1
|
Tang Y. Plant nuclear envelope as a hub connecting genome organization with regulation of gene expression. Nucleus 2023; 14:2178201. [PMID: 36794966 PMCID: PMC9980628 DOI: 10.1080/19491034.2023.2178201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Eukaryotic cells organize their genome within the nucleus with a double-layered membrane structure termed the nuclear envelope (NE) as the physical barrier. The NE not only shields the nuclear genome but also spatially separates transcription from translation. Proteins of the NE including nucleoskeleton proteins, inner nuclear membrane proteins, and nuclear pore complexes have been implicated in interacting with underlying genome and chromatin regulators to establish a higher-order chromatin architecture. Here, I summarize recent advances in the knowledge of NE proteins that are involved in chromatin organization, gene regulation, and coordination of transcription and mRNA export. These studies support an emerging view of plant NE as a central hub that contributes to chromatin organization and gene expression in response to various cellular and environmental cues.
Collapse
Affiliation(s)
- Yu Tang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China,CONTACT Yu Tang Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| |
Collapse
|
2
|
Maiti P, Nand M, Mathpal S, Wahab S, Kuniyal JC, Sharma P, Joshi T, Ramakrishnan MA, Chandra S. Potent multi-target natural inhibitors against SARS-CoV-2 from medicinal plants of the Himalaya: a discovery from hybrid machine learning, chemoinformatics, and simulation assisted screening. J Biomol Struct Dyn 2023:1-14. [PMID: 37732349 DOI: 10.1080/07391102.2023.2257333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
The emergence and immune evasion ability of SARS-CoV-2 Omicron strains, mainly BA.5.2 and BF.7 and other variants of concern have raised global apprehensions. With this context, the discovery of multitarget inhibitors may be proven more comprehensive paradigm than its one-drug-to-one target counterpart. In the current study, a library of 271 phytochemicals from 25 medicinal plants from the Indian Himalayan Region has been virtually screened against SARS-CoV-2 by targeting nine virus proteins, viz., papain-like protease, main protease, nsp12, helicase, nsp14, nsp15, nsp16, envelope, and nucleocapsid for screening of a multi-target inhibitor against the viral replication. Initially, 94 phytochemicals were screened by a hybrid machine learning model constructed by combining 6 confirmatory bioassays against SARS-CoV-2 replication using an instance-based learner lazy k-nearest neighbour classifier. Further, 25 screened compounds with excellent drug-like properties were subjected to molecular docking. The phytochemical Cepharadione A from the plant Piper longum showed binding potential against four proteins with the highest binding energy of -10.90 kcal/mol. The compound has acceptable absorption, distribution, metabolism, excretion, and toxicity properties and exhibits stable binding behaviour in terms of root mean square deviation (0.068 ± 0.05 nm), root-mean-square fluctuation, hydrogen bonds, solvent accessible surface area (83.88-161.89 nm2), and molecular mechanics Poisson-Boltzmann surface area during molecular dynamics simulation of 200 ns with selected target proteins. Concerning the utility of natural compounds in the therapeutics formulation, Cepharadione A could be further investigated as a remarkable lead candidate for the development of therapeutic drugs against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priyanka Maiti
- G.B. Pant National Institute of Himalayan Environment (NIHE), Almora, India
| | - Mahesha Nand
- G.B. Pant National Institute of Himalayan Environment (NIHE), Almora, India
| | - Shalini Mathpal
- Department of Biotechnology, Kumaun University, Nainital, India
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | | - Priyanka Sharma
- Department of Botany, D.S.B. Campus, Kumaun University, Nainital, India
| | - Tushar Joshi
- Department of Biotechnology, Kumaun University, Nainital, India
| | | | - Subhash Chandra
- Department of Botany, Soban Singh Jeena University, Almora, India
| |
Collapse
|
3
|
Sirotkin AV, Macejková M, Tarko A, Fabova Z, Harrath AH. Can some food/medicinal plants directly affect porcine ovarian granulosa cells and mitigate the toxic effect of toluene? Reprod Domest Anim 2023. [PMID: 37732358 DOI: 10.1111/rda.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
The action of buckwheat, rooibos and vitex on healthy female reproductive systems, as well as their ability to mitigate the reproductive toxicity of environmental contaminant toluene have not yet been examined. We analysed the influence of toluene (0, 10, 100 or 1000 ng/mL) with and without these plant extracts (10 μg/mL) on cultured porcine ovarian granulosa cells. Cell viability, proliferation (PCNA accumulation), apoptosis (accumulation of bax) and release of progesterone (P) and oestradiol (E) were measured. Toluene reduced ovarian cell viability and proliferation, increased apoptosis and suppressed E but not P release. Plant extracts, given alone, were also able to directly suppress some ovarian cell functions. The addition of buckwheat promoted toluene action on cell viability, proliferation and P release, but it did not modify other toluene effects. Rooibos mitigated toluene action on cell viability, proliferation and apoptosis but promoted its action on P and E. The addition of vitex mitigated all the tested toluene effects. These observations: (1) demonstrate the direct toxic influence of toluene on ovarian cells, (2) demonstrate the ability of food/medicinal plants to either promote or mitigate toluene effects and (3) suggest that vitex could be a natural protector against the suppressive effect of toluene on female reproduction.
Collapse
Affiliation(s)
| | | | - Adam Tarko
- Contantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Zuzana Fabova
- Contantine the Philosopher University in Nitra, Nitra, Slovakia
| | | |
Collapse
|
4
|
He Z, Lan Y, Zhou X, Yu B, Zhu T, Yang F, Fu LY, Chao H, Wang J, Feng RX, Zuo S, Lan W, Chen C, Chen M, Zhao X, Hu K, Chen D. Single-cell transcriptome analysis dissects lncRNA-associated gene networks in Arabidopsis. Plant Commun 2023:100717. [PMID: 37715446 DOI: 10.1016/j.xplc.2023.100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/14/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The plant genome produces an extremely large collection of long noncoding RNAs (lncRNAs) that are generally expressed in a context-specific manner and have pivotal roles in regulation of diverse biological processes. Here we mapped the transcriptional heterogeneity of lncRNAs and their associated gene regulatory networks at single-cell resolution. We generated a comprehensive cell atlas at the whole-organism level by integrative analysis of 28 published single-cell RNA-sequencing (scRNA-seq) datasets from Arabidopsis juvenile seedlings. We then provided an in-depth analysis of cell type-related lncRNA signatures that shows consistent expression patterns with canonical protein-coding gene markers. We further demonstrated that the cell-type specific expression of lncRNAs largely explains their tissue specificity. In addition, we predicted gene regulatory networks based on motif enrichment and co-expression analysis of lncRNAs and mRNAs, and identified putative transcription factors orchestrating the cell type-specific lncRNA expression. The above analysis results are available at the single cell-based plant lncRNA atlas database (scPLAD; https://biobigdata.nju.edu.cn/scPLAD/). Overall, this work demonstrates the power of integrative single-cell data analysis applied to plant lncRNA biology and provides fundamental insights into lncRNA expression specificity and associated gene regulation.
Collapse
Affiliation(s)
- Zhaohui He
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yangming Lan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xinkai Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bianjiong Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tao Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Fa Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Liang-Yu Fu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Haoyu Chao
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahao Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China;; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Rong-Xu Feng
- Zhejiang Zhoushan High School, Zhoushan 316099, China
| | - Shimin Zuo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China;; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Wenzhi Lan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chunli Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China;.
| | - Xue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China;.
| | - Keming Hu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China;; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China;.
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China;.
| |
Collapse
|
5
|
Edris R, Sultan LD, Best C, Mizrahi R, Weinstein O, Chen S, Kamennaya NA, Keren N, Zer H, Zhu H, Ostersetzer-Biran O. Root Primordium Defective 1 Encodes an Essential PORR Protein Required for the Splicing of Mitochondria Encoded Group II Introns and for Respiratory Complex I Biogenesis. Plant Cell Physiol 2023:pcad101. [PMID: 37702436 DOI: 10.1093/pcp/pcad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Cellular respiration involves complex organellar metabolic activities that are pivotal for plant growth and development. Mitochondria contain their own genetic system (mitogenome, mtDNA), which encodes key elements of the respiratory machinery. Plant mtDNAs are notably larger than their counterparts in Animalia, with complex genome organization and gene-expression characteristics. The maturation of the plant mitochondrial transcripts involves extensive RNA editing, trimming and splicing events. These essential processing steps rely on the activities of numerous nuclear-encoded cofactors, which may also play key regulatory roles in mitochondrial biogenesis and function, and hence in plant physiology. Proteins that harbor the Plant Organelle RNA Recognition (PORR) domain are represented in a small gene family in plants. Several PORR members, including WTF1, WTF9 and LEFKOTHEA, are known to act in the splicing of organellar group II introns in angiosperms. The AT4G33495 gene-locus encodes an essential PORR-protein in Arabidopsis, termed as ROOT PRIMORDIUM DEFECTIVE 1 (RPD1). A null mutation of At.RPD1 causes arrest in early embryogenesis, while the missense mutant lines, rpd1.1 and rpd1.2, exhibit a strong impairment in root development and retarded growth phenotypes, especially under high-temperature conditions. Here, we further show that RPD1 functions in the splicing of introns that reside in the coding regions of various complex I (CI) subunits (i.e., nad2, nad4, nad5 and nad7), as well as in the maturation of the ribosomal rps3 pre-RNA in Arabidopsis mitochondria. The altered growth and developmental phenotypes and modified respiration activities are tightly correlated with respiratory chain CI defects in rpd1 mutants.
Collapse
Affiliation(s)
- Rana Edris
- Dept. of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem 9190401, Israel
| | - Laure D Sultan
- Dept. of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem 9190401, Israel
| | - Corinne Best
- Dept. of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem 9190401, Israel
| | - Ron Mizrahi
- Dept. of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem 9190401, Israel
| | - Ofir Weinstein
- Dept. of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem 9190401, Israel
| | - Stav Chen
- Dept. of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem 9190401, Israel
| | - Nina A Kamennaya
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Bluestein Institutes for Desert research, Ben Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Nir Keren
- Dept. of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem 9190401, Israel
| | - Hagit Zer
- Dept. of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem 9190401, Israel
| | - Hongliang Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Oren Ostersetzer-Biran
- Dept. of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
6
|
Chen TX, Hamachi A, Soon R, Natavio M. Roots, Leaves, and Flowers: A Narrative Review of Herbs and Botanicals Used for Self-Managed Abortion in Asia and the Pacific. J Midwifery Womens Health 2023. [PMID: 37668006 DOI: 10.1111/jmwh.13561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Abortion has existed throughout history, often outside of formal health care systems. This type of care, now called self-managed abortion, has historically been achieved in part through botanicals and traditional medicines. Their use continues into the modern day, especially in Asia, Hawai'i, and other Pacific Islands, where indigenous medicine traditions practice alongside allopathic medicine. Many of these botanicals, such as papaya leaves, hibiscus flowers, and young kī, and traditional medicines, such as tianhuafen, yuanhua, and Shenghua Decoction, have undergone scientific and clinical investigation of their potential abortifacient and antifertility action. The incidence of self-managed abortion with such abortifacients in countries with severe abortion restrictions are only estimates, leading to the possibility that legal rulings and societal pressures may cause underreporting. The Asian American, Native Hawaiian, and Pacific Islander communities in the United States also suffer from a lack of abortion access in addition to unique health disparities and barriers to reproductive health care. As difficulties in abortion access increases due to the Supreme Court decision in Dobbs v. Jackson Women's Health Organization, some may seek or even prefer self-managed abortion through traditional methods that have been passed down in their communities. Midwives and other health care providers may then be contacted during this process. This narrative review provides an overview of the literature on the use of botanicals, herbs, and traditional medicines used for self-managed abortion, specifically in Asia, Hawai‧i, and other Pacific Islands. Their implications for practice for providers in the United States and further opportunities for research are also presented.
Collapse
Affiliation(s)
- Tracy X Chen
- Division of Complex Family Planning, Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States
| | - April Hamachi
- John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States
| | - Reni Soon
- Division of Complex Family Planning, Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States
| | - Melissa Natavio
- Division of Complex Family Planning, Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States
| |
Collapse
|
7
|
Mu N, Li J, Zeng L, You J, Li R, Qin A, Liu X, Yan F, Zhou Z. Plant-Derived Exosome-Like Nanovesicles: Current Progress and Prospects. Int J Nanomedicine 2023; 18:4987-5009. [PMID: 37693885 PMCID: PMC10492547 DOI: 10.2147/ijn.s420748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023] Open
Abstract
Exosomes are small extracellular vesicles, ranging in size from 30-150nm, which can be derived from various types of cells. In recent years, mammalian-derived exosomes have been extensively studied and found to play a crucial role in regulating intercellular communication, thereby influencing the development and progression of numerous diseases. Traditional Chinese medicine has employed plant-based remedies for thousands of years, and an increasing body of evidence suggests that plant-derived exosome-like nanovesicles (PELNs) share similarities with mammalian-derived exosomes in terms of their structure and function. In this review, we provide an overview of recent advances in the study of PELNs and their potential implications for human health. Specifically, we summarize the roles of PELNs in respiratory, digestive, circulatory, and other diseases. Furthermore, we have extensively investigated the potential shortcomings and challenges in current research regarding the mechanism of action, safety, administration routes, isolation and extraction methods, characterization and identification techniques, as well as drug-loading capabilities. Based on these considerations, we propose recommendations for future research directions. Overall, our review highlights the potential of PELNs as a promising area of research, with broad implications for the treatment of human diseases. We anticipate continued interest in this area and hope that our summary of recent findings will stimulate further exploration into the implications of PELNs for human health.
Collapse
Affiliation(s)
- Nai Mu
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province, People’s Republic of China
- Geriatric Diseases Institute of Chengdu, Department of Orthopedics, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, People’s Republic of China
| | - Jie Li
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, People’s Republic of China
| | - Li Zeng
- Department of Pharmacy, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, People’s Republic of China
| | - Juan You
- Department of Pharmacy, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, People’s Republic of China
| | - Rong Li
- Department of Pharmacy, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, People’s Republic of China
| | - Anquan Qin
- Department of Pharmacy, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, People’s Republic of China
| | - Xueping Liu
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province, People’s Republic of China
| | - Fang Yan
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, People’s Republic of China
- Geriatric Diseases Institute of Chengdu, Department of Geriatrics, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, People’s Republic of China
| | - Zheng Zhou
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan Province, People’s Republic of China
- Geriatric Diseases Institute of Chengdu, Department of Orthopedics, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
8
|
Biryukov M, Ustyantsev K. Origin and Evolution of Plant Long Terminal Repeat Retrotransposons with Additional Ribonuclease H. Genome Biol Evol 2023; 15:evad161. [PMID: 37697050 PMCID: PMC10508981 DOI: 10.1093/gbe/evad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/08/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023] Open
Abstract
Retroviruses originated from long terminal repeat retrotransposons (LTR-RTs) through several structural adaptations. One such modification was the arrangement of an additional ribonuclease H (aRH) domain next to native RH, followed by degradation and subfunctionalization of the latter. We previously showed that this retrovirus-like structure independently evolved in Tat LTR-RTs in flowering plants, proposing its origin from sequential rearrangements of ancestral Tat structures identified in lycophytes and conifers. However, most nonflowering plant genome assemblies were not available at that time, therefore masking the history of aRH acquisition by Tat and challenging our hypothesis. Here, we revisited Tat's evolution scenario upon the aRH acquisition by covering most of the extant plant phyla. We show that Tat evolved and obtained aRH in an ancestor of land plants. Importantly, we found the retrovirus-like structure in clubmosses, hornworts, ferns, and gymnosperms, suggesting its ancient origin, broad propagation, and yet-to-be-understood benefit for the LTR-RTs' adaptation.
Collapse
Affiliation(s)
- Mikhail Biryukov
- Sector of Molecular and Genetic Mechanisms of Regeneration, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Kirill Ustyantsev
- Sector of Molecular and Genetic Mechanisms of Regeneration, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| |
Collapse
|
9
|
Wang Y, Demirer GS. Synthetic biology for plant genetic engineering and molecular farming. Trends Biotechnol 2023; 41:1182-1198. [PMID: 37012119 DOI: 10.1016/j.tibtech.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023]
Abstract
Many efforts have been put into engineering plants to improve crop yields and stress tolerance and boost the bioproduction of valuable molecules. Yet, our capabilities are still limited due to the lack of well-characterized genetic building blocks and resources for precise manipulation and given the inherently challenging properties of plant tissues. Advancements in plant synthetic biology can overcome these bottlenecks and release the full potential of engineered plants. In this review, we first discuss the recently developed plant synthetic elements from single parts to advanced circuits, software, and hardware tools expediting the engineering cycle. Next, we survey the advancements in plant biotechnology enabled by these recent resources. We conclude the review with outstanding challenges and future directions of plant synthetic biology.
Collapse
Affiliation(s)
- Yunqing Wang
- Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gozde S Demirer
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
10
|
Madaj A, Durka W, Michalski SG. Two common, often coexisting grassland plant species differ in their evolutionary potential in response to experimental drought. Ecol Evol 2023; 13:e10430. [PMID: 37664507 PMCID: PMC10469005 DOI: 10.1002/ece3.10430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
For terrestrial plant communities, the increase in frequency and intensity of drought events is considered as one of the most severe consequences of climate change. While single-species studies demonstrate that drought can lead to relatively rapid adaptive genetic changes, the evolutionary potential and constraints to selection need to be assessed in comparative approaches to draw more general conclusions. In a greenhouse experiment, we compare the phenotypic response and evolutionary potential of two co-occurring grassland plant species, Bromus erectus and Trifolium pratense, in two environments differing in water availability. We quantified variation in functional traits and reproductive fitness in response to drought and compared multivariate genetic variance-covariance matrices and predicted evolutionary responses between species. Species showed different drought adaptation strategies, reflected in both their species-specific phenotypic plasticity and predicted responses to selection indicating contrasting evolutionary potential under drought. In T. pratense we found evidence for stronger genetic constraints under drought compared to more favourable conditions, and for some traits plastic and predicted evolutionary responses to drought had opposing directions, likely limiting the potential for adaptive change. Our study contributes to a more detailed understanding of the evolutionary potential of species with different adaptive strategies in response to climate change and may help to inform future scenarios for semi-natural grassland ecosystems.
Collapse
Affiliation(s)
- Anna‐Maria Madaj
- Department of Community EcologyHelmholtz‐Centre for Environmental Research – UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Walter Durka
- Department of Community EcologyHelmholtz‐Centre for Environmental Research – UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Stefan G. Michalski
- Department of Community EcologyHelmholtz‐Centre for Environmental Research – UFZHalle (Saale)Germany
| |
Collapse
|
11
|
Navarro-Quiles C, Lup SD, Muñoz-Nortes T, Candela H, Micol JL. The genetic and molecular basis of haploinsufficiency in flowering plants. Trends Plant Sci 2023:S1360-1385(23)00241-8. [PMID: 37633803 DOI: 10.1016/j.tplants.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/28/2023]
Abstract
In diploid organisms, haploinsufficiency can be defined as the requirement for more than one fully functional copy of a gene. In contrast to most genes, whose loss-of-function alleles are recessive, loss-of-function alleles of haploinsufficient genes are dominant. However, forward and reverse genetic screens are biased toward obtaining recessive, loss-of-function mutations, and therefore, dominant mutations of all types are underrepresented in mutant collections. Despite this underrepresentation, haploinsufficient loci have intriguing implications for studies of genome evolution, gene dosage, stability of protein complexes, genetic redundancy, and gene expression. Here we review examples of haploinsufficiency in flowering plants and describe the underlying molecular mechanisms and evolutionary forces driving haploinsufficiency. Finally, we discuss the masking of haploinsufficiency by genetic redundancy, a widespread phenomenon among angiosperms.
Collapse
Affiliation(s)
- Carla Navarro-Quiles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Samuel Daniel Lup
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Tamara Muñoz-Nortes
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain.
| |
Collapse
|
12
|
Mohanasundaram B, Pandey S. Moving beyond the arabidopsis-centric view of G-protein signaling in plants. Trends Plant Sci 2023:S1360-1385(23)00261-3. [PMID: 37625950 DOI: 10.1016/j.tplants.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
Heterotrimeric G-protein-mediated signaling is a key mechanism to transduce a multitude of endogenous and environmental signals in diverse organisms. The scope and expectations of plant G-protein research were set by pioneering work in metazoans. Given the similarity of the core constituents, G-protein-signaling mechanisms were presumed to be universally conserved. However, because of the enormous diversity of survival strategies and endless forms among eukaryotes, the signal, its interpretation, and responses vary even among different plant groups. Earlier G-protein research in arabidopsis (Arabidopsis thaliana) has emphasized its divergence from Metazoa. Here, we compare recent evidence from diverse plant lineages with the available arabidopsis G-protein model and discuss the conserved and novel protein components, signaling mechanisms, and response regulation.
Collapse
Affiliation(s)
| | - Sona Pandey
- Donald Danforth Plant Science Center, 975 N. Warson Road, St Louis, MO 63132, USA.
| |
Collapse
|
13
|
Lloyd JR, Sonnewald U. Jens Kossmann 1963-2023 - a scientist with a passion for plant biology and people. Front Plant Sci 2023; 14:1266078. [PMID: 37680354 PMCID: PMC10481953 DOI: 10.3389/fpls.2023.1266078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Affiliation(s)
- James R. Lloyd
- Institute for Plant Biotechnology, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
14
|
Szurman-Zubrzycka M, Kurowska M, Till BJ, Szarejko I. Is it the end of TILLING era in plant science? Front Plant Sci 2023; 14:1160695. [PMID: 37674734 PMCID: PMC10477672 DOI: 10.3389/fpls.2023.1160695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/19/2023] [Indexed: 09/08/2023]
Abstract
Since its introduction in 2000, the TILLING strategy has been widely used in plant research to create novel genetic diversity. TILLING is based on chemical or physical mutagenesis followed by the rapid identification of mutations within genes of interest. TILLING mutants may be used for functional analysis of genes and being nontransgenic, they may be directly used in pre-breeding programs. Nevertheless, classical mutagenesis is a random process, giving rise to mutations all over the genome. Therefore TILLING mutants carry background mutations, some of which may affect the phenotype and should be eliminated, which is often time-consuming. Recently, new strategies of targeted genome editing, including CRISPR/Cas9-based methods, have been developed and optimized for many plant species. These methods precisely target only genes of interest and produce very few off-targets. Thus, the question arises: is it the end of TILLING era in plant studies? In this review, we recap the basics of the TILLING strategy, summarize the current status of plant TILLING research and present recent TILLING achievements. Based on these reports, we conclude that TILLING still plays an important role in plant research as a valuable tool for generating genetic variation for genomics and breeding projects.
Collapse
Affiliation(s)
- Miriam Szurman-Zubrzycka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Marzena Kurowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Bradley J. Till
- Veterinary Genetics Laboratory, University of California, Davis, Davis, United States
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
15
|
Kongsted TE, Glover BJ. Phylogenetic analysis of bHLH classes III and IV in land plants and their algal relatives. New Phytol 2023. [PMID: 37578088 DOI: 10.1111/nph.19202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Affiliation(s)
- Thea E Kongsted
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
16
|
Gonzalez JP, Frandsen KEH, Kesten C. The role of intrinsic disorder in binding of plant microtubule-associated proteins to the cytoskeleton. Cytoskeleton (Hoboken) 2023. [PMID: 37578201 DOI: 10.1002/cm.21773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/15/2023]
Abstract
Microtubules (MTs) represent one of the main components of the eukaryotic cytoskeleton and support numerous critical cellular functions. MTs are in principle tube-like structures that can grow and shrink in a highly dynamic manner; a process largely controlled by microtubule-associated proteins (MAPs). Plant MAPs are a phylogenetically diverse group of proteins that nonetheless share many common biophysical characteristics and often contain large stretches of intrinsic protein disorder. These intrinsically disordered regions are determinants of many MAP-MT interactions, in which structural flexibility enables low-affinity protein-protein interactions that enable a fine-tuned regulation of MT cytoskeleton dynamics. Notably, intrinsic disorder is one of the major obstacles in functional and structural studies of MAPs and represents the principal present-day challenge to decipher how MAPs interact with MTs. Here, we review plant MAPs from an intrinsic protein disorder perspective, by providing a complete and up-to-date summary of all currently known members, and address the current and future challenges in functional and structural characterization of MAPs.
Collapse
Affiliation(s)
- Jordy Perez Gonzalez
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kristian E H Frandsen
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Christopher Kesten
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
17
|
Dembitsky VM. Bioactive Steroids Bearing Oxirane Ring. Biomedicines 2023; 11:2237. [PMID: 37626733 PMCID: PMC10452232 DOI: 10.3390/biomedicines11082237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
This review explores the biological activity and structural diversity of steroids and related isoprenoid lipids, with a particular focus on compounds containing an oxirane ring. These natural compounds are derived from fungi, fungal endophytes, as well as extracts of plants, algae, and marine invertebrates. To evaluate their biological activity, an extensive examination of refereed literature sources was conducted, including in vivo and in vitro studies and the utilization of the QSAR method. Notable properties observed among these compounds include strong anti-inflammatory, antineoplastic, antiproliferative, anti-hypercholesterolemic, antiparkinsonian, diuretic, anti-eczematic, anti-psoriatic, and various other activities. Throughout this review, 3D graphs illustrating the activity of individual steroids are presented, accompanied by images of selected terrestrial or marine organisms. Furthermore, this review provides explanations for specific types of biological activity associated with these compounds. The data presented in this review are of scientific interest to the academic community and carry practical implications in the fields of pharmacology and medicine. By analyzing the biological activity and structural diversity of steroids and related isoprenoid lipids, this review offers valuable insights that contribute to both theoretical understanding and applied research. This review draws upon data from various authors to compile information on the biological activity of natural steroids containing an oxirane ring.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
18
|
Vejerano EP, Ahn J. Leaves are a Source of Biogenic Persistent Free Radicals. Environ Sci Technol Lett 2023; 10:662-667. [PMID: 37577362 PMCID: PMC10413942 DOI: 10.1021/acs.estlett.3c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 08/15/2023]
Abstract
Nonsenescent and senescent leaves of selected coniferous and broadleaf plants contained substantial levels of naturally occurring persistent free radicals (PFRs). These biogenic PFRs (BPFRs) were stable and persistent despite multiple wetting and drying cycles, implying that BPFRs can leach and sorb on soil particles. Results suggest that endogenous chemicals in plants and their transformation byproducts can stabilize unpaired electrons in leaves under ambient conditions. Thus, the vast amount and perpetual supply of leaf litter is an unaccounted natural source of BPFRs. If toxic, inhaling and accidentally ingesting fine soil dust and powder from degraded leaf litter may increase our environmental and health burdens to PFRs. We expect that this finding will generate more studies on natural sources of PFRs, establish their properties, and distinguish them from those formed from combustion and thermal processes.
Collapse
Affiliation(s)
- Eric P. Vejerano
- Center for Environmental
Nanoscience and Risk, Department of Environmental Health Sciences,
Arnold School of Public Health, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Jeonghyeon Ahn
- Center for Environmental
Nanoscience and Risk, Department of Environmental Health Sciences,
Arnold School of Public Health, University
of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
19
|
Schmidt NM, Kankaanpää T, Tiusanen M, Reneerkens J, Versluijs TSL, Hansen LH, Hansen J, Gerlich HS, Høye TT, Cirtwill AR, Zhemchuzhnikov MK, Peña-Aguilera P, Roslin T. Little directional change in the timing of Arctic spring phenology over the past 25 years. Curr Biol 2023; 33:3244-3249.e3. [PMID: 37499666 DOI: 10.1016/j.cub.2023.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023]
Abstract
With the global change in climate, the Arctic has been pinpointed as the region experiencing the fastest rates of change. As a result, Arctic biological responses-such as shifts in phenology-are expected to outpace those at lower latitudes. 15 years ago, a decade-long dataset from Zackenberg in High Arctic Greenland revealed rapid rates of phenological change.1 To explore how the timing of spring phenology has developed since, we revisit the Zackenberg time series on flowering plants, arthropods, and birds. Drawing on the full 25-year period of 1996-2020, we find little directional change in the timing of events despite ongoing climatic change. We attribute this finding to a shift in the temporal patterns of climate conditions, from previous directional change to current high inter-annual variability. Additionally, some taxa appear to have reached the limits of their phenological responses, resulting in a leveling off in their phenological responses in warm years. Our findings demonstrate the importance of long-term monitoring of taxa from across trophic levels within the community, allowing for detecting shifts in sensitivities and responses and thus for updated inference in the light of added information.
Collapse
Affiliation(s)
- Niels Martin Schmidt
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; Arctic Research Centre, Aarhus University, Ole Worms Allé 1, 8000 Aarhus, Denmark.
| | - Tuomas Kankaanpää
- Ecology and Genetics Research Unit, University of Oulu, Pentti Kaiteran katu 1, 90014 Oulu, Finland
| | - Mikko Tiusanen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Department of Agricultural Sciences, University of Helsinki, Yliopistonkatu 3, 00014 Helsinki, Finland
| | - Jeroen Reneerkens
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Landsdiep 4, Den Burg, 1790 Texel, The Netherlands
| | - Tom S L Versluijs
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Landsdiep 4, Den Burg, 1790 Texel, The Netherlands
| | - Lars Holst Hansen
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Jannik Hansen
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Hannah Sørine Gerlich
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé, 8000 Aarhus, Denmark
| | - Toke T Høye
- Arctic Research Centre, Aarhus University, Ole Worms Allé 1, 8000 Aarhus, Denmark; Department of Ecoscience, Aarhus University, C.F. Møllers Allé, 8000 Aarhus, Denmark
| | - Alyssa R Cirtwill
- Department of Agricultural Sciences, University of Helsinki, Yliopistonkatu 3, 00014 Helsinki, Finland
| | - Mikhail K Zhemchuzhnikov
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Landsdiep 4, Den Burg, 1790 Texel, The Netherlands
| | - Pablo Peña-Aguilera
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 75651 Uppsala, Sweden
| | - Tomas Roslin
- Department of Agricultural Sciences, University of Helsinki, Yliopistonkatu 3, 00014 Helsinki, Finland; Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 75651 Uppsala, Sweden
| |
Collapse
|
20
|
Gallois JL, German-Retana S. [eIF4E-mediated resistance to potyviruses in plants: from natural alleles to edited genes]. Virologie (Montrouge) 2023; 27:225-337. [PMID: 37565678 DOI: 10.1684/vir.2023.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Resistance to viruses is an important aspect of plant breeding. One way to achieve it is to select genetic resistances based on the susceptibility factors hijacked by the virus to infect the plants. Here, we recount work done on genes encoding translation initiation factors eIF4E, some of the most successful targets for obtaining resistance to potyviruses, starting from their characterization 20 years ago. With examples from different plant species, pepper, tomato, tobacco and arabidopsis, we present the basis of this type of resistances and their characteristics, highlighting the role of gene redundancy among 4E factors, their specificity for the virus and the need for the plant of a trade-off between resistance and development. Finally, we show how the new genome editing techniques could be used in plant breeding to develop eIF4E-based resistances in crops, mimicking the functional alleles that have been selected during evolution in many crops.
Collapse
Affiliation(s)
| | - Sylvie German-Retana
- UMR 1332, Biologie du fruit et pathologie, Inrae, Univ. Bordeaux, Équipe de Virologie, 71 avenue Edouard-Bourlaux, CS 20032, 33882 Villenave d'Ornon cedex, France
| |
Collapse
|
21
|
Ni M, Vellend M. Soil properties constrain predicted poleward migration of plants under climate change. New Phytol 2023. [PMID: 37525059 DOI: 10.1111/nph.19164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Many plant species are predicted to migrate poleward in response to climate change. Species distribution models (SDMs) have been widely used to quantify future suitable habitats, but they often neglect soil properties, despite the importance of soil for plant fitness. As soil properties often change along latitudinal gradients, higher-latitude soils might be more or less suitable than average conditions within the current ranges of species, thereby accelerating or slowing potential poleward migration. In this study, we built three SDMs - one with only climate predictors, one with only soil predictors, and one with both - for each of 1870 plant species in Eastern North America, in order to investigate the relative importance of soil properties in determining plant distributions and poleward shifts under climate change. While climate variables were the most important predictors, soil properties also had a substantial influence on continental-scale plant distributions. Under future climate scenarios, models including soil predicted much smaller northward shifts in distributions than climate-only models (c. 40% reduction). Our findings strongly suggest that high-latitude soils are likely to impede ongoing plant migration, and they highlight the necessity of incorporating soil properties into models and predictions for plant distributions and migration under environmental change.
Collapse
Affiliation(s)
- Ming Ni
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Mark Vellend
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| |
Collapse
|
22
|
Dembitsky VM. Fascinating Furanosteroids and Their Pharmacological Profile. Molecules 2023; 28:5669. [PMID: 37570639 PMCID: PMC10419491 DOI: 10.3390/molecules28155669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
This review article delves into the realm of furanosteroids and related isoprenoid lipids derived from diverse terrestrial and marine sources, exploring their wide array of biological activities and potential pharmacological applications. Fungi, fungal endophytes, plants, and various marine organisms, including sponges, corals, molluscs, and other invertebrates, have proven to be abundant reservoirs of these compounds. The biological activities exhibited by furanosteroids and related lipids encompass anticancer, cytotoxic effects against various cancer cell lines, antiviral, and antifungal effects. Notably, the discovery of exceptional compounds such as nakiterpiosin, malabaricol, dysideasterols, and cortistatins has revealed their potent anti-tuberculosis, antibacterial, and anti-hepatitis C attributes. These compounds also exhibit activity in inhibiting protein kinase C, phospholipase A2, and eliciting cytotoxicity against cancer cells. This comprehensive study emphasizes the significance of furanosteroids and related lipids as valuable natural products with promising therapeutic potential. The remarkable biodiversity found in both terrestrial and marine ecosystems offers an extensive resource for unearthing novel biologically active compounds, paving the way for future drug development and advancements in biomedical research. This review presents a compilation of data obtained from various studies conducted by different authors who employed the PASS software 9.1 to evaluate the biological activity of natural furanosteroids and compounds closely related to them. The utilization of the PASS software in this context offers valuable advantages, such as screening large chemical libraries, identifying compounds for subsequent experimental investigations, and gaining insights into potential biological activities based on their structural features. Nevertheless, it is crucial to emphasize that experimental validation remains indispensable for confirming the predicted activities.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
23
|
Olofinsan K, Abrahamse H, George BP. Therapeutic Role of Alkaloids and Alkaloid Derivatives in Cancer Management. Molecules 2023; 28:5578. [PMID: 37513450 PMCID: PMC10386240 DOI: 10.3390/molecules28145578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is a neoplastic disease that remains a global challenge with a reported prevalence that is increasing annually. Though existing drugs can be applied as single or combined therapies for managing this pathology, their concomitant adverse effects in human applications have led to the need to continually screen natural products for effective and alternative anticancer bioactive principles. Alkaloids are chemical molecules that, due to their structural diversity, constitute a reserve for the discovery of lead compounds with interesting pharmacological activities. Several in vitro studies and a few in vivo findings have documented various cytotoxic and antiproliferative properties of alkaloids. This review describes chaetocochin J, neopapillarine, coclaurine, reflexin A, 3,10-dibromofascaplysin and neferine, which belong to different alkaloid classes with antineoplastic properties and have been identified recently from plants. Despite their low solubility and bioavailability, plant-derived alkaloids have viable prospects as sources of viable lead antitumor agents. This potential can be achieved if more research on these chemical compounds is directed toward investigating ways of improving their delivery in an active form close to target cells, preferably with no effect on neighboring normal tissues.
Collapse
Affiliation(s)
- Kolawole Olofinsan
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|
24
|
Godlewska K, Pacyga P, Najda A, Michalak I. Investigation of Chemical Constituents and Antioxidant Activity of Biologically Active Plant-Derived Natural Products. Molecules 2023; 28:5572. [PMID: 37513443 PMCID: PMC10384900 DOI: 10.3390/molecules28145572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this publication is to present rapid screening methods (visual/colorimetric) that will enable quick identification of the presence of biologically active compounds in aqueous solutions. For this reason, 26 plant extracts obtained by ultrasound-assisted extraction were analysed for the content of these compounds. Higher plants, used as a raw material for extraction, are common in Europe and are easily available. The article proposes a comparison of various protocols for the identification of various compounds, e.g., phenolic compounds (phenols, tannins, anthocyanins, coumarins, flavones, flavonoids), vitamin C, quinones, quinines, resins, glycosides, sugars. Initial characterisation of the composition of plant extracts using fast and inexpensive methods allows you to avoid the use of time-consuming analyses with the use of advanced research equipment. In addition, the antioxidant activity of plant extracts using spectrophotometric methods (DPPH, ABTS, FRAP assay) and quantitative analysis of plant hormones such as abscisic acid, benzoic acid, gibberellic acid, indole acetic acid, jasmonic acid, salicylic acid, zeatin, zeatin riboside, and isipentenyl adenine was performed. The obtained results prove that the applied visual methods show different sensitivity in detecting the sought chemical compounds. Therefore, it is necessary to confirm the presence or absence of bioactive substances and their concentration using modern analytical methods.
Collapse
Affiliation(s)
- Katarzyna Godlewska
- Department of Pharmacology and Toxicology, The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Paweł Pacyga
- Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, The University of Life Science in Lublin, 20-950 Lublin, Poland
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, 50-372 Wrocław, Poland
| |
Collapse
|
25
|
Blanc-Mathieu R, Dumas R, Turchi L, Lucas J, Parcy F. Plant-TFClass: a structural classification for plant transcription factors. Trends Plant Sci 2023:S1360-1385(23)00227-3. [PMID: 37482504 DOI: 10.1016/j.tplants.2023.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023]
Abstract
Transcription factors (TFs) bind DNA at specific sequences to regulate gene expression. This universal process is achieved via their DNA-binding domain (DBD). In mammals, the vast diversity of DBD structural conformations and the way in which they contact DNA has been used to organize TFs in the TFClass hierarchical classification. However, the numerous DBD types present in plants but absent from mammalian genomes were missing from this classification. We reviewed DBD 3D structures and models available for plant TFs to classify most of the 56 recognized plant TF types within the TFClass framework. This extended classification adds eight new classes and 37 new families corresponding to DBD structures absent in mammals. Plant-TFClass provides a unique resource for TF comparison across families and organisms.
Collapse
Affiliation(s)
- Romain Blanc-Mathieu
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 Avenue des Martyrs, F-38054, Grenoble, France
| | - Renaud Dumas
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 Avenue des Martyrs, F-38054, Grenoble, France
| | - Laura Turchi
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 Avenue des Martyrs, F-38054, Grenoble, France
| | - Jérémy Lucas
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 Avenue des Martyrs, F-38054, Grenoble, France
| | - François Parcy
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 Avenue des Martyrs, F-38054, Grenoble, France.
| |
Collapse
|
26
|
Dembitsky VM. Biological Activity and Structural Diversity of Steroids Containing Aromatic Rings, Phosphate Groups, or Halogen Atoms. Molecules 2023; 28:5549. [PMID: 37513423 PMCID: PMC10384810 DOI: 10.3390/molecules28145549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
This review delves into the investigation of the biological activity and structural diversity of steroids and related isoprenoid lipids. The study encompasses various natural compounds, such as steroids with aromatic ring(s), steroid phosphate esters derived from marine invertebrates, and steroids incorporating halogen atoms (I, Br, or Cl). These compounds are either produced by fungi or fungal endophytes or found in extracts of plants, algae, or marine invertebrates. To assess the biological activity of these natural compounds, an extensive examination of referenced literature sources was conducted. The evaluation encompassed in vivo and in vitro studies, as well as the utilization of the QSAR method. Numerous compounds exhibited notable properties such as strong anti-inflammatory, anti-neoplastic, anti-proliferative, anti-hypercholesterolemic, anti-Parkinsonian, diuretic, anti-eczematic, anti-psoriatic, and various other activities. Throughout the review, 3D graphs illustrating the activity of individual steroids are presented alongside images of selected terrestrial or marine organisms. Additionally, the review provides explanations for specific types of biological activity associated with these compounds. The data presented in this review hold scientific interest for academic science as well as practical implications in the fields of pharmacology and practical medicine. The analysis of the biological activity and structural diversity of steroids and related isoprenoid lipids provides valuable insights that can contribute to advancements in both theoretical understanding and applied research.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
27
|
Kocsisova Z, Coneva V. Strategies for delivery of CRISPR/Cas-mediated genome editing to obtain edited plants directly without transgene integration. Front Genome Ed 2023; 5:1209586. [PMID: 37545761 PMCID: PMC10398581 DOI: 10.3389/fgeed.2023.1209586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Increased understanding of plant genetics and the development of powerful and easier-to-use gene editing tools over the past century have revolutionized humankind's ability to deliver precise genotypes in crops. Plant transformation techniques are well developed for making transgenic varieties in certain crops and model organisms, yet reagent delivery and plant regeneration remain key bottlenecks to applying the technology of gene editing to most crops. Typical plant transformation protocols to produce transgenic, genetically modified (GM) varieties rely on transgenes, chemical selection, and tissue culture. Typical protocols to make gene edited (GE) varieties also use transgenes, even though these may be undesirable in the final crop product. In some crops, the transgenes are routinely segregated away during meiosis by performing crosses, and thus only a minor concern. In other crops, particularly those propagated vegetatively, complex hybrids, or crops with long generation times, such crosses are impractical or impossible. This review highlights diverse strategies to deliver CRISPR/Cas gene editing reagents to regenerable plant cells and to recover edited plants without unwanted integration of transgenes. Some examples include delivering DNA-free gene editing reagents such as ribonucleoproteins or mRNA, relying on reagent expression from non-integrated DNA, using novel delivery mechanisms such as viruses or nanoparticles, using unconventional selection methods to avoid integration of transgenes, and/or avoiding tissue culture altogether. These methods are advancing rapidly and already enabling crop scientists to make use of the precision of CRISPR gene editing tools.
Collapse
|
28
|
Sembada AA, Maki S, Faizal A, Fukuhara T, Suzuki T, Lenggoro IW. The Role of Silica Nanoparticles in Promoting the Germination of Tomato ( Solanum lycopersicum) Seeds. Nanomaterials (Basel) 2023; 13:2110. [PMID: 37513121 PMCID: PMC10385787 DOI: 10.3390/nano13142110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
The addition of nanoparticles has been reported to be an effective strategy for enhancing seed germination, but the underlying mechanisms whereby this occurs are unclear. In the present study, we added silica nanoparticles (SiNPs) to an aqueous growth medium in which tomato seeds were germinated. We examined the effects of SiNPs on growth and possible mechanisms of action. SiNPs had a diameter of 10-17 nm and 110-120 nm. SiNPs shortened the mean germination time from 5.24 ± 0.29 days to 4.64 ± 0.29 days. Seedling vigor, measured by criteria including length and weight, was also improved compared to the control condition. The presence of SiNPs in the seedlings was assessed using an X-ray fluorescence spectrometer. The nanoparticles may have promoted germination by enhancing water imbibition by the seeds or altering the external microenvironment. Scanning electron microscopy revealed changes in the seed coat during germination, many of which were only observed in the presence of nanoparticles. Soil bacteria affect germination; specifically, Bacillus sp. may promote germination. The number of Bacillus sp. changed in the germination medium with SiNPs compared to the control. This suggested that these bacteria could interact with SiNPs to promote germination.
Collapse
Affiliation(s)
- Anca Awal Sembada
- Chemical Engineering Program, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Tokyo, Japan
| | - Shinya Maki
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka 940-2188, Niigata, Japan
| | - Ahmad Faizal
- Plant Science and Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Toshiyuki Fukuhara
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Tokyo, Japan
| | - Takeshi Suzuki
- Graduate School of Bio-Applications & Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Tokyo, Japan
| | - I Wuled Lenggoro
- Chemical Engineering Program, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Tokyo, Japan
- Graduate School of Bio-Applications & Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Tokyo, Japan
- Department of Applied Physics and Chemical Engineering, Graduate School of Engineering, Tokyo University of Agriculture and Technology (TUAT), Koganei 184-8588, Tokyo, Japan
| |
Collapse
|
29
|
Argentin J, Bolser D, Kersey PJ, Flicek P. Comparative analysis of repeat content in plant genomes, large and small. Front Plant Sci 2023; 14:1103035. [PMID: 37521909 PMCID: PMC10376685 DOI: 10.3389/fpls.2023.1103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/14/2023] [Indexed: 08/01/2023]
Abstract
The DNA Features pipeline is the analysis pipeline at EMBL-EBI that annotates repeat elements, including transposable elements. With Ensembl's goal to stay at the cutting edge of genome annotation, we proved that this pipeline needed an update. We then created a new analysis that allowed the Ensembl database to store the repeat classification from the PGSB repeat classification (Recat). This new dataset was then fetched using Perl scripts and used to prove that the pipeline modification induced a gain in sensitivity. Finally, we performed a comparative analysis of transposable element distribution in all plant species available, raising new questions about transposable elements in certain branches of the taxonomic tree.
Collapse
Affiliation(s)
- Joris Argentin
- Institut de Biologie en Santé, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France
| | - Dan Bolser
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Paul J. Kersey
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
- Digital Revolution, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| |
Collapse
|
30
|
Turcu-Stiolica A, Dimitrova M, Jinga M. Editorial: Advances in the potential treatments of gastrointestinal and liver diseases: addressing the public health burden. Front Pharmacol 2023; 14:1253069. [PMID: 37521487 PMCID: PMC10374304 DOI: 10.3389/fphar.2023.1253069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Affiliation(s)
- Adina Turcu-Stiolica
- Department of Pharmacoeconomics, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Maria Dimitrova
- Department of Organization and Economy of Pharmacy, Medical University Sofia, Sofia, Bulgaria
| | - Mariana Jinga
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
31
|
Kholif AE. A Review of Effect of Saponins on Ruminal Fermentation, Health and Performance of Ruminants. Vet Sci 2023; 10:450. [PMID: 37505855 PMCID: PMC10385484 DOI: 10.3390/vetsci10070450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
Saponins are steroid, or triterpene glycoside, compounds found in plants and plant products, mainly legumes. However, some plants containing saponins are toxic. Saponins have both positive and negative roles in animal nutrition. Saponins have been shown to act as membrane-permeabilizing, immunostimulant, hypocholesterolaemic, and defaunating agents in the rumen for the manipulation of ruminal fermentation. Moreover, it has been reported that saponins have impair protein digestion in the gut to interact with cholesterol in the cell membrane, cause cell rupture and selective ruminal protozoa elimination, thus improving N-use efficiency and resulting in a probable increase in ruminant animal performance.
Collapse
Affiliation(s)
- Ahmed E Kholif
- Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza 12622, Egypt
| |
Collapse
|
32
|
Enebe MC, Erasmus M. Susceptibility and plant immune control-a case of mycorrhizal strategy for plant colonization, symbiosis, and plant immune suppression. Front Microbiol 2023; 14:1178258. [PMID: 37476663 PMCID: PMC10355322 DOI: 10.3389/fmicb.2023.1178258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Plants and microbes (mycorrhizal fungi to be precise) have evolved together over the past millions of years into an association that is mutualist. The plants supply the fungi with photosynthates and shelter, while the fungi reciprocate by enhancing nutrient and water uptake by the plants as well as, in some cases, control of soil-borne pathogens, but this fungi-plant association is not always beneficial. We argue that mycorrhizal fungi, despite contributing to plant nutrition, equally increase plant susceptibility to pathogens and herbivorous pests' infestation. Understanding of mycorrhizal fungi strategies for suppressing plant immunity, the phytohormones involved and the signaling pathways that aid them will enable the harnessing of tripartite (consisting of three biological systems)-plant-mycorrhizal fungi-microbe interactions for promoting sustainable production of crops.
Collapse
|
33
|
Hussain H, Siddiqui H, Gerothanassis IP. Editorial: Re-emergence of natural products for drug discovery in honor of Prof. Dr. M. Iqbal Choudhary. Front Pharmacol 2023; 14:1227732. [PMID: 37475715 PMCID: PMC10354788 DOI: 10.3389/fphar.2023.1227732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Affiliation(s)
- Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Hina Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ioannis P. Gerothanassis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| |
Collapse
|
34
|
He G, Yang Y, Liu G, Zhang Q, Liu W. Global analysis of the perturbation effects of metal-based nanoparticles on soil nitrogen cycling. Glob Chang Biol 2023; 29:4001-4017. [PMID: 37082828 DOI: 10.1111/gcb.16735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Although studies have investigated the effects of metal-based nanoparticles (MNPs) on soil biogeochemical processes, the results obtained thus far are highly variable. Moreover, we do not yet understand how the impact of MNPs is affected by experimental design and environmental conditions. Herein, we conducted a global analysis to synthesize the effects of MNPs on 17 variables associated with soil nitrogen (N) cycling from 62 studies. Our results showed that MNPs generally exerted inhibitory effects on N-cycling process rates, N-related enzyme activities, and microbial variables. The response of soil N cycling varied with MNP type, and exposure dose was the most decisive factor for the variations in the responses of N-cycling process rates and enzyme activities. Notably, Ag/Ag2 S and CuO had dose-dependent inhibitory effects on ammonia oxidation rates, while CuO and Zn/ZnO showed hormetic effects on nitrification and denitrification rates, respectively. Other experimental design factors (e.g., MNP size and exposure duration) also regulated the effect of MNPs on soil N cycling, and specific MNPs, such as Ag/Ag2 S, exerted stronger effects during long-term (>28 days) exposure. Environmental conditions, including soil pH, organic carbon, texture, and presence/absence of plants, significantly influenced MNP toxicity. For instance, the effects of Ag/Ag2 S on the ammonia oxidation rate and the activity of leucine aminopeptidase were more potent in acid (pH <6), organic matter-limited (organic carbon content ≤10 g kg-1 ), and coarser soils. Overall, these results provide new insights into the general mechanisms by which MNPs alter soil N processes in different environments and underscore the urgent need to perform multivariate and long-term in situ trials in simulated natural environments.
Collapse
Affiliation(s)
- Gang He
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuyi Yang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Guihua Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Quanfa Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
35
|
Kök BÖ, Celik Altunoglu Y, Öncül AB, Karaci A, Cengiz Baloglu M. Expansin gene family database: A comprehensive bioinformatics resource for plant expansin multigene family. J Bioinform Comput Biol 2023:2350015. [PMID: 37382165 DOI: 10.1142/s0219720023500154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Expansins, which are plant cell wall loosening proteins associated with cell growth, have been identified as a multigene family. Plant expansin proteins are an important family that functions in cell growth and many of developmental processes including wall relaxation, fruit softening, abscission, seed germination, mycorrhiza and root nodule formation, biotic and abiotic stress resistance, invasion of pollen tube stigma and organogenesis. In addition, it is thought that increasing the efficiency of plant expansin genes in plants plays a significant role, especially in the production of secondary bioethanol. When the studies on the expansin genes are examined, it is seen that the expansin genes are a significant gene family in the cell wall expansion mechanism. Therefore, understanding the efficacy of expansin genes is of great importance. Considering the importance of this multigene family, we aimed to create a comprehensively informed database of plant expansin proteins and their properties. The expansin gene family database provides comprehensive online data for the expansin gene family members in the plants. We have designed a new website accessible to the public, including expansin gene family members in 70 plants and their features including gene, coding and peptide sequences, chromosomal location, amino acid length, molecular weight, stability, conserved motif and domain structure and predicted three-dimensional architecture. Furthermore, a deep learning system was developed to detect unknown genes belonging to the expansin gene family. In addition, we provided the blast process within the website by establishing a connection to the NCBI BLAST site in the tools section. Thus, the expansin gene family database becomes a useful database for researchers that enables access to all datasets simultaneously with its user-friendly interface. Our server can be reached freely at the following link (http://www.expansingenefamily.com/).
