1
|
Wang Q, Jiang H, Zhang H, Lu W, Wang X, Xu W, Li J, Lv Y, Li G, Cai C, Yu G. β-Glucan-conjugated anti-PD-L1 antibody enhances antitumor efficacy in preclinical mouse models. Carbohydr Polym 2024; 324:121564. [PMID: 37985066 DOI: 10.1016/j.carbpol.2023.121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
The use of immune checkpoint blockade (ICB) is a promising approach for clinical cancer treatment. However, most of cancer patients do not respond to anti-PD-1/PD-L1 antibody. In this study, we proposed a novel strategy of antibody-β-glucan conjugates (AGC) to enhance the antitumor immune response to ICB therapy. The AGC were constructed by conjugating an anti-PD-L1 antibody with a β-glucan via click chemistry. This design facilitates the delivery of β-glucan into the tumor microenvironment (TME). Furthermore, the bridging effect mediated by AGC can promote the interaction between tumor cells and dendritic cells (DCs), thereby enhancing immunotherapeutic benefits. In the MC38 tumor-bearing mouse model, AGC demonstrated powerful tumor suppression, achieving a tumor suppression rate of 86.7 %. Immunophenotyping, cytokine analysis, RNA sequencing, and FTY720-treated models were combined to elucidate the mechanism underlying AGC function. Compared with anti-PD-L1 antibody, AGC induced an earlier immune response, infiltration of DCs, and activation of preexisting T cells in the TME, with T cells predominantly proliferating locally rather than migrating from other organs. In conclusion, these data suggest that AGC could serve as a promising strategy to improve ICB therapy with prospects for clinical utilization.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China.
| | - Hongli Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Weiqiao Lu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiao Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenfeng Xu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jia Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Youjing Lv
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
2
|
Boswinkel M, Franssen GM, Heskamp S. Radiolabeled Antibodies for Immune Checkpoint PET in Preclinical Research. Methods Mol Biol 2024; 2729:143-158. [PMID: 38006495 DOI: 10.1007/978-1-0716-3499-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Antibodies that block immune checkpoints, also called immune checkpoint inhibitors (ICI), have demonstrated impressive anti-tumor efficacy. The success of ICIs results from a complex interplay between cancer cells and their immune microenvironment. One of the predictors for ICI efficacy is the expression of the targeted immune checkpoint, such as programmed death ligand 1 (PD-L1). Immune checkpoints can be expressed on tumor cells and/or subsets of immune cells. PET imaging offers unique possibilities to study the dynamics of immune checkpoint expression in tumor and normal tissues in a longitudinal manner. In this chapter, we describe the methodology to use zirconium-89-labeled antibodies to assess the expression of immune checkpoint molecules in syngeneic murine tumor models by PET imaging.
Collapse
Affiliation(s)
- Milou Boswinkel
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerben M Franssen
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Xing L, Lv L, Ren J, Yu H, Zhao X, Kong X, Xiang H, Tao X, Dong D. Advances in targeted therapy for pancreatic cancer. Biomed Pharmacother 2023; 168:115717. [PMID: 37862965 DOI: 10.1016/j.biopha.2023.115717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Pancreatic cancer (PC) represents a group of malignant tumours originating from pancreatic duct epithelial cells and acinar cells, and the 5-year survival rate of PC patients is only approximately 12%. Molecular targeted drugs are specific drugs designed to target and block oncogenes, and they have become promising strategies for the treatment of PC. Compared to traditional chemotherapy drugs, molecular targeted drugs have greater targeting precision, and they have significant therapeutic effects and minimal side effects. This article reviews several molecular targeted drugs that are currently in the experimental stage for the treatment of PC; these include antibody-drug conjugates (ADCs), aptamer-drug conjugates (ApDCs) and peptide-drug conjugates (PDCs). ADCs can specifically recognize cell surface antigens and reduce systemic exposure and toxicity of chemotherapy drugs. By delivering nucleic acid drugs to target cells, the targeting RNA of ApDCs can inhibit the expression or translation of mutated genes, thereby inhibiting tumour development. Moreover, PDCs can effectively penetrate tumour cells, and the peptide groups in PDCs preferentially target tumour cells with minimal side effects. In the targeted therapy of PC, molecular targeted drugs have very broad prospects, which provides new hope for the clinical treatment of PC patients and is worth further research.
