1
|
Bu Y, Sun C, Guo J, Zhu W, Li J, Li X, Zhang Y. Identification novel salt-enhancing peptides from largemouth bass and exploration their action mechanism with transmembrane channel-like 4 (TMC4) by molecular simulation. Food Chem 2024; 435:137614. [PMID: 37820400 DOI: 10.1016/j.foodchem.2023.137614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
The purpose of this study was to screen and verify salt-enhancing peptides that can effectively reduce sodium consumption from Largemouth bass myosin through virtual hydrolysis, molecular simulation, and sensory evaluation. The human transmembrane channel-like 4 (TMC4) was constructed using Alphafold2, with 93.3 % of amino acids falling within allowed regions. A total of 19 peptides were predicted through virtual hydrolysis and screening. DAF, QIF, RPAL, and IPVM significantly enhanced the saltiness perception, and QIF exhibited the most pronounced effect in enhancing saltiness (P < 0.05). The residues Ala258, Ser546, Ser603, Phe259, Cys265, Glu539, Lys278 and Ser585 were identified as key binding sites. The TMC4-DAF complex achieved stability after 20, 000 ps, exhibiting an average RMSD value of 0.84 nm. DAF consistently displayed fluctuations at approximately 3.05 nm, and the number of hydrogen bonds varied between 3 and 5. These results suggested that Alphafold2 modelling can be used for predicting salt-enhancing peptides.
Collapse
Affiliation(s)
- Ying Bu
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chaonan Sun
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jiaqi Guo
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Jing Y, Huang L, Dong Z, Gong Z, Yu B, Lin D, Qu J. Super-resolution imaging of folate receptor alpha on cell membranes using peptide-based probes. Talanta 2024; 268:125286. [PMID: 37832456 DOI: 10.1016/j.talanta.2023.125286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/13/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Folate receptor alpha (FRα) is a vital membrane protein which have great association with cancers and involved in various biological processes including folate transport and cell signaling. However, the distribution and organization pattern of FRα on cell membranes remains unclear. Previous studies relied on antibodies to recognize the proteins. However, multivalent crosslinking and large size of antibodies confuse the direct observation to some extent. Fortunately, the emergence of peptide, which are small-sized and monovalent, has supplied us an unprecedented choice. Here, we applied fluorophore-conjugated peptide probe to recognize the FRα and study the distribution pattern of FRα on cell membrane using dSTORM super-resolution imaging technique. FRα were found to organized as clusters on cell surface with different sizes. And they have a higher expression level and formed larger clusters on various cancer cells than normal cells, which hinted that its specific distribution could be utilized for cancer diagnosis. Furthermore, we revealed that the lipid raft and cortical actin as restrictive factors for the FRα clustering, suggesting a potential assembly mechanism insight into FRα clustering on cell membrane. Collectively, our work clarified the morphology distribution and clustered organization of FRα with peptide probes at the nanometer scale, which paves the way for further revealing the relationship between the spatial organization and functions of membranal proteins.
Collapse
Affiliation(s)
- Yingying Jing
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Lilin Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Zufu Dong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Zhenquan Gong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Bin Yu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Danying Lin
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
3
|
Sun S, Zhu R, Zhu M, Wang Q, Li N, Yang B. Visualization of conformational transition of GRP94 in solution. Life Sci Alliance 2024; 7:e202302051. [PMID: 37949474 PMCID: PMC10638095 DOI: 10.26508/lsa.202302051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
GRP94, an ER paralog of the heat-shock protein 90 family, binds and hydrolyses ATP to chaperone the folding and maturation of its selected clients. Compared with other hsp90 proteins, the in-solution conformational dynamics of GRP94 along the ATP hydrolysis cycle are less understood, hindering our understanding of its chaperoning mechanism. Leveraging small-angle X-ray scattering, negative-staining EM, and hydrogen-deuterium exchange coupled mass-spec, here we show that in its apo form, ∼60% of mouse GRP94 (mGRP94) populates an "extended" conformation, whereas the rest exist in either "close V" or "twist V" like "compact" conformations. Different from other hsp90 proteins, the presence of AMPPNP only impacts the relative abundance of the two compact conformations, rather than shifting the equilibrium between the "extended" and "compact" conformations of mGRP94. HDX-MS study of apo, AMPPNP-bound, and ADP-bound mGRP94 suggests a conformational transition from "twist V" to "close V" upon ATP binding and a back transition from "close V" to "twist V" upon ATP hydrolysis. These results illustrate the dissimilarities of GRP94 in conformation transition during ATP hydrolysis from other hsp90 paralogs.
