1
|
Yang L, Liang P, Yang H, Coyne CB. Trophoblast organoids with physiological polarity model placental structure and function. J Cell Sci 2024; 137:jcs261528. [PMID: 37676312 PMCID: PMC10499031 DOI: 10.1242/jcs.261528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Human trophoblast organoids (TOs) are a three-dimensional ex vivo culture model that can be used to study various aspects of placental development, physiology and pathology. However, standard culturing of TOs does not recapitulate the cellular orientation of chorionic villi in vivo given that the multi-nucleated syncytiotrophoblast (STB) develops largely within the inner facing surfaces of these organoids (STBin). Here, we developed a method to culture TOs under conditions that recapitulate the cellular orientation of chorionic villi in vivo. We show that culturing STBin TOs in suspension with gentle agitation leads to the development of TOs containing the STB on the outer surface (STBout). Using membrane capacitance measurements, we determined that the outermost surface of STBout organoids contain large syncytia comprising >50 nuclei, whereas STBin organoids contain small syncytia (<10 nuclei) and mononuclear cells. The growth of TOs under conditions that mimic the cellular orientation of chorionic villi in vivo thus allows for the study of a variety of aspects of placental biology under physiological conditions.
Collapse
Affiliation(s)
- Liheng Yang
- Department of Integrative Immunobiology, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Pengfei Liang
- Department of Biochemistry, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Carolyn B. Coyne
- Department of Integrative Immunobiology, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
2
|
Chai LJ, Lan T, Cheng Z, Zhang J, Deng Y, Wang Y, Li Y, Wang F, Piao M. Stevia rebaudiana leaves fermented by Lactobacillus plantarum exhibit resistance to microorganisms and cancer cell lines in vitro: A potential sausage preservative. Food Chem 2024; 432:137187. [PMID: 37625297 DOI: 10.1016/j.foodchem.2023.137187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Natural preservatives are causing a rethinking of current preservation means. As a sweetener resource, exploitation of Stevia rebaudiana leaves (SRLs) is still restricted due to human conventional cognition. Herein, Lactobacillus plantarum fermented SRLs containing diverse free secondary metabolites derived from microbial deglycosylation and bioenzymatic decomposition were investigated. The apparent resistance to typical foodborne bacteria (Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Pseudomoas aeruginosa, Bacillus amyloliquefaciens) by fermented SRLs and their extracts were validated. The metabolite diversity and in-depth organic solvent extraction gave the possibilities for better antimicrobial actions, anti-HepG2/SGC-7901 cells in vitro in contrast with aqueous extract of unfermented SRLs. Crucially, compound identification and attribution revealed that fermentation products may be maximally contributing to antimicrobial and antitumor mechanisms rather than intrinsic plant and/or microbial components. Additionally, pork sausage models with 15 g/kg ethyl acetate extract as a preservative candidate presented preferred storage characteristics (21 days and 37 °C) compared to those without ethyl acetate extract, e.g. the minimal total plate count (3.86 ± 0.27 log CFU/g), peroxsignide value (8.02 ± 0.92 meq/kg), and acid value (2.01 ± 0.04 (KOH)/(mg/g)).
Collapse
Affiliation(s)
- Li-Juan Chai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Tianchan Lan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhiyuan Cheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jing Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yang Deng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Ying Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Yan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Fengwu Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| | - Meizi Piao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| |
Collapse
|
3
|
Xue H, Cao M, Wang S, Fei Y, Xiong X, Yang Y. Visual and rapid detection of escolar (Lepidocybium flavobrunneum) using loop mediated isothermal amplification in conjunction with a specific molecular beacon probe. Food Chem 2024; 432:137262. [PMID: 37643514 DOI: 10.1016/j.foodchem.2023.137262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Species adulteration has become a main reason for the unexpected exposure to escolar, which is often related with the gastrointestinal disease called keriorrhea. Sensitive and accurate identification of escolar is required to protect consumers from commercial and health frauds. The present study established a visual and rapid method for escolar detection using LAMP (loop-mediated isothermal amplification) in conjunction with a MB (molecular beacon) probe. The visual MB-LAMP assay demonstrated high specificity and superb sensitivity (1 pg DNA) for escolar and low to 0.1 % (w/w) simulated adulteration could be detected within 25 min. Additionally, method validation on commercial products highlighted the umbrella term of white tuna for escolar on Chinese market. All these results indicated that the MB-LAMP method is a useful tool for rapid, sensitive and convenient detection of escolar and can also be used as a point-of-care molecular diagnostic technique since it does not require the expensive equipment.
