1
|
Chen Y, Bai X, Zhang Y, Zhao Y, Ma H, Yang Y, Wang M, Guo Y, Li X, Wu T, Zhang Y, Kong H, Zhao Y, Qu H. Zingiberis rhizoma-based carbon dots alter serum oestradiol and follicle-stimulating hormone levels in female mice. Artif Cells Nanomed Biotechnol 2024; 52:12-22. [PMID: 37994799 DOI: 10.1080/21691401.2023.2276770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/18/2023] [Indexed: 11/24/2023]
Abstract
Chinese herbs contain substances that regulate female hormones. Our study confirmed that Zingiberis rhizoma carbonisata contains Zingiberis rhizoma-based carbon dots (ZR-CDs), which exert regulatory effects on serum oestradiol and FSH in mice and show impacts on endometrial growth and follicular development that potentially affect the ability of female fertility. ZR-CDs were characterized to clarify the microstructure, optical features, and functional group characteristics. It shows that ZR-CDs are spherical carbon nanostructures ranging from 0.97 to 2.3 nm in diameter, with fluorescent properties and a surface rich in functional groups. We further investigated the impact of ZR-CDs on oestradiol and FSH in serum, growth, and the development of ovarian and uterine using normal female mice and exogenous oestradiol intervention model. It was observed that ZR-CDs accelerated oestrogen metabolism and attenuated oestradiol-induced endometrial hyperplasia. Simultaneously, ZR-CDs triggered an increase in FSH, even in the presence of high-serum oestradiol that inhibits FSH secretion. Our findings suggest that ZR-CDs could be a potential therapeutic treatment for anovulatory menstruation.
Collapse
Affiliation(s)
- Yumin Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yafang Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huagen Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yunbo Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Meijun Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yinghui Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaopeng Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huaihua Qu
- Centre of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Ma J, Li J, Chen X, Ma Y. Ojeok-san enhances platinum sensitivity in ovarian cancer by regulating adipocyte paracrine IGF1 secretion. Adipocyte 2024; 13:2282566. [PMID: 37993991 DOI: 10.1080/21623945.2023.2282566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Platinum is a commonly used drug for ovarian cancer (OvCa) treatment, but drug resistance limits its clinical application. This study intended to delineate the effects of adipocytes on platinum resistance in OvCa. METHODS OvCa cells were maintained in the adipocyte-conditioned medium. Cell viability and apoptosis were detected by CCK-8 and flow cytometry, separately. Proliferation and apoptosis-related protein expression were assayed by western blot. The IC50 values of cisplatin and carboplatin were determined using CCK-8. IGF1 secretion and expression were assayed via ELISA and western blot, respectively. A xenograft model was established, and pathological changes were detected by H&E staining. Proliferation and apoptosis-associated protein expression was assessed via IHC. RESULTS Adipocytes promoted the viability and repressed cell apoptosis in OvCa, as well as enhancing platinum resistance, while the addition of IGF-1 R inhibitor reversed the effects of adipocytes on proliferation, apoptosis, and drug resistance of OvCa cells. Treatment with different concentrations of Ojeok-san (OJS) inhibited the adipocyte-induced platinum resistance in OvCa cells by suppressing IGF1. The combined treatment of OJS and cisplatin significantly inhibited tumour growth in vivo with good mouse tolerance. CONCLUSION In summary, OJS inhibited OvCa proliferation and platinum resistance by suppressing adipocyte paracrine IGF1 secretion.
