
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran; Department of Aquatic Animal Health, School of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Seyed Jamal Alavinia
- Department of Epidemiology, School of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
12
|
Elsayed S, Abdelkhalek AS, Rezq S, Abu Kull ME, Romero DG, Kothayer H. Magic shotgun approach to anti-inflammatory pharmacotherapy: Synthesis of novel thienopyrimidine monomers/heterodimer as dual COX-2 and 15-LOX inhibitors endowed with potent antioxidant activity. Eur J Med Chem 2023; 260:115724. [PMID: 37611534 DOI: 10.1016/j.ejmech.2023.115724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
Emerging evidence points to the intertwining framework of inflammation and oxidative stress in various ailments. We speculate on the potential impact of the magic shotgun approach in these ailments as an attempt to mitigate the drawbacks of current NSAIDs. Hence, we rationally designed and synthesized new tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine monomers/heterodimer as dual selective COX-2/15-LOX inhibitors with potent antioxidant activity. The synthesized compounds were challenged with diverse in vitro biological assays. Regarding the monomeric series, compound 5k exerted the highest COX-2 inhibitory activity (IC50 = 0.068 μM, SI = 160.441), while compound 5i showed the highest 15-LOX inhibitory activity (IC50 = 1.97 μM). Surpassing the most active monomeric members, the heterodimer 11 stemmed as the most potent and selective one in the whole study (COX-2 IC50 = 0.065 μM, SI = 173.846, 15-LOX IC50 = 1.86 μM). Heterodimer design was inspired by the cross-talk between the partner monomers of the COX-2 isoform. Moreover, some of our synthesized compounds could significantly reverse the LPS-enhanced production of ROS and proinflammatory cytokines (IL-6, TNF-α, and NO) in RAW 264.7 macrophages. Again, the heterodimer showed the strongest suppressor activity against ROS (IC50 = 18.79 μM) and IL-6 (IC50 = 4.15 μM) production outperforming the two references, celecoxib and diclofenac. Regarding NO suppressor activity, compound 5j (IC50 = 18.62 μM) surpassed the two references. Only compound 5a significantly suppressed TNF-α production (IC50 = 19.68 μM). Finally, molecular modeling simulated the possible binding scenarios of our synthesized thienopyrimidines within the active sites of COX-2 and 15-LOX. These findings suggest that those novel thienopyrimidines are promising leads showing pharmacodynamics synergy against the selected targets.
Collapse
Affiliation(s)
- Sara Elsayed
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed S Abdelkhalek
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Samar Rezq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA; Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA; Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mansour E Abu Kull
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Damian G Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA; Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA; Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hend Kothayer
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
13
|
Yang C, Zhang Y, Zhang X, Tang P, Zheng T, Ran R, Li G. An injectable, self-healing, and antioxidant collagen- and hyaluronic acid-based hydrogel mediated with gallic acid and dopamine for wound repair. Carbohydr Polym 2023; 320:121231. [PMID: 37659818 DOI: 10.1016/j.carbpol.2023.121231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 09/04/2023]
Abstract
Injectable self-healing hydrogels with antioxidation are required in wound dressings. Because oxidative damage caused by excessive reactive oxygen species (ROS) is a common issue associated with chronic non-healing wounds. Here, collagen (COL) - and hyaluronic acid (HA)-based hydrogel with antioxidant and injectable self-healing mediated with gallic acid (GA) and dopamine (DA) offers unique advantages for wound repair. The hydrogel is constructed by COL-grafted GA (CG), HA-grafted DA (HD) and γ-poly(glutamic acid) (γ-PGA) coupled with 3-aminophenylboric acid (APBA) via the dynamic boronic ester bonds. Rheological measurements and direct visual observation demonstrated the hydrogel's desirable injectability and self-healing properties. Additionally, the hydrogel exhibits tissue adhesion properties. Biocompatibility and cell migration tests showed that the hydrogel promotes cell proliferation and migration. In vitro, antioxidant and intracellular free radical scavenging assays confirmed the hydrogel's antioxidant property and ability to scavenge excess ROS. In vivo wound healing studies have demonstrated that hydrogel can promote angiogenesis, inhibit inflammation, and promote collagen fiber deposition to accelerate wound healing.