Collapse
Affiliation(s)
- Hanyue Xue
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Min Cao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Shihui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Yanjin Fei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Xiong Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China.
| | - Ying Yang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
4
|
Velmurugan S, Anupriya J, Chen SM, Traiwatcharanon P, Cheng SH, Wongchoosuk C. Synergies of WO 3 and Co 3O 4 intercalated ball milling exfoliated graphene 3D helix electrocatalyst: A highly sensitive electrochemical detection of mesotrione herbicide in vegetable samples. Food Chem 2024; 432:137221. [PMID: 37633146 DOI: 10.1016/j.foodchem.2023.137221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/21/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
In the booming global population, monitoring of mesotrione (MTN) like agricultural pollutants is crucial for human safety. Herein, the research reports the synthesis of tungsten trioxide (WO3) and cobalt oxide (Co3O4) nanostructures intercalated ball milling exfoliated graphene (WO3/Co3O4/graphene) 3D helix electrocatalyst for the electrochemical detection of MTN herbicide. The proposed WO3/Co3O4/graphene sensor material achieved a wide range of MTN detection from 0.001 µM to 1885 µM. In addition, the estimated limit of sensing and sensitivity values are 0.42 nM and 0.802 µAµM-1 cm-2 respectively. The real sample experiment was accomplished in MTN-added vegetables (corn, sugar cane, tomato, green soybean) and environmental samples (sewage water, river water). At most, the recorded minimum MTN response recovery in vegetables and water samples is about 95% and 98% respectively. Furthermore, the designed sensor electrode achieved storage stability of 98.7% after three weeks.
Collapse
Affiliation(s)
- Sethupathi Velmurugan
- Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; Department of Applied Chemistry, National Chi Nan University, Puli, Nantou 545, Taiwan, ROC
| | - Jeyaraman Anupriya
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC.
| | | | - Shu-Hua Cheng
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou 545, Taiwan, ROC
| | - Chatchawal Wongchoosuk
- Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
5
|
Wu C, Zhang Y, Han M, Zhang R, Li H, Wu F, Wu A, Wang X. Selenium-based nanozyme as a fluorescence-enhanced probe and imaging for chlortetracycline in living cells and foods. Food Chem 2024; 432:137147. [PMID: 37639889 DOI: 10.1016/j.foodchem.2023.137147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
Developing rapid monitoring methods to detect antibiotic residues in food plays an important role in safeguarding human health. This study presents the development of a novel fluorescence-enhanced detection method for chlortetracycline (CTC) using a GSH-Se nanozyme. A GSH-Se nanozyme prepared using a one-pot hydrothermal method not only possesses excellent fluorescent properties but also exhibits good glutathione peroxidase-like activity. The results show that the addition of CTC leads to a significant enhancement in the fluorescence intensity of GSH-Se, and this increase exhibits a good linear relationship with the concentration of CTC. The linear range of this method is 0.02-1 µM, and the limit of detection (LOD) for CTC was 0.02 µM. Moreover, the cell toxicity of GSH-Se is low and can be used for monitoring and imaging of CTC in cells, and satisfactory results have been obtained in the analysis of actual food samples.
Collapse
Affiliation(s)
- Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Yuwei Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Ming Han
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ruinan Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Hua Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Fali Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
6
|
Miltenburg J, Bastiaan-Net S, Hoppenbrouwers T, Wichers H, Hettinga K. Gastric clot formation and digestion of milk proteins in static in vitro infant gastric digestion models representing different ages. Food Chem 2024; 432:137209. [PMID: 37643515 DOI: 10.1016/j.foodchem.2023.137209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Gastric digestion conditions change during infancy from newborn towards more adult digestion conditions, which can change gastric digestion kinetics. However, how these changes in gastric digestion conditions during infancy affect milk protein digestion has not been investigated. Therefore, we aimed to investigate milk protein digestion with static in vitro gastric digestion models representing one-, three- and six-month-old infants. With increasing age, gastric clots and soluble proteins were digested more extensively, which may partly be attributed to the looser gastric clot structure. Larger differences with increasing age were found for heated than unheated milk proteins, which might be caused by the presence of denatured whey proteins. Taken together, these findings show that gastric milk protein digestion increases during infancy. These in vitro gastric digestion models could be used to study how milk protein digestion changes with infant age, which may aid in developing infant formulas for different age stages.