Collapse
Affiliation(s)
- Shangwu Sun
- https://ror.org/030bhh786 Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Rui Zhu
- https://ror.org/030bhh786 Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mengyao Zhu
- https://ror.org/030bhh786 Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qi Wang
- https://ror.org/030bhh786 Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Na Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), Chinese Academy of Sciences, Shanghai, China
| | - Bei Yang
- https://ror.org/030bhh786 Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- https://ror.org/030bhh786 Shanghai Frontiers Science Center for Biomacromolecules and Precision Medicine, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| |
Collapse
|
4
|
Møller TC, Moo EV, Inoue A, Pedersen MF, Bräuner-Osborne H. Characterization of the real-time internalization of nine GPCRs reveals distinct dependence on arrestins and G proteins. Biochim Biophys Acta Mol Cell Res 2024; 1871:119584. [PMID: 37714305 DOI: 10.1016/j.bbamcr.2023.119584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
G protein-coupled receptors (GPCRs) are seven transmembrane receptors that respond to external stimuli and undergo conformational changes to activate G proteins and modulate cellular processes leading to biological outcomes. To prevent overstimulation and prolonged exposure to stimuli, GPCRs are regulated by internalization. While the canonical GPCR internalization mechanism in mammalian cells is arrestin-dependent, clathrin-mediated endocytosis, more diverse GPCR internalization mechanisms have been described over the years. However, there is a lack of consistent methods used in the literature making it complicated to determine a receptor's internalization pathway. Here, we utilized a highly efficient time-resolved Förster resonance energy transfer (TR-FRET) internalization assay to determine the internalization profile of nine distinct GPCRs representing the GPCR classes A, B and C and with different G protein coupling profiles. This technique, coupled with clustered regularly interspaced palindromic repeats (CRISPR) engineered knockout cells allows us to effectively study the involvement of heterotrimeric G proteins and non-visual arrestins. We found that all the nine receptors internalized upon agonist stimulation in a concentration-dependent manner and six receptors showed basal internalization. Yet, there is no correlation between the receptor class and primary G protein coupling to the arrestin and G protein dependence for GPCR internalization. Overall, this study presents a platform for studying internalization that is applicable to most GPCRs and may even be extended to other membrane proteins. This method can be easily applicable to other endocytic machinery of interest and ultimately will lend itself towards the construction of comprehensive receptor internalization profiles.
Collapse
Affiliation(s)
- Thor C Møller
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ee Von Moo
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Mie F Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
5
|
den Uijl MJ, Driessen AJM. Phospholipid dependency of membrane protein insertion by the Sec translocon. Biochim Biophys Acta Biomembr 2024; 1866:184232. [PMID: 37734458 DOI: 10.1016/j.bbamem.2023.184232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Membrane protein insertion into and translocation across the bacterial cytoplasmic membrane are essential processes facilitated by the Sec translocon. Membrane insertion occurs co-translationally whereby the ribosome nascent chain is targeted to the translocon via signal recognition particle and its receptor FtsY. The phospholipid dependence of membrane protein insertion has remained mostly unknown. Here we assessed in vitro the dependence of the SecA independent insertion of the mannitol permease MtlA into the membrane on the main phospholipid species present in Escherichia coli. We observed that insertion depends on the presence of phosphatidylglycerol and is due to the anionic nature of the polar headgroup, while insertion is stimulated by the zwitterionic phosphatidylethanolamine. We found an optimal insertion efficiency at about 30 mol% DOPG and 50 mol% DOPE which approaches the bulk membrane phospholipid composition of E. coli.