Collapse
Affiliation(s)
- Jiong Ma
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Junyan Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Xuejun Chen
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Yanyan Ma
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Xu Y, Zhu K, Wu J, Zheng S, Zhong R, Zhou W, Cao Y, Liu J, Wang H. HBOC alleviated tumour hypoxia during radiotherapy more intensely in large solid tumours than regular ones. Artif Cells Nanomed Biotechnol 2024; 52:1-14. [PMID: 37994792 DOI: 10.1080/21691401.2023.2276768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/07/2023] [Indexed: 11/24/2023]
Abstract
Radiotherapy (RT) is a highly valuable method in cancer therapy, but its therapeutic efficacy is limited by its side effects and tumour radiation resistance. The resistance is mainly induced by hypoxia in the tumour microenvironment (TME). As a nano-oxygen carrier, Haemoglobin-based oxygen carriers (HBOCs) administration is a promising strategy to alleviate tumour hypoxia which may remodel TME to ameliorate radiation resistance and enable RT more effective. In this study, we administered fractionated RT combined with HBOC to treat Miapaca-2 cell and Hela cell xenografts on nude mice. The study found that HBOC relieved hypoxic environment and down-regulate expression of hypoxia-inducible factor-1α (Hif-1α) both in regular (100 mm3) and large (360/400 mm3) tumours. The proliferation and metastasis of tumour tissue also decreased after HBOC application. Nevertheless, in vivo RT combined with HBOC performed more effectively to suppress tumour growth in large tumours than in regular tumours. This is due to more severe hypoxic regions exist in the large solid tumours compared to the regular counterparts, and HBOC administration may be more effective in alleviating hypoxia in large tumours. Thus, HBOC sensitization therapy is more suitable for large solid tumours.
Collapse
Affiliation(s)
- Yingcan Xu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu, China
| | - Kehui Zhu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu, China
| | - Jiakang Wu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu, China
| | - Shifan Zheng
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu, China
| | - Rui Zhong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu, China
| | - Wentao Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu, China
| | - Ye Cao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu, China
| | - Jiaxin Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu, China
| | - Hong Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu, China
| |
Collapse
|
4
|
Yang Y, Lee PK, Wong HC, Zhao D. Oral supplementation of Gordonibacter urolithinfaciens promotes ellagic acid metabolism and urolithin bioavailability in mice. Food Chem 2024; 437:137953. [PMID: 37976786 DOI: 10.1016/j.foodchem.2023.137953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/15/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Ellagic acid (EA) is an abundant dietary polyphenol with multifarious health benefits but low bioavailability. To increase its bio-efficacy, converting EA to urolithins by supplementing urolithin-producing bacteria, e.g., Gordonibacter urolithinfaciens (G.uro), could be a solution. This work first tested three methods for oral delivery of live G.uro. Intestinal colonization of G.uro and its impact on local gut microbiota, EA-to-urolithin conversion and bioavailability were then investigated in C57BL/6J mice administered to EA only or a synbiotic (G. uro + EA). In vitro results suggested that G.uro largely survived simulated gastrointestinal digestion and could be administered without protection. In vivo results showed that G.uro had little impact on local gut microbiota but could not colonize the gut. Moreover, synbiotic remarkably promoted Akkermansia, Lactobacillus and Bifidobacterium growth, and significantly enhanced the bioavailability of urolithins compared with the EA-only group. This study demonstrated the potential of oral supplementation of G.uro for enhancing EA-to-urolithin bioconversion and bioavailability.
Collapse
Affiliation(s)
- Yang Yang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| | - Pui-Kei Lee
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| | - Ho-Ching Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong Special Administrative Region.
| | - Danyue Zhao
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong Special Administrative Region.