Collapse
Affiliation(s)
- Lin Xing
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; School of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jiaqi Ren
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hao Yu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xinya Zhao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xin Kong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
4
|
Chan K, Sathyamurthi PS, Queisser MA, Mullin M, Shrives H, Coe DM, Burley GA. Antibody-Proteolysis Targeting Chimera Conjugate Enables Selective Degradation of Receptor-Interacting Serine/Threonine-Protein Kinase 2 in HER2+ Cell Lines. Bioconjug Chem 2023; 34:2049-2054. [PMID: 37917829 PMCID: PMC10655034 DOI: 10.1021/acs.bioconjchem.3c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023]
Abstract
Proteolysis targeting chimeras (PROTACs) are a family of heterobifunctional molecules that are now realizing their promise as a therapeutic strategy for targeted protein degradation. However, one limitation of existing designs is the lack of cell-selective targeting of the protein degrading payload. This manuscript reports a cell-targeted approach to degrade receptor-interacting serine/threonine-protein kinase 2 (RIPK2) in HER2+ cell lines. An antibody-PROTAC conjugate is prepared containing a protease-cleavable linkage between the antibody and the corresponding degrader. Potent RIPK2 degradation is observed in HER2+ cell lines, whereas an equivalent anti-IL4 antibody-PROTAC conjugate shows no degradation at therapeutically relevant concentrations. No RIPK2 degradation was observed in HER2- cell lines for both bioconjugates. This work demonstrates the potential for the cell-selective delivery of PROTAC scaffolds by engaging with signature extracellular proteins expressed on the surface of particular cell types.
Collapse
Affiliation(s)
- Karina Chan
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Glasgow G1 1XL, United
Kingdom
| | | | - Markus A. Queisser
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Michael Mullin
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Harry Shrives
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Diane M. Coe
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Glenn A. Burley
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Glasgow G1 1XL, United
Kingdom
| |
Collapse
|
5
|
Vivier D, Hautière M, Pineau D, Dancer PA, Herbet A, Hugnot JP, Bernhard C, Goncalves V, Truillet C, Boquet D, Denat F. Synthesis and Preclinical Fluorescence Imaging of Dually Functionalized Antibody Conjugates Targeting Endothelin Receptor-Positive Tumors. Bioconjug Chem 2023; 34:2144-2153. [PMID: 37931154 DOI: 10.1021/acs.bioconjchem.3c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
For the past two decades, the emerging role of the endothelin (ET) axis in cancer has been extensively investigated, and its involvement in several mechanisms described as "hallmarks of cancer" has clearly highlighted its potential as a therapeutic target. Despite the growing interest in finding effective anticancer drugs, no breakthrough treatment has successfully made its way to the market. Recently, our team reported the development of a new immuno-positron emission tomography probe targeting the ET A receptor (ETA, one of the ET receptors) that allows the successful detection of ETA+ glioblastoma, paving the way for the elaboration of novel antibody-based strategies. In this study, we describe the synthesis of two PET/NIRF (positron emission tomography/near-infrared fluorescence) dually functionalized imaging agents, directed against ETA or ETB, that could be used to detect ET+ tumors and select patients that will be eligible for fluorescence-guided surgery. Both imaging modalities were brought together using a highly versatile tetrazine platform bearing the IRDye800CW fluorophore and desferrioxamine for 89Zr chelation. This so-called monomolecular multimodal imaging probe was then "clicked", via an inverse-electron-demand Diels-Alder reaction, to antibodies conjugated site-specifically with a trans-cyclooctene group. This approach has led to homogeneous and well-defined constructs that retained their high affinity and high specificity for their respective target, as shown by flow cytometry and NIRF in vivo imaging experiments in nude mice bearing CHO-ETA and CHO-ETB tumors. Ultimately, these bimodal immunoconjugates could be used to improve the outcomes of patients with ET+ tumors.
Collapse
Affiliation(s)
- Delphine Vivier
- Université de Bourgogne, ICMUB UMR CNRS 6302, 21000 Dijon, France
| | - Marie Hautière
- Université Paris-Saclay, CEA, DMTS, SPI, 91191 Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, 91401 Orsay, France
| | - Donovan Pineau
- Université de Montpellier, IGF, INSERM U 1191-CNRS UMR 5203, 34094 Montpellier, France
| | | | - Amaury Herbet
- Université Paris-Saclay, CEA, DMTS, SPI, 91191 Gif-sur-Yvette, France
| | - Jean-Philippe Hugnot