Collapse
Affiliation(s)
- Max J den Uijl
- University of Groningen, Groningen Biomolecular Sciences and Biotechnology, 9747 AG Groningen, the Netherlands
| | - Arnold J M Driessen
- University of Groningen, Groningen Biomolecular Sciences and Biotechnology, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
6
|
Reggi E, Kaiser S, Sahnane N, Uccella S, La Rosa S, Diviani D. AKAP2-anchored protein phosphatase 1 controls prostatic neuroendocrine carcinoma cell migration and invasion. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166916. [PMID: 37827203 DOI: 10.1016/j.bbadis.2023.166916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
Prostate cancer (PC) is the second leading cause of cancer-related death in men. The growth of primary prostate cancer cells relies on circulating androgens and thus the standard therapy for the treatment of localized and advanced PC is the androgen deprivation therapy. Prostatic neuroendocrine carcinoma (PNEC) is an aggressive and highly metastatic subtype of prostate cancer, which displays poor prognosis and high lethality. Most of PNECs develop from prostate adenocarcinoma in response to androgen deprivation therapy, however the mechanisms involved in this transition and in the elevated biological aggressiveness of PNECs are poorly defined. Our current findings indicate that AKAP2 expression is dramatically upregulated in PNECs as compared to non-cancerous prostate tissues. Using a PNEC cell model, we could show that AKAP2 is localized both intracellularly and at the cell periphery where it colocalizes with F-actin. AKAP2 and F-actin interact directly through a newly identified actin-binding domain located on AKAP2. RNAi-mediated silencing of AKAP2 promotes the phosphorylation and deactivation of cofilin, a protein involved in actin turnover. This effect correlates with a significant reduction in cell migration and invasion. Co-immunoprecipitation experiments and proximity ligation assays revealed that AKAP2 forms a complex with the catalytic subunit of protein phosphatase 1 (PP1) in PNECs. Importantly, AKAP2-mediated anchoring of PP1 to the actin cytoskeleton regulates cofilin dephosphorylation and activation, which, in turn, enhances F-actin dynamics and favors migration and invasion. In conclusion, this study identified AKAP2 as an anchoring protein overexpressed in PNECs that controls cancer cell invasive properties by regulating cofilin phosphorylation.
Collapse
Affiliation(s)
- Erica Reggi
- Department of Biomedical Sciences, Faculty of Biology et Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Simon Kaiser
- Department of Biomedical Sciences, Faculty of Biology et Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Nora Sahnane
- Unit of Pathology, Department of Oncology, ASST Sette Laghi, Varese, Italy
| | - Silvia Uccella
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Pathology Service, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Humanitas Research Hospital, Milan, Italy
| | - Stefano La Rosa
- Unit of Pathology, Department of Oncology, ASST Sette Laghi, Varese, Italy; Unit of Pathology, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Dario Diviani
- Department of Biomedical Sciences, Faculty of Biology et Medicine, University of Lausanne, 1011 Lausanne, Switzerland.
| |
Collapse
|
7
|
Scaffidi SJ, Yu W. Tracking Cell Wall-Anchored Proteins in Gram-Positive Bacteria. Methods Mol Biol 2024; 2727:193-204. [PMID: 37815718 DOI: 10.1007/978-1-0716-3491-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Cell wall-anchored surface proteins are integral components of Gram-positive bacterial cell envelope and vital for bacterial survival in different environmental niches. To fulfill their functions, surface protein precursors translocate from cytoplasm to bacterial cell surface in three sequential steps: secretion across the cytoplasmic membrane, covalently anchoring to the cell wall precursor lipid II by sortase A, and incorporation of the lipid II-linked precursors into mature cell wall peptidoglycan. Here, we describe a series of immunofluorescence microscopy methods to track the subcellular localization of cell wall-anchored proteins along the sorting pathway. While the protocols are tailored to Staphylococcus aureus, they can be readily adapted to localize cell wall-anchored proteins as well as membrane proteins in other Gram-positive bacteria.