| |
Collapse
|
5
|
Qi Y, Qiu Z, Li L, Zhao R, Xiang L, Gong X, Zheng Z, Qiao X. Developing garlic polysaccharide-Fe (III) complexes using garlic pomace to provide enhanced iron-supplementing activity in vivo. Food Chem 2024; 437:137819. [PMID: 37922796 DOI: 10.1016/j.foodchem.2023.137819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/11/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
This study investigated the potential of garlic polysaccharides (GPs) from garlic pomace as iron carriers. The obtained GP-Fe (III) complexes had a higher molecular weight (5646 Da) and more fructose (90.46 %) than the GPs did and contained 9.7 % Fe (III). GPs were mainly composed of → 2)-β-d-Fruf (1 → and → 2)-β-d-Fruf (6 → residues, and their interactions with Fe (III) reduced the crystallinity, increased the thermal stability, and altered the morphological features through targeting the OH stretching vibrations of the hydroxyl groups and affecting the COC and OCO structures. The GP-Fe (III) complexes had high stability under simulated gastrointestinal digestion system and showed better therapeutic effects on iron deficiency anemia in mice than FeSO4 did, evidenced by improved hematological parameters, restored iron levels, and attenuated oxidative damage. Thus, GP-Fe (III) complexes are promising as novel Fe (III) supplements for Fe-deficient individuals, and promote the high-value utilization of garlic pomace.
Collapse
Affiliation(s)
- Yongqiu Qi
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| | - Zhichang Qiu
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| | - Lingyu Li
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| | - Renjie Zhao
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| | - Lu Xiang
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| | - Xulin Gong
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| | - Zhenjia Zheng
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| | - Xuguang Qiao
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
6
|
Salvatore SR, Gómez-Cortés P, Rowart P, Woodcock SR, Angel de la Fuente M, Chang F, Schopfer FJ. Digestive interaction between dietary nitrite and dairy products generates novel nitrated linolenic acid products. Food Chem 2024; 437:137767. [PMID: 37879157 DOI: 10.1016/j.foodchem.2023.137767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/30/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Nitrated fatty acids are important anti-inflammatory and protective lipids formed in the gastric compartment, with conjugated linoleic acid (rumenic acid, RA, 9Z,11E-18:2) being the primary substrate for lipid nitration. The recently reported identification of nitrated rumelenic acid (NO2-RLA) in human urine has led to hypothesize that rumelenic acid (RLA, 9Z,11E,15Z-18:3) from dairy fat is responsible for the formation of NO2-RLA. To evaluate the source and mechanism of NO2-RLA formation, 15N labeled standards of NO2-RLA were synthesized and characterized. Afterward, milk fat with different RA and RLA levels was administered to mice in the presence of nitrite, and the appearance of nitrated fatty acids in plasma and urine followed. We confirmed the formation of NO2-RLA and defined the main metabolites in plasma, urine, and tissues. In conclusion, RLA obtained from dairy products is the main substrate for forming this novel electrophilic lipid reported to be present in human urine.
Collapse
Affiliation(s)
- Sonia R Salvatore
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Pilar Gómez-Cortés
- Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Pascal Rowart
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Steven R Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Miguel Angel de la Fuente
- Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Fei Chang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (VMI), Pittsburgh, PA, USA; Pittsburgh Liver Research Center (PLRC), Pittsburgh, PA, USA; Center for Metabolism and Mitochondrial Medicine (C3M), Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Zhou E, Li Q, Xu R, Pan F, Tao Y, Li X, Xue X, Wu L. Covalent conjugation with quercetin mitigates allergenicity of the bee pollen allergen Bra c p in a murine model. Food Chem 2024; 436:137722. [PMID: 37857207 DOI: 10.1016/j.foodchem.2023.137722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
Profilin family members are highly conserved food allergens that can cause widespread cross-allergic reactions. Our previous research has demonstrated that the covalent conjunction with quercetin can disrupt the conformational epitopes of a profilin allergen, Bra c p. In this study, we further investigated the intrinsic molecular mechanisms using molecular dynamics simulations. Moreover, the allergenic potential of Bra c p and its conjugate with quercetin was assessed in BALB/c mice. The results showed that continuous interaction with quercetin increased the molecular motion of Bra c p, causing changes to its α-helices and exposing hydrophobic residues which altered antigenic epitopes. Additionally, mice treated with Bra c p-quercetin conjugate showed reduced allergic reactions compared to those treated with Bra c p alone by regulating purine metabolism, calcium signaling, and CD4+CD25+ Tregs proportion. Quercetin conjugation decreases the allergenicity of Bra c p, providing a scientific foundation for reducing the profilin allergens in food.