Collapse
Affiliation(s)
- Changkai Yang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Yuanzhi Zhang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Xiaoxia Zhang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Pingping Tang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Tingting Zheng
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Ruimin Ran
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Guoying Li
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
14
|
Rayner CL, Bottle SE, Martyn AP, Barnett NL. Preserving Retinal Structure and Function with the Novel Nitroxide Antioxidant, DCTEIO. Neurochem Res 2023; 48:3402-3419. [PMID: 37450210 DOI: 10.1007/s11064-023-03978-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Oxidative stress is a major contributor to progressive neurodegenerative disease and may be a key target for the development of novel preventative and therapeutic strategies. Nitroxides have been successfully utilised to study changes in redox status (biological probes) and modulate radical-induced oxidative stress. This study investigates the efficacy of DCTEIO (5,6-dicarboxy-1,1,3,3-tetraethyllisoindolin-2-yloxyl), a stable, kinetically-persistent, nitroxide-based antioxidant, as a retinal neuroprotectant. The preservation of retinal function following an acute ischaemic/reperfusion (I/R) insult in the presence of DCTEIO was quantified by electroretinography (ERG). Inflammatory responses in retinal glia were analysed by GFAP and IBA-1 immunohistochemistry, and retinal integrity assessed by histology. A nitroxide probe combined with flow cytometry provided a rapid technique to assess oxidative stress and the mitigation offered by antioxidant compounds in cultured 661W photoreceptor cells. DCTEIO protected the retina from I/R-induced damage, maintaining retinal function. Histological analysis showed preservation of retinal integrity with reduced disruption and disorganisation of the inner and outer nuclear layers. I/R injury upregulated GFAP expression, indicative of retinal stress, which was significantly blunted by DCTEIO. The number of 'activated' microglia, particularly in the outer retina, in response to cellular stress was also significantly reduced by DCTEIO, potentially suggesting reduced inflammasome activation and cell death. DCTEIO mitigated oxidative stress in 661W retinal cell cultures, in a dose-dependent fashion. Together these findings demonstrate the potential of DCTEIO as a neuroprotective therapeutic for degenerative diseases of the CNS that involve an ROS-mediated component, including those of the retina e.g. age-related macular degeneration and glaucoma.
Collapse
Affiliation(s)
- Cassie L Rayner
- Clem Jones Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, 14 University Drive, Robina, Gold Coast, QLD, 4226, Australia
- Queensland Eye Institute, South Brisbane, QLD, 4101, Australia
| | - Steven E Bottle
- School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Alexander P Martyn
- School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Cancer and Ageing Research Program (CARP), Princess Alexandra Hospital, Brisbane, QLD, 4102, Australia
| | - Nigel L Barnett
- Clem Jones Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, 14 University Drive, Robina, Gold Coast, QLD, 4226, Australia.
- Queensland Eye Institute, South Brisbane, QLD, 4101, Australia.
| |
Collapse
|
15
|
Kang MK, Yoon D, Jung HJ, Ullah S, Lee J, Park HS, Kim HJ, Kang D, Park Y, Chun P, Young Chung H, Moon HR. Identification and molecular mechanism of novel 5-alkenyl-2-benzylaminothiazol-4(5H)-one analogs as anti-melanogenic and antioxidant agents. Bioorg Chem 2023; 140:106763. [PMID: 37566943 DOI: 10.1016/j.bioorg.2023.106763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Mushroom tyrosinase is a tetramer, whereas mammalian tyrosinase is a monomeric glycoprotein. In addition, the amino acid sequence of mushroom tyrosinases differs from that of mammalian tyrosinases. MHY2081 exhibits potent inhibitory activity against both mushroom and mammalian tyrosinases. Accordingly, based on the MHY2081 structure, 5-alkenyl-2-benzylaminothiazol-4(5H)-one analogs were designed as a novel anti-tyrosinase agent and synthesized using 2-((3,4-dimethoxybenzyl)amino)thiazol-4(5H)-one (16), a key intermediate obtained via the rearrangement of a benzylamino group. Compounds 6 and 9 (IC50 = 1.5-4.6 µM) exhibited higher mushroom tyrosinase inhibitory activity than kojic acid (IC50 = 20-21 µM) in the presence of l-tyrosine and/or l-dopa. Based on kinetic analysis using Lineweaver-Burk plots, 6 was a mixed inhibitor, whereas 9 was a competitive inhibitor, and docking simulation results supported that these compounds could bind to the active site of mushroom tyrosinase. Using B16F10 mammalian cells, we demonstrated that these compounds inhibited melanogenesis more potently than kojic acid, and their anti-melanogenic effects could be attributed to tyrosinase inhibition. All synthesized compounds could scavenge reactive oxygen species (ROS), with five compounds exhibiting mild-to-strong ABTS+ and DPPH radical-scavenging abilities. Compounds 6 and 9 were potent tyrosinase inhibitors with strong antioxidant activities against ROS, ABTS+, and DPPH radicals. Moreover, the compounds significantly suppressed tyrosinase expression in a dose-dependent manner. Collectively, these results suggest that the novel 5-alkenyl-2-benzylaminothiazol-4(5H)-one analogs, especially 6 and 9, are potential anti-melanogenic agents with antioxidant activity.
Collapse
Affiliation(s)
- Min Kyung Kang
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Dahye Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Sultan Ullah
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Jieun Lee
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hye Soo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hye Jin Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Dongwan Kang
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Yujin Park
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
16
|
Akotkar L, Aswar U, Ganeshpurkar A, Raj R, Pawar A. An Overview of Chemistry, Kinetics, Toxicity and Therapeutic Potential of Boldine in Neurological Disorders. Neurochem Res 2023; 48:3283-3295. [PMID: 37462836 DOI: 10.1007/s11064-023-03992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/30/2023] [Accepted: 07/09/2023] [Indexed: 09/22/2023]
Abstract
Boldine is an alkaloid obtained from the medicinal herb Peumus boldus (Mol.) (Chilean boldo tree; boldo) and belongs to the family Monimiaceae. It exhibits a wide range of pharmacological effects such as antioxidant, anticancer, hepatoprotective, neuroprotective, and anti-diabetic properties. There is a dearth of information regarding its pharmacokinetics and toxicity in addition to its potential pharmacological activity. Boldine belongs to the aporphine alkaloid class and possesses lipophilic properties which enable its efficient absorption and distribution throughout the body, including the central nervous system. It exhibits potent free radical scavenging activity, thereby reducing oxidative stress and preventing neuronal damage. Through a variety of neuroprotective mechanisms, including suppression of AChE and BuChE activity, blocking of connexin-43 hemichannels, pannexin 1 channel, reduction of NF-κβ mediated interleukin release, and glutamate excitotoxicity which successfully reduces neuronal damage. These results point to its probable application in reducing neuroinflammation and oxidative stress in epilepsy, Alzheimer's disease (AD), and Parkinson's disease (PD). Moreover, its effects on serotonergic, dopaminergic, opioid, and cholinergic receptors were further investigated in order to determine its applicability for neurobehavioral dysfunctions. The article investigates the pharmacokinetics of boldine and reveals that it has a low oral bioavailability and a short half-life, requiring regular dosage to maintain therapeutic levels. The review studies boldine's potential therapeutic uses and mode of action while summarizing its neuroprotective benefits. Given the favorable results for boldine as a potential neurotherapeutic drug in laboratory animals, more research is required. However, in order to optimise its therapeutic potential, it must be more bioavailable with fewer detrimental side effects.
Collapse
Affiliation(s)
- Likhit Akotkar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Urmila Aswar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune, 411038, Maharashtra, India.
| | - Ankit Ganeshpurkar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, 411038, India
| | - Ritik Raj
- Department of Pharmaceutical Biotechnology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, 411038, India
| | - Atmaram Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, 411038, India
| |
Collapse
|
17
|
Nayak SPRR, Dhivya LS, R R, Almutairi BO, Arokiyaraj S, Kathiravan MK, Arockiaraj J. Furan based synthetic chalcone derivative functions against gut inflammation and oxidative stress demonstrated in in-vivo zebrafish model. Eur J Pharmacol 2023; 957:175994. [PMID: 37574161 DOI: 10.1016/j.ejphar.2023.175994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Inflammatory Bowel Disease (IBD) is a group of persistent intestinal illnesses resulting from bowel inflammation unrelated to infection. The prevalence of IBD is rising in industrialized countries, increasing healthcare costs. Whether naturally occurring or synthetic, chalcones possess a broad range of biological properties, including anti-inflammatory, anti-microbial, and antioxidant effects. This investigation focuses on DKO7 (E)-3-(4-(dimethylamino)phenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one, a synthesized chalcone with potential anti-inflammatory effects in a zebrafish model of intestinal inflammation induced by Dextran sodium sulfate (DSS). The in vitro study displayed dose-dependent anti-inflammatory as well as antioxidant properties of DKO7. Additionally, DKO7 protected zebrafish larvae against lipid peroxidation, reactive oxygen stress (ROS), and DSS-induced inflammation. Moreover, DKO7 reduced the expression of pro-inflammatory genes, including TNF-α, IL-1β, IL-6, and iNOS. Further, it reduced the levels of nitric oxide (NO) and lactate dehydrogenase (LDH) in the intestinal tissues of adult zebrafish and increased the levels of antioxidant enzymes such as Catalase (CAT) and superoxide dismutase (SOD). The protective effect of DKO7 against chemically (or DSS) induced intestinal inflammation was further verified using histopathological techniques in intestinal tissues. The furan-based chalcone derivative, DKO7, displayed antioxidant and anti-inflammatory properties. Also, DKO7 successfully reverses the DSS-induced intestinal damage in zebrafish. Overall, this study indicates the ability of DKO7 to alleviate DSS-induced gut inflammation in an in-vivo zebrafish.
Collapse
|