Collapse
Affiliation(s)
- Salvatore J Scaffidi
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Wenqi Yu
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
8
|
Yang Q, Tang D, Gan C, Bai M, Song X, Jiang W, Li Q, Chen Y, Zhang A, Wang M. Novel variants in CRB2 targeting the malfunction of slit diaphragm related to focal segmental glomerulosclerosis. Pediatr Nephrol 2024; 39:149-165. [PMID: 37452832 DOI: 10.1007/s00467-023-06087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/01/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Focal segmental glomerulosclerosis (FSGS) is a leading cause of steroid-resistant nephrotic syndrome (SRNS) that predominantly affects the podocytes. While mutations in genes causing pediatric SRNS have enhanced our understanding of FSGS, the disease's etiology remains complex and poorly understood. METHODS Whole exome sequencing (WES) was performed on a 9-year-old girl with SRNS associated with FSGS (SRNS-FSGS). We analyzed the expression of CRB2, slit diaphragm (SD)-associated proteins, and sphingosine 1-phosphate receptor 1 (S1PR1) in the proband and CRB2 knock-down podocytes. RESULTS In this study, we identified two novel compound heterozygous mutations in the Crumbs homolog 2 (CRB2) gene (c.2905delinsGCCACCTCGCGCTGGCTG, p.T969Afs*179 and c.3268C > G, p.R1090G) in a family with early-onset SRNS-FSGS. Our findings demonstrate that these CRB2 abnormalities were the underlying cause of SRNS-FSGS. CRB2 defects led to the dysfunction of podocyte SD-related proteins, including podocin, nephrin, and zonula occludens-1 (ZO-1), by reducing the phosphorylation level of S1PR1. Interestingly, the podocytic cytoskeleton remained unaffected, as demonstrated by normal expression and localization of synaptopodin. Our study also revealed a secondary decrease in CRB2 expression in idiopathic FSGS patients, indicating that CRB2 mutations may cause FSGS through a previously unknown mechanism involving SD-related proteins. CONCLUSIONS Overall, our findings shed new light on the pathogenesis of SRNS-FSGS and revealed that the novel pathogenic mutations in CRB2 contribute to the development of FSGS through a previously unknown mechanism involving SD-related proteins. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Qing Yang
- Pediatric Research Institute, Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dan Tang
- Department of Pediatrics, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, Sichuan, China
| | - Chun Gan
- Pediatric Research Institute, Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Mi Bai
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Xiaomei Song
- Pediatric Research Institute, Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wei Jiang
- Pediatric Research Institute, Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qiu Li
- Pediatric Research Institute, Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yaxi Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Aihua Zhang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Mo Wang
- Pediatric Research Institute, Department of Nephrology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
9
|
Krishnarjuna B, Sharma G, Ravula T, Ramamoorthy A. Factors influencing the detergent-free membrane protein isolation using synthetic nanodisc-forming polymers. Biochim Biophys Acta Biomembr 2024; 1866:184240. [PMID: 37866688 DOI: 10.1016/j.bbamem.2023.184240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
The detergent-free isolation of membrane proteins using synthetic polymers is becoming the desired approach for functional and structural studies of membrane proteins. Since the expression levels for many membrane proteins are low and a high yield of functionalized reconstituted membrane proteins is essential for in vitro studies, it is crucial to optimize the experimental conditions for a given polymer to solubilize target membranes/proteins effectively. The factors that affect membrane solubilization and subsequently the isolation of a target membrane protein include polymer concentration, polymer charge, temperature, pH, and concentration of divalent metal ions. Therefore, it is important to have knowledge about the efficacy of different types of polymers in solubilizing cell membranes. In this study, we evaluate the efficacy of inulin-based non-ionic polymers in solubilizing E. coli membranes enriched with rat flavin mononucleotide binding-domain (FBD) of cytochrome-P450-reductase (CPR) and rabbit cytochrome-b5 (Cyt-b5) under various solubilization conditions. Our results show that a 1:1 (w/w) membrane:polymer ratio, low temperature, high pH and sub-millimolar concentration of metal ions favor the solubilization of E. coli membranes enriched with FBD or Cyt-b5. Conversely, the presence of excess divalent metal ions affected the final protein levels in the polymer-solubilized samples. We believe that the results from this study provide knowledge to assess and plan the use of non-ionic polymers in membrane protein studies.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Gaurav Sharma
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Thirupathi Ravula
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Ayyalusamy Ramamoorthy
- National High Magnetic Field Laboratory, Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310, USA.