- Université de Montpellier, IGF, INSERM U 1191-CNRS UMR 5203, 34094 Montpellier, France
| | - Claire Bernhard
- Université de Bourgogne, ICMUB UMR CNRS 6302, 21000 Dijon, France
| | - Victor Goncalves
- Université de Bourgogne, ICMUB UMR CNRS 6302, 21000 Dijon, France
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, 91401 Orsay, France
| | - Didier Boquet
- Université Paris-Saclay, CEA, DMTS, SPI, 91191 Gif-sur-Yvette, France
| | - Franck Denat
- Université de Bourgogne, ICMUB UMR CNRS 6302, 21000 Dijon, France
| |
Collapse
|
6
|
Wang P, Xia L. RC48-ADC treatment for patients with HER2-expressing locally advanced or metastatic solid tumors: a real-world study. BMC Cancer 2023; 23:1083. [PMID: 37946161 PMCID: PMC10636982 DOI: 10.1186/s12885-023-11593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND RC48-antibody-drug conjugates (ADC) link humanized anti-HER2 immunoglobulin with monomethyl auristatin E (MMAE). Clinical trials suggest promising antitumor activity in HER2-expressing solid tumors. This study probes RC48-ADC's efficacy and safety in patients with HER2-expressing advanced or metastatic solid tumors. METHOD Data was collected from 23 advanced cancer patients treated with RC48-ADC at our oncology center between July 2021 and December 2022. These patients exhibited at least 1 + expression of HER2 immunohistochemistry, had previously experienced at least one failed systemic chemotherapy, and were treated with RC48-ADC until the occurrence of intolerable adverse reactions or disease progression. The primary endpoint was the disease control rate (DCR), and secondary endpoints included progression-free survival (PFS), objective response rate (ORR), and safety. RESULTS 23 of 25 screened patients received RC48 treatment. The ORR was 43.5% (95% CI, 23.2-63.7%) with a median PFS of 6.0 months (95% CI, 4.8-7.4). In the low-to-medium HER2 expression subgroup, ORR was 37.5%, median PFS 5.75 months. In the high HER2 expression subgroup, ORR was 57.1%, median PFS 7 months. For the cohort combining RC48 with PD-1 inhibitors, ORR was 53.8%, median PFS 8 months. In the concurrent local radiation therapy subgroup, ORR was 40.0%, median PFS 6.0 months. Treatment-related adverse events (TRAEs) were anemia (60.8%), leukopenia (56.2%), raised transaminases (52.17%), and neutropenia (43.5%). Five patients (21.7%) experienced Grade 3 symptoms, including anemia (21.7%) and neutropenia (14.0%). No Grade 4 adverse reactions or deaths were reported. CONCLUSION RC48-ADC shows promising efficacy and manageable safety in HER2-expressing advanced or metastatic solid tumor patients.
Collapse
Affiliation(s)
- Ping Wang
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401336, China
| | - Lei Xia
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401336, China.
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300110, China.
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
7
|
Fahey CC, Nebhan CA, York S, Davis NB, Hurley PJ, Gordetsky JB, Schaffer KR. Metastatic Penile Squamous Cell Carcinoma Responsive to Enfortumab Vedotin. Int J Mol Sci 2023; 24:16109. [PMID: 38003302 PMCID: PMC10671469 DOI: 10.3390/ijms242216109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Penile squamous cell carcinoma is a rare disease with very limited data to guide treatment decisions. In particular, there is minimal evidence for effective therapies in the metastatic setting. Here, we present a case of metastatic penile squamous cell carcinoma with response to the Nectin-4 inhibitor enfortumab-vedotin-ejfv (EV). EV was selected due to the evidence of the high expression of Nectin-4 in squamous cell carcinomas, including penile carcinoma. The patient had both radiographic and symptomatic improvement after two cycles of treatment, despite having been treated with multiple prior lines of traditional chemotherapy. This case provides support for the use of antibody-drug conjugates (ADC), including EV, in this disease with few other options in the advanced setting. Further studies examining Nectin-4 and ADCs in penile squamous cell carcinoma should be completed, as high-quality evidence is needed to guide treatment after initial progression for these patients.
Collapse
Affiliation(s)
- Catherine C. Fahey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.C.F.)
- Tennessee Valley Healthcare System, Veterans’ Affairs, Nashville, TN 37232, USA
| | | | - Sally York
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.C.F.)
- Tennessee Valley Healthcare System, Veterans’ Affairs, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | - Nancy B. Davis
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.C.F.)
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | - Paula J. Hurley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.C.F.)
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jennifer B. Gordetsky
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kerry R. Schaffer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.C.F.)