Collapse
Affiliation(s)
- Enning Zhou
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Qiangqiang Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Rui Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science (CAAS), Beijing 100193, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Yuxiao Tao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Xiangxin Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Xiaofeng Xue
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Liming Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China.
| |
Collapse
|
8
|
Wei B, Peng Z, Zheng W, Yang S, Wu M, Liu K, Xiao M, Huang T, Xie M, Xiong T. Probiotic-fermented tomato alleviates high-fat diet-induced obesity in mice: Insights from microbiome and metabolomics. Food Chem 2024; 436:137719. [PMID: 37839120 DOI: 10.1016/j.foodchem.2023.137719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Probiotic-fermented plant-based foods are associated with weight loss. Here, we hypothesized probiotic-fermented tomato (FT) as a functional food with potential to alleviate obesity, thus the obesity-alleviating effects and mechanisms of FT on high-fat diet-induced obese mice were explored via biochemical, gut microbiome, and serum metabolomics analysis. The results showed that FT performed better than unfermented tomato in reducing body weight gain and fat accumulation, improving dyslipidemia and glucose homeostasis, and relieving inflammation and adipocytokine dysregulation. Particularly, live probiotic-fermented tomato (LFT) was associated with improved diversity, composition, and structure of gut microbiota, suppressed obesity-related genera growth (e.g., Clostridium, Olsenella, and Mucispirillum), and promoted beneficial genera growth (e.g., Roseburia, Coprococcus, and Oscillospira), which were associated negatively with body weight, TC, TG, and TNF-α levels. Additionally, LFT was associated with positive changes in glycerophospholipids, sphingolipids, unsaturated fatty acids, and amino acids levels. Collectively, as a functional food, LFT possessed potential for obesity alleviation.
Collapse
Affiliation(s)
- Benliang Wei
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Zhen Peng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Wendi Zheng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Shiyu Yang
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Min Wu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Kui Liu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Muyan Xiao
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Tao Huang
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China.
| |
Collapse
|
9
|
Liu Q, Zhang Y, Han B, Wang M, Hu H, Ning J, Hu W, Chen M, Pang Y, Chen Y, Bao L, Niu Y, Zhang R. circRNAs deregulation in exosomes derived from BEAS-2B cells is associated with vascular stiffness induced by PM 2.5. J Environ Sci (China) 2024; 137:527-539. [PMID: 37980036 DOI: 10.1016/j.jes.2023.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 11/20/2023]
Abstract
As an environmental pollutant, ambient fine particulate matter (PM2.5) was linked to cardiovascular diseases. The molecular mechanisms underlying PM2.5-induced extrapulmonary disease has not been elucidated clearly. In this study the ambient PM2.5 exposure mice model we established was to explore adverse effects of vessel and potential mechanisms. Long-term PM2.5 exposure caused reduced lung function and vascular stiffness in mice. And chronic PM2.5 induced migration and epithelial-mesenchymal transition (EMT) phenotype in BEAS-2B cells. After PM2.5 treatment, the circRNAs and mRNAs levels of exosomes released by BEAS-2B cells were detected by competing endogenous RNA (ceRNA) array, which contained 1664 differentially expressed circRNAs (DE-circRNAs) and 308 differentially expressed mRNAs (DE-mRNAs). By bioinformatics analysis on host genes of DE-circRNAs, vascular diseases and some pathways related to vascular diseases including focal adhesion, tight junction and adherens junction were enriched. Then, ceRNA network was constructed, and DE-mRNAs in ceRNA network were conducted functional enrichment analysis by Ingenuity Pathway Analysis, which indicated that hsa_circ_0012627, hsa_circ_0053261 and hsa_circ_0052810 were related to vascular endothelial dysfunction. Furthermore, it was verified experimentally that ExoPM2.5 could induce endothelial dysfunction by increased endothelial permeability and decreased relaxation in vitro. In present study, we investigated in-depth knowledge into the molecule events related to PM2.5 toxicity and pathogenesis of vascular diseases.