| |
Collapse
|
10
|
Weikum J, van Dyck JF, Subramani S, Klebl DP, Storflor M, Muench SP, Abel S, Sobott F, Morth JP. The bacterial magnesium transporter MgtA reveals highly selective interaction with specific cardiolipin species. Biochim Biophys Acta Mol Cell Res 2024; 1871:119614. [PMID: 37879515 DOI: 10.1016/j.bbamcr.2023.119614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/13/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
The bacterial magnesium transporter A (MgtA) is a specialized P-type ATPase important for Mg2+ import into the cytoplasm; disrupted magnesium homeostasis is linked to intrinsic ribosome instability and antibacterial resistance in Salmonella strains. Here, we show that MgtA has functional specificity for cardiolipin 18:1. Still, it reaches maximum activity only in combination with cardiolipin 16:0, equivalent to the major components of native cardiolipin found in E. coli membranes. Native mass spectrometry indicates the presence of two binding sites for cardiolipin, agreeing with the kinetic studies revealing that a cooperative relationship likely exists between the two cardiolipin variants. This is the first experimental evidence of cooperative effects between lipids of the same class, with only minor variations in their acyl chain composition, acting on a membrane protein. In summary, our results reveal that MgtA exhibits a highly complex interaction with one cardiolipin 18:1 and one cardiolipin 16:0, affecting protein activity and stability, contributing to our understanding of the particular interactions between lipid environment and membrane proteins. Further, a better understanding of Mg2+ homeostasis in bacteria, due to its role as a virulence regulator, will provide further insights into the regulation and mechanism of bacterial infections.
Collapse
Affiliation(s)
- Julia Weikum
- Membrane Transport Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, P.O. Box 1137, Blindern, 0318 Oslo, Norway; Enzyme and Protein Chemistry, Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark
| | - Jeroen F van Dyck
- Department of Chemistry, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171, G.V. 418, 2020 Antwerpen, Belgium
| | - Saranya Subramani
- Membrane Transport Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, P.O. Box 1137, Blindern, 0318 Oslo, Norway
| | - David P Klebl
- School of Biomedical Sciences & The Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Merete Storflor
- Infections Biology Lab, Department of Pharmacy, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Stephen P Muench
- School of Biomedical Sciences & The Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Sören Abel
- Infections Biology Lab, Department of Pharmacy, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Frank Sobott
- Department of Chemistry, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171, G.V. 418, 2020 Antwerpen, Belgium; School of Molecular and Cellular Biology & The Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom.
| | - J Preben Morth
- Membrane Transport Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, P.O. Box 1137, Blindern, 0318 Oslo, Norway; Enzyme and Protein Chemistry, Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark; Institute for Experimental Medical Research (IEMR), Oslo University Hospital, Ullevål PB 4956 Nydalen, NO-0424 Oslo, Norway.
| |
Collapse
|
11
|
Zhao Y, Chen Z, Cai Y, Xue J, Zhang L, Wang L, Zhao M, Zheng Y, Xia T, Yu H, Jiang T, Sun Y. Aloe-emodin destroys the biofilm of Helicobacter pylori by targeting the outer membrane protein 6. Microbiol Res 2024; 278:127539. [PMID: 37956613 DOI: 10.1016/j.micres.2023.127539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
Biofilm formation is one of the most important factors causing drug resistance of Helicobacter pylori. Therefore, it is necessary to explore the mechanism underlying the biofilm formation and its eradication methods. The outer membrane proteins (OMPs) play important roles in the formation of bacterial biofilms and are considered the essential targets for new drug discovery. Natural products play significant roles in anti-bacterial and anti-biofilm functions. This study explored the key OMPs involved in the biofilm formation of H. pylori and the natural products that target these OMPs. Transcriptome sequencing, gene knockout, and electrophoretic mobility shift assay (EMSA) were performed to reveal that OMP6 was involved in the biofilm formation of H. pylori, which was regulated by non-phosphorylated ArsR. Molecular docking suggested that aloe-emodin (AE) could target OMP6 and destroy the biofilms of H. pylori. Further exploration of its mechanism found that AE could also inhibit the expression of omp6 mRNA by binding to its regulator ArsR. In summary, we have discovered a novel molecular mechanism regulating the biofilm formation of H. pylori and identified a natural product against H. pylori biofilms, providing potential clues for clinical treatment of H. pylori.