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| |
Collapse
|
8
|
Marco C, Padró-Miquel A, Domingo-Domenech E, Velasco R. Comment on: Brentuximab vedotin-related neuropathy in a patient with Gilbert syndrome: Do mutations of UGT1A1 gene affect brentuximab toxicity? Pediatr Blood Cancer 2023; 70:e30527. [PMID: 37365120 DOI: 10.1002/pbc.30527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Affiliation(s)
- Carla Marco
- Neuro-Oncology Unit, Department of Neurology, Hospital Universitari de Bellvitge - Institut Català d'Oncologia, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ariadna Padró-Miquel
- Molecular Genetics Unit, Clinical Laboratory, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eva Domingo-Domenech
- Department of Clinical Hematology, Institut Català d'Oncologia, Hospital Duran I Reynals, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Roser Velasco
- Neuro-Oncology Unit, Department of Neurology, Hospital Universitari de Bellvitge - Institut Català d'Oncologia, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
9
|
Luke JJ, Patel MR, Blumenschein GR, Hamilton E, Chmielowski B, Ulahannan SV, Connolly RM, Santa-Maria CA, Wang J, Bahadur SW, Weickhardt A, Asch AS, Mallesara G, Clingan P, Dlugosz-Danecka M, Tomaszewska-Kiecana M, Pylypenko H, Hamad N, Kindler HL, Sumrow BJ, Kaminker P, Chen FZ, Zhang X, Shah K, Smith DH, De Costa A, Li J, Li H, Sun J, Moore PA. The PD-1- and LAG-3-targeting bispecific molecule tebotelimab in solid tumors and hematologic cancers: a phase 1 trial. Nat Med 2023; 29:2814-2824. [PMID: 37857711 PMCID: PMC10667103 DOI: 10.1038/s41591-023-02593-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Tebotelimab, a bispecific PD-1×LAG-3 DART molecule that blocks both PD-1 and LAG-3, was investigated for clinical safety and activity in a phase 1 dose-escalation and cohort-expansion clinical trial in patients with solid tumors or hematologic malignancies and disease progression on previous treatment. Primary endpoints were safety and maximum tolerated dose of tebotelimab when administered as a single agent (n = 269) or in combination with the anti-HER2 antibody margetuximab (n = 84). Secondary endpoints included anti-tumor activity. In patients with advanced cancer treated with tebotelimab monotherapy, 68% (184/269) experienced treatment-related adverse events (TRAEs; 22% were grade ≥3). No maximum tolerated dose was defined; the recommended phase 2 dose (RP2D) was 600 mg once every 2 weeks. There were tumor decreases in 34% (59/172) of response-evaluable patients in the dose-escalation cohorts, with objective responses in multiple solid tumor types, including PD-1-refractory disease, and in LAG-3+ non-Hodgkin lymphomas, including CAR-T refractory disease. To enhance potential anti-tumor responses, we tested margetuximab plus tebotelimab. In patients with HER2+ tumors treated with tebotelimab plus margetuximab, 74% (62/84) had TRAEs (17% were grade ≥3). The RP2D was 600 mg once every 3 weeks. The confirmed objective response rate in these patients was 19% (14/72), including responses in patients typically not responsive to anti-HER2/anti-PD-1 combination therapy. ClinicalTrials.gov identifier: NCT03219268 .
Collapse
Affiliation(s)
- Jason J Luke
- UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, USA.
| | - Manish R Patel
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, FL, USA
| | - George R Blumenschein
- Department of Thoracic Head & Neck Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erika Hamilton
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA
| | - Bartosz Chmielowski
- Division of Hematology & Medical Oncology, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Roisin M Connolly
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Research at UCC, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Cesar A Santa-Maria
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jie Wang
- Duke University Medical Center, Durham, NC, USA
| | | | - Andrew Weickhardt
- Austin Health, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Adam S Asch
- OUHSC Oklahoma City, OK/SCRI, Oklahoma City, OK, USA
| | - Girish Mallesara
- Calvary Mater Newcastle Hospital, Waratah, New South Wales, Australia
| | - Philip Clingan
- Southern Medical Day Care Centre, Wollongong, New South Wales, Australia
| | | | | | | | - Nada Hamad
- St. Vincent's Health Network, Kinghorn Cancer Centre, University of New South Wales, School of Clinical Medicine, Faculty of Medicine and Health, University of Notre Dame Australia, School of Medicine, Sydney, New South Wales, Australia
| | - Hedy L Kindler
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | - Hua Li
- MacroGenics, Clinical, Rockville, MD, USA
| | - Jichao Sun
- MacroGenics, Clinical, Rockville, MD, USA
| | - Paul A Moore
- MacroGenics, Research, Rockville, MD, USA
- Zymeworks, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
DiPeri TP, Evans KW, Raso MG, Zhao M, Rizvi YQ, Zheng X, Wang B, Kirby BP, Kong K, Kahle M, Yap TA, Dumbrava EE, Ajani JA, Fu S, Keyomarsi K, Meric-Bernstam F. Adavosertib Enhances Antitumor Activity of Trastuzumab Deruxtecan in HER2-Expressing Cancers. Clin Cancer Res 2023; 29:4385-4398. [PMID: 37279095 PMCID: PMC10618648 DOI: 10.1158/1078-0432.ccr-23-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/22/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
PURPOSE Cyclin E (CCNE1) has been proposed as a biomarker of sensitivity to adavosertib, a Wee1 kinase inhibitor, and a mechanism of resistance to HER2-targeted therapy. EXPERIMENTAL DESIGN Copy number and genomic sequencing data from The Cancer Genome Atlas and MD Anderson Cancer Center databases were analyzed to assess ERBB2 and CCNE1 expression. Molecular characteristics of tumors and patient-derived xenografts (PDX) were assessed by next-generation sequencing, whole-exome sequencing, fluorescent in situ hybridization, and IHC. In vitro, CCNE1 was overexpressed or knocked down in HER2+ cell lines to evaluate drug combination efficacy. In vivo, NSG mice bearing PDXs were subjected to combinatorial therapy with various treatment regimens, followed by tumor growth assessment. Pharmacodynamic markers in PDXs were characterized by IHC and reverse-phase protein array. RESULTS Among several ERBB2-amplified cancers, CCNE1 co-amplification was identified (gastric 37%, endometroid 43%, and ovarian serous adenocarcinoma 41%). We hypothesized that adavosertib may enhance activity of HER2 antibody-drug conjugate trastuzumab deruxtecan (T-DXd). In vitro, sensitivity to T-DXd was decreased by cyclin E overexpression and increased by knockdown, and adavosertib was synergistic with topoisomerase I inhibitor DXd. In vivo, the T-DXd + adavosertib combination significantly increased γH2AX and antitumor activity in HER2 low, cyclin E amplified gastroesophageal cancer PDX models and prolonged event-free survival (EFS) in a HER2-overexpressing gastroesophageal cancer model. T-DXd + adavosertib treatment also increased EFS in other HER2-expressing tumor types, including a T-DXd-treated colon cancer model. CONCLUSIONS We provide rationale for combining T-DXd with adavosertib in HER2-expressing cancers, especially with co-occuring CCNE1 amplifications. See related commentary by Rolfo et al., p. 4317.