Collapse
Affiliation(s)
- Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yaling Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Bin Han
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China; State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengruo Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Huaifang Hu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Jie Ning
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Wentao Hu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Meiyu Chen
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Lei Bao
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Yujie Niu
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
10
|
Dai Y, Peng Y, Hu W, Liu Y, Wang H. Prenatal amoxicillin exposure induces developmental toxicity in fetal mice and its characteristics. J Environ Sci (China) 2024; 137:287-301. [PMID: 37980015 DOI: 10.1016/j.jes.2023.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 11/20/2023]
Abstract
Amoxicillin, a widely used antibiotic in human and veterinary pharmaceuticals, is now considered as an "emerging contaminant" because it exists widespreadly in the environment and brings a series of adverse outcomes. Currently, systematic studies about the developmental toxicity of amoxicillin are still lacking. We explored the potential effects of amoxicillin exposure on pregnancy outcomes, maternal/fetal serum phenotypes, and fetal multiple organ development in mice, at different doses (75, 150, 300 mg/(kg·day)) during late-pregnancy, or at a dose of 300 mg/(kg·day) during different stages (mid-/late-pregnancy) and courses (single-/multi-course). Results showed that prenatal amoxicillin exposure (PAmE) had no significant influence on the body weights of dams, but it could inhibit the physical development and reduce the survival rate of fetuses, especially during the mid-pregnancy. Meanwhile, PAmE altered multiple maternal/fetal serum phenotypes, especially in fetuses. Fetal multi-organ function results showed that PAmE inhibited testicular/adrenal steroid synthesis, long bone/cartilage and hippocampal development, and enhanced ovarian steroid synthesis and hepatic glycogenesis/lipogenesis, and the order of severity might be gonad (testis, ovary) > liver > others. Further analysis found that PAmE-induced multi-organ developmental and functional alterations had differences in stages, courses and fetal gender, and the most obvious changes might be in high-dose, late-pregnancy and multi-course, but there was no typical rule of a dose-response relationship. In conclusion, this study confirmed that PAmE could cause abnormal development and multi-organ function alterations, which deepens our understanding of the risk of PAmE and provides an experimental basis for further exploration of the long-term harm.
Collapse
Affiliation(s)
- Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yu Peng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Wen Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yi Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
11
|
Kaur S, Roberts DD. Emerging functions of thrombospondin-1 in immunity. Semin Cell Dev Biol 2024; 155:22-31. [PMID: 37258315 PMCID: PMC10684827 DOI: 10.1016/j.semcdb.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Thrombospondin-1 is a secreted matricellular glycoprotein that modulates cell behavior by interacting with components of the extracellular matrix and with several cell surface receptors. Its presence in the extracellular matrix is induced by injuries that cause thrombospondin-1 release from platelets and conditions including hyperglycemia, ischemia, and aging that stimulate its expression by many cell types. Conversely, rapid receptor-mediated clearance of thrombospondin-1 from the extracellular space limits its sustained presence in the extracellular space and maintains sub-nanomolar physiological concentrations in blood plasma. Roles for thrombospondin-1 signaling, mediated by specific cellular receptors or by activation of latent TGFβ, have been defined in T and B lymphocytes, natural killer cells, macrophages, neutrophils, and dendritic cells. In addition to regulating physiological nitric oxide signaling and responses of cells to stress, studies in mice lacking thrombospondin-1 or its receptors have revealed important roles for thrombospondin-1 in regulating immune responses in infectious and autoimmune diseases and antitumor immunity.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Kwok AJ, Lu J, Huang J, Ip BY, Mok VCT, Lai HM, Ko H. High-resolution omics of vascular ageing and inflammatory pathways in neurodegeneration. Semin Cell Dev Biol 2024; 155:30-49. [PMID: 37380595 DOI: 10.1016/j.semcdb.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023]
Abstract
High-resolution omics, particularly single-cell and spatial transcriptomic profiling, are rapidly enhancing our comprehension of the normal molecular diversity of gliovascular cells, as well as their age-related changes that contribute to neurodegeneration. With more omic profiling studies being conducted, it is becoming increasingly essential to synthesise valuable information from the rapidly accumulating findings. In this review, we present an overview of the molecular features of neurovascular and glial cells that have been recently discovered through omic profiling, with a focus on those that have potentially significant functional implications and/or show cross-species differences between human and mouse, and that are linked to vascular deficits and inflammatory pathways in ageing and neurodegenerative disorders. Additionally, we highlight the translational applications of omic profiling, and discuss omic-based strategies to accelerate biomarker discovery and facilitate disease course-modifying therapeutics development for neurodegenerative conditions.