Collapse
Affiliation(s)
- Yican Zhao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhenghong Chen
- Department of Microbiology, Key Laboratory of Medical Microbiology and Parasitology, Guizhou Medical University, Guiyang, China
| | - Yuying Cai
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Junyuan Xue
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lu Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Liyuan Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingzhong Zhao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yantong Zheng
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tian Xia
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Han Yu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ting Jiang
- Jiangsu Luye Diagnostic Technology, Wuxi, China
| | - Yundong Sun
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
12
|
Young MR, Heit S, Bublitz M. Structure, function and biogenesis of the fungal proton pump Pma1. Biochim Biophys Acta Mol Cell Res 2024; 1871:119600. [PMID: 37741574 DOI: 10.1016/j.bbamcr.2023.119600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/19/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
The fungal plasma membrane proton pump Pma1 is an integral plasma membrane protein of the P-type ATPase family. It is an essential enzyme responsible for maintaining a constant cytosolic pH and for energising the plasma membrane to secondary transport processes. Due to its importance for fungal survival and absence from animals, Pma1 is also a highly sought-after drug target. Until recently, its characterisation has been limited to functional, mutational and localisation studies, due to a lack of high-resolution structural information. The determination of three cryo-EM structures of Pma1 in its unique hexameric state offers a new level of understanding the molecular mechanisms underlying the protein's stability, regulated activity and druggability. In light of this context, this article aims to review what we currently know about the structure, function and biogenesis of fungal Pma1.
Collapse
Affiliation(s)
- Margaret R Young
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Sabine Heit
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Maike Bublitz
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
13
|
Kovács D, Gay AS, Debayle D, Abélanet S, Patel A, Mesmin B, Luton F, Antonny B. Lipid exchange at ER-trans-Golgi contact sites governs polarized cargo sorting. J Cell Biol 2024; 223:e202307051. [PMID: 37991810 PMCID: PMC10664280 DOI: 10.1083/jcb.202307051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023] Open
Abstract
Oxysterol binding protein (OSBP) extracts cholesterol from the ER to deliver it to the TGN via counter exchange and subsequent hydrolysis of the phosphoinositide PI(4)P. Here, we show that this pathway is essential in polarized epithelial cells where it contributes not only to the proper subcellular distribution of cholesterol but also to the trans-Golgi sorting and trafficking of numerous plasma membrane cargo proteins with apical or basolateral localization. Reducing the expression of OSBP, blocking its activity, or inhibiting a PI4Kinase that fuels OSBP with PI(4)P abolishes the epithelial phenotype. Waves of cargo enrichment in the TGN in phase with OSBP and PI(4)P dynamics suggest that OSBP promotes the formation of lipid gradients along the TGN, which helps cargo sorting. During their transient passage through the trans-Golgi, polarized plasma membrane proteins get close to OSBP but fail to be sorted when OSBP is silenced. Thus, OSBP lipid exchange activity is decisive for polarized cargo sorting and distribution in epithelial cells.
Collapse
Affiliation(s)
- Dávid Kovács
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Anne-Sophie Gay
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Delphine Debayle
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Sophie Abélanet
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Amanda Patel
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Bruno Mesmin
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Frédéric Luton
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Bruno Antonny
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| |
Collapse
|
14
|
Kong X, Wang F, Chen Y, Liang X, Yin Y, Liu H, Luo G, Li Y, Liang S, Wang Y, Liu Z, Tang C. Molecular action mechanisms of two novel and selective calcium release-activated calcium channel antagonists. Int J Biol Macromol 2023; 253:126937. [PMID: 37722647 DOI: 10.1016/j.ijbiomac.2023.126937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
The prototypical calcium release-activated calcium (CRAC) channel, composed of STIM1 and Orai1, is a sought-after drug target for treating autoimmune disorders. Herein, we identified two novel and selective CRAC channel inhibitors, the indole-like compound C63368 and pyrazole core-containing compound C79413, potently and reversibly inhibiting the CRAC channel with low micromolar IC50s and sparing various off-target ion channels. These two compounds did not inhibit STIM1 activation or its coupling with Orai1, nor did they affect the channel's calcium-dependent fast inactivation. Instead, they directly acted on the Orai1 protein, with the channel's pore geometry profoundly affecting their potencies. In vitro, C63368 and C79413 effectively inhibited Jurkat cell proliferation and cytokines production in human T lymphocytes. Intragastric administration of C63368 and C79413 to mice yielded great therapeutic benefits in psoriasis and colitis animal models of autoimmune disorders, reducing serum cytokines production and significantly relieving pathological symptoms. It's worth noting, that this study provided the first insight into the characterization and mechanistic investigation of an indole-like CRAC channel antagonist. Altogether, the identification of these two highly selective CRAC channel antagonists, coupled with the elucidation of their action mechanisms, not only provides valuable template molecules but also offers profound insights for drug development targeting the CRAC channel.