Collapse
Affiliation(s)
- Timothy P. DiPeri
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kurt W. Evans
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ming Zhao
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yasmeen Q. Rizvi
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaofeng Zheng
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bailiang Wang
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bryce P. Kirby
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kathleen Kong
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Kahle
- Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy A. Yap
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ecaterina E. Dumbrava
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Funda Meric-Bernstam
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
11
|
Goto K, Goto Y, Kubo T, Ninomiya K, Kim SW, Planchard D, Ahn MJ, Smit EF, de Langen AJ, Pérol M, Pons-Tostivint E, Novello S, Hayashi H, Shimizu J, Kim DW, Kuo CH, Yang JCH, Pereira K, Cheng FC, Taguchi A, Cheng Y, Feng W, Tsuchihashi Z, Jänne PA. Trastuzumab Deruxtecan in Patients With HER2-Mutant Metastatic Non-Small-Cell Lung Cancer: Primary Results From the Randomized, Phase II DESTINY-Lung02 Trial. J Clin Oncol 2023; 41:4852-4863. [PMID: 37694347 PMCID: PMC10617843 DOI: 10.1200/jco.23.01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
PURPOSE Trastuzumab deruxtecan (T-DXd) 5.4 and 6.4 mg/kg showed robust antitumor activity in multiple cancer indications; however, T-DXd 5.4 mg/kg has not been evaluated in patients with previously treated human epidermal growth factor receptor 2-mutant (HER2m; defined as single-nucleotide variants and exon 20 insertions) metastatic non-small-cell lung cancer (mNSCLC). METHODS DESTINY-Lung02, a blinded, multicenter, phase II study, investigated T-DXd 5.4 mg/kg once every 3 weeks for the first time in previously treated (platinum-containing therapy) patients with HER2m mNSCLC and further assessed T-DXd 6.4 mg/kg once every 3 weeks in this population. The primary end point was confirmed objective response rate (ORR) per RECIST v1.1 by blinded independent central review. RESULTS One hundred fifty-two patients were randomly assigned 2:1 to T-DXd 5.4 or 6.4 mg/kg once every 3 weeks. As of December 23, 2022, the median duration of follow-up was 11.5 months (range, 1.1-20.6) with 5.4 mg/kg and 11.8 months (range, 0.6-21.0) with 6.4 mg/kg. Confirmed ORR was 49.0% (95% CI, 39.0 to 59.1) and 56.0% (95% CI, 41.3 to 70.0) and median duration of response was 16.8 months (95% CI, 6.4 to not estimable [NE]) and NE (95% CI, 8.3 to NE) with 5.4 and 6.4 mg/kg, respectively. Median treatment duration was 7.7 months (range, 0.7-20.8) with 5.4 mg/kg and 8.3 months (range, 0.7-20.3) with 6.4 mg/kg. Grade ≥ 3 drug-related treatment-emergent adverse events occurred in 39 of 101 (38.6%) and 29 of 50 (58.0%) patients with 5.4 and 6.4 mg/kg, respectively. 13 of 101 (12.9%) and 14 of 50 (28.0%) patients had adjudicated drug-related interstitial lung disease (2.0% grade ≥ 3 in each arm) with 5.4 and 6.4 mg/kg, respectively. CONCLUSION T-DXd demonstrated clinically meaningful responses at both doses. Safety profile was acceptable and generally manageable, favoring T-DXd 5.4 mg/kg.
