1
|
Wang J, Cao L, Wang H, Huang H, Zhong G, Yang L, He J. Therapeutic effect of Hosta plantaginea (Lam.) Aschers flowers on acute pharyngitis through inhibition of multi-inflammatory pathways in rats. J Ethnopharmacol 2024; 318:116966. [PMID: 37499845 DOI: 10.1016/j.jep.2023.116966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Hosta plantaginea (Lam.) Aschers flower is a famous Mongolian folk medicine in China and has a therapeutic effect on acute pharyngitis (AP). However, the effect and potential mechanism of H. plantaginea flower on AP have not been fully elucidated. AIM OF THE STUDY The present work aimed to evaluate the effects and mechanisms of the crude extract of H. plantaginea flowers (HP) and its four fractions of petroleum ether fraction (HPA), ethyl acetate fraction (HPB), n-butanol fraction (HPC), and water residue (HPD) against AP in rats. MATERIALS AND METHODS A 15% ammonia-induced AP rat model in rats was established. Therapeutic effects of HP and HPA∼D in model rats were evaluated based on body weight, histopathological analysis, and inflammatory parameters, including tumor necrosis factor α (TNF-α), prostaglandin E2 (PGE2), interleukin 1β (IL-1β), and IL-6. The protein expression of nuclear factor kappa-B p65 (NF-κB p65), inhibitor of NF-κB alpha (IκBα), c-Jun N-terminal kinases (JNK), mitogen-activated protein kinase (MAPK) p38, extracellular signal-regulated kinase (Erk), just another kinase 1 (JAK1), signal transducer and activator of transcription 3 (STAT3), phosphoinositide 3-kinase (PI3K), and protein kinase B (Akt) were detected by a Western blotting assay. RESULTS HP, HPB, and HPC treatments markedly alleviated AP in rats by increasing body weight and improving pathological damages in pharyngeal tissues. In addition, HP, HPB, and HPC treatments significantly inhibited inflammation, including decreasing the levels of TNF-α, PGE2, IL-1β, and IL-6, and suppressing phosphorylated protein expression of p65, IκBα, JNK, p38, Erk, JAK1, STAT3, PI3K, and Akt in pharyngeal tissues of rats. CONCLUSION Collectively, HP, HPB, and HPC can attenuate pharynx injury in rats by suppressing inflammation via inhibition of NF-κB, MAPKs, JAK-STAT, and PI3K-Akt pathways, which supports the traditional use of H. plantaginea flowers.
Collapse
Affiliation(s)
- Jiashui Wang
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Lan Cao
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Huilei Wang
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China; College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Huilian Huang
- Key Laboratory of Modern Preparation of TCM, Jiangxi University of Chinese Medicine, Ministry of Education, Nanchang, 330004, China.
| | - Guoyue Zhong
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Li Yang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Junwei He
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
2
|
Luo Y, Qiu Y, Zhou R, Zhang Y, Ji X, Liu Z, Li R, Zhang Y, Yang F, Hou J, Zhang S, Wang T, Song H, Tao X. Shaoyao Gancao decoction alleviates the central hyperalgesia of recurrent NTG-induced migraine in rats by regulating the NGF/TRPV1/COX-2 signal pathway. J Ethnopharmacol 2023; 317:116781. [PMID: 37315643 DOI: 10.1016/j.jep.2023.116781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shaoyao Gancao Decoction (SGD) is well known as an effective prescription for analgesia composed of two herbs, and is noted as traditional Chinese medicine morphine. It is widely used in various conditions causing pain, including migraine. However, there is currently no research exploring the mechanism of action in the treatment of migraines. AIM OF THE STUDY The current research was devised to determine the underlying regulatory mechanism of SGD, by verifying its role in the NGF/TRPV1/COX-2 signal pathway. MATERIALS AND METHODS The active components in SGD were identified by UHPLC-MS. A migraine model was prepared by subcutaneous (s.c.) injection of nitroglycerin (NTG) into the neck to detect migraine-like behavior, orbital hyperalgesia threshold changes, and the therapeutic effect of SGD. The mechanism of SGD in remedying migraine was studied through transcriptome sequencing (RNA-seq), which was further validated utilizing Elisa, Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting (WB) experiments. RESULTS In the SGD chemical composition analysis, 45 components were identified including gallic acid, paeoniflorin and albiforin. In the behavioral experiments, SGD treatment significantly decreased the score of migraine-like head scratching in the NTG-induced migraine model (Mod) rats, while the hyperalgesia threshold increased outstandingly on days 10, 12, and 14 (P < 0.01, P < 0.001 or P < 0.0001). In migraine biomarkers experiment, compared with the Mod group, the 5-hydroxytryptamine (5-HT) contents were outstandingly enhanced by SGD treatment, while nitric oxide (NO) contents were markedly declined (P < 0.01). In the RNA-seq test, the down-regulated genes of SGD inhibiting hyperalgesia migraine included the neurotrophic factor (NGF) and transient receptor potential vanillic acid subfamily protein 1 receptor (TRPV1). The down-regulation pathway is the inflammatory mediator regulation of TRP channels. In gene set enrichment analysis (GSEA), SGD decreased the over-expression of protooncogene tyrosine-protein kinase Src (SRC) and TRPV1 in this pathway, and the two genes clustered at its lower end, with similar functions. PPI network results show that NGF interacts with TRPV1. Further verification shows that when compared with Mod group, the plasma cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2) protein expression levels and the dura mater calcitonin gene-related peptide (CGRP), extracellular signal-regulated kinase (ERK), p-ERK, SRC and NGF protein expression levels in the SGD group were remarkably decreased (P < 0.01, P < 0.001 or P < 0.0001), and the expression level of TRPV1 protein showed a downward trend (P = 0.06). The expression levels of COX-2, NO, CGRP, TRPV1, SRC and NGF mRNA in the dura mater was overtly down-regulated (P < 0.05, P < 0.01 or P < 0.001). CONCLUSIONS SGD has a significant inhibitory effect on the NGF/TRPV1/COX-2 signaling pathway that mediates central hyperalgesia migraine, thus suggesting the molecular mechanism of SGD in improving the symptoms of migraine may be related to the central hyperalgesia neurotransmitter that regulates the pathogenesis of migraine.
Collapse
Affiliation(s)
- Yamin Luo
- Bejing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Yuehua Qiu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Ranran Zhou
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Yao Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Xuenian Ji
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Zijian Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Ran Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Yi Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Feng Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Jianchen Hou
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Shujing Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Tieshan Wang
- Bejing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| | - Haochong Song
- College of Special Education, Beijing Union University, 100029, Beijing, China.
| | - Xiaohua Tao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China; Research Institute of Chinese Medicine Literature, Beijing University of Chinese Medicine, 100029, Beijing, China.
| |
Collapse
|
3
|
Kim DY, Son SR, Kim JY, Min JW, Kong CH, Park K, Jeon M, Kang WC, Jung SY, Choi JH, Jang DS, Ryu JH. Effects of Artemisia annua L. on postmenopausal syndrome in ovariectomized mice. J Ethnopharmacol 2023; 317:116800. [PMID: 37331451 DOI: 10.1016/j.jep.2023.116800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia annua L. (Asteraceae) has been used as an antipyretic and anti-parasitic drug in traditional medicine for more than 2000 years. It has also been prescribed to treat symptoms caused by deficiency of Yin, which might be observed in menopausal state from the point of view of traditional medicine. AIM OF THE STUDY We hypothesized that A. annua might be useful for treating menopausal disorders with less adverse effects than hormone replacement therapy. Thus, the aim of the present study was to investigate effects of A. annua on postmenopausal symptoms of ovariectomized (OVX) mice. MATERIALS AND METHODS OVX mice were employed as a model for postmenopausal disorders. Mice were treated with a water extract of A. annua (EAA; 30, 100 or 300 mg/kg, p.o.) or 17β-estradiol (E2; 0.5 mg/kg, s.c.) for 8 weeks. Open field test (OFT), novel object recognition task (NOR), Y-maze test, elevated plus maze test (EPM), splash test and tail suspension test (TST) were conducted to determine whether EAA could ameliorate postmenopausal symptoms. Phosphorylated levels of extracellular signal-regulated kinase (ERK), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK-3β), β-catenin and expression level of synaptophysin in the cortex and hippocampus were evaluated by Western blot analysis. RESULTS EAA treatment significantly increased the discrimination index in NOR, decreased the time in closed arm than in open arm in EPM, increased grooming time in splash test, and decreased immobility time in TST, as did E2 treatment. In addition, decreased phosphorylation levels of ERK, Akt, GSK-3β, and β-catenin and expression levels of synaptophysin in the cortex and hippocampus after OVX were reversed by administration of EAA and E2. CONCLUSION These results suggest that A. annua can ameliorate postmenopausal symptoms such as cognitive dysfunction, anxiety, anhedonia, and depression by activating ERK, Akt, and GSK-3β/β-catenin signaling pathway and hippocampal synaptic plasticity, and that A. annua would be a novel treatment for postmenopausal symptoms.
Collapse
Affiliation(s)
- Do Yeon Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae Youn Kim
- Department of Integrated Drug Development and Natural Products, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ji Won Min
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jung-Hye Choi
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
4
|
Dang TK, Hong SM, Dao VT, Tran PTT, Tran HT, Do GH, Hai TN, Nguyet Pham HT, Kim SY. Anti-neuroinflammatory effects of alkaloid-enriched extract from Huperzia serrata on lipopolysaccharide-stimulated BV-2 microglial cells. Pharm Biol 2023; 61:135-143. [PMID: 36617895 PMCID: PMC9833413 DOI: 10.1080/13880209.2022.2159450] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
CONTEXT Alkaloid-enriched extract of Huperzia serrata (Thunb.) Trevis (Lycopodiaceae) (HsAE) can potentially be used to manage neuronal disorders. OBJECTIVE This study determines the anti-neuroinflammatory effects of HsAE on lipopolysaccharide (LPS)-stimulated BV-2 microglial cells and the underlying mechanisms. MATERIALS AND METHODS BV-2 cells were pre- or post-treated with different concentrations of HsAE (25-150 µg/mL) for 30 min before or after LPS induction. Cell viability was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and no cytotoxicity was found. Nitric oxide (NO) concentration was determined using Griess reagent. The levels of prostaglandin E2 (PGE2), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were determined using enzyme-linked immunosorbent assay. The levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 and the phosphorylation of mitogen-activated protein kinase (MAPK) were analyzed using western blotting. RESULTS HsAE reduced LPS-induced NO production with half-maximal inhibitory concentration values of 99.79 and 92.40 µg/mL at pre- and post-treatment, respectively. Pre-treatment with HsAE at concentrations of 50, 100, and 150 µg/mL completely inhibited the secretion of PGE2, TNF-α, IL-6, and IL-1β compared to post-treatment with HsAE. This suggests that prophylactic treatment is better than post-inflammation treatment. HsAE decreased the expression levels of iNOS and COX-2 and attenuated the secretion of pro-inflammatory factors by downregulating the phosphorylation of p38 and extracellular signal-regulated protein kinase in the MAPK signaling pathway. DISCUSSION AND CONCLUSIONS HsAE exerts anti-neuroinflammatory effects on LPS-stimulated BV-2 cells, suggesting that it may be a potential candidate for the treatment of neuroinflammation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Thu Kim Dang
- Department of Clinical Pharmacy, University of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
| | - Seong-Min Hong
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Vui Thi Dao
- HaNoi University of Pharmacy, Hanoi, Vietnam
| | - Phuong Thi Thu Tran
- Department of Life Sciences, Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, Hanoi, Vietnam
| | - Hiep Tuan Tran
- Faculty of Pharmacy, PHENIKAA University, Hanoi, Vietnam
| | - Giang Hoang Do
- Centre for Research and Technology Transfer, Hanoi, Vietnam
| | - Thanh Nguyen Hai
- Department of Clinical Pharmacy, University of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
| | | | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
5
|
Jain S, Salau AO. Novel predictive model of cell survival/death related effects of Extracellular Signal-Regulated kinase protein. Artif Cells Nanomed Biotechnol 2023; 51:158-169. [PMID: 36971398 DOI: 10.1080/21691401.2023.2189460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Computational modelling is a technique for modelling and solving real-world problems by utilising computing to provide solutions. This paper presents a novel predictive model of cell survival/death-related effects of Extracellular Signal-Regulated Kinase Protein. The computational model was designed using Neural Networks and fuzzy system. Three hundred ERK samples were examined using ten different concentrations of three input proteins: EGF, TNF, and insulin. Based on the different concentrations of input proteins and different samples of ERK protein, adjustment Anderson darling (AD) statistics for multiple distribution functions were computed considering different test such as visual test, Pearson correlation coefficient, and uniformity tests. The results reveal that utilising different concentrations and samples, values such as 7.55 AD and 18.4 AD were obtained using the Weibull distribution function for 0 ng/ml of TNF, 100 ng/ml of EGF, and 0 ng/mL of insulin concentrations. The model was validated by predicting the various ERK protein values that fall within the observed range. The proposed model agrees with the deterministic model, which was developed using difference equations.
Collapse
Affiliation(s)
- Shruti Jain
- Department of Electronics and Communications Engineering, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | - Ayodeji Olalekan Salau
- Department of Electrical/Electronics and Computer Engineering, Afe Babalola University, Ado-Ekiti, Nigeria
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Tamil Nadu, India
| |
Collapse
|
6
|
Liu Z, Huang X, Guo HY, Zhang LW, Quan YS, Chen FE, Shen QK, Quan ZS. Design, synthesis fusidic acid derivatives alleviate acute lung injury via inhibiting MAPK/NF-κB/NLRP3 pathway. Eur J Med Chem 2023; 259:115697. [PMID: 37544187 DOI: 10.1016/j.ejmech.2023.115697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Acute lung injury (ALI) refers to a series of lung lesions resulting from multiple lung injuries, even leading to morbidity and death, abundant previous reports have showed that anti-inflammatory as a key to treatment of ALI. Fusidic acid (FA) as an antibiotic has significant anti-bacterial activity and anti-inflammatory effects. In this study, we designed and synthesized 34 FA derivatives to identify new anti-inflammatory drugs. The anti-inflammatory activities of the derivatives were screened using lipopolysaccharide (LPS)-induced RAW264.7 cells to evaluate the anti-inflammatory activity of the compounds, we measured nitric oxide (NO) and interleukin-6 (IL-6). Most of compounds showed inhibitory effects on inflammatory NO and IL-6 in LPS-induced RAW264.7 cells. Based on the screening results, compound a1 showed the strongest anti-inflammatory activity. Compared with FA, the inhibition rate NO and IL-6 of compound a1 increased 3.08 and 2.09 times at 10 μM, respectively. We further measured a1 inhibited inflammatory factor NO (IC50 = 3.26 ± 0.42 μM), IL-6 (IC50 = 1.85 ± 0.21 μM) and TNF-α (IC50 = 3.88 ± 0.55 μM). We also demonstrated that a1 markedly inhibits the expression of certain immune-related cytotoxic factors, including cyclooxygenase-2 (COX-2) and inducible nitric-oxide synthase (iNOS). In vivo results indicate that a1 can reduce lung inflammation and NO, IL-6, TNF-α, COX-2 and iNOS in LPS-induced ALI mice. On the one hand, we demonstrated a1 inhibits the mitogen-activated protein kinase (MAPK) signaling pathway by down-regulating the phosphorylation of p38 MAPK, c-Jun N-terminal kinase (c-JNK) and extracellular signal-regulated kinase (ERK). Moreover, a1 also suppressing the phosphorylation of inhibitory NF-κB inhibitor α (IκBα) inhibits the activation of the nuclear factor-κB (NF-κB) signaling pathway. On the other hand, we demonstrated a1 also role in anti-inflammatory by inhibits nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome and further inhibits Caspase-1 and inflammatory factor interleukin-1β (IL-1β). In conclusion, our study demonstrates that a1 has an anti-inflammatory effect and alleviates ALI by regulating inflammatory mediators and suppressing the MAPK, NF-κB and NLRP3 inflammasome signaling pathways.
Collapse
Affiliation(s)
- Zheng Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Lu-Wen Zhang
- Department of Functional Science, College of Medicine, Yanbian University, Yanji, Jilin, 133002, China
| | - Yin-Sheng Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Fen-Er Chen
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
7
|
Jiang X, Lin Y, Zhao M, Li Y, Ye P, Pei R, Lu Y, Jiang L. Platycodin D induces apoptotic cell death through PI3K/AKT and MAPK/ERK pathways and synergizes with venetoclax in acute myeloid leukemia. Eur J Pharmacol 2023; 956:175957. [PMID: 37541375 DOI: 10.1016/j.ejphar.2023.175957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] |