Collapse
Affiliation(s)
- Xiangjin Kong
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Changsha 40081, China
| | - Feifan Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yan Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xinyao Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yuan Yin
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Hao Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Guoqing Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yinping Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Changsha 40081, China.
| | - Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Changsha 40081, China.
| |
Collapse
|
15
|
Saatian B, Kohalmi SE, Cui Y. Localization of Arabidopsis Glucan Synthase-Like 5, 8, and 12 to plasmodesmata and the GSL8-dependent role of PDLP5 in regulating plasmodesmal permeability. Plant Signal Behav 2023; 18:2164670. [PMID: 36645916 PMCID: PMC9851254 DOI: 10.1080/15592324.2022.2164670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Cell-to-cell communication via membranous channels called plasmodesmata (PD) plays critical roles during plant development and in response to biotic and abiotic stresses. Several enzymes and receptor-like proteins (RLPs), including Arabidopsis thaliana glucan synthase-likes (GSLs), also known as callose synthases (CALSs), and PD-located proteins (PDLPs), have been implicated in plasmodesmal permeability regulation and intercellular communication. Localization of PDLPs to punctate structures at the cell periphery and their receptor-like identity have raised the hypothesis that PDLPs are involved in the regulation of symplastic trafficking during plant development and in response to endogenous and exogenous signals. Indeed, it was shown that PDLP5 could limit plasmodesmal permeability through inducing an increase in callose accumulation at PD. However, mechanistically, how this is achieved remains to be elucidated. To address this key issue in understanding the regulation of PD, physical and functional interactions between PDLPs and GSLs (using the PDLP5-GSL8/CALS10 pair as a model) were investigated. Our results show that GSL8/CALS10 plays essential roles and is required for the function and plasmodesmal localization of PDLP5. Furthermore, it was demonstrated that the localization of PDLP5 to PD and its function in inducing callose deposition are GSL8-dependent. Importantly, our transgenic study shows that three key members of the GSL family, i.e., GSL5/CALS12, GSL8/CALS10, and GSL12/CALS3, localize to PD and co-localize with PDLP5, suggesting that GSL8/CALS10 might not be the only callose synthase with the determining role in PD regulation. These findings, together with our previous observation showing the direct interaction of GSL8/CALS10 with PDLP5, indicate the pivotal role of the GSL8/CALS10-PDLP5 interplay in regulating PD permeability. Future work is needed to investigate whether the PDLP5 functionality and localization are also disrupted in gsl5 and gsl12, or it is just gsl8-specific.
Collapse
Affiliation(s)
- Behnaz Saatian
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
- Department of Biology, Western University, London, Ontario, Canada
| | | | - Yuhai Cui
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
- Department of Biology, Western University, London, Ontario, Canada
| |
Collapse
|
16
|
Taoka M, Kamei K, Kashima A, Nobe Y, Takekiyo T, Uekita T, Ichimura T. An ionic liquid-assisted sample preparation method for sensitive integral-membrane proteome analysis. Anal Biochem 2023; 683:115349. [PMID: 37852348 DOI: 10.1016/j.ab.2023.115349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Many ion channels and receptor proteins are potential targets for new drugs. However, standard methods for profiling these integral membrane proteins (IMPs) have not been fully established, especially when applied to rare and quantity-limited biological samples. We previously demonstrated that a mixture containing 1-butyl-3-methylimidazolium cyanate, an ionic liquid (IL), and NaOH (termed i-soln) is an excellent solubilizer for insoluble aggregates. In this study, we present a combined i-soln-assisted proteomic sample preparation platform (termed pTRUST), which is compatible with starting materials in the sub-microgram range, using our previously reported i-soln-based sample preparation strategy (iBOPs) and an in-StageTip technique. This novel and straightforward approach allows for the rapid solubilization and processing of a variety of IMPs from human samples to support highly sensitive mass spectrometry analysis. We also demonstrated that the performance of this technology surpasses that of conventional methods such as filter-aided sample preparation methods, FASP and i-FASP. The convenience and availability of pTRUST technology using the IL system have great potential for proteomic identification and characterization of novel drug targets and disease biology in research and clinical settings.
Collapse
|