Collapse
Affiliation(s)
- Andrew J Kwok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jianning Lu
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junzhe Huang
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bonaventure Y Ip
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent C T Mok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hei Ming Lai
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
13
|
Liu J, Zhang L, Xu F, Zhang P, Song Y. Chronic administration of triclosan leads to liver fibrosis through hepcidin-ferroportin axis-mediated iron overload. J Environ Sci (China) 2024; 137:144-154. [PMID: 37980003 DOI: 10.1016/j.jes.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 11/20/2023]
Abstract
Triclosan (TCS) has been manufactured as an antibacterial compound for half a century. Currently, it is widely used in various personal care products; however, its potential adverse effects raise a lot of attention. Here, we create a long-term oral administration mouse model and identify the corresponding hepatotoxicity of TCS. We discover that daily intragastric administration of 10 mg/kg TCS to mice for 12 weeks results in severe hepatic fibrosis. Further study displays that hepatic iron increased 18%, 23% and 29% upon oral TCS treatment for 4, 8 and 12 weeks, respectively. Accompanied by hepatic iron variation, splenic and duodenal iron are increased, which indicates systemic iron disorder. Not only excessive iron accumulated in the liver, abnormal hepatic malondialdehyde, prostaglandin synthase 2 and glutathione peroxidase 4 are pointed to ferroptosis. Additional study uncovers that hepcidin expression increases 7%, 10%, 4% in serum and 2.4-, 4.8-, and 2.3-fold on transcriptional levels upon TCS exposure for 4, 8 and 12 weeks, individually. Taken together, the mice in the TCS-treated group show disordered systemic iron homeostasis via the upregulated hepatic hepcidin-ferroportin axis. Meanwhile, both hepatic iron overload (systemic level) and hepatocyte ferroptosis (cellular level) are accused of TCS-induced liver fibrosis. Ferriprox®, an iron scavenger, significantly ameliorates TCS-induced liver fibrosis. In summary, this study confirms the impact of TCS on liver fibrosis; a critical signal pathway is also displayed. The significance of the current study is to prompt us to reevaluate the "pros and cons" of TCS applications.
Collapse
Affiliation(s)
- Jing Liu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; The Institute of Karst Wetland Ecology, Guizhou Minzu University, Guiyang 550025, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lecong Zhang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; The Institute of Karst Wetland Ecology, Guizhou Minzu University, Guiyang 550025, China
| | - Fang Xu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; The Institute of Karst Wetland Ecology, Guizhou Minzu University, Guiyang 550025, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ping Zhang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; The Institute of Karst Wetland Ecology, Guizhou Minzu University, Guiyang 550025, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
14
|
Alford AI, Hankenson KD. Thrombospondins modulate cell function and tissue structure in the skeleton. Semin Cell Dev Biol 2024; 155:58-65. [PMID: 37423854 DOI: 10.1016/j.semcdb.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [ |