1
|
Oliveira M, Carvalho M, Teixeira P. Characterization of the Toxigenic Potential of Bacillus cereus sensu lato Isolated from Raw Berries and Their Products. Foods 2023; 12:4021. [PMID: 37959140 PMCID: PMC10648475 DOI: 10.3390/foods12214021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Bacillus cereus is estimated to be responsible for 1.4-12% of all food poisoning outbreaks worldwide. The objective of this study was to investigate the toxigenic potential of 181 isolates of B. cereus previously recovered from different types of berries and berry products (strawberries, raspberries, blackberries, and blueberries) by assessing the presence of enterotoxin genes (hblA, hblC, hblD, nheA, nheB, nheC, and cytK) and an emetic toxin cereulide synthetase gene (ces). The cytotoxic activity on Caco-2 cells was also evaluated for the two isolates containing the gene cytK. Twenty-three toxigenic profiles were found. The nheABC (91.7%) and hblACD (89.0%) complexes were the most prevalent among the isolates, while the cytK and ces genes were detected in low percentages, 1.1% and 3.3%, respectively. In addition, the nheABC/hblACD complex and ces genes were detected in isolates recovered throughout the production process of blackberries and strawberries. The cytotoxic activity on Caco-2 cells was also observed to be greater than 60% for isolates containing the cytK gene.
Collapse
Affiliation(s)
- Márcia Oliveira
- Department of Food Hygiene and Technology, University of León, 24071 León, Spain;
| | - Marta Carvalho
- Laboratório Associado, CBQF—Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Paula Teixeira
- Laboratório Associado, CBQF—Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| |
Collapse
|
2
|
Jovanovic J, Rajkovic A. Bacillus cereus Sensu Lato Accelerate Cellular Bioenergetic Metabolism of Human Colorectal Adenocarcinoma Caco-2 Cell Line. Foodborne Pathog Dis 2023; 20:514-520. [PMID: 37831922 DOI: 10.1089/fpd.2023.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
How foodborne enterotoxigenic Bacillus cereus rewires energy metabolism during intestinal tract infection is still not understood. In this study, we used the Seahorse XFe technology to simultaneously analyze oxygen consumption and acidification rates to estimate bioenergetic changes in the intestinal Caco-2 cell line after exposure to the B. cereus sensu lato (s.l.) enterotoxin-producing pathotypes, American Type Culture Collection (ATCC) 14579 (836), NVH0391-98 (828), and NVH0075/95 (825). Infection of Caco-2 led to a more energetic phenotype due to increased flux through oxidative phosphorylation and glycolysis. Strain 836 caused the most pronounced effects toward the specific energy phenotype, followed by strains 828 and 825. However, the metabolic potential of Caco-2 cells was most strongly induced by the 828 strain. Furthermore, infected cells manifested an increased adenosine triphosphate (ATP) production rate. Strain 828 caused the highest glycolytic and mitochondrial ATP production rates, followed by the 836 and 825 B. cereus s.l. strains. The glycolytic stress assay showed that strains 828 and 826 slightly increased compensatory glycolysis, providing a better understanding of the pathogenicity of this versatile pathogen. The results of this study underline that extracellular flux measurement can be used to accurately estimate bioenergetic perturbations of Caco-2 cells as a consequence of infection. Our findings enhance our understanding of how intestinal cells adjust their metabolism during infection with B. cereus s.l.
Collapse
Affiliation(s)
- Jelena Jovanovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Hollifield IE, Motyka NI, Fernando KA, Bitoun JP. Heat-Labile Enterotoxin Decreases Macrophage Phagocytosis of Enterotoxigenic Escherichia coli. Microorganisms 2023; 11:2121. [PMID: 37630681 PMCID: PMC10459231 DOI: 10.3390/microorganisms11082121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Enterotoxigenic E. coli (ETEC) are endemic in low-resource settings and cause robust secretory diarrheal disease in children less than five years of age. ETEC cause secretory diarrhea by producing the heat-stable (ST) and/or heat-labile (LT) enterotoxins. Recent studies have shown that ETEC can be carried asymptomatically in children and adults, but how ETEC subvert mucosal immunity to establish intestinal residency remains unclear. Macrophages are innate immune cells that can be exploited by enteric pathogens to evade mucosal immunity, so we interrogated the ability of ETEC and other E. coli pathovars to survive within macrophages. Using gentamicin protection assays, we show that ETEC H10407 is phagocytosed more readily than other ETEC and non-ETEC isolates. Furthermore, we demonstrate that ETEC H10407, at high bacterial burdens, causes nitrite accumulation in macrophages, which is indicative of a proinflammatory macrophage nitric oxide killing response. However, at low bacterial burdens, ETEC H10407 remains viable within macrophages for an extended period without nitrite accumulation. We demonstrate that LT, but not ST, intoxication decreases the number of ETEC phagocytosed by macrophages. Furthermore, we now show that macrophages exposed simultaneously to LPS and LT produce IL-33, which is a cytokine implicated in promoting macrophage alternative activation, iron recycling, and intestinal repair. Lastly, iron restriction using deferoxamine induces IL-33 receptor (IL-33R) expression and allows ETEC to escape macrophages. Altogether, these data demonstrate that LT provides ETEC with the ability to decrease the perceived ETEC burden and suppresses the initiation of inflammation. Furthermore, these data suggest that host IL-33/IL-33R signaling may augment pathways that promote iron restriction to facilitate ETEC escape from macrophages. These data could help explain novel mechanisms of immune subversion that may contribute to asymptomatic ETEC carriage.
Collapse
Affiliation(s)
| | | | | | - Jacob P. Bitoun
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, #8638, New Orleans, LA 70112, USA; (I.E.H.); (N.I.M.); (K.A.F.)
| |
Collapse
|
4
|
Kmiha S, Jouini A, Zerriaa N, Hamrouni S, Thabet L, Maaroufi A. Methicillin-Resistant Staphylococcusaureus Strains Isolated from Burned Patients in a Tunisian Hospital: Molecular Typing, Virulence Genes, and Antimicrobial Resistance. Antibiotics (Basel) 2023; 12:1030. [PMID: 37370349 DOI: 10.3390/antibiotics12061030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the major causes of a variety of infections in hospitals and the community. Their spread poses a serious public health problem worldwide. Nevertheless, in Tunisia and other African countries, very little molecular typing data on MRSA strains is currently available. In our study, a total of 64 MRSA isolates were isolated from clinical samples collected from burned patients hospitalized in the Traumatology and Burns Center of Ben Arous in Tunisia. The identification of the collection was based on conventional methods (phenotypic and molecular characterization). The characterization of the genetic support for methicillin resistance was performed by amplification of the mecA gene by polymerase chain reaction (PCR), which revealed that 78.12% of S. aureus harbors the gene. The resistance of all the collection to different antibiotic families was studied. Indeed, the analysis of strain antibiotic susceptibility confirmed their multi-resistant phenotype, with high resistance to ciprofloxacin, gentamicin, penicillin, erythromycin, and tetracycline. The resistance to the last three antibiotics was conferred by the blaZ gene (73.43%), the erm(C) gene (1.56%), the msr(A) gene (6.25%), and tet(M) gene (7.81%), respectively. The clonal diversity of these strains was studied by molecular typing of the accessory gene regulator (agr) system, characterization of the SCCmec type, and spa-typing. The results revealed the prevalence of agr types II and III groups, the SCCmec type III and II cassettes, and the dominance of spa type t233. The characterization of the eight enterotoxins genes, the Panton-Valentine leukocidin and the toxic shock syndrome toxin, was determined by PCR. The percentage of virulence genes detected was for enterotoxins (55%), tst (71.88%), leukocidin E/D (79.69%), and pvl (1.56%) factors. Furthermore, our results revealed that the majority of the strains harbor IEC complex genes (94%) with different types. Our findings highlighted the emergence of MRSA strains with a wide variety of toxins, leukocidin associated with resistance genes, and specific genetic determinants, which could constitute a risk of their spread in hospitals and the environment and complicate infection treatment.