Collapse
Affiliation(s)
- Büşra Özkan Kök
- Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu 37150, Turkey
| | - Yasemin Celik Altunoglu
- Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu 37150, Turkey
| | - Ali Burak Öncül
- Department of Computer Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu 37150, Turkey
| | - Abdulkadir Karaci
- Department of Software Engineering, Faculty of Engineering, Samsun University, Ondokuzmayıs, Samsun 55450, Turkey
| | - Mehmet Cengiz Baloglu
- Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu 37150, Turkey
| |
Collapse
|
36
|
de Vries S, Hermans T, Langers F. Effects of indoor plants on office workers: a field study in multiple Dutch organizations. Front Psychol 2023; 14:1196106. [PMID: 37457080 PMCID: PMC10346441 DOI: 10.3389/fpsyg.2023.1196106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
In the period 2019-2020, the effect of plants in the workspace on (a) the physical indoor climate, (b) the perception of the workspace by office workers, and (c) their health, well-being and functioning was investigated in nine organizations. This paper reports the outcomes of the latter part. A conceptual model describing the short-term, medium and long-term effect of plants on people was formulated, containing 18 outcome variables. A "Before After Control Impact" quasi-experimental research design was used. A control workspace and an intervention workspace were selected in each of the organizations. A pre-measurement was conducted in both. Correlational analyses, based on the pre-measurements in all organizations and workspaces, confirmed the associations proposed by the conceptual model to a large extent. After placing plants in the intervention workspace, a maximum of two post-intervention measurements were conducted (due to COVID-19 not in all nine organizations), the last one at least 4 months after the introduction of the plants. Overall significant effects were found on complaints about dry air (fewer), the sense of privacy (higher), the attractiveness of the workspace (higher), satisfaction with the workspace (greater) and having a health-related complaint, especially when at work (fewer). The first three effects were already observed in the analyses only including the first post-measurement. The latter two effects only showed up in the analyses including two post-measurements. No direct effect of the plants could be demonstrated on the 13 other outcome variables. The observed effects mainly concern outcome variables that are positioned at the beginning of the proposed causal chain, starting with plants and ending with mental health, absenteeism and job satisfaction.
Collapse
Affiliation(s)
- Sjerp de Vries
- Wageningen Environmental Research (WENR), Wageningen University & Research, Wageningen, Netherlands
- Cultural Geography Group (GEO), Wageningen University & Research, Wageningen, Netherlands
| | - Tia Hermans
- Wageningen Environmental Research (WENR), Wageningen University & Research, Wageningen, Netherlands
| | - Fransje Langers
- Wageningen Environmental Research (WENR), Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
37
|
Kitagawa M, Tran TM, Jackson D. Traveling with purpose: cell-to-cell transport of plant mRNAs. Trends Cell Biol 2023:S0962-8924(23)00106-X. [PMID: 37380581 DOI: 10.1016/j.tcb.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/30/2023]
Abstract
Messenger RNAs (mRNAs) in multicellular organisms can act as signals transported cell-to-cell and over long distances. In plants, mRNAs traffic cell-to-cell via plasmodesmata (PDs) and over long distances via the phloem vascular system to control diverse biological processes - such as cell fate and tissue patterning - in destination organs. Research on long-distance transport of mRNAs in plants has made remarkable progress, including the cataloguing of many mobile mRNAs, characterization of mRNA features important for transport, identification of mRNA-binding proteins involved in their transport, and understanding of the physiological roles of mRNA transport. However, information on short-range mRNA cell-to-cell transport is still limited. This review discusses the regulatory mechanisms and physiological functions of mRNA transport at the cellular and whole plant levels.
Collapse
Affiliation(s)
- Munenori Kitagawa
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Thu M Tran
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
38
|
Murray AP, Biscussi B, Cavallaro V, Donozo M, Rodriguez SA. Naturally Occurring Cholinesterase Inhibitors from Plants, Fungi, Algae, and Animals: A Review of the Most Effective Inhibitors Reported in 2012-2022. Curr Neuropharmacol 2023:CN-EPUB-132643. [PMID: 37357520 DOI: 10.2174/1570159x21666230623105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/11/2023] [Accepted: 02/26/2023] [Indexed: 06/27/2023] Open
Abstract
Since the development of the "cholinergic hypothesis" as an important therapeutic approach in the treatment of Alzheimer's disease (AD), the scientific community has made a remarkable effort to discover new and effective molecules with the ability to inhibit the enzyme acetylcholinesterase (AChE). The natural function of this enzyme is to catalyze the hydrolysis of the neurotransmitter acetylcholine in the brain. Thus, its inhibition increases the levels of this neurochemical and improves the cholinergic functions in patients with AD alleviating the symptoms of this neurological disorder. In recent years, attention has also been focused on the role of another enzyme, butyrylcholinesterase (BChE), mainly in the advanced stages of AD, transforming this enzyme into another target of interest in the search for new anticholinesterase agents. Over the past decades, Nature has proven to be a rich source of bioactive compounds relevant to the discovery of new molecules with potential applications in AD therapy. Bioprospecting of new cholinesterase inhibitors among natural products has led to the discovery of an important number of new AChE and BChE inhibitors that became potential lead compounds for the development of anti-AD drugs. This review summarizes a total of 260 active compounds from 142 studies which correspond to the most relevant (IC 50 ≤ 15 µM) research work published during 2012-2022 on plant-derived anticholinesterase compounds, as well as several potent inhibitors obtained from other sources like fungi, algae, and animals.
Collapse
Affiliation(s)
- Ana Paula Murray
- Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Brunella Biscussi
- Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Valeria Cavallaro
- Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Martina Donozo
- Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvana A Rodriguez
- Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
39
|
Zboralski A, Filion M. Pseudomonas spp. can help plants face climate change. Front Microbiol 2023; 14:1198131. [PMID: 37426009 PMCID: PMC10326438 DOI: 10.3389/fmicb.2023.1198131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Climate change is increasingly affecting agriculture through droughts, high salinity in soils, heatwaves, and floodings, which put intense pressure on crops. This results in yield losses, leading to food insecurity in the most affected regions. Multiple plant-beneficial bacteria belonging to the genus Pseudomonas have been shown to improve plant tolerance to these stresses. Various mechanisms are involved, including alteration of the plant ethylene levels, direct phytohormone production, emission of volatile organic compounds, reinforcement of the root apoplast barriers, and exopolysaccharide biosynthesis. In this review, we summarize the effects of climate change-induced stresses on plants and detail the mechanisms used by plant-beneficial Pseudomonas strains to alleviate them. Recommendations are made to promote targeted research on the stress-alleviating potential of these bacteria.
Collapse
|
40
|
Romero-Puertas MC, Lüthje S, Zabalza A, de Gara L, Foyer CH. Editorial: Women in plant science - redox biology of plant abiotic stress 2022. Front Plant Sci 2023; 14:1236150. [PMID: 37426964 PMCID: PMC10325672 DOI: 10.3389/fpls.2023.1236150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Affiliation(s)
- María C. Romero-Puertas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Experimental Station of Zaidín, Spanish National Research Council (EEZ-CSIC), Granada, Spain
| | - Sabine Lüthje
- Biodiversity of Crop Plants, Universität Hamburg, Institute of Plant Science and Microbiology, Oxidative Stress and Plant Proteomics Group, Hamburg, Germany
| | |
|