1
|
Gainor K, Becker AAMJ, Malik YS, Ghosh S. First Report on Detection and Molecular Characterization of Adenoviruses in the Small Indian Mongoose ( Urva auropunctata). Viruses 2021; 13:v13112194. [PMID: 34835000 PMCID: PMC8622525 DOI: 10.3390/v13112194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
Using a broad-range nested PCR assay targeting the DNA-dependent DNA polymerase (pol) gene, we detected adenoviruses in 17 (20.48%) out of 83 fecal samples from small Indian mongooses (Urva auropunctata) on the Caribbean island of St. Kitts. All 17 PCR amplicons were sequenced for the partial pol gene (~300 bp, hereafter referred to as Mon sequences). Fourteen of the 17 Mon sequences shared maximum homology (98.3-99.6% and 97-98.9% nucleotide (nt) and deduced amino acid (aa) sequence identities, respectively) with that of bovine adenovirus-6 (species Bovine atadenovirus E). Mongoose-associated adenovirus Mon-39 was most closely related (absolute nt and deduced aa identities) to an atadenovirus from a tropical screech owl. Mon-66 shared maximum nt and deduced aa identities of 69% and 71.4% with those of atadenoviruses from a spur-thighed tortoise and a brown anole lizard, respectively. Phylogenetically, Mon-39 and Mon-66 clustered within clades that were predominated by atadenoviruses from reptiles, indicating a reptilian origin of these viruses. Only a single mongoose-associated adenovirus, Mon-34, was related to the genus Mastadenovirus. However, phylogenetically, Mon-34 formed an isolated branch, distinct from other mastadenoviruses. Since the fecal samples were collected from apparently healthy mongooses, we could not determine whether the mongoose-associated adenoviruses infected the host. On the other hand, the phylogenetic clustering patterns of the mongoose-associated atadenoviruses pointed more towards a dietary origin of these viruses. Although the present study was based on partial pol sequences (~90 aa), sequence identities and phylogenetic analysis suggested that Mon-34, Mon-39, and Mon-66 might represent novel adenoviruses. To our knowledge, this is the first report on the detection and molecular characterization of adenoviruses from the mongoose.
Collapse
Affiliation(s)
- Kerry Gainor
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, 00265 Basseterre, St. Kitts and Nevis, West Indies; (K.G.); (A.A.M.J.B.)
| | - Anne A. M. J. Becker
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, 00265 Basseterre, St. Kitts and Nevis, West Indies; (K.G.); (A.A.M.J.B.)
| | - Yashpal S. Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, 141004 Ludhiana, India;
| | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, 00265 Basseterre, St. Kitts and Nevis, West Indies; (K.G.); (A.A.M.J.B.)
- Correspondence: or ; Tel.: +1-(869)-4654161 (ext. 401-1202)
| |
Collapse
|
2
|
Alhashimi M, Elkashif A, Sayedahmed EE, Mittal SK. Nonhuman Adenoviral Vector-Based Platforms and Their Utility in Designing Next Generation of Vaccines for Infectious Diseases. Viruses 2021; 13:1493. [PMID: 34452358 PMCID: PMC8402644 DOI: 10.3390/v13081493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Several human adenoviral (Ad) vectors have been developed for vaccine delivery owing to their numerous advantages, including the feasibility of different vector designs, the robustness of elicited immune responses, safety, and scalability. To expand the repertoire of Ad vectors for receptor usage and circumvention of Ad vector immunity, the use of less prevalent human Ad types or nonhuman Ads were explored for vector design. Notably, many nonhuman Ad vectors have shown great promise in preclinical and clinical studies as vectors for vaccine delivery. This review describes the key features of several nonhuman Ad vector platforms and their implications in developing effective vaccines against infectious diseases.
Collapse
Affiliation(s)
| | | | | | - Suresh K. Mittal
- Immunology and Infectious Disease, and Purdue University Center for Cancer Research, Department of Comparative Pathobiology, Purdue Institute for Inflammation, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907-2027, USA; (M.A.); (A.E.); (E.E.S.)
| |
Collapse
|
3
|
Hardmeier I, Aeberhard N, Qi W, Schoenbaechler K, Kraettli H, Hatt JM, Fraefel C, Kubacki J. Metagenomic analysis of fecal and tissue samples from 18 endemic bat species in Switzerland revealed a diverse virus composition including potentially zoonotic viruses. PLoS One 2021; 16:e0252534. [PMID: 34133435 PMCID: PMC8208571 DOI: 10.1371/journal.pone.0252534] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/17/2021] [Indexed: 01/02/2023] Open
Abstract
Many recent disease outbreaks in humans had a zoonotic virus etiology. Bats in particular have been recognized as reservoirs to a large variety of viruses with the potential to cross-species transmission. In order to assess the risk of bats in Switzerland for such transmissions, we determined the virome of tissue and fecal samples of 14 native and 4 migrating bat species. In total, sequences belonging to 39 different virus families, 16 of which are known to infect vertebrates, were detected. Contigs of coronaviruses, adenoviruses, hepeviruses, rotaviruses A and H, and parvoviruses with potential zoonotic risk were characterized in more detail. Most interestingly, in a ground stool sample of a Vespertilio murinus colony an almost complete genome of a Middle East respiratory syndrome-related coronavirus (MERS-CoV) was detected by Next generation sequencing and confirmed by PCR. In conclusion, bats in Switzerland naturally harbour many different viruses. Metagenomic analyses of non-invasive samples like ground stool may support effective surveillance and early detection of viral zoonoses.
Collapse
Affiliation(s)
| | - Nadja Aeberhard
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zurich, Zurich, Switzerland
| | | | | | - Jean-Michel Hatt
- Clinic for Zoo Animals, Exotic Pets and Wildlife, University of Zurich, Zurich, Switzerland
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Jakub Kubacki
- Institute of Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Zafar S, Quixabeira DCA, Kudling TV, Cervera-Carrascon V, Santos JM, Grönberg-Vähä-Koskela S, Zhao F, Aronen P, Heiniö C, Havunen R, Sorsa S, Kanerva A, Hemminki A. Ad5/3 is able to avoid neutralization by binding to erythrocytes and lymphocytes. Cancer Gene Ther 2021; 28:442-454. [PMID: 32920593 PMCID: PMC8119244 DOI: 10.1038/s41417-020-00226-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Oncolytic adenoviruses are promising cancer therapeutic agents. Clinical data have shown adenoviruses' ability to transduce tumors after systemic delivery in human cancer patients, despite antibodies. In the present work, we have focused on the interaction of a chimeric adenovirus Ad5/3 with human lymphocytes and human erythrocytes. Ad5/3 binding with human lymphocytes and erythrocytes was observed to occur in a reversible manner, which allowed viral transduction of tumors, and oncolytic potency of Ad5/3 in vitro and in vivo, with or without neutralizing antibodies. Immunodeficient mice bearing xenograft tumors showed enhanced tumor transduction following systemic administration, when Ad5/3 virus was bound to lymphocytes or erythrocytes (P < 0.05). In conclusion, our findings reveal that chimeric Ad5/3 adenovirus reaches non-injected tumors in the presence of neutralizing antibodies: it occurs through reversible binding to lymphocytes and erythrocytes.
Collapse
Affiliation(s)
- Sadia Zafar
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Dafne Carolina Alves Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Tatiana Viktorovna Kudling
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Joao Manuel Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Susanna Grönberg-Vähä-Koskela
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Fang Zhao
- Advanced Microscopy Unit (AMU), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pasi Aronen
- Biostatistics Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Camilla Heiniö
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Suvi Sorsa
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland.
- TILT Biotherapeutics Ltd, Helsinki, Finland.
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
| |
Collapse
|
5
|
Ntumvi NF, Diffo JLD, Tamoufe U, Ndze VN, Takuo JM, Mouiche MMM, Nwobegahay J, LeBreton M, Gillis A, Rimoin AW, Schneider BS, Monagin C, McIver DJ, Joly DO, Wolfe ND, Rubin EM, Lange CE. Evaluation of bat adenoviruses suggests co-evolution and host roosting behaviour as drivers for diversity. Microb Genom 2021; 7:000561. [PMID: 33871330 PMCID: PMC8208681 DOI: 10.1099/mgen.0.000561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Adenoviruses (AdVs) are diverse pathogens of humans and animals, with several dozen bat AdVs already identified. Considering that over 100 human AdVs are known, and the huge diversity of bat species, many bat AdVs likely remain undiscovered. To learn more about AdV prevalence, diversity and evolution, we sampled and tested bats in Cameroon using several PCR assays for viral and host DNA. AdV DNA was detected in 14 % of the 671 sampled animals belonging to 37 different bat species. There was a correlation between species roosting in larger groups and AdV DNA detection. The detected AdV DNA belonged to between 28 and 44 different, mostly previously unknown, mastadenovirus species. The novel isolates are phylogenetically diverse and while some cluster with known viruses, others appear to form divergent new clusters. The phylogenetic tree of novel and previously known bat AdVs does not mirror that of the various host species, but does contain structures consistent with a degree of virus-host co-evolution. Given that closely related isolates were found in different host species, it seems likely that at least some bat AdVs have jumped species barriers, probably in the more recent past; however, the tree is also consistent with such events having taken place throughout bat AdV evolution. AdV diversity was highest in bat species roosting in large groups. The study significantly increased the diversity of AdVs known to be harboured by bats, and suggests that host behaviours, such as roosting size, may be what limits some AdVs to one species rather than an inability of AdVs to infect other related hosts.
Collapse
Affiliation(s)
- Nkom F. Ntumvi
- Metabiota Cameroon Ltd, Yaoundé, Centre Region, Cameroon
| | | | - Ubald Tamoufe
- Metabiota Cameroon Ltd, Yaoundé, Centre Region, Cameroon
| | - Valantine Ngum Ndze
- Metabiota Cameroon Ltd, Yaoundé, Centre Region, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé, Yaoundé, Centre Region, Cameroon
| | | | | | | | | | | | | | - Bradley S. Schneider
- Metabiota Inc., San Francisco, CA, USA
- Etiologic, Oakland, CA, USA
- Pinpoint Science, San Francisco, CA, USA
| | - Corina Monagin
- Metabiota Inc., San Francisco, CA, USA
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | - Damien O. Joly
- Metabiota Inc, Nanaimo, British Columbia, Canada
- British Columbia Ministry of Environment and Climate Change Strategy, Victoria, British Columbia, Canada
| | | | | | - Christian E. Lange
- Metabiota Inc, Nanaimo, British Columbia, Canada
- *Correspondence: Christian E. Lange,
| |
Collapse
|
6
|
Sano D, Watanabe R, Oishi W, Amarasiri M, Kitajima M, Okabe S. Viral Interference as a Factor of False-Negative in the Infectious Adenovirus Detection Using Integrated Cell Culture-PCR with a BGM Cell Line. Food Environ Virol 2021; 13:84-92. [PMID: 33392927 DOI: 10.1007/s12560-020-09453-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
This study investigated the influence of viral interference on the detection of enteric viruses using the integrated cell culture (ICC)-PCR with a BGM cell line. It was possible to detect 102 plaque-forming units (PFU)/flask of enterovirus 71 (EV71) in spite of the presence of 104 PFU/flask of adenovirus 40 (AdV40). Meanwhile, 104 PFU/flask of AdV40 was not detected in the presence of 102 PFU/flask of EV71. This inhibition of AdV40 detection using ICC-PCR was attributable to the growth of EV71, because the addition of a growth inhibitor of EV71 (rupintrivir) neutralized the detection inhibition of AdV40. The growth inhibition of AdV40 under co-infection with EV71 is probably caused by the immune responses of EV71-infected cells. AdV is frequently used as a fecal contamination indicator of environmental water, but this study demonstrated that false-negative detection of infectious AdV using ICC-PCR could be caused by the co-existence of infectious EV in a water sample. The addition of rupintrivir could prevent false-negative detection of AdV using ICC-PCR. This study, therefore, emphasizes the importance of confirming the presence of multiple enteric viruses in a sample derived from environmental water prior to the application of ICC-PCR because the viral interference phenomenon may lead to the false-negative detection of target viruses.
Collapse
Affiliation(s)
- Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
| | - Ryosuke Watanabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Wakana Oishi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Mohan Amarasiri
- Department of Health Science, School of Allied Health Sciences, Kitasato University, A1-505, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
7
|
Sayedahmed EE, Mittal SK. A potential approach for assessing the quality of human and nonhuman adenoviral vector preparations. Can J Vet Res 2020; 84:314-318. [PMID: 33012981 PMCID: PMC7491003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/22/2019] [Indexed: 06/11/2023]
Abstract
Various types of human and nonhuman adenoviral (AdV) vectors are being used as gene delivery vectors in preclinical and clinical investigations. The objective of this study was to determine the ratio between the 2 best assays that would effectively address the variability in the titration of various AdV vectors in different cell lines and help obtain consistent results in preclinical and clinical studies using different AdV vectors. Here, we compared plaque-forming units, tissue culture infectious dose 50, focus-forming units (FFU), virus particle (VP) count, and genome copy number (GCN) of purified preparations of human AdV type C5, bovine AdV type 3, and porcine AdV type 3 to determine a correlation between infectious and noninfectious virus particles. Our results suggest that a VP:FFU or a VP:GCN ratio could accurately reflect the quality of an AdV preparation and could serve as an indicator to control batch-to-batch variability.
Collapse
Affiliation(s)
- Ekramy E Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, USA
| | - Suresh K Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
8
|
Athukorala A, Forwood JK, Phalen DN, Sarker S. Molecular Characterisation of a Novel and Highly Divergent Passerine Adenovirus 1. Viruses 2020; 12:v12091036. [PMID: 32957674 PMCID: PMC7551158 DOI: 10.3390/v12091036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 01/16/2023] Open
Abstract
Wild birds harbour a large number of adenoviruses that remain uncharacterised with respect to their genomic organisation, diversity, and evolution within complex ecosystems. Here, we present the first complete genome sequence of an atadenovirus from a passerine bird that is tentatively named Passerine adenovirus 1 (PaAdV-1). The PaAdV-1 genome is 39,664 bp in length, which was the longest atadenovirus to be sequenced, to the best of our knowledge, and contained 42 putative genes. Its genome organisation was characteristic of the members of genus Atadenovirus; however, the novel PaAdV-1 genome was highly divergent and showed the highest sequence similarity with psittacine adenovirus-3 (55.58%). Importantly, PaAdV-1 complete genome was deemed to contain 17 predicted novel genes that were not present in any other adenoviruses sequenced to date, with several of these predicted novel genes encoding proteins that harbour transmembrane helices. Subsequent analysis of the novel PaAdV-1 genome positioned phylogenetically to a distinct sub-clade with all others sequenced atadenoviruses and did not show any obvious close evolutionary relationship. This study concluded that the PaAdV-1 complete genome described here is not closely related to any other adenovirus isolated from avian or other natural host species and that it should be considered a separate species.
Collapse
Affiliation(s)
- Ajani Athukorala
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Jade K. Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
| | - David N. Phalen
- Sydney School of Veterinary Science, University of Sydney, Camden, NSW 2570, Australia;
- Schubot Exotic Bird Health, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843-4467, USA
| | - Subir Sarker
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia;
- Correspondence: ; Tel.: +61-3-9479-2317; Fax: +61-3-9479-1222
| |
Collapse
|
9
|
Barry MA, Rubin JD, Lu SC. Retargeting adenoviruses for therapeutic applications and vaccines. FEBS Lett 2020; 594:1918-1946. [PMID: 31944286 PMCID: PMC7311308 DOI: 10.1002/1873-3468.13731] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/29/2022]
Abstract
Adenoviruses (Ads) are robust vectors for therapeutic applications and vaccines, but their use can be limited by differences in their in vitro and in vivo pharmacologies. This review emphasizes that there is not just one Ad, but a whole virome of diverse viruses that can be used as therapeutics. It discusses that true vector targeting involves not only retargeting viruses, but importantly also detargeting the viruses from off-target cells.
Collapse
Affiliation(s)
- Michael A Barry
- Department of Medicine, Division of Infectious Diseases, Department of Immunology, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey D Rubin
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| | - Shao-Chia Lu
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Jejesky de Oliveira AP, Valdetaro Rangel MC, Z. Vidovszky M, Rossi JL, Vicentini F, Harrach B, L. Kaján G. Identification of two novel adenoviruses in smooth-billed ani and tropical screech owl. PLoS One 2020; 15:e0229415. [PMID: 32109945 PMCID: PMC7048273 DOI: 10.1371/journal.pone.0229415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/05/2020] |