Collapse
Affiliation(s)
- Souhir Kmiha
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology Development, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Ahlem Jouini
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology Development, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Nahawend Zerriaa
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology Development, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Safa Hamrouni
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology Development, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Lamia Thabet
- Laboratory of Microbiology, Center for Traumatology and Major Burns, Rue du 1er Mai, Ben Arous 2013, Tunisia
| | - Abderrazak Maaroufi
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology Development, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| |
Collapse
|
5
|
Cruz-Facundo IM, Toribio-Jiménez J, Castro-Alarcón N, Leyva-Vázquez MA, Rodríguez-Ruíz HA, Pérez-Olais JH, Adame-Gómez R, Rodríguez-Bataz E, Reyes-Roldán J, Muñoz-Barrios S, Ramírez-Peralta A. Bacillus cereus in the Artisanal Cheese Production Chain in Southwestern Mexico. Microorganisms 2023; 11:1290. [PMID: 37317264 DOI: 10.3390/microorganisms11051290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Bacillus cereus is associated with milk, dairy product, and dairy farm contamination. The aim of this study was to characterize strains of B. cereus in the small-scale artisanal cheese production chain in southwestern Mexico. METHODS 130 samples were collected. B. cereus isolation was performed on Mannitol Egg Yolk Polymyxin (MYP) agar. Genotyping, enterotoxigenic profile, and determination of genes involved in the formation of B. cereus biofilm were performed by PCR. An antimicrobial susceptibility test was made by broth microdilution assay. The phylogenetic analysis was performed by amplification and sequencing of 16s rRNA. RESULTS B. cereus sensu lato was isolated and molecularly identified in 16 samples and B. cereus sensu stricto (B. cereus) was the most frequently isolated and identified species (81.25%). Of all the isolated B. cereus sensu lato strains, 93.75% presented at least one gene for some diarrheagenic toxins, 87.5% formed biofilms, and 18.75% were amylolytic. All B. cereus sensu lato strains were resistant to beta-lactams and folate inhibitors. A close phylogenetic relationship between isolates was found between the cheese isolates and the air isolates. CONCLUSIONS Strains of B. cereus sensu lato were found in small-scale artisanal cheeses on a farm in southwestern Mexico.
Collapse
Affiliation(s)
- Itzel-Maralhi Cruz-Facundo
- Laboratorio de Investigación en Patometabolismo Microbiano, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico
| | - Jeiry Toribio-Jiménez
- Laboratorio de Investigación en Microbiología Molecular y Biotecnología Ambiental, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico
| | - Natividad Castro-Alarcón
- Laboratorio de Investigación en Microbiologia, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico
| | - Marco-Antonio Leyva-Vázquez
- Laboratorio de Investigación en Biomedicina Molecular, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico
| | - Hugo-Alberto Rodríguez-Ruíz
- Laboratorio de Investigación en Biomedicina Molecular, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico
- Laboratorio de Investigación en Obesidad y Diabetes, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico
| | - José-Humberto Pérez-Olais
- Unidad de Investigación en Virología y Cancer, Hospital Infantil de México Federico Gomez, Ciudad de Mexico 06720, Mexico
| | - Roberto Adame-Gómez
- Laboratorio de Investigación en Patometabolismo Microbiano, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico
| | - Elvia Rodríguez-Bataz
- Laboratorio de Investigación en Parasitologia, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico
| | - Joel Reyes-Roldán
- Laboratorio de Investigación en Patometabolismo Microbiano, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico
| | - Salvador Muñoz-Barrios
- Laboratorio de Investigación en Inmunotoxigenomica, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico
| | - Arturo Ramírez-Peralta
- Laboratorio de Investigación en Patometabolismo Microbiano, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico
| |
Collapse
|
6
|
Chi SI, Yousuf B, Paredes C, Bearne J, McDonald C, Ramirez-Arcos S. Proof of concept for detection of staphylococcal enterotoxins in platelet concentrates as a novel safety mitigation strategy. Vox Sang 2023. [PMID: 37170419 DOI: 10.1111/vox.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND OBJECTIVES Staphylococcus aureus is a predominant contaminant of platelet concentrates (PCs) that can evade detection during screening with culture methods. Importantly, S. aureus produces staphylococcal enterotoxins (SEs) during PC storage, which are linked to slow growth and enhanced biofilm formation. This study investigated timing of SE production during PC storage and feasibility of SE detection as a PC safety strategy. MATERIALS AND METHODS Genomic and transcriptomic data of transfusion-relevant S. aureus PS/BAC/169/17/W, PS/BAC/317/16/W, CI/BAC/25/13/W and CBS2016-05 were used to determine the presence and differential expression of exotoxin genes in PCs. Trypticase soy broth (TSB) and PCs were inoculated with 1.0E+06 cfu/mL of S. aureus PS/BAC/169/17/W and CBS2016-05. Expression of SEs at different growth phases was confirmed with Western blotting. PCs were inoculated with 30 cfu/unit of the same strains, and SE detection during PC storage was optimized with a sandwich dot-ELISA assay. RESULTS S. aureus genomes contain multiple exotoxin genes including those encoding for SEs. Transcriptome data revealed significant upregulation (0.5-6.7-fold, p < 0.05) of SE genes in PCs versus TSB. Western blots demonstrated SE production at all growth phases. Notably, dot-ELISA detected clinically relevant concentrations of SEs (~0.2 μg/mL) at 32 h of PC storage when S. aureus PS/BAC/169/17/W and CBS2016-05 counts were 1.8E+04 and 1.4E+04 cfu/mL, respectively. CONCLUSION Genomic analyses revealed that staphylococcal exotoxins are widely distributed and highly conserved among transfusion-relevant S. aureus isolates. Furthermore, SEs are significantly upregulated in PCs and detected at 30 h of PC storage. Therefore, bacterial toxin detection could supplement mitigation strategies to enhance PC safety.
Collapse
Affiliation(s)
- Sylvia Ighem Chi
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Basit Yousuf
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Carina Paredes
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Carl McDonald
- National Health Service Blood and Transplant, London, UK
| | - Sandra Ramirez-Arcos
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Outurquin G, Obin O, Petit A, Weiss R, Léké A, Adjidé C, Mullié C. Bacillus cereus strains from donor human milk and hospital environment: uncovering a putative common origin using comparative analysis of toxin and infra-red spectroscopy profiles. AIMS Microbiol 2023; 9:419-430. [PMID: 37649803 PMCID: PMC10462457 DOI: 10.3934/microbiol.2023022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 09/01/2023] Open
Abstract
Bacillus cereus is reported as a common cause of toxin-induced food poisoning and of contamination in pasteurized human milk donations. As various toxins can be produced by B. cereus, the aim of this work was first to investigate the toxigenic potential and profiles of 63 B. cereus isolates from Amiens Picardie human milk bank. A comparison to the toxigenic profiles of 27 environmental B. cereus isolates harvested in the hospital in which this human milk bank is situated was performed. Toxin gene prevalences were the highest for nhe (ABC) and entFM followed by cytK and hbl(ACD). A 27% prevalence was found for ces human milk isolates, which is higher than previous works reporting on pasteurized milk and dairy products. No significant differences could be found between human milk and environmental isolates regarding toxin gene prevalences and/or toxin gene profiles. The second aim was to establish whether a B. cereus cross-contamination between human milk and the environment could occur. This was achieved with the help of Fourrier-transform infra-red spectroscopy which enabled the discrimination of 2 main clusters of 11 and 8 isolates, each containing human milk and Amiens Picardie human milk bank environmental isolates. For these two clusters, the time sequence showed that human milk isolates were the first to occur and might have contaminated the milk bank environment as well as other human milk donations. Routinely used on B. cereus isolates, Fourrier-transform infra-red spectroscopy could help in rapidly detecting such clusters and in limiting the spread of a B. cereus strain that might generate rejection of pasteurized donation by the human milk bank.
Collapse
Affiliation(s)
- Gaëtan Outurquin
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Odile Obin
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Anaïs Petit
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Roxane Weiss
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - André Léké
- Lactarium–Biberonnerie, Unité des soins intensifs de néonatologie et de médecine néonatale, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Crespin Adjidé
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Catherine Mullié
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
- Laboratoire AGIR UR UPJV 4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
8
|
Zhang X, Li J, Chen C, Liu YJ, Cui Q, Hong W, Chen Z, Feng Y, Cui G. Molecular Basis of TcdR-Dependent Promoter Activity for Toxin Production by Clostridioides difficile Studied by a Heterologous Reporter System. Toxins (Basel) 2023; 15:toxins15050306. [PMID: 37235341 DOI: 10.3390/toxins15050306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
The alternative σ factor TcdR controls the synthesis of two major enterotoxins: TcdA and TcdB in Clostridioides difficile. Four potential TcdR-dependent promoters in the pathogenicity locus of C. difficile showed different activities. In this study, we constructed a heterologous system in Bacillus subtilis to investigate the molecular basis of TcdR-dependent promoter activity. The promoters of the two major enterotoxins showed strong TcdR-dependent activity, while the two putative TcdR-dependent promoters in the upstream region of the tcdR gene did not show detectable activity, suggesting that the autoregulation of TcdR may need other unknown factors involved. Mutation analysis indicated that the divergent -10 region is the key determinant for different activities of the TcdR-dependent promoters. Analysis of the TcdR model predicted by AlphaFold2 suggested that TcdR should be classified into group 4, i.e., extracytoplasmic function, σ70 factors. The results of this study provide the molecular basis of the TcdR-dependent promoter recognition for toxin production. This study also suggests the feasibility of the heterologous system in analyzing σ factor functions and possibly in drug development targeting these factors.
Collapse
Affiliation(s)
- Xinyue Zhang
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guiyang 550025, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Jie Li
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Chen
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Hong
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
| | - Zhenghong Chen
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guiyang 550025, China
| | - Yingang Feng
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guzhen Cui
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
9
|
Won HK, Song WJ, Moon SD, Sohn KH, Kim JY, Kim BK, Park HW, Bachert C, Cho SH. Staphylococcal Enterotoxin-Specific IgE Sensitization: A Potential Predictor of Fixed Airflow Obstruction in Elderly Asthma. Allergy Asthma Immunol Res 2023; 15:160-173. [PMID: 37021503 PMCID: PMC10079523 DOI: 10.4168/aair.2023.15.2.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 04/07/2023]
Abstract
PURPOSE Staphylococcus aureus enterotoxin-specific immunoglobulin E (SE-sIgE) sensitization tends to increase with age and is known to be associated with asthma and severity in older adults. However, the long-term impact of SE-sIgE in the elderly remains unknown. This study aimed to examine the relationships between SE-sIgE and fixed airflow obstruction (FAO) in a cohort of elderly asthmatics. METHODS A total of 223 elderly asthmatics and 89 controls were analyzed. Patients were assessed for demographics, history of chronic rhinosinusitis (CRS), asthma duration, acute exacerbation frequency, and lung function at baseline and then were prospectively followed up for 2 years. Serum total IgE and SE-sIgE levels were measured at baseline. Airflow obstruction was defined as forced expiratory volume in 1 second (FEV1)/forced vital capacity (FVC) ratio < 0.7 at baseline and FAO was defined as FEV1/FVC ratio < 0.7 over the 2-year follow-up. RESULTS At baseline, the prevalence of airflow obstruction was 29.1%. Patients with airflow obstruction were significantly more likely to be male, and have a positive smoking history, comorbid CRS, and higher levels of SE-sIgE than those without airflow obstruction. Multivariate logistic regression analysis showed that airflow obstruction was significantly associated with current smoking and SE-sIgE sensitization at baseline. After the 2-year follow-up, baseline SE-sIgE sensitization was consistently related to FAO. Meanwhile, the number of exacerbations per year was significantly correlated with SE-sIgE levels. CONCLUSIONS Baseline SE-sIgE sensitization was significantly associated with the number of asthma exacerbations and FAO after the 2-year follow-up in elderly asthmatics. These findings warrant further investigation of the direct and mediating roles of SE-sIgE sensitization on airway remodeling.
Collapse
Affiliation(s)
- Ha-Kyeong Won
- Division of Pulmonology and Allergy, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung do Moon
- Department of Internal Medicine, Hospital Medicine Center, Seoul National University Hospital, Seoul, Korea
| | - Kyoung-Hee Sohn
- Department of Internal Medicine, Kyung Hee University Medical Center, Seoul, Korea
| | - Ju-Young Kim
- Department of Internal Medicine, Dankook University Hospital, Cheonan, Korea
| | - Byung-Keun Kim
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Heung-Woo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University, Ghent, Belgium
| | - Sang Heon Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
10
|
Hollifield IE, Motyka NI, Stewart SR, Blyth MD, Fernando KA, Clement KL, Bitoun JP. Heat-Stable Enterotoxin Secretions Assessed via ICP-MS Reveal Iron-Mediated Regulation of Virulence in CFA/I- and CS6-Expressing ETEC Isolates. Cells 2023; 12. [PMID: 36831233 DOI: 10.3390/cells12040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/11/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) are a significant cause of childhood diarrhea in low-resource settings. ETEC are defined by the production of heat-stable enterotoxin (ST) and/or heat-labile enterotoxin (LT), which alter intracellular cyclic nucleotide signaling and cause the secretion of water and electrolytes into the intestinal lumen. ETEC take cues from chemicals (e.g., glycans, bile salts, and solutes) that may be liberated following enterotoxin activity to recognize entrance into the host. ETEC then alter the expression of surface adhesins called colonization factors (CFs) to attach to the intestinal epithelium, proliferate, and cause disease. Here, we used an in vivo model of oral ST intoxication to determine its impact on luminal ion concentrations via ICP-MS. We also used functional assays, including Western blots, qPCR, and toxin activity assays, to assess the impact of luminal ion flux on CF and toxin expression. Finally, we assessed ETEC strains with CFs CFA/I or CS6 in a streptomycin mouse model of ETEC colonization. ST causes rapid and significant increases in luminal chloride but significant decreases in luminal magnesium and iron. We confirmed that increased sodium chloride suppresses CFA/I production in ETEC H10407 but does not affect CS6 production in ETEC 214-4. CFA/I production in ETEC H10407 is increased when magnesium becomes limiting, although it does not affect CS6 production in ETEC 214-4. Iron restriction via deferoxamine induces CFA/I expression in ETEC H10407 but not CS6 expression in ETEC 214-4. We demonstrate that ST production is suppressed via iron restriction in H10407, 214-4, and over 50 other ETEC clinical isolates. Lastly, we demonstrate that the iron restriction of mice using oral deferoxamine pre-treatment extends the duration of ETEC H10407 (CFA/I+) fecal shedding while accelerating ETEC 214-4 (CS6+) fecal shedding. Combined, these data suggest that enterotoxins modulate luminal ion flux to influence ETEC virulence including toxin and CF production.
