1
|
Liikanen I, Basnet S, Quixabeira DCA, Taipale K, Hemminki O, Oksanen M, Kankainen M, Juhila J, Kanerva A, Joensuu T, Tähtinen S, Hemminki A. Oncolytic adenovirus decreases the proportion of TIM-3 + subset of tumor-infiltrating CD8 + T cells with correlation to improved survival in patients with cancer. J Immunother Cancer 2022; 10:e003490. [PMID: 35193929 PMCID: PMC8867324 DOI: 10.1136/jitc-2021-003490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Oncolytic viruses are a potent form of active immunotherapy, capable of invoking antitumor T-cell responses. Meanwhile, less is known about their effects on immune checkpoints, the main targets for passive immunotherapy of cancer. T-cell immunoglobulin and mucin domain-3 (TIM-3) is a coinhibitory checkpoint driving T-cell exhaustion in cancer. Here we investigated the effects of oncolytic adenovirus on the TIM-3 checkpoint on tumor-infiltrating immune cells and clinical impact in patients with cancer receiving oncolytic immunotherapy. METHODS Modulation of TIM-3 expression on tumor-infiltrating immune cells was studied preclinically in B16 melanoma following intratumoral treatment with Ad5/3∆24-granulocyte-macrophage colony-stimulating factor oncolytic adenovirus. We conducted a retrospective longitudinal analysis of 15 patients with advanced-stage cancer with tumor-site biopsies before and after oncolytic immunotherapy, treated in the Advanced Therapy Access Program (ISRCTN10141600, April 5, 2011). Following patient stratification with regard to TIM-3 (increase vs decrease in tumors), overall survival and imaging/marker responses were evaluated by log-rank and Fisher's test, while coinhibitory receptors/ligands, transcriptomic changes and tumor-reactive and tumor-infltrating immune cells in biopsies and blood samples were studied by microarray rank-based statistics and immunoassays. RESULTS Preclinically, TIM-3+ tumor-infiltrating lymphocytes (TILs) in B16 melanoma showed an exhausted phenotype, whereas oncolytic adenovirus treatment significantly reduced the proportion of TIM-3+ TIL subset through recruitment of less-exhausted CD8+ TIL. Decrease of TIM-3 was observed in 60% of patients, which was associated with improved overall survival over TIM-3 increase patients (p=0.004), together with evidence of clinical benefit by imaging and blood analyses. Coinhibitory T-cell receptors and ligands were consistently associated with TIM-3 changes in gene expression data, while core transcriptional exhaustion programs and T-cell dysfunction were enriched in patients with TIM-3 increase, thus identifying patients potentially benefiting from checkpoint blockade. In striking contrast, patients with TIM-3 decrease displayed an acute inflammatory signature, redistribution of tumor-reactive CD8+ lymphocytes and higher influx of CD8+ TIL into tumors, which were associated with the longest overall survival, suggesting benefit from active immunotherapy. CONCLUSIONS Our results indicate a key role for the TIM-3 immune checkpoint in oncolytic adenoviral immunotherapy. Moreover, our results identify TIM-3 as a potential biomarker for oncolytic adenoviruses and create rationale for combination with passive immunotherapy for a subset of patients.
Collapse
Affiliation(s)
- Ilkka Liikanen
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, San Diego, California, USA
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, Helsinki, Finland
| | - Saru Basnet
- Translational Immunology Research Program, Cancer Gene Therapy Group, University of Helsinki, Helsinki, Finland
| | - Dafne C A Quixabeira
- Translational Immunology Research Program, Cancer Gene Therapy Group, University of Helsinki, Helsinki, Finland
| | - Kristian Taipale
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Otto Hemminki
- Division of Urologic Oncology, Department of Surgical Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Urology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Minna Oksanen
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Medical and Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
| | - Juuso Juhila
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | | | - Siri Tähtinen
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Akseli Hemminki
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, Helsinki, Finland
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| |
Collapse
|
2
|