Collapse
Affiliation(s)
- Koichi Goto
- National Cancer Center Hospital East, Kashiwa, Japan
| | | | - Toshio Kubo
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | | | - Sang-We Kim
- Asan Medical Center, Seoul, Republic of Korea
| | - David Planchard
- Gustave Roussy, Department of Medical Oncology, Thoracic Group, Villejuif, France
| | - Myung-Ju Ahn
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Egbert F. Smit
- Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | - Silvia Novello
- Department of Oncology, Azienda Ospedaliero-Universitaria San Luigi Gonzaga, Orbassano, University of Turin, Turin, Italy
| | | | | | - Dong-Wan Kim
- Seoul National University College of Medicine and Seoul National University Hospital, Seoul, South Korea
| | - Chih-Hsi Kuo
- Chang Gung Memorial Hospital, Chang Gung University, Taipei, Taiwan
| | - James Chih-Hsin Yang
- National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Iwase T, Ito K, Nishimura T, Miyakawa K, Ryo A, Kobayashi H, Mitsunaga M. Photoimmunotechnology as a powerful biological tool for molecular-based elimination of target cells and microbes, including bacteria, fungi and viruses. Nat Protoc 2023; 18:3390-3412. [PMID: 37794073 DOI: 10.1038/s41596-023-00874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/12/2023] [Indexed: 10/06/2023]
Abstract
Microbial pathogens, including bacteria, fungi and viruses, can develop resistance to clinically used drugs; therefore, finding new therapeutic agents is an ongoing challenge. Recently, we reported the photoimmuno-antimicrobial strategy (PIAS), a type of photoimmunotechnology, that enables molecularly targeted elimination of a wide range of microbes, including the viral pathogen severe acute respiratory syndrome coronavirus 2 and the multidrug-resistant bacterial pathogen methicillin-resistant Staphylococcus aureus (MRSA). PIAS works in the same way as photoimmunotherapy (PIT), which has been used to treat recurrent head and neck cancer in Japan since 2020. Both PIAS and PIT use a monoclonal antibody conjugated to a phthalocyanine derivative dye that undergoes a shape change when photoactivated. This shape change induces a structural change in the antibody-dye conjugate, resulting in physical stress within the binding sites of the conjugate and disrupting them. Therefore, targeting accuracy and flexibility can be determined based on the specificity of the antibody used. In this protocol, we describe how to design a treatment strategy, label monoclonal antibodies with the dye and characterize the products. We provide detailed examples of how to set up and perform PIAS and PIT applications in vitro and in vivo. These examples are PIAS against microbes using MRSA as a representative subject, PIAS against viruses using severe acute respiratory syndrome coronavirus 2 in VeroE6/TMPRSS2 cells, PIAS against MRSA-infected animals, and in vitro and in vivo PIT against cancer cells. The in vitro and in vivo protocols can be completed in ~3 h and 2 weeks, respectively.
Collapse
Affiliation(s)
- Tadayuki Iwase
- Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan.
| | - Kimihiro Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Nishimura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, Japan
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, Japan
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Makoto Mitsunaga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Nguyen TD, Bordeau BM, Balthasar JP. Use of Payload Binding Selectivity Enhancers to Improve Therapeutic Index of Maytansinoid-Antibody-Drug Conjugates. Mol Cancer Ther 2023; 22:1332-1342. [PMID: 37493255 DOI: 10.1158/1535-7163.mct-22-0804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/03/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Systemic exposure to released cytotoxic payload contributes to the dose-limiting off-target toxicities of anticancer antibody-drug conjugates (ADC). In this work, we present an "inverse targeting" strategy to optimize the therapeutic selectivity of maytansinoid-conjugated ADCs. Several anti-maytansinoid sdAbs were generated via phage-display technology with binding IC50 values between 10 and 60 nmol/L. Co-incubation of DM4 with the anti-maytansinoid sdAbs shifted the IC50 value of DM4 up to 250-fold. Tolerability and efficacy of 7E7-DM4 ADC, an anti-CD123 DM4-conjugated ADC, were assessed in healthy and in tumor-bearing mice, with and without co-administration of an anti-DM4 sdAb. Co-administration with anti-DM4 sdAb reduced 7E7-DM4-induced weight loss, where the mean values of percentage weight loss at nadir for mice receiving ADC+saline and ADC+sdAb were 7.9% ± 3% and 3.8% ± 1.3% (P < 0.05). In tumor-bearing mice, co-administration of the anti-maytansinoid sdAb did not negatively affect the efficacy of 7E7-DM4 on tumor growth or survival following dosing of the ADC at 1 mg/kg (P = 0.49) or at 10 mg/kg (P = 0.9). Administration of 7E7-DM4 at 100 mg/kg led to dramatic weight loss, with 80% of treated mice succumbing to toxicity before the appearance of mortality relating to tumor growth in control mice. However, all mice receiving co-dosing of 100 mg/kg 7E7-DM4 with anti-DM4 sdAb were able to tolerate the treatment, which enabled reduction in tumor volume to undetectable levels and to dramatic improvements in survival. In summary, we have demonstrated the utility and feasibility of the application of anti-payload antibody fragments for inverse targeting to improve the selectivity and efficacy of anticancer ADC therapy.
Collapse
Affiliation(s)
- Toan D Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York
| | - Brandon M Bordeau
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York
| | - Joseph P Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
14
|
Klümper N, Eckstein M, Kunath F, Heidegger I, Becker C, Rausch S. [Antibody-drug conjugates directed against NECTIN-4 as a new treatment option for patients with metastatic urothelial carcinoma]. Urologie 2023; 62:1193-1199. [PMID: 37658236 DOI: 10.1007/s00120-023-02175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 09/03/2023]
Abstract
This compact review article highlights the background and importance of nectins in cancer therapy, focusing specifically on the antibody-drug conjugate enfortumab vedotin (EV) as a targeted treatment option for metastatic urothelial carcinoma. The evolving understanding of nectin-4 expression and its impact on EV therapy underscores the need for personalized approaches to ensure optimal patient outcomes. Further investigation into biomarker-guided therapies and prospective clinical trials are critical to refining patient selection and treatment strategies.
Collapse
Affiliation(s)
- Niklas Klümper
- Klinik und Poliklinik für Urologie und Kinderurologie, Universitätsklinikum Bonn (UKB), Bonn, Deutschland
- Institut für Experimentelle Onkologie, Universitätsklinikum Bonn (UKB), Bonn, Deutschland
- Centrum für Integrierte Onkologie Aachen/Bonn/Köln/Düsseldorf (CIO-ABCD), Aachen/Bonn/Köln/Düsseldorf, Deutschland
| | - Markus Eckstein
- Institut für Pathologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland
- Krebszentrum Erlangen-EMN (CCC ER-EMN), Erlangen, Deutschland
| | - Frank Kunath
- Klinik für Urologie und Kinderurologie, Klinikum Bayreuth GmbH, Bayreuth, Deutschland
- Medizinische Fakultät am Medizincampus Oberfranken, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland
| | - Isabel Heidegger
- Department für Urologie, Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Christoph Becker
- Ressort Forschungsförderung, Deutsche Gesellschaft für Urologie e. V., Düsseldorf, Deutschland.
| | - Steffen Rausch
- Klinik für Urologie, Universitätsklinik Tübingen, Tübingen, Deutschland
| |
Collapse
|
15
|
Hoe HJ, Solomon BJ. Optimizing Dosing of Trastuzumab Deruxtecan in HER2-Mutant Non-Small-Cell Lung Cancer: A Reminder That More Is Not Always Better. J Clin Oncol 2023; 41:4849-4851. [PMID: 37694345 DOI: 10.1200/jco.23.01768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- Hui Jing Hoe
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Benjamin J Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
16
|
Naplekov DK, Bárta P, Trejtnar F, Sklenářová H, Lenčo J. Implementing reversed-phase and hydrophilic interaction liquid chromatography into the characterization of DTPA-ramucirumab conjugate before radiolabeling. J Pharm Biomed Anal 2023; 235:115615. [PMID: 37566949 DOI: 10.1016/j.jpba.2023.115615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Radioimmunoconjugates represent a promising class of therapeutics and diagnostics. The characterization of intermediate chelator-antibody products, i.e., without the radionuclide, is frequently omitted, bringing significant uncertainty in the radioimmunoconjugate preparation. In the present study, we explored the utility of reversed-phase (RPLC) and hydrophilic interaction (HILIC) liquid chromatography with UV detection to characterize ramucirumab stochastically conjugated with p-SCN-Bn-CHX-A"-DTPA chelator (shortly DTPA). The conjugation was well reflected in RPLC chromatograms, while chromatograms from HILIC were significantly less informative. RPLC analyses at the intact level confirmed that the conjugation resulted in a heterogeneous mixture of modified ramucirumab. Moreover, the RPLC of DTPA-ramucirumab confirmed heterogeneous conjugation of all subunits. The peptide mapping did not reveal substantial changes after the conjugation, indicating that most parts of ramucirumab molecules remained unmodified and that the DTPA chelator was bound to various sites. Eventually, the RPLC method for analysis of intact ramucirumab was successfully applied to online monitoring of conjugation reaction in 1 h intervals for a total of 24 h synthesis, which readily reflected the structural changes of ramucirumab in the form of retention time shift by 0.21 min and increase in peak width by 0.22 min. The results were obtained in real-time, practically under 10 min per monitoring cycle. To the best of our knowledge, our study represents the first evaluation of RPLC and HILIC to assess the quality of intermediates during the on-site preparation of radioimmunoconjugates prior to radiolabeling.