Collapse
Affiliation(s)
- Julie Miltenburg
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Shanna Bastiaan-Net
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Tamara Hoppenbrouwers
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands; Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Harry Wichers
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Kasper Hettinga
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
7
|
Yan X, Yuan Y, Yue T. Ratiometric fluorescence aptasensor for the detection of patulin in apple juice based on the octahedral UiO-66-TCPP metal-organic framework and aptamer systems. Food Chem 2024; 432:137211. [PMID: 37619392 DOI: 10.1016/j.foodchem.2023.137211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Patulin (PAT) is a potentially harmful mycotoxin to human health and is known to contaminate apple juice. In this work, we developed a ratiometric fluorescence aptasensor using tetrakis(4-carboxyphenyl)porphyrin (H2TCPP)-treated octahedral UiO-66-NH2 (defined as UiO-66-TCPP) to detect PAT. This 2-aminoterephthalic acid and H2TCPP functionalized metal-organic framework showed multiple adsorption effects (hydrogen bonding and π-π stacking) on the aptamer (Apt) and served as a quenching material. When the target PAT bound specifically to the Apt, the fluorescence of the 6-carboxyfluorescein-labeled Apt would recover, and the fluorescence of the H2TCPP ligand remained unchanged. This ratiometric fluorescence property improved the accuracy of PAT detection. Moreover, the introduction of the H2TCPP ligand enhanced the quenching efficiency of UiO-66-NH2, thus improving the sensitivity of the fluorescent aptasensor (UiO-66-TCPP vs. UiO-66-NH2: 0.0162 ng/mL vs. 1.8 ng/mL). In addition, we used UiO-66-TCPP to detect PAT in apple juice samples. This work provides a good paradigm for the construction of ratiometric fluorescence aptasensors with high sensitivity and accuracy.
Collapse
Affiliation(s)
- Xiaohai Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China; College of Food Science and Technology, Northwest University, Xi'an 710067, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China; College of Food Science and Technology, Northwest University, Xi'an 710067, China.
| |
Collapse
|
8
|
Müller I, Morlock GE. Quantitative saccharide release of hydrothermally treated flours by validated salivary/pancreatic on-surface amylolysis (nanoGIT) and high-performance thin-layer chromatography. Food Chem 2024; 432:137145. [PMID: 37625303 DOI: 10.1016/j.foodchem.2023.137145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
The susceptibility of hydrothermally treated flour products to amylolysis was studied. The human salivary α-amylase and porcine pancreatin enzyme mixture containing α-amylase were used on-surface to investigate the release of glucose, maltose, and maltotriose. On the same adsorbent surface (all-in-one), their high-performance thin-layer chromatography separation and detection via selective chemical derivatization was performed. For the first time, the all-in-one nanoGIT system was studied quantitatively and validated for the simulated static oral and intestinal on-surface amylolysis of ten different hydrothermally treated flours and soluble starch. Differences were detected in the digestibility of refined and whole flours from wheat, spelt, and rye as well as from einkorn, amaranth, emmer, and oat. Amaranth released the lowest amount of saccharides and spelt the highest in both oral and intestinal digestion systems. The results suggest that consumption of whole grain products may be beneficial because of their lower saccharide release, with particular attention to rye.
Collapse
Affiliation(s)
- Isabel Müller
- Institute of Nutritional Science, Chair of Food Science, and Interdisciplinary Research Centre for Biosystems, Land Use, and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Gertrud E Morlock
- Institute of Nutritional Science, Chair of Food Science, and Interdisciplinary Research Centre for Biosystems, Land Use, and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
9
|
Alves DMR, de Mello Prado R, Barreto RF. Silicon and sodium attenuate potassium deficiency in Eruca sativa Mill. Food Chem 2024; 432:137225. [PMID: 37625304 DOI: 10.1016/j.foodchem.2023.137225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Potassium (K) fertilizers are limited and non-renewable. Exploring the use of sodium (Na) and silicon (Si) as alternatives to reduce its use may be an alternative. However, the relationship of these elements with arugula nutrition and quality is unknown. Therefore, the objective of this study is to verify the effects of Na and Si on the parameters of arugula under conditions of K deficiency and sufficiency. The experiment was conducted in a greenhouse in a hydroponics system. The treatments used were K-sufficient, K-sufficient with Na, K-sufficient with Si, K-deficient, K-deficient with Na, and K-deficient with Si. Evaluations of physiological, biochemical, nutritional, and growth aspects were performed. Si supply increased the production of total phenols, ascorbic acid, and carotenoids in K-deficient plants. Both elements attenuated the damage caused by K deficiency and improved quality. This is an innovative strategy for the sustainable cultivation of this species.
Collapse
Affiliation(s)
- Deyvielen Maria Ramos Alves
- Department of Agricultural Production Sciences, São Paulo State University (Unesp), Faculty of Agricultural and Veterinary Sciences, Access Route Prof. Paulo Donato Castellane s/n, Jaboticabal, SP 14884-900, Brazil.
| | - Renato de Mello Prado
- Department of Agricultural Production Sciences, São Paulo State University (Unesp), Faculty of Agricultural and Veterinary Sciences, Access Route Prof. Paulo Donato Castellane s/n, Jaboticabal, SP 14884-900, Brazil.
| | - Rafael Ferreira Barreto
- Federal University of Mato Grosso do Sul (UFMS), Chapadão do Sul Campus (CPCS), MS-306 Highway, Km105, Rural Area, Chapadão do Sul, MS 79560-000, Brazil.
| |
Collapse
|
10
|
Long P, Li Y, Han Z, Zhu M, Zhai X, Jiang Z, Wen M, Ho CT, Zhang L. Discovery of color compounds: Integrated multispectral omics on exploring critical colorant compounds of black tea infusion. Food Chem 2024; 432:137185. [PMID: 37633133 DOI: 10.1016/j.foodchem.2023.137185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/22/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
The present study provided a highly efficient and systematic workflow for identifying colorants of food and beverage. Generally, the objective colorimeter and subjective human eye had different systems to identify colors, which makes the color description very challenging. Here, the Lab/LCH color system was applied to clearly illustrate color changes. Our workflow was applied to determine and verify the differential colorant substances between two groups of black tea infusions. Regarding color parameters, the infusions of black tea from Camellia sinensis and Camellia assamica differed significantly. The differential substances between black tea infusions were correlated to color parameters by mass spectrometry and nuclear magnetic resonance based multivariate statistical analysis and verified by machine learning tool. Pyroglutamic acid-glucose Amadori product, quercetin-3-O-glucoside, quinic acid and theabrownins were identified as main color contributors to black teas' color difference, which were also verified by addition test with standard black tea infusion.
Collapse
Affiliation(s)
- Piaopiao Long
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Yaxin Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zongde Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
11
|
Aliakbarpour S, Amjadi M, Hallaj T. A colorimetric assay for H 2O 2 and glucose based on the morphology transformation of Au/Ag nanocages to nanoboxes. Food Chem 2024; 432:137273. [PMID: 37660579 DOI: 10.1016/j.foodchem.2023.137273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Herein, we introduced a sensitive colorimetric platform for hydrogen peroxide (H2O2) assay based on gold/silver (Au/Ag) nanocages with porous structure. In the presence of H2O2, the morphology of hollow Au/Ag nanocages was converted to closed nanoboxes, altering their localized surface plasmon resonance (LSPR) peak position and the solution color from light blue to deep blue. The morphology transformation and LSPR peak position of Au/Ag nanocages were proportional to H2O2 concentration at the range of 0.1 to 50 µM. The limit of detection (LOD) was obtained to be 0.02 µM, and the relative standard deviation (RSD, for 0.2, 2.0, and 20 µM) was 2.7, 2.3, and 2.9%, respectively. Moreover, a smartphone-based colorimetric sensor was developed for H2O2 assay at the concentration range of 0.25-4.0 µM, with LOD of 0.2 µM and RSD of 3.2, 2.5, and 2.9% (for 0.5, 1.0, and 3.0 µM, respectively). We exploited the established sensor for glucose assay by measuring the generated H2O2 from the enzymatic reaction between glucose and glucose oxidase. There was a linear relationship between LSPR peak wavelength variations and the amount of glucose from 1.0 to 50 µM, with LOD of 0.4 µM and RSD of 3.2, 3.1, and 3.8% (for 2.0, 10, and 30 µM, respectively). The sensor was successfully applied to determine H2O2 and glucose in food and human serum samples, respectively.
Collapse
Affiliation(s)
- Saeid Aliakbarpour
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Tooba Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran.
| |
Collapse
|
12
|
Giovanini de Oliveira Sartori A, Martelli Chaib Saliba AS, Sêneda Martarello N, Goldoni Lazarini J, Pedroso Gomes do Amaral JE, Fernandes Pinto da Luz C, Alencar SMD. Changes in phenolic profile and anti-inflammatory activity of Baccharis beebread during gastrointestinal digestion/intestinal permeability in vitro. Food Chem 2024; 432:137234. [PMID: 37634341 DOI: 10.1016/j.foodchem.2023.137234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/02/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Knowledge about the fate of beebread bioactive compounds throughout the human gastrointestinal tract are scarce. The present study aimed at assessing the effects of gastrointestinal digestion followed by intestinal permeability in vitro on phenolic profile and anti-inflammatory activity of Baccharis beebread. Palynological analysis confirmed the beebread is predominantly composed by pollen grains from Baccharis species, which are endemic in south and southeast Brazil. Flavonols and phenylamides were found in beebread hydroalcoholic extract by HPLC-ESI-QTOF-MS analysis. Moreover, simulated digestion lead to compounds' breakage, releasing both aglycones from glycosylated flavonols and p-coumaric acid, but not caffeic acid from phenylamides. Only spermidines crossed the Caco-2 cell monolayer, possibly due to spermine oxidation. Free p-coumaric acid was released after digestion, and epithelial transport. Concomitantly, NF-κΒ activation and TNF-α level was decreased by beebread even after Caco-2 transport, which indicates spermidines conjugated with p-coumaric acid may be bioavailable compounds with anti-inflammatory activity.
Collapse
Affiliation(s)
| | | | - Natalia Sêneda Martarello
- Instituto de Pesquisas Ambientais, Secretaria de Meio Ambiente, Infraestrutura e Logística de São Paulo, São Paulo, SP, Brazil
| | - Josy Goldoni Lazarini
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil
| | | | - Cynthia Fernandes Pinto da Luz
- Instituto de Pesquisas Ambientais, Secretaria de Meio Ambiente, Infraestrutura e Logística de São Paulo, São Paulo, SP, Brazil
| | - Severino Matias de Alencar
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil; Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil.
| |
Collapse
|
13
|
Espada-Bernabé E, Moreno-Martín G, Gómez-Gómez B, Madrid Y. Assesing the behaviour of particulate/nanoparticulate form of E171 (TiO 2) food additive in colored chocolate candies before and after in vitro oral ingestion by spICP-MS, TEM and cellular in vitro models. Food Chem 2024; 432:137201. [PMID: 37625301 DOI: 10.1016/j.foodchem.2023.137201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Potential risk of nanoparticles present in food additives should be assessed. Although food-grade additive E171 (TiO2) has been banned by European Union due to the potential occurrence of nanometric TiO2, it is still present in stock products and permitted in other countries. TiO2 (nano)particles from the outer coating of colored chocolate candies were determined by TEM (Transmission Electron Microscopy), ICP-MS (Inductively Coupled Plasma Mass Spectrometry) and spICP-MS (Single-Particle-ICP-MS). Total titanium content was in the range of 1219 ± 83 µg g-1, except for brown and white candies. Percentage of TiO2 particles bellow 100 nm was under 25% regardless the color, with most frequent size between 120 and 160 nm. In vitro gastrointestinal assays reveal differences in bioaccessibility percentages between whole candy (14%) or aqueous extracts of the coating of candy (37%). More than 90% of bioaccessible titanium was found in particulate form. Caco-2 cells viability decreased around 65% after 24 h exposed to intestinal fraction.
Collapse
Affiliation(s)
- Elena Espada-Bernabé
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Gustavo Moreno-Martín
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Beatriz Gómez-Gómez
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Yolanda Madrid
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
14
|
Huang Y, Chen S, Huang W, Zhuang X, Zeng J, Rong M, Niu L. Visualized test of environmental water pollution and meat freshness: Design of Au NCs-CDs-test paper/PVA film for ratiometric fluorescent sensing of sulfide. Food Chem 2024; 432:137292. [PMID: 37657332 DOI: 10.1016/j.foodchem.2023.137292] [Citation(s) in RCA: 0] |