Bruijnesteijn van Coppenraet LES, Flipse J, Wallinga JA, Vermeer M, van der Reijden WA, Weel JFL, van der Zanden AGM, Schuurs TA, Ruijs GJHM. From a case-control survey to a diagnostic viral gastroenteritis panel for testing of general practitioners' patients. PLoS One 2021; 16:e0258680. [PMID: 34731182 PMCID: PMC8565752 DOI: 10.1371/journal.pone.0258680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/01/2021] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE To evaluate the pathogenicity of a broad range of 11 possible gastroenteritis viruses, by means of statistical relationships with cases vs. controls, or Ct-values, in order to establish the most appropriate diagnostic panel for our general practitioner (GP) patients in the Netherlands (2010-2012). METHODS Archived stool samples from 1340 cases and 1100 controls were retested using internally controlled multiplex real-time PCRs for putative pathogenic gastroenteritis viruses: adenovirus, astrovirus, bocavirus, enterovirus, norovirus GI and GII, human parechovirus, rotavirus, salivirus, sapovirus, and torovirus. RESULTS The prevalence of any virus in symptomatic cases and asymptomatic controls was 16.6% (223/1340) and 10.2% (112/1100), respectively. Prevalence of astrovirus (adjusted odds ratio (aOR) 10.37; 95% confidence interval (CI) 1.34-80.06) and norovirus GII (aOR 3.10; CI 1.62-5.92) was significantly higher in cases versus controls. Rotavirus was encountered only in cases. We did not find torovirus and there was no statistically significant relationship with cases for salivirus (aOR 1,67; (CI) 0.43-6.54)), adenovirus non-group F (aOR 1.20; CI 0.75-1.91), bocavirus (aOR 0.85; CI 0.05-13.64), enterovirus (aOR 0.83; CI 0.50-1.37), human parechovirus (aOR 1.61; CI 0.54-4.77) and sapovirus (aOR 1.15; CI 0.67-1.98). Though adenovirus group F (aOR 6.37; CI 0.80-50.92) and norovirus GI (aOR 2.22, CI: 0.79-6.23) are known enteropathogenic viruses and were more prevalent in cases than in controls, this did not reach significance in this study. The Ct value did not discriminate between carriage and disease in PCR-positive subjects. CONCLUSIONS In our population, diagnostic gastroenteritis tests should screen for adenovirus group F, astrovirus, noroviruses GI and GII, and rotavirus. Case-control studies as ours are lacking and should also be carried out in populations from other epidemiological backgrounds.
Collapse
Affiliation(s)
| | - Jacky Flipse
- Laboratory of Medical Microbiology and Infectious Diseases, Isala, Zwolle, The Netherlands
| | - Janny A. Wallinga
- Laboratory of Medical Microbiology and Infectious Diseases, Isala, Zwolle, The Netherlands
| | - Marloes Vermeer
- ZGT Academy, Ziekenhuisgroep Twente, Almelo, The Netherlands
| | - Wil A. van der Reijden
- Regional Laboratory for Medical Microbiology and Public Health Kennemerland, Haarlem, The Netherlands
| | - Jan F. L. Weel
- Izore, Center for Infectious Diseases Friesland, Leeuwarden, The Netherlands
| | | | - Theo A. Schuurs
- Izore, Center for Infectious Diseases Friesland, Leeuwarden, The Netherlands
| | - Gijs J. H. M. Ruijs
- Laboratory of Medical Microbiology and Infectious Diseases, Isala, Zwolle, The Netherlands
- * E-mail:
| |
Collapse
|
3
|
Oliveira ERA, Li L, Bouvier M. Intracellular Sequestration of the NKG2D Ligand MIC B by Species F Adenovirus. Viruses 2021; 13:1289. [PMID: 34372495 PMCID: PMC8310058 DOI: 10.3390/v13071289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
The enteric human adenoviruses of species F (HAdVs-F), which comprise HAdV-F40 and HAdV-F41, are significant pathogens that cause acute gastroenteritis in children worldwide. The early transcription unit 3 (E3) of HAdVs-F is markedly different from that of all other HAdV species. To date, the E3 proteins unique to HAdVs-F have not been characterized and the mechanism by which HAdVs-F evade immune defenses in the gastrointestinal (GI) tract is poorly understood. Here, we show that HAdV-F41 infection of human intestinal HCT116 cells upregulated the expression of MHC class I-related chain A (MIC A) and MIC B relative to uninfected cells. Our results also showed that, for MIC B, this response did not however result in a significant increase of MIC B on the cell surface. Instead, MIC B was largely sequestered intracellularly. Thus, although HAdV-F41 infection of HCT116 cells upregulated MIC B expression, the ligand remained inside infected cells. A similar observation could not be made for MIC A in these cells. Our preliminary findings represent a novel function of HAdVs-F that may enable these viruses to evade immune surveillance by natural killer (NK) cells in the infected gut, thereby paving the way for the future investigation of their unique E3 proteins.
Collapse
Affiliation(s)
| | | | - Marlene Bouvier
- Department of Microbiology and Immunology, University of Illinois at Chicago, 909 S Wolcott Avenue, Chicago, IL 60612, USA; (E.R.A.O.); (L.L.)
| |
Collapse
|