Collapse
Affiliation(s)
- Denis K Naplekov
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Analytical Chemistry, Akademika Heyrovskeho 1203/8, 500 05 Hradec Kralove, Czech Republic
| | - Pavel Bárta
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Biophysics and Physical Chemistry, Akademika Heyrovskeho 1203/8, 500 05 Hradec Kralove, Czech Republic
| | - František Trejtnar
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Pharmacology and Toxicology, Akademika Heyrovskeho 1203/8, 500 05 Hradec Kralove, Czech Republic
| | - Hana Sklenářová
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Analytical Chemistry, Akademika Heyrovskeho 1203/8, 500 05 Hradec Kralove, Czech Republic
| | - Juraj Lenčo
- Charles University, Faculty of Pharmacy in Hradec Kralove, Department of Analytical Chemistry, Akademika Heyrovskeho 1203/8, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
17
|
Zheng Y, Xue YY, Zhao YQ, Chen Y, Li ZP. Disitamab Vedotin plus anti-PD-1 antibody show good efficacy in refractory primary urethral cancer with low HER2 expression: a case report. Front Immunol 2023; 14:1254812. [PMID: 37901233 PMCID: PMC10601644 DOI: 10.3389/fimmu.2023.1254812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Primary urethral carcinoma (PUC) has a low incidence, but with high aggressiveness. Most of the patients are found in late stage, with poor prognosis. At present, chemotherapy is still the main treatment for metastatic PUC, but it has limited effect. Here, we report a case of metastatic PUC with low HER2 expression that developed disease progression after multiline therapy including chemotherapy, programmed death-1 (PD-1) inhibitors and multi-targeted receptor tyrosine kinase (RTK) inhibitor. After receiving Disitamab Vedotin(a novel antibody drug conjugate, ADC) and toripalimab (a PD-1 inhibitor), the patient achieved persistent PR, and the PFS exceeded 12 months up to now. Our report indicates that, despite the patient of metastatic PUC has low expression of HER2, it is still possible to benefit from Disitamab Vedotin combined with PD-1 inhibitor, which may reverse the drug resistance of PD-1 inhibitor and chemotherapy to a certain extent. But larger sample studies are needed to determine the efficacy of this treatment strategy and its impact on survival.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yin-Yin Xue
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ya-Qin Zhao
- Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Abdominal Tumor Multimodality Treatment, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ye Chen
- Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Abdominal Tumor Multimodality Treatment, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-Ping Li
- Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Abdominal Tumor Multimodality Treatment, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Tarantino P, Tolaney SM, Curigliano G. Trastuzumab deruxtecan (T-DXd) in HER2-low metastatic breast cancer treatment. Ann Oncol 2023; 34:949-950. [PMID: 37499870 DOI: 10.1016/j.annonc.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Affiliation(s)
- P Tarantino
- Breast Oncology Program, Dana-Farber Cancer Institute, Boston; Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, USA; Department of Oncology and Hemato-Oncology, University of Milan, Milan
| | - S M Tolaney
- Breast Oncology Program, Dana-Farber Cancer Institute, Boston; Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, USA
| | - G Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan; Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
19
|
Porębska N, Ciura K, Chorążewska A, Zakrzewska M, Otlewski J, Opaliński Ł. Multivalent protein-drug conjugates - An emerging strategy for the upgraded precision and efficiency of drug delivery to cancer cells. Biotechnol Adv 2023; 67:108213. [PMID: 37453463 DOI: 10.1016/j.biotechadv.2023.108213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/20/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
With almost 20 million new cases per year, cancer constitutes one of the most important challenges for public health systems. Unlike traditional chemotherapy, targeted anti-cancer strategies employ sophisticated therapeutics to precisely identify and attack cancer cells, limiting the impact of drugs on healthy cells and thereby minimizing the unwanted side effects of therapy. Protein drug conjugates (PDCs) are a rapidly growing group of targeted therapeutics, composed of a cancer-recognition factor covalently coupled to a cytotoxic drug. Several PDCs, mainly in the form of antibody-drug conjugates (ADCs) that employ monoclonal antibodies as cancer-recognition molecules, are used in the clinic and many PDCs are currently in clinical trials. Highly selective, strong and stable interaction of the PDC with the tumor marker, combined with efficient, rapid endocytosis of the receptor/PDC complex and its subsequent effective delivery to lysosomes, is critical for the efficacy of targeted cancer therapy with PDCs. However, the bivalent architecture of contemporary clinical PDCs is not optimal for tumor receptor recognition or PDCs internalization. In this review, we focus on multivalent PDCs, which represent a rapidly evolving and highly promising therapeutics that overcome most of the limitations of current bivalent PDCs, enhancing the precision and efficiency of drug delivery to cancer cells. We present an expanding set of protein scaffolds used to generate multivalent PDCs that, in addition to folding into well-defined multivalent molecular structures, enable site-specific conjugation of the cytotoxic drug to ensure PDC homogeneity. We provide an overview of the architectures of multivalent PDCs developed to date, emphasizing their efficacy in the targeted treatment of various cancers.
Collapse
|