Collapse
|
11
|
Bagnasco D, Caminati M. Editorial: Innate immunity and severe asthma: From microbiome to target therapy. Front Immunol 2022; 13:1114275. [PMID: 36643921 PMCID: PMC9834275 DOI: 10.3389/fimmu.2022.1114275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022] Open
Affiliation(s)
- Diego Bagnasco
- Allergy and Respiratory Diseases, Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Martino, Genoa, Italy,Department of internal medicine (DIMI), University of Genoa, Genoa, Italy,*Correspondence: Diego Bagnasco,
| | - Marco Caminati
- Asthma, Allergy and Clinical Immunology Section, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
12
|
Fernandes A, Ramos C, Monteiro V, Santos J, Fernandes P. Virulence Potential and Antibiotic Susceptibility of S. aureus Strains Isolated from Food Handlers. Microorganisms 2022; 10:2155. [PMID: 36363746 PMCID: PMC9696720 DOI: 10.3390/microorganisms10112155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
Staphylococcus spp. are common members of the normal human flora. However, some Staphylococcus species are recognised as human pathogens due to the production of several virulence factors and enterotoxins that are particularly worrisome in food poisoning. Since many of Staphylococcal food poisoning outbreaks are typically associated with cross-contamination, the detection of S. aureus on food handlers was performed. Hand swabs from 167 food handlers were analysed for the presence of S. aureus. More than 11% of the samples were positive for S. aureus. All S. aureus strains were isolated and analysed for the presence of virulence and enterotoxin genes, namely, sea, seb, sec, sed, seg, sei, tsst-1 and pvl. The same strains were phenotypically characterised in terms of antibiotic susceptibility using the disc diffusion method and antimicrobial agents from 12 different classes. A low prevalence of antibiotic-resistant strains was found, with 55.6% of the strains being sensitive to all of the antimicrobial agents tested. However, a high prevalence of resistance to macrolides was found, with 44.4% of the strains showing resistance to erythromycin. At least one of the virulence or toxin genes was detected in 61.1% of the strains, and seg was the most prevalent toxin gene, being detected in 44.4% of the strains.
Collapse
Affiliation(s)
- Adriana Fernandes
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| | - Carla Ramos
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| | - Victor Monteiro
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| | - Joana Santos
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
- CISAS, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| | - Paulo Fernandes
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
- CISAS, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| |
Collapse
|
13
|
Witteveen S, Hendrickx APA, de Haan A, Notermans DW, Landman F, van Santen-Verheuvel MG, de Greeff SC, Kuijper EJ, van Maarseveen NM, Vainio S, Schouls LM. Genetic Characteristics of Methicillin-Resistant Staphylococcus argenteus Isolates Collected in the Dutch National MRSA Surveillance from 2008 to 2021. Microbiol Spectr 2022; 10:e0103522. [PMID: 36005448 DOI: 10.1128/spectrum.01035-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus argenteus is a recently described member of the Staphylococcus aureus complex (SAC) and is associated with human disease. The frequency and intensity of infections caused by S. argenteus are similar to those of Staphylococcus aureus. S. argenteus can harbor antibiotic resistance genes and a variety of virulence factors analogous to methicillin-resistant S. aureus (MRSA). The aim of our study was to analyze a collection of isolates in the Dutch national MRSA surveillance from January 2008 until March 2021 that were nontypeable by multilocus variable-number tandem-repeat analysis (MLVA). Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-ToF MS) was used for identifying the S. argenteus isolates, and whole-genome sequencing and SeqSphere were used to generate an in-house whole-genome multilocus sequence typing (wgMLST) scheme for typing the isolates. Furthermore, the presence of antibiotic resistance genes, replicons, and virulence genes was determined. Of 52,467 isolates submitted as MRSA from January 2008 until March 2021, 64 isolates (0.12%) were nontypeable with MLVA, and 54 of them were identified with mass spectrometry (MALDI-ToF MS) as S. argenteus. It appeared in retrospect that the first methicillin-resistant S. argenteus (MRSArg) was already submitted in 2008. An in-house-developed S. argenteus wgMLST scheme revealed that S. argenteus isolates clustered in 5 genomic groups which were characterized by distinct MLST types, resistomes, plasmid replicon families, and virulence factors. All but one isolate carried the staphylococcal chromosomal cassette mec (SCCmec) type IV harboring the methicillin resistance gene mecA and represent MRSArg. Most of the isolates with SCCmec subtype IVc(2B) had a trimethoprim resistance gene, dfrG, and harbored a blaZ-carrying plasmid, and most MRSArg isolates have the immune-modulating genes scn and sak. Nine of the 47 isolates carried enterotoxin-encoding genes seg, sei, sem, seo, and seu, which might be able to cause food poisoning. In some persons there was long-term persistence of MRSArg, and there were several genetically related MRSArg isolates in people living in close proximity, suggesting direct human-human transmission. IMPORTANCE We show that MRSArg has been circulating in the Netherlands since at least 2008. Although MRSArg is distinct from MRSA, it has a comparable population structure and carries similar resistance and virulence genes. The Dutch national MRSA surveillance has been expanded to include other methicillin-resistant members of the S. aureus complex, such as S. argenteus and Staphylococcus schweitzeri.
Collapse
|
14
|
Prince C, Kovac J. Regulation of Enterotoxins Associated with Bacillus cereus Sensu Lato Toxicoinfection. Appl Environ Microbiol 2022; 88:e0040522. [PMID: 35730937 DOI: 10.1128/aem.00405-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacillus cereus sensu lato (s.l.) includes foodborne pathogens, as well as beneficial microorganisms, such as bioinsecticides. Some of the beneficial and commercially used B. cereus s.l. strains have been shown to carry enterotoxin genes, the products of which can cause toxicoinfection in humans. Furthermore, recent epidemiological reports indicated that some bioinsecticidal strains have been linked with foodborne illness outbreaks. This demonstrates the need for improved surveillance of B. cereus s.l., which includes characterization of isolates' virulence capacity. However, the prediction of virulence capacity of B. cereus s.l. strains is challenging. Genetic screening for enterotoxin gene presence has proven to be insufficient for accurate discrimination between virulent and avirulent strains, given that nearly all B. cereus s.l. strains carry at least one enterotoxin gene. Furthermore, complex regulatory networks governing the expression of enterotoxins, and potential synergistic interactions between enterotoxins and other virulence factors make the prediction of toxicoinfection based on isolates' genome sequences challenging. In this review, we summarize and synthesize the current understanding of the regulation of enterotoxins associated with the B. cereus s.l. toxicoinfection and identify gaps in the knowledge that need to be addressed to facilitate identification of genetic markers predictive of cytotoxicity and toxicoinfection.
Collapse
|
15
|
Wang H, Cox E, Devriendt B. Intestinal Epithelial Cells Modulate the Production of Enterotoxins by Porcine Enterotoxigenic E. coli Strains. Int J Mol Sci 2022; 23:6589. [PMID: 35743033 DOI: 10.3390/ijms23126589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/03/2022] [Accepted: 06/12/2022] [Indexed: 01/23/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains are one of the most common etiological agents of diarrhea in both human and farm animals. In addition to encoding toxins that cause diarrhea, ETEC have evolved numerous strategies to interfere with host defenses. These strategies most likely depend on the sensing of host factors, such as molecules secreted by gut epithelial cells. The present study tested whether the exposure of ETEC to factors secreted by polarized IPEC-J2 cells resulted in transcriptional changes of ETEC-derived virulence factors. Following the addition of host-derived epithelial factors, genes encoding enterotoxins, secretion-system-associated proteins, and the key regulatory molecule cyclic AMP (cAMP) receptor protein (CRP) were substantially modulated, suggesting that ETEC recognize and respond to factors produced by gut epithelial cells. To determine whether these factors were heat sensitive, the IEC-conditioned medium was incubated at 56 °C for 30 min. In most ETEC strains, heat treatment of the IEC-conditioned medium resulted in a loss of transcriptional modulation. Taken together, these data suggest that secreted epithelial factors play a role in bacterial pathogenesis by modulating the transcription of genes encoding key ETEC virulence factors. Further research is warranted to identify these secreted epithelial factors and how ETEC sense these molecules to gain a competitive advantage in the early engagement of the gut epithelium.
Collapse
|
16
|
Jovanovic J, Tretiak S, Begyn K, Rajkovic A. Detection of Enterotoxigenic Psychrotrophic Presumptive Bacillus cereus and Cereulide Producers in Food Products and Ingredients. Toxins (Basel) 2022; 14:toxins14040289. [PMID: 35448897 PMCID: PMC9030337 DOI: 10.3390/toxins14040289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
In the last decade, foodborne outbreaks and individual cases caused by bacterial toxins showed an increasing trend. The major contributors are enterotoxins and cereulide produced by Bacillus cereus, which can cause a diarrheal and emetic form of the disease, respectively. These diseases usually induce relatively mild symptoms; however, fatal cases have been reported. With the aim to detected potential toxin producers that are able to grow at refrigerator temperatures and subsequently produce cereulide, we screened the prevalence of enterotoxin and cereulide toxin gene carriers and the psychrotrophic capacity of presumptive B. cereus obtained from 250 food products (cereal products, including rice and seeds/pulses, dairy-based products, dried vegetables, mixed food, herbs, and spices). Of tested food products, 226/250 (90.4%) contained presumptive B. cereus, which communities were further tested for the presence of nheA, hblA, cytK-1, and ces genes. Food products were mainly contaminated with the nheA B. cereus carriers (77.9%), followed by hblA (64.8%), ces (23.2%), and cytK-1 (4.4%). Toxigenic B. cereus communities were further subjected to refrigerated (4 and 7 °C) and mild abuse temperatures (10 °C). Overall, 77% (94/121), 86% (104/121), and 100% (121/121) were able to grow at 4, 7, and 10 °C, respectively. Enterotoxin and cereulide potential producers were detected in 81% of psychrotrophic presumptive B. cereus. Toxin encoding genes nheA, hblA, and ces gene were found in 77.2, 55, and 11.7% of tested samples, respectively. None of the psychrotrophic presumptive B. cereus were carriers of the cytotoxin K-1 encoding gene (cytK-1). Nearly half of emetic psychrotrophic B. cereus were able to produce cereulide in optimal conditions. At 4 °C none of the examined psychrotrophs produced cereulide. The results of this research highlight the high prevalence of B. cereus and the omnipresence of toxin gene harboring presumptive B. cereus that can grow at refrigerator temperatures, with a focus on cereulide producers.
Collapse
Affiliation(s)
- Jelena Jovanovic
- Department of Food Technology, Safety, and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (J.J.); (K.B.)
| | - Svitlana Tretiak
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Salisburylaan 133, D5 Ingang 78, 9820 Merelbeke, Belgium;
- Impextraco nv, Wiekevorstsesteenweg 38, 2220 Heist-op-den-Berg, Belgium
| | - Katrien Begyn
- Department of Food Technology, Safety, and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (J.J.); (K.B.)
| | - Andreja Rajkovic
- Department of Food Technology, Safety, and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (J.J.); (K.B.)
- Correspondence:
| |
Collapse
|
17
|
Sheikh A, Wangdi T, Vickers TJ, Aaron B, Palmer M, Miller MJ, Kim S, Herring C, Simoes R, Crainic JA, Gildersleeve JC, van der Post S, Hansson GC, Fleckenstein JM. Enterotoxigenic Escherichia coli Degrades the Host MUC2 Mucin Barrier To Facilitate Critical Pathogen-Enterocyte Interactions in Human Small Intestine. Infect Immun 2022; 90:e0057221. [PMID: 34807735 PMCID: PMC8853678 DOI: 10.1128/iai.00572-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) isolates are genetically diverse pathological variants of E. coli defined by the production of heat-labile (LT) and/or heat-stable (ST) toxins. ETEC strains are estimated to cause hundreds of millions of cases of diarrheal illness annually. However, it is not clear that all strains are equally equipped to cause disease, and asymptomatic colonization with ETEC is common in low- to middle-income regions lacking basic sanitation and clean water where ETEC are ubiquitous. Recent molecular epidemiology studies have revealed a significant association between strains that produce EatA, a secreted autotransporter protein, and the development of symptomatic infection. Here, we demonstrate that LT stimulates production of MUC2 mucin by goblet cells in human small intestine, enhancing the protective barrier between pathogens and enterocytes. In contrast, using explants of human small intestine as well as small intestinal enteroids, we show that EatA counters this host defense by engaging and degrading the MUC2 mucin barrier to promote bacterial access to target enterocytes and ultimately toxin delivery, suggesting that EatA plays a crucial role in the molecular pathogenesis of ETEC. These findings may inform novel approaches to prevention of acute diarrheal illness as well as the sequelae associated with ETEC and other pathogens that rely on EatA and similar proteases for efficient interaction with their human hosts.
Collapse
Affiliation(s)
- Alaullah Sheikh
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Tamding Wangdi
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Tim J. Vickers
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Bailey Aaron
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Margot Palmer
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Mark J. Miller
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Seonyoung Kim
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Cassandra Herring
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Rita Simoes
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Jennifer A. Crainic
- Center for Cancer Research, Chemical Biology Laboratory, National Cancer Institute, Fredrick, Maryland, USA
| | - Jeffrey C. Gildersleeve
- Center for Cancer Research, Chemical Biology Laboratory, National Cancer Institute, Fredrick, Maryland, USA
| | - Sjoerd van der Post
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - James M. Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
- Medicine Service, Veterans Affairs Medical Center, Saint Louis, Missouri, USA
| |
Collapse
|
18
|
Doub JB. Risk of Bacteriophage Therapeutics to Transfer Genetic Material and Contain Contaminants Beyond Endotoxins with Clinically Relevant Mitigation Strategies. Infect Drug Resist 2022; 14:5629-5637. [PMID: 34992389 PMCID: PMC8711558 DOI: 10.2147/idr.s341265] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteriophage therapy is a promising adjuvant therapeutic in the treatment of multidrug-resistant infections and chronic biofilm infections. However, there is limited knowledge about how to best utilize these agents in vivo, leading to a wide range of treatment protocols. Moreover, while bacteriophages are similar to antibiotics in their antimicrobial effects, these are active viruses and are very different from conventional antibiotics. One main difference that clinicians should be cognizant about is the potential ability of these therapeutics to horizontally transfer genetic material, and the clinical ramifications of such events. In addition, while bacteriophage therapeutics are readily tested for sterility and endotoxins, clinicians should also be aware of other contaminants, such as exotoxins, pathogenicity islands and prophages, that can contaminate bacteriophage therapeutics, and their clinical ramifications. While the perception may be that these are only theoretical issues, regulatory agencies are starting to recommend their evaluation when using bacteriophage therapy and subsequently these topics are discussed herein, as are ways to test for and mitigate the adverse effects of these issues.
Collapse
Affiliation(s)
- James B Doub
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Lefebvre D, Fenaille F, Merda D, Blanco-Valle K, Feraudet-Tarisse C, Simon S, Hennekinne JA, Nia Y, Becher F. Top-Down Mass Spectrometry for Trace Level Quantification of Staphylococcal Enterotoxin A Variants. J Proteome Res 2021; 21:547-556. [PMID: 34968056 DOI: 10.1021/acs.jproteome.1c00886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We addressed here the need for improved sensitivity of top-down mass spectrometry for identification, differentiation, and absolute quantification of sequence variants of SEA, a bacterial toxin produced by Staphylococcus aureus and regularly involved in food poisoning outbreaks (FPO). We combined immunoaffinity enrichment, a protein internal standard, and optimized acquisition conditions, either by full-scan high-resolution mass spectrometry (HRMS) or multiplex parallel reaction monitoring (PRM) mode. Deconvolution of full-scan HRMS signal and PRM detection of variant-specific fragment ions allowed confident identification of each SEA variant. Summing the PRM signal of variant-common fragment ions was most efficient for absolute quantification, illustrated by a sensitivity down to 2.5 ng/mL and an assay variability below 15%. Additionally, we showed that relative PRM fragment ion abundances constituted a supplementary specificity criterion in top-down quantification. The top-down method was successfully evaluated on a panel of enterotoxin-producing strains isolated during FPO, in parallel to the conventional whole genome sequencing, ELISA, and bottom-up mass spectrometry methods. Top-down provided at the same time correct identification of the SEA variants produced and precise determination of the toxin level. The raw files generated in this study can be found on PASSEL (Peptide Atlas) under data set identifier PASS01710.
Collapse
Affiliation(s)
- Donatien Lefebvre
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191 Gif-sur-Yvette, France.,Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191 Gif-sur-Yvette, France
| | - Déborah Merda
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France
| | - Kevin Blanco-Valle
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France
| | - Cécile Feraudet-Tarisse
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191 Gif-sur-Yvette, France
| | - Stéphanie Simon
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191 Gif-sur-Yvette, France
| | - Jacques-Antoine Hennekinne
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France
| | - Yacine Nia
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France
| | - François Becher
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191 Gif-sur-Yvette, France
| |
Collapse
|
20
|
Abstract
Enterotoxigenic Escherichia coli (ETEC) are ubiquitous diarrheal pathogens that thrive in areas lacking basic human needs of clean water and sanitation. These genetically plastic organisms cause tremendous morbidity among disadvantaged young children, in the form of both acute diarrheal illness and sequelae of malnutrition and growth impairment. The recent discovery of additional plasmid-encoded virulence factors and elucidation of their critical role in the molecular pathogenesis of ETEC may inform new approaches to the development of broadly protective vaccines. Although the pathogens have been closely linked epidemiologically with nondiarrheal sequelae, these conditions remain very poorly understood. Similarly, while canonical effects of ETEC toxins on cellular signaling promoting diarrhea are clear, emerging data suggest that these toxins may also drive changes in intestinal architecture and associated sequelae. Elucidation of molecular events underlying these changes could inform optimal approaches to vaccines that prevent acute diarrhea and ETEC-associated sequelae.
Collapse
Affiliation(s)
- James M Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University in St Louis, School of Medicine, St Louis, Missouri, USA
- Infectious Disease Section, Medicine Service, St Louis Veterans Affairs Health Care System, St Louis, Missouri, USA
| | - Alaullah Sheikh
- Department of Medicine, Division of Infectious Diseases, Washington University in St Louis, School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
21
|
Silva MP, Carvalho AF, Andretta M, Nero LA. Presence and growth prediction of Staphylococcus spp. and Staphylococcus aureus in Minas Frescal cheese, a soft fresh cheese produced in Brazil. J Dairy Sci 2021; 104:12312-12320. [PMID: 34593231 DOI: 10.3168/jds.2021-20633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/18/2021] [Indexed: 11/19/2022]
Abstract
Physical-chemical characteristics of Minas Frescal cheese (MFC) favor the growth of Staphylococcus spp. and allow the production of enterotoxins by specific strains. Here, we aimed to characterize the physical-chemical aspects (pH, storage temperature, and salt content) and the presence of Staphylococcus spp. in MFC samples (n = 50) to support a modeling study for the growth by this microorganism. Coagulase-positive staphylococci isolates were obtained and subjected to PCR assays to identify them as Staphylococcus aureus (nuc) and to detect staphylococcal enterotoxin-related genes (sea, seb, sec, sed, see). Staphylococcus aureus growth kinetics (maximum growth rate, Grmax, and lag time) were predicted based on ComBase model and MFC physical-chemical aspects. Mean counts of Staphylococcus spp. ranged from 3.3 to 6.7 log cfu/g, indicating poor hygiene practices during production. Selected isolates (n = 10) were identified as S. aureus, but none presented classical enterotoxin-related genes. pH, temperature, and salt content ranged from 5.80 to 6.62, 5°C to 12°C, and 0.85% to 1.70%, respectively. The Grmax values ranged from 0.012 to 0.419 log cfu/g per h. Independent of the storage temperature, the lowest Grmax values (0.012 to 0.372 log cfu/h) were obtained at pH 5.80 associated with salt content of 1.7%; independent of the pH and salt content, the best temperature to avoid staphylococcal growth was 7.5°C. Hygienic conditions during MFC production must be adopted to avoid staphylococcal contamination, and storage at temperatures lower than 7.5°C can prevent staphylococcal growth and the potential production of enterotoxins.
Collapse
Affiliation(s)
- Mirian P Silva
- Departamento de Veterinária, InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Campus Universitário, Centro, Viçosa MG 36570 900, Brazil; Departamento de Tecnologia de Alimentos, Inovaleite-Laboratório de Ciência e Tecnologia do Leite e Derivados, Universidade Federal de Viçosa, Campus Universitário, Centro, Viçosa MG 36570 900, Brazil
| | - Antonio F Carvalho
- Departamento de Tecnologia de Alimentos, Inovaleite-Laboratório de Ciência e Tecnologia do Leite e Derivados, Universidade Federal de Viçosa, Campus Universitário, Centro, Viçosa MG 36570 900, Brazil
| | - Milimani Andretta
- Departamento de Veterinária, InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Campus Universitário, Centro, Viçosa MG 36570 900, Brazil
| | - Luís A Nero
- Departamento de Veterinária, InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Campus Universitário, Centro, Viçosa MG 36570 900, Brazil.
| |
Collapse
|
22
|
Nhatsave N, Garrine M, Messa A Jr, Massinga AJ, Cossa A, Vaz R, Ombi A, Zimba TF, Alfredo H, Mandomando I, Tchamo C. Molecular Characterization of Staphylococcus aureus Isolated from Raw Milk Samples of Dairy Cows in Manhiça District, Southern Mozambique. Microorganisms 2021; 9:1684. [PMID: 34442763 DOI: 10.3390/microorganisms9081684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
Staphylococcal infections are among the most common foodborne diseases. We performed the antibiotic susceptibility and molecular characterization of S. aureus from milk samples of dairy cows in Manhiça District. We observed a high frequency of S. aureus (41%, 58/143), in which 71% (41/58) were from commercial farms and 29% (17/58) from smallholder farms. Half of the isolates (50%, 29/58) were resistant to at least one antibiotic, with higher rates of resistance to penicillin (43%, 25/58), followed by tetracycline (16%, 9/58). Multidrug-resistant and methicillin-resistant S. aureus isolates were rare (5%, 3/58 and 3%, 2/58, respectively). The genetic diversity was low, with predominance of human-adapted strains being: ST1/CC1-t5388 (78%) and ST152-t1299 (10%), followed by ST8/CC8-t1476 (5%) and ST5/CC5-t002 (3%) and lastly, ST508/CC45-t331 and ST152-t355, with 2% each. The Panton–Valentine leukocidin (PVL) gene was detected among 14% (8/58) of the isolates, while genes encoding staphylococcal enterotoxins were scarce (3%, 2/58). Our findings revealed a high frequency of S. aureus, with high rates of resistance to the antibiotics commonly used in veterinary and human medicine. Further investigations focusing on the molecular epidemiology of S. aureus from cattle and farmers will provide detailed insights on the genetic relatedness between the strains.
Collapse
|
23
|
Little SV, Hillhouse AE, Lawhon SD, Bryan LK. Analysis of Virulence and Antimicrobial Resistance Gene Carriage in Staphylococcus aureus Infections in Equids Using Whole-Genome Sequencing. mSphere 2021; 6:e0019620. [PMID: 34346711 DOI: 10.1128/mSphere.00196-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While Staphylococcus aureus is associated with significant morbidity and mortality in equids (horses, donkeys, and mules), few studies have performed whole-genome sequencing to fully categorize large collections of equine isolates. Such sequencing allows for a comprehensive analysis of the genetic lineage and relationships of isolates, as well as the virulence genes present in each, which can be important for understanding the epidemiology of strains and their range of infections. Seventy-two clinical Staphylococcus aureus isolates from equids were collected at the Texas A&M University Veterinary Medical Teaching Hospital between 2007 and 2017. Whole-genome sequencing was performed to characterize the isolates according to sequence typing, biofilm association, antimicrobial resistance, and toxin gene carriage. Of the 72 isolates, 19% were methicillin resistant, of which the majority belonged to clonal complex 8. Eighteen distinct sequence types (STs) were represented, with the most common being ST1, ST133, ST8, and ST97. Most isolates had weak or negative overall biofilm production. Toxin and antimicrobial resistance gene carriage was varied; of note, this study revealed that a large proportion of North American equine isolates carry the leucocidin PQ toxin (66% of isolates). One isolate (17-021) carried genes imparting lincosamide and high-level mupirocin resistance, a combination not previously reported in equine-derived S. aureus isolates. IMPORTANCE This is one of the first studies to perform whole-genome sequencing (WGS) of a large collection of Staphylococcus aureus isolates, both methicillin resistant and susceptible, collected from horses. A large proportion of the isolates carry leucocidin PQ (LukPQ), making this one of the first reports of such carriage in the United States. The presence of lincosamide and high-level mupirocin resistance in a methicillin-susceptible S. aureus (MSSA) isolate highlights the importance of MSSA as a reservoir of important antimicrobial resistance genes. As microbial resistance genes on mobile genetic elements can pass between S. aureus strains and livestock-associated strains can be transferred to humans, these findings have important public health implications.
Collapse
|
24
|
Knapp MPA, Johnson TA, Ritter MK, Rainer RO, Fiester SE, Grier JT, Connell TD, Arce S. Immunomodulatory regulation by heat-labile enterotoxins and potential therapeutic applications. Expert Rev Vaccines 2021; 20:975-987. [PMID: 34148503 DOI: 10.1080/14760584.2021.1945449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Heat-labile enterotoxins (HLTs) and their cognate ganglioside receptors have been extensively studied because of their therapeutic potential. Gangliosides play arole in modulating effector cells of the immune system, and HLTs provide a novel means for stimulating ganglioside-mediated responses in immunocompetent cells.Areas covered: To evaluate the mechanisms of HLT adjuvanticity, a systemic literature review was performed using relevant keyword searches of the PubMed database, accessing literature published as recently as late 2020. Since HLTs bind to specific ganglioside receptors on immunocytes, they can act as regulators via stimulation or tapering of immune responses from associated signal transduction events. Binding of HLTs to gangliosides can increase proliferation of T-cells, increase cytokine release, augment mucosal/systemic antibody responses, and increase the effectiveness of antigen presenting cells. Subunit components also independently stimulate certain immune responses. Mutant forms of HLTs have potent immunomodulatory effects without the toxicity associated with holotoxins.Expert opinion: HLTs have been the subject of abundant research exploring their use as vaccine adjuvants, in the treatment of autoimmune conditions, in cancer therapy, and for weight loss, proving that these molecules are promising tools in the field of immunotherapy.
Collapse
Affiliation(s)
- Mary-Peyton A Knapp
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA
| | - Taylor A Johnson
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA
| | - Madison K Ritter
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA
| | - Robert O Rainer
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA.,Prisma Health, Department of Pathology, Greenville, SC, USA
| | - Steven E Fiester
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA.,Prisma Health, Department of Pathology, Greenville, SC, USA
| | - Jennifer T Grier
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA
| | - Terry D Connell
- University of Buffalo, Jacobs School of Medicine and Biomedical Sciences and the Witebsky Center of Microbial Pathogenesis and Immunology, Buffalo, NY, USA
| | - Sergio Arce
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA.,Prisma Health, Cancer Institute, Greenville, SC, USA
| |
Collapse
|
25
|
Dłubała A, Bogusławska-Wąs E, Daczkowska-Kozon E. Prevalence, virulence genes, and genetic diversity of Bacillus cereus isolated from convenience food. Acta Sci Pol Technol Aliment 2021; 20:113-120. [PMID: 33449525 DOI: 10.17306/j.afs.0864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND In times when there is a growing interest in ready-to-eat food (RTEF), the presence of potentially pathogenic bacteria, including the toxigenic psychrotolerant bacilli from the B. cereus group, on this type of carrier may pose a real threat to the health of consumers. A significant part of RTEF is represented by vegetable products and food products made with them. The increased production of convenience foods has resulted in their international turnover growing. When coupled with a rising percentage of persons from risk groups (YOPI), including the elderly or immunocompromised, this may mean increased health risks posed by the so-called "novel pathogens", like the toxigenic psychrotolerant B. cereus sensu lato. METHODS Food samples were analyzed for the presence and count of putative B. cereus according to the Polish Standard PN-EN ISO 7932:2005. All genetic analyses were conducted using a qualitative real-time PCR. RESULTS The presence of B. cereus sensu lato was confirmed in 130 out of the 192 samples of convenience foods, at contamination levels ranging from 1.65 to 3.32 log CFU/g. Among the strains confirmed to belong to the B. cereus group, 23 were identified as emetic B. cereus. The analysis of each strain's ability to grow at temp. 4-10°C demonstrated that 4.9% and 12.7% of the isolates were able to grow at 4°C and 6°C, respectively. In turn, 15.2% were able to grow at 8°C, and 36.3% at 10°C. None of the psychrotrophic strains possessed genes typical of B. weihenstephanensis. The group of psychrotrophic B. cereus included potentially toxigenic strains being carriers of genes that determine the synthesis of the following toxins: NHE, HBL, CytK, and cereulide. Some of them were potent enough to produce more than one toxin. CONCLUSIONS The analyses conducted in this study demonstrate that the psychrotolerant strains of B. cereus (including the toxigenic ones) are frequent microbiological contaminants of RTEF products offered in retail. The presence of emetic strains from the B. cereus group, which are able to grow in a wide range of temperatures and produce enterotoxins and enzymes with the characteristics of toxins, in ready-to-eat foods may pose a real threat to consumer health.
Collapse
Affiliation(s)
- Alicja Dłubała
- Department of Applied Microbiology and Human Nutrition Physiology, West Pomeranian University of Technology Szczecin, Poland
| | - Elżbieta Bogusławska-Wąs
- Department of Applied Microbiology and Human Nutrition Physiology, West Pomeranian University of Technology Szczecin, Poland
| | - Elżbieta Daczkowska-Kozon
- Department of Applied Microbiology and Human Nutrition Physiology, West Pomeranian University of Technology Szczecin, Poland
| |
Collapse
|
26
|
Burtscher J, Etter D, Biggel M, Schlaepfer J, Johler S. Further Insights into the Toxicity of Bacillus cytotoxicus Based on Toxin Gene Profiling and Vero Cell Cytotoxicity Assays. Toxins (Basel) 2021; 13:234. [PMID: 33805220 DOI: 10.3390/toxins13040234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Bacillus cytotoxicus belongs to the Bacillus cereus group that also comprises the foodborne pathogen Bacillus cereus sensu stricto, Bacillus anthracis causing anthrax, as well as the biopesticide Bacillus thuringiensis. The first B. cytotoxicus was isolated in the context of a severe food poisoning outbreak leading to fatal cases of diarrheal disease. Subsequent characterization of the outbreak strain led to the conclusion that this Bacillus strain was highly cytotoxic and eventually resulted in the description of a novel species, whose name reflects the observed toxicity: B. cytotoxicus. However, only a few isolates of this species have been characterized with regard to their cytotoxic potential and the role of B. cytotoxicus as a causative agent of food poisoning remains largely unclear. Hence, the aim of this study was to gain further insights into the toxicity of B. cytotoxicus. To this end, 19 isolates were obtained from mashed potato powders and characterized by toxin gene profiling and Vero cell cytotoxicity assays. All isolates harbored the cytK1 (cytotoxin K1) gene and species-specific variants of the nhe (non-hemolytic enterotoxin) gene. The isolates exhibited low or no toxicity towards Vero cells. Thus, this study indicates that the cytotoxic potential of B. cytotoxicus may be potentially lower than initially assumed.
Collapse
|
27
|
Motyka NI, Stewart SR, Hollifield IE, Kyllo TR, Mansfield JA, Norton EB, Clements JD, Bitoun JP. Elevated Extracellular cGMP Produced after Exposure to Enterotoxigenic Escherichia coli Heat-Stable Toxin Induces Epithelial IL-33 Release and Alters Intestinal Immunity. Infect Immun 2021; 89:e00707-20. [PMID: 33431701 DOI: 10.1128/IAI.00707-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/05/2021] [Indexed: 01/13/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major diarrheal pathogen in children in low- to middle-income countries. Previous studies identified heat-stable enterotoxin (ST)-producing ETEC as a prevalent diarrheal pathogen in children younger than 5 years. Enterotoxigenic Escherichia coli (ETEC) is a major diarrheal pathogen in children in low- to middle-income countries. Previous studies identified heat-stable enterotoxin (ST)-producing ETEC as a prevalent diarrheal pathogen in children younger than 5 years. While many studies have evaluated the interaction of ETEC heat-labile enterotoxin (LT) with host epithelium and immunity, few investigations have attempted similar studies with ST. To further understand ST pathogenesis, we examined the impact of ST on cGMP localization, epithelial cell cytokine production, and antibody development following immunization. In addition to robust intracellular cGMP in T84 cells in the presence of phosphodiesterase inhibitors (PDEis) that prevent the breakdown of cyclic nucleotides, we found that prolonged ST intoxication induced extracellular cGMP accumulation in the presence or absence of PDEis. Further, ST intoxication induced luminal cGMP in vivo in mice, suggesting that secreted cGMP may have other cellular functions. Using transcriptome sequencing (RNA-seq) and quantitative PCR (qPCR), we demonstrated that ST intoxication, or treatment with the clinically used ST mimic linaclotide, altered inflammatory cytokine gene expression, including the interleukin 1 (IL-1) family member IL-33, which could also be induced by cell-permeative 8-Br-cGMP. Finally, when present during immunization, ST suppressed induction of antibodies to specific antigens. In conclusion, our studies indicate that ST modulates epithelial cell physiology and the interplay between the epithelial and immune compartments.
Collapse
|
28
|
Lefebvre D, Blanco-Valle K, Feraudet-Tarisse C, Merda D, Simon S, Fenaille F, Hennekinne JA, Nia Y, Becher F. Quantitative Determination of Staphylococcus aureus Enterotoxins Types A to I and Variants in Dairy Food Products by Multiplex Immuno-LC-MS/MS. J Agric Food Chem 2021; 69:2603-2610. [PMID: 33596646 DOI: 10.1021/acs.jafc.0c07545] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Staphylococcal enterotoxins (SEs) are responsible for frequent food poisoning outbreaks worldwide. Specific identification of SEs is crucial for confirmation of food poisoning, tracking of the incriminated foods or food ingredients, and removal from the food chain. Here, we report on a new food testing protocol addressing the challenge of low abundance of SEs in contaminated food and high sequence heterogeneity. Multiplex ability of targeted high-resolution mass spectrometry was succesfully applied to the simultaneous and quantitative determination of the eight most frequent SEs including sequence variants. In this aim, between three and eight proteotypic peptides of each SE were selected by carefully considering amino acid variations within each type, and sequence homology between types. Quantification of trace levels of SEs directly in food samples was reached by immunoaffinity enrichment and optimized analytical conditions. The assay was validated in dairy food products with a lower limit of quantification down to 0.1 ng/g (in milk), and quantification of SEs was successfully demonstrated in real-life samples collected during staphylococcal food poisoning outbreaks. Importantly, the ability of the method to detect diverse sequence variants was also illustrated. By enabling for the first time the simultaneous quantification of the eight most frequent SEs, the new mass spectrometry-based assay would facilitate the laboratory confirmation of positive samples in situation of food poisoning outbreaks.
Collapse
Affiliation(s)
- Donatien Lefebvre
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France
| | - Kevin Blanco-Valle
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France
| | - Cécile Feraudet-Tarisse
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Déborah Merda
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France
| | - Stéphanie Simon
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - François Fenaille
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Jacques-Antoine Hennekinne
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France
| | - Yacine Nia
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France
| | - François Becher
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| |
Collapse
|
29
|
Asadpoor M, Ithakisiou GN, Henricks PAJ, Pieters R, Folkerts G, Braber S. Non-Digestible Oligosaccharides and Short Chain Fatty Acids as Therapeutic Targets against Enterotoxin-Producing Bacteria and Their Toxins. Toxins (Basel) 2021; 13:toxins13030175. [PMID: 33668708 PMCID: PMC7996226 DOI: 10.3390/toxins13030175] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Enterotoxin-producing bacteria (EPB) have developed multiple mechanisms to disrupt gut homeostasis, and provoke various pathologies. A major part of bacterial cytotoxicity is attributed to the secretion of virulence factors, including enterotoxins. Depending on their structure and mode of action, enterotoxins intrude the intestinal epithelium causing long-term consequences such as hemorrhagic colitis. Multiple non-digestible oligosaccharides (NDOs), and short chain fatty acids (SCFA), as their metabolites produced by the gut microbiota, interact with enteropathogens and their toxins, which may result in the inhibition of the bacterial pathogenicity. NDOs characterized by diverse structural characteristics, block the pathogenicity of EPB either directly, by inhibiting bacterial adherence and growth, or biofilm formation or indirectly, by promoting gut microbiota. Apart from these abilities, NDOs and SCFA can interact with enterotoxins and reduce their cytotoxicity. These anti-virulent effects mostly rely on their ability to mimic the structure of toxin receptors and thus inhibiting toxin adherence to host cells. This review focuses on the strategies of EPB and related enterotoxins to impair host cell immunity, discusses the anti-pathogenic properties of NDOs and SCFA on EPB functions and provides insight into the potential use of NDOs and SCFA as effective agents to fight against enterotoxins.
Collapse
Affiliation(s)
- Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (M.A.); (G.-N.I.); (P.A.J.H.); (G.F.)
| | - Georgia-Nefeli Ithakisiou
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (M.A.); (G.-N.I.); (P.A.J.H.); (G.F.)
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (M.A.); (G.-N.I.); (P.A.J.H.); (G.F.)
| | - Roland Pieters
- Division of